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A transfer Hamiltonian approach for an arbitrary quantum dot array
in the self-consistent field regime
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MIND/IN2UB Departament d’Electr�onica, Universitat de Barcelona, C/Mart�ı i Franquès 1,
E-08028 Barcelona, Spain

(Received 23 May 2012; accepted 3 October 2012; published online 1 November 2012)

A transport methodology to study electron transport between quantum dot arrays based on the

transfer Hamiltonian approach is presented. The interactions between the quantum dots and between

the quantum dots and the electrodes are introduced via transition rates and capacitive couplings. The

effects of the local potential are computed within the self-consistent field regime. The model has

been developed and expressed in a matrix form in order to make it extendable to larger systems.

Transport through several quantum dot configurations has been studied in order to validate the

model. Despite the simplicity of the model, well-known effects are satisfactorily reproduced and

explained. The results qualitatively agree with other results obtained using more complex theoretical

approaches. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763359]

I. INTRODUCTION

Confined structures have been available to the experimen-

talists for a very long time. The metal-oxide-semiconductor

(MOS) transistor is the archetypal confined two-dimensional

system.1 Nevertheless, the possibility of enhancing this con-

finement by embedding low-dimensional structures in an insu-

lating matrix has caused renewed interest. These structures

(quantum dots, wires, or layers) can be used in single-electron

devices,2 new memory concepts,3 and photon or electrolumi-

nescent devices.4

Quantum dots (Qds) are particularly attractive because

they possess discrete energy levels and quantum properties

similar to natural atoms or molecules. From a theoretical

point of view, research has mostly concentrated on single

Qds. These simple systems have been studied using many-

body approaches, including the non-equilibrium Green’s

function formalism (NEGFF).5,6 From a practical point of

view, many novel phenomena have been discovered, such as

the staircase-like current-voltage (I-V) characteristic,7 Cou-

lomb blockade oscillation,8 negative differential capaci-

tance,9 and the Kondo effect in Qds.10

Researchers have recently paid much attention to elec-

tron transport through several Qds since multiple Qds pro-

vide more Feynman paths for electron transmission.11

However, up to now the only computation of transport in an

extended arbitrary array of Qds has been done by Carreras

et al.12 which did not include any local potential due to self-

charge. Sun et al.13 have also studied electron transport using

NEGFF for different arrangements of Qds, from one to three

Qds, without including the potential due to self-charge. The

inclusion of the self-charge potential using such a complex

framework is usually impossible for large systems.

In this work, we use non-coherent rate equations

(NCRE)14,15 to study electrical transport in Qds in an extend-

able, arbitrary matrix of Qds, taking into account self-charge

effects. In previous work,16 we applied NCRE to obtain ana-

lytical solutions for electron transport in simple cases. Using

this approach each Qd is treated as a separate system; there-

fore, we can write a NCRE for each dot since the equations

describe the relationship between the charge inside the Qds

and the applied bias voltage. The interactions between the

Qds and between the Qds and the electrodes are introduced

by transition rates and capacitive couplings. Electron trans-

port and charge densities inside the Qds depend on the tunnel

transparency of the barriers limiting each dot. In order to

effectively solve the multielectron problem, the effects of the

local potential are computed within the self-consistent field

(SCF) regime. Moreover, we show how our approach can

easily be extended to an arbitrary number of Qds and any

configuration using a matrix formalism. Therefore, this

methodology allows us to simulate realistic devices based on

large scale Qd arrays. Finally, we compare this methodology

with NEGFF and show that both yield similar results.

