
 
 
 

 
 

 
 
 
 

 
 
 

Synaptic and non-synaptic propagation  
of slow waves and their modulation  

by endogenous electric fields 
 

Beatriz Rebollo González 
 
 

 
 
 
 

	
 
 
 
 
 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) 
ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a 
disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta 
tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado 
indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the TDX 
(www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual 
property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing 
its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those 
rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis 
it’s obliged to indicate the name of the author. 



Doctoral Thesis by Beatriz Rebollo González

PhD Supervisor: María Victoria Sánchez Vives
2017





INSTITUT D’INVESTIGACIONS BIOMEDIQUES AUGUST PI I SUNYER

UNIVERSITY OF BARCELONA

THESIS FOR DOCTORAL DEGREE IN BIOMEDICINE

Synaptic and non-synaptic propagation of

slow waves and their modulation by

endogenous electric fields

Author:
Beatriz Rebollo González
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Abstract
Doctoral degree in Biomedicine

Synaptic and non-synaptic propagation of slow

waves and their modulation by endogenous electric

fields
by Beatriz Rebollo González

During deep sleep stage, neurons synchronize leading to a pattern of activity
manifested as slow oscillations (< 1 Hz rhythm). This recurrent synaptic
activity is organized eliciting a wave that propagates in the cortex. In this
thesis I explore the spatiotemporal dynamics of the slow oscillations in the
local cortical network, as well as the electric fields generated by these slow
waves. Using an in vitro preparation of cortical visual slices, we unraveled
that the propagation of slow oscillations is determined by the laminar cortical
structure and that the endogenous electric fields that they generate are able to
modulate the occurrence of these slow waves.
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apesar da distância conseguiu repor minhas energias e me guiar para manter
o curso em uma viagem que acaba de começar.
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Chapter 1

Introduction

The cerebral cortex is organized in complex circuits of neurons strongly
interconnected in a conductive medium. During deep sleep stage, this
neuronal connectivity generates recurrent synchronized synaptic activity
leading to transition states where periods of activity are interspersed with
periods of silence. This stereotyped pattern of alternate states is manifested
as slow oscillations (SO), <1 Hz rhythm that dominates the cortical network
during slow wave sleep (Steriade et al., 1993b) becoming important for
memory consolidation (Marshall et al., 2006), plasticity (Reig et al., 2006; Reig
and Sanchez-Vives, 2007) and metabolic homeostasis (Xie et al., 2013). The
spatiotemporal dynamic of the SO is more complex than the simultaneous
activation of neurons in a local network. The SO travels with a pattern of
propagation in the cortical network, with a preference in the anterior to
posterior direction (Massimini et al., 2004; Ruiz-Mejias et al., 2011).
This oscillatory rhythm, which can be observed at single neuronal level and
at the population level, generates extracellular fields that are prominent
enough to be measured extracellularly on the conductive medium (local field
potentials, LFP) or even from the skull surface (electroencephalograms, EEG).
Many excellent studies have raised awareness of the mechanisms involved in
these extracellular signals generated by neuronal populations (Kajikawa and
Schroeder, 2011; Buzsáki et al., 2012; Herreras, 2016; Teleńczuk et al., 2017).
Moreover, in the last years it has been proved how the electric fields (EFs)
generated by neuronal activity, in turn, induce changes in such activity of
neurons (Fröhlich and McCormick, 2010; Anastassiou et al., 2011). In other
words, the electric environment generated by neuronal activity has a feedback
effect on the synaptic activity. In this manner, exogenous electric fields
used in non-invasive brain stimulation provide a broad scope of therapeutic
applications by modulating brain activity.
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In this thesis, I will explore how the synaptic and non-synaptic components
modulate each other during the propagation of SO. For this purpose, I will
describe the propagation pattern of SO across the cerebral cortex; then I will
investigate the endogenous EFs generated by slow waves dissecting it from
the synaptic components to further investigate the modulation that they may
induce on the cortical SO.

1.1 The slow oscillation: a rhythmic pattern

Interconnected neuronal networks within the brain have the capacity to
maintain and process information, leading to different temporal dynamics
which vary as a function of brain states. A clear example of this phenomenon
appears during non-REM sleep, an unconscious state period during which
different rhythms such as spindles (7-14 Hz) arise during the early state of
non-REM sleep, and delta (1-4Hz) and SO (<1 Hz) during later stages.

The SO occurring during slow wave sleep represents one of the intrinsic
dynamics of the brain network (Sanchez-Vives and Mattia, 2014). Generated
and maintained by neuronal activity synchronization, SO consists in a
pattern of recurrent activity in which active periods of neural activity (Up
states) intersperse with relative silence (Down states). Such synchronized
transitions were first described in striatum (Wilson and Groves, 1981) to later
be characterized in the cortex and thalamus (Steriade et al., 1993b,a). Pioneer
studies in anesthetized cats have shown that SO are associated with spindle
and delta rhythms in the corticothalmocortical network. While spindles
are generated in the thalamus, independently of the slow rhythms, delta
frequency appears to be associated with the SO and is generated in both
thalamus and cortex (Steriade et al., 1993c).
Moreover, SO elicits fast oscillatory rhythms during Up states, similar to
those observed during awake states (Steriade et al., 1996; Destexhe et al.,
1999; Hasenstaub et al., 2005; Compte et al., 2008). The presence of these
fast rhythms might induce synaptic plasticity by increasing the number of
connections in the cortex, and therefore suggest an important role in memory
consolidation (Marshall et al., 2006). On the other hand, synchronous silences
during Down states have been associated with beneficial effects in preventing
cellular damage and maintaining cellular processes (Vyazovskiy and Harris,
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2013).