II. THEORETICAL BACKGROUND

Our system consists of two electrodes (L lead and R lead)

coupled to a central transport region. The central region con-

tains several Qds, N Qds, distributed inside an insulator ma-

trix. In order to find the current–voltage (I-V) curve of the

total system, we use the transfer Hamiltonian formalism.17,18

Using this formalism we can write an expression for the cur-

rent flowing between two parts of the system. Assuming no

inelastic scattering and symmetry in the transmission coeffi-

cient,19 the net current flux between two parts of the system is

Iij ¼
4pq

�h

ð
TijðEÞqiðEÞqjðEÞðfjðEÞ � fiðEÞÞdE; (1)

where TijðEÞ is the transmission probability, qiðEÞ and qjðEÞ
are the density of states while fiðEÞ and fjðEÞ are the distribu-

tion functions (DFs) of the different parts of the system. In

equilibrium, the electrochemical potential is the same through-

out the whole system, and the particular DFs are described bya)Electronic mail: sillera@el.ub.edu.
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the equilibrium Fermi Dirac DF. Therefore, the current

between any two parts of the system is zero. If an external bias

voltage (V) is applied, which drives the system out of equilib-

rium, the electrochemical potential of the leads will change by

lL � lR ¼ qV. From the definition of the total charge Ni

inside the ith Qd, we can write

Ni ¼
ð

qiðEÞniðEÞdE; (2)

where niðEÞ is an unknown DF and qi is the density of states

(DOS) of the ith Qd. For the sake of clarity, we only consider

a single state with energy level � in each Qd. In order to take

into account the coupling with the surrounding elements, we

assign a Lorentzian shape DOS20 centered on � and the half-

width value is proportional to the strength of the coupling.

We can write the evolution of the charge over time for each

Qd as Ni ¼
P

j

Ð
Ijidt, where the subscript i refers to the ith

Qd and j runs over the other components of the system.

Thus, a set of integro-differential equations are obtained for

the charge evolution

dNi

dt
¼ 4pq

�h

ð
TLiqLqiðfL � niÞdEþ

ð
TRiqRqiðfR � niÞdE

�

þ
XðN�1Þ

j 6¼i

ð
Tjiqjqiðnj � niÞdE

!
8i ¼ 1…N; (3)

where we explicitly write out all the current terms: the cur-

rent contributions from the leads (first and second term) and

the neighbor contribution (the last term). We assume that the

DFs in the electrodes (fL and fR) are similar to the Fermi

Dirac DF using different electrochemical potentials (lL and

lR). Equation (3) can be rewritten for the steady state, and

assuming no inelastic scattering we can obtain the DF in

each Qd and for each energy step as a solution of the system

of equations

�TL1qL � TR1qR �
XðN�1Þ

j6¼1
T1jqj … T1NqN

� . .
.

�

T1Nq1 … �TLNqL � TRNqR �
XðN�1Þ

j 6¼N
TNjqj

0
BBBB@

1
CCCCA

n1

�

nN

0
B@

1
CA ¼ �TL1qLfL � TR1qRfR

�

�TLNqLfL � TRNqRfR

0
B@

1
CA: (4)

The effect on the electrostatic potential inside each Qd

of the voltage applied to the external electrodes must also be

taken into account. The classical solution for the potential in

each Qd (Vi) involves the Poisson equation

~r � ðer
~rViÞ ¼ �

qDNi

Xe0

; (5)

where er is the relative permittivity of the dielectric medium,

e0 is the vacuum permittivity, and X is the Qd volume. The

general solution for the potential energy Ui ¼ �qVi in the

ith Qd is21

Ui ¼
X
j6¼i

Cij

Ctot;i
ð�qVjÞ þ

q2

Ctot;i
DNi; (6)

where the subscript j runs over all the components of the

system, Cij is the capacitive coupling between the different

components, and Ctot;i ¼
P

j;j6¼i Cij is the total capacitive cou-

pling of the ith Qd. The charge energy constant U0i ¼
q2=Ctot;i is the increase in potential as a consequence of the

injection of one electron into the Qd and DNi is the change

in the number of electrons, calculated with respect to the

number of electrons N0 initially in the ith Qd. The effects

of local potential on each Qd, which modifies the Qd charge

and the currents, should be taken into account in the Qd

DOS qiðEÞ ! qiðE� UiÞ. From Eq. (6) we observe that the

local potential depends on the increasing charge density, but

at the same time the charge depends on the DOS that is

modified by the local potential. These considerations impose

a self-consistent solution of Eqs. (2) and (6).

III. RESULTS AND DISCUSSION

In this section, we first show the calculated I-V curves

for different arrangements and we compare them with the

results obtained using NEGFF.13 We also present the number

of electrons, Ni, accumulated in the ith Qd in each configura-

tion. In these cases, analytical expressions for the current are

presented as well. Finally, the extension of the model devel-

oped in Sec. II is presented as a powerful method for study-

ing electron transport in an arbitrary extended array of Qds.

The electrochemical potentials in the two leads are set at

lL ¼ 0 and lR ¼ �qV. Electrons flow from the left lead to

the right one. For simplicity, we consider that the transmis-

sion probability is constant and the same between all the

parts of the system. We do not consider direct transmission

between the leads. For clarity the DOS of the leads are con-

sidered to be constant over the whole energy range. Using

this framework (transport without inelastic scattering) the

position of the energy levels in the Qds plays an important

role, and therefore its evolution with the applied bias voltage

defines the shape of the I(V) curve. As expected, the I(V)

curves exhibit strong dependence on the electrostatic cou-

pling of the different parts of the system. We present expres-

sions for the evolution of the energy levels with the applied

bias voltage assuming that there is equal capacitive coupling

between the elements which are coupled. We set a constant

charge energy for all Qds: U0 ¼ 0:25 eV.

093701-2 Illera et al. J. Appl. Phys. 112, 093701 (2012)



A. One single Qd

We briefly review electron transport through one Qd.

Using Eq. (3) and only taking into account the lead contribu-

tions, the current can be written as

I ¼ 4pq

�h

ð
TR1TL1qLq1qR

TL1qL þ TR1qr

ðfL � fRÞdE: (7)

Fig. 1 shows the numerical result for the current I(V). In the

calculation we assumed symmetric coupling with respect to

the leads, TR1 ¼ TL1 ¼ 0:2.22 The evolution of the energy

level with the applied bias voltage is

�1ðVÞ ¼ 1� V=2þ U0DN1; (8)

where the second and third terms are due to the electrostatic

effect. As expected, the current increases with the bias when

the energy of the Qd moves across the left lead, which is

lL ¼ �1ðVÞ ! V � 2. When V is high enough, the current

saturates to a constant value, as �1ðVÞ is placed between the

two electrochemical potentials of the leads. Fig. 1(b) shows

the dependence of the electron number on the applied bias.

B. Two Qds

We now study the case of two Qds. There are four dif-

ferent connection geometries between the Qds and the leads.

In our calculations we assume symmetric coupling with

respect to the leads, TR1 ¼ TL1 ¼ 0:2, and the Qd coupling

T12 ¼ 0:2. We use the same energy level as Sun et al.13 in

order to make the qualitative comparison between the two

models possible.

1. Parallel case

The first configuration of two Qds is the case in which

they are in parallel. Both the Qds are coupled to all the ele-

ments of the system: the leads and the neighboring Qd. In

this configuration the expressions for the current are

I1 ¼
4pq

�h

ð
TL1TR1ðTL1qL þ T1RqR þ T12ðq1 þ q2ÞÞqLqRq1

D2

� ðfL � fRÞdE; (9a)

I2 ¼
4pq

�h

ð
TL1TR1ðTL1qL þ T1RqR þ T12ðq1 þ q2ÞÞqLqRq2

D2

� ðfL � fRÞdE; (9b)

where D2¼ðT1RqLþT1LqRÞ2þT1LT12qRðq1þq2ÞþTL1T12qL

ðq1þq2Þ. The energy level of each Qd is

�1ðVÞ ¼ 1� qV=3� qV2=3þ U0DN1; (10a)

�2ðVÞ ¼ 3:5� qV=3� qV1=3þ U0DN2: (10b)

The total and partial currents are shown in Fig. 2(a). The I–V

curve shows two steps when the energy levels of the Qds are

placed between the electrochemical potentials of the leads.

This case is equivalent to a single Qd with two energy levels.

Fig. 2(b) shows the electron number ni with the bias voltage

applied. The charge increases until it reaches the saturation

value.

2. Serial case

The second type of arrangement is the case of two Qds

in a serial configuration. The system is shown in the inset of

Fig. 3(a). Each Qd only interacts with one lead and the other

Qd. In this case, the expression for the current is

I ¼ 4pq

�h

ð
TL1T12T2RqLq1q2qR

TL1T12q1qL þ TL1T2RqRqL þ T12T2Rq2qR

ðfL � fRÞdE;

(11)

and the evolution of the energy level of each Qd with the

applied bias voltage is

FIG. 1. (a) The I–V curve for one single Qd obtained using NCRE. We also

show the NEGFF results for the same system, and the NEGFF data are taken

from Sun et al.13 (b) The electron number in the Qd as a function of the

applied bias V. The inset shows the connection geometry. The rectangles

represent two leads and the circle represents a Qd.

FIG. 2. (a) The total I–V curve and partial I–V curves obtained using NCRE

for a parallel configuration. The NEGFF results are taken from Sun et al.13

(b) The electron number in the Qds as a function of the applied bias V.
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�1ðVÞ ¼ 1� qV2=2þ U0DN1; (12a)

�2ðVÞ ¼ 3:5� qV=2� qV1=2þ U0DN2; (12b)

where we have assumed that the Qds are only coupled to

each other and to one lead. In order to have current flowing

through the system, the energy levels must lie between the

electrochemical potentials of the leads and overlapping of

the Qd energy levels is also necessary. This means that the

electrons need available states in each part of the system in

order to move from the left lead to the right lead. When the

energy levels are equal, �1 ¼ �2 ! V � 7:5, there is maxi-

mum overlapping between Qd DOS, the current is maxi-

mum, and the system is in a resonance state; therefore, the

channel is open. When the voltage increases further, the

overlapping of the Qd DOS decreases. Therefore, a negative

differential resistance appears.23 In Fig. 3(b) we show the

evolution of the charge in each Qd Ni as a function of the

applied voltage, V. Initially, N1 increases since the channel

between the first and second Qd is closed. At the resonant

condition, the channel between the Qds opens, and some

charge stored in the first Qd flows to the second Qd. At

higher voltages, the channel closes again and N1 stores all

the incoming charge, while N2 loses its charge.

3. Other two-Qd configurations

We first examine the case in which one Qd interacts

with the two leads and is also connected to the second Qd,

while the second Qd is only connected to the first Qd. The

current is

I ¼ 4pq

�h

ð
TR1TL1qLq1qR

TL1qL þ TR1qr

ðfL � fRÞdE; (13)

and the energy levels are

�1ðVÞ ¼ 1� qV=3� qV2=3þ U0DN1; (14a)

�2ðVÞ ¼ 3:5� qV1 þ U0DN2: (14b)

The expression obtained for the current (Eq. (13)) is the

same as the one we obtained for the single Qd case. The DF

in the second Qd is the same as in the first Qd; therefore, the

current between the Qds is zero. The results are presented in

Fig. 4.

The second arrangement of Qds is shown in the inset of

Fig. 5. The expressions for the current are

I1 ¼
4pq

�h

ð
T1Rq1qRðTR2qRTL1qL þ T12q1TL1qLÞ

D
ðfL � fRÞdE;

(15a)

I2 ¼
4pq

�h

ð
T2Rq2qRT12q1TL1qL

D
ðfL � fRÞdE; (15b)

where D ¼ T2RqRTL1qL þ TR1TR2q2
R þ TR2qRT12q2 þ T12q1

TL1qL þ TR1qRT12q1 and the total current is I ¼ I1 þ I2. The

energy level is

FIG. 3. (a) The I–V curve for two Qds in a serial configuration obtained using

NCRE. We also show the NEGFF results for the same system, the NEGFF

data are taken from Sun et al.13 The inset shows the connection geometry. (b)

The electron number in the Qds as a function of the applied bias V.

FIG. 4. (a) The I–V curve, for the configuration plotted in the inset, obtained

using NCRE. We also show the NEGFF results for the same system, the

NEGFF data are taken from Sun et al.13 (b) The electron number in the Qds

as a function of the applied bias V.

FIG. 5. (a) The total I–V curve and partial I–V curves obtained using NCRE

for the configuration showed in the inset. The NEGFF results are taken from

Sun et al.13 (b) The electron number in the Qds as a function of the applied

bias V.
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�1ðVÞ ¼ 1� qV=3� qV2=3þ U0DN1; (16a)

�2ðVÞ ¼ 3:5� qV1=2þ U0DN2: (16b)

In this case we show the total and partial currents. The I–V

partial current demonstrates interesting behavior. The current

through the first Qd is similar to that in the single Qd config-

uration, but the current through the second resembles the

slope of a resonant state. This can easily be understood by

taking the following into account: if the channel between the

two Qds is closed, the current only flows through the first

Qd. When the Qd1–Qd2 channel is opened, Qd2 also con-

ducts. Just as in the previous case, when the voltage

increases the overlapping decreases and the Qd2 current

decreases.

C. Three Qds

The methodology developed in the first section can eas-

ily be extended to more complicated systems. Here, we pres-

ent the results for some configurations based on three Qds.

The analytical expressions for the current are too large to

write out here, but in Figs. 6(a), 6(c), and 6(e) we show the I-

V curves and the charge in each Qd (Figs. 6(b), 6(d), and

6(f)). As we have shown before, the energy levels play an

important role in the I-V and N-V curves; using Eq. (6), we

can write each energy level as a function of the applied bias

voltage

�1ðVÞ ¼ 1�
X

j

C1j

Ctotal1
Vj þ U0DN1; (17a)

�2ðVÞ ¼ 2�
X

j

C2j

Ctotal2
Vj þ U0DN2; (17b)

�3ðVÞ ¼ 3:5�
X

j

C3j

Ctotal3
Vj þ U0DN3; (17c)

where the subscript j runs over all the connected elements of

the system. The Qd–lead coupling and the interdot coupling

are set equal to Tij ¼ 0:2. We use the same energy level as

Sun et al.13 in order to make qualitative comparison between

the two models possible. In the inset of Fig. 6, we show the

scheme of the system under study.

D. Large Qd arrangements

To conclude, we present the results for larger systems

that are closely related to experimental measurements. The

systems are formed of 100 Qds placed in a parallel configu-

ration, in a serial configuration and in a geometrical array

(10� 10). The total I–V curves and the geometries are pre-

sented in Fig. 7. The Qd–lead coupling and the interdot cou-

pling are set equal to Tij ¼ 0:2. The capacitance between the

linked elements is also equal. In order to represent an experi-

mental system, we consider that the value of the energy level

of each dot follows a normal distribution with a mean value

of 1 eV and deviation of 0.2 eV. This represents typical ex-

perimental distributions. The relationship between the Qd ra-

dius and the energy level is a well-known effect, and it is

related to the quantum confinement of the electrons.24

The I–V curves demonstrate interesting behavior. First,

in the parallel case (Fig. 7(a)) the I–V curve has a staircase-

FIG. 6. (a),(c),(e) The I–V curves and the

electron number (b),(d),(f), respectively,

for three Qds with different configura-

tion. The insets show the connection ge-

ometry. The NEGFF results are taken

from Sun et al.13

FIG. 7. The I–V curves for the larger systems: (a) 100 Qds in parallel config-

uration, (b) 100 Qds in serial configuration, and (c) 100 Qds in an array dis-

position 10 � 10. The energy level distribution has been generated for each

system, results correspond to one single set of these normally distributed

Qds and energy levels.
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like structure, and the current saturates to a constant value at

high bias. As we have seen before, in the parallel configura-

tion each Qd acts as an independent channel; therefore, the

total current is the sum of all the partial currents. As

expected, the saturation current is 100 times the saturation

current of a single dot.

For the serial configuration (Fig. 7(b)) we obtain a cur-

rent peak, as we expect, since the resonant state is necessary

for there to be electron transport in this configuration. The

maximum value of the peak is hard to determine because it

depends on the transmission coefficient, but it also depends

of the overlapping between the DOS of the Qds.

Concerning the array configuration (Fig. 7(c)), the I–V

curve is determined by a combination of the two previous

cases. In order for there to be transport, the resonant state

condition must be fulfilled; therefore, a current peak appears,

but the total current is the sum of the partial currents of each

row.

E. Comparison with NEGFF

Finally, we compare the results obtained using the pro-

posed approach to the results of Sun et al.13 In their paper,

they used the NEGFF to study electron transport between

one, two and three Qds in several configurations. Their I–V

results are reproduced in our figures (NEGFF in the legend).

The main results are:

• The results presented in Figs. 1, 2, 3, 6(a), and 6(c) are in

agreement across the two approaches. For the serial con-

figuration (Fig. 3), the differences are due to the different

values of the Qd coupling; we also obtain a resonant peak

when the energy levels of the Qds are in a resonant state.

The resonant state is strongly dependent on the capacitive

coupling of the Qds, as the energy level with the applied

bias voltage depends on the capacitive coupling of the Qd.
• In the parallel configuration we obtain the same staircase

shape, but, in our case we also take into account the

charge terms, therefore our steps occur at higher voltages.
• The main difference appears in the case described in Fig.

4. For this configuration, Sun et al. predicts an antireso-

nance effect. We do not recover this effect because our

model considers each Qd as a separate quantum system.

For this reason, our approach is known as a non-coherent

model.
• For the systems presented in Figs. 5 and 6(b) we obtain

similar results. The position of the current peak is different

because Sun et al. assumes that the bias is uniformly

applied throughout the whole system; meanwhile, we take

into account all the electrostatic coupling between the dif-

ferent parts of the system.

As we have shown that the electrostatic coupling plays

an important role when it comes to determine the I–V char-

acteristics of the system. The electrostatic effect has two

terms: the first term is determined by the influence of the

leads and the neighboring Qd, and it is described by the

capacitive coupling of the Qd to its surroundings. The second

term takes into account the charge stored inside the Qd, this

effect is related to the electron–electron interaction, and the

self-consistent solution of Eqs. (2) and (6) is the first

approach to introduce many-body effects, such as the Cou-

lomb blockade. If we create nanodevices in order to take

advantage of the quantization of the current, only a small

number of discrete energy levels are available for conduc-

tion; accurate control of the energy levels via the applied

bias voltage is one of the most important points that we need

to take into account. Therefore, good modelization of the

Qd–Qd and Qd–lead capacitances is necessary.

This paper precedes future research into which realistic

DOS, energy dependent transmission coefficients, as well as

realistic capacitive couplings can be introduced.

IV. CONCLUSION

We propose a theoretical model to study electron cur-

rents in systems based on Qds. This model is based on the

transfer Hamiltonian approach and computes the I–V and

N-V curves in the SCF regime, using NCREs. Our approach

provides a simple and transparent method for describing

electron transport. Due to the simplicity of the model, it can

be easily extended to analyze arbitrary large arrays of Qds

that may be of interest in technological applications. Despite

its simplicity and in contrast with other approaches, the

effect of self-charge has been taken into account by solving

the Poisson equation with appropriate boundary conditions

for each Qd. As expected, the calculation of the local poten-

tial inside each Qd is one of the most critical points, since

the I–V curves depend on the energy level.

In order to show the potential of this method to analyze

realistic configurations, we have studied electron transport

between different Qd configurations. We have also compared

the NCRE results with well-established data obtained with

NEGFF. The success of this comparison shows that NCRE is

a powerful and intuitive method for describing electron

transport.
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