1.1.1 How does the slow oscillation emerge?

There has been a great interest in understanding the mechanisms that drive
SO and their functional outcomes (Sanchez-Vives and McCormick, 2000;
Timofeev et al., 2000; Bazhenov et al., 2002; Volgushev et al., 2006; Neske,
2015). Although some SO features remain unexplored, many network and
cellular mechanisms have already been established.

Regarding network mechanisms, already in 1993 Steriade and collaborators
described how the SO emerges as a local cortical phenomenon which results
from the orchestration of excitatory and inhibitory components. With
experiments performed under thalamic lesions they revealed the cortical
origin of SO. Later studies proved how such slow oscillatory pattern can
be spontaneously sustained in limited circuits for long periods of time (Fig.
1.1), allowing a better exploration of the cellular and network mechanistic
details involved (Sanchez-Vives and McCormick, 2000; Timofeev et al.,
2000). However, certain controversy has arisen about the contribution of
the thalamus in the origin of SO, which through its inputs to layer 4 might
influence the initiation of slow wave activity (David et al., 2013; Fiáth
et al., 2016). Recent studies justified the thalamocortical circuit as a unique
functional network where the thalamus also generates the SO (Crunelli and
Hughes, 2010; Crunelli et al., 2015).

Regarding cellular mechanisms, experiments in cortical slices (Sanchez-Vives
and McCormick, 2000) or deafferented cortical slabs (Timofeev et al., 2000)
disclosed how the SO emerges as a cortical network phenomenon where most
neurons are involved. Excitatory pyramidal neurons seem to be responsible for
the electrical synchronization in cortical networks (Steriade et al., 1993b). This
synchronization persists thanks to the synaptic excitation/inhibition balance
which maintains active states over hundreds of milliseconds (Compte et al.,
2009; Neske, 2015). Excitation at infragranular (IG) layers (see ”Propagation
of slow oscillations within a cortical structure” section) causes the onset of Up
states while K+ currents lead to their offset (Sanchez-Vives and McCormick,
2000; Compte et al., 2003). Recently, a combination of voltage-sensitive dye
with extracellular multielectrode recordings allowed specifying the temporal



4 Chapter 1. Introduction

FIGURE 1.1: SO in vivo and in vitro A. Intracellular recording
showing depolarization and hyperoplarization of a single
neuron in the anesthetized cat. B. Depolarizations examples
from A. C. Autocorrelograms of the intracellular recordings
representing the periodicity of the oscillation. D-F. Same
as A-C in a cortical ferret slice. (D, top) extracellular
multiunit-activity. Reproduced from Nature Neuroscience

(Sanchez-Vives and McCormick, 2000).

spike sequences during SO, revealing a larger contribution of inhibitory cells
during Up states than during Down states on the barrel cortex of anesthetized
rats (Reyes-Puerta et al., 2016). Besides the neural components, it has been
proposed that astrocytes can also be involved in Up state generation by
controlling extracellular glutamate in the cortical network (Poskanzer and
Yuste, 2011).

At the molecular level, a role of persistent Na+ currents and
N-Methyl-D-Aspartate (NMDA)-mediated excitatory postsynaptic potential
(EPSP) have been suggested in the initiation of active states (Steriade et al.,
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1993b; Sanchez-Vives and McCormick, 2000). Likewise Ca+-dependent
K+ currents on the long lasting hyperpolarization seem to be involved
in the Up states offset (Steriade et al., 1993b; Compte et al., 2003). These
assumptions were reinforced in the slab studies (Timofeev et al., 2000)
and slice preparations, where the blockade of non-NMDA glutamatergic
receptors abolished SO occurrence, and slow afterhyperpolarization (AHP)
reversal potentials suggested an increase in K+ conductances (Sanchez-Vives
and McCormick, 2000). Moreover, blockade of GABAA led to shorter Up
states with increased AHP, concurring with the proposed mechanisms of K+

channels as the candidates for Up state termination (Sanchez-Vives et al., 2010).

1.1.2 Slow oscillations within the cortical structure

A large number of studies have focused on the anatomical organization of
neural networks in an attempt to infer functions from structures (Thomson
and Lamy, 2007; Stetter et al., 2013; Markram et al., 2015; Pielecka-Fortuna
et al., 2015; Lee et al., 2016).
Regarding the SO previously described, recent work on mouse prefrontal
cortex (PFC) slices postulates that intrinsic properties of neurons, which
are critical to generate delta oscillatory rhythms, occasionally synchronize
small cluster of neurons; and this synchronization arises due to the network
structure that tends to connect proximal neurons (Blaeser et al., 2017).
In addition, slow waves have been described as traveling waves within the
whole brain (Massimini et al., 2004; Ruiz-Mejias et al., 2011; Stroh et al., 2013).
In anesthetized and sleeping humans and mice, SO can be originated at any
cortical area and propagate in any direction, however there is preference to be
originated in anterior regions to propagate to posterior areas.
It is thus of interest to study to what extent the network structure determines
the origin and propagation of SO.

The neocortex is shaped by columnar and laminar structures that arise due
to the anatomical and physiological arrangement of thousands of neurons, a
layout that is conserved across different species. Many neuronal classifications
can be done based on morphology, electrophysiological properties, protein
expression and connectivity (McCormick et al., 1985; Douglas and Martin,
2004; Thomson and Lamy, 2007; Ascoli et al., 2008; Markram et al., 2015).
Briefly, the massive cortical circuitry configuration can be simplified in
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two main populations of neurons identified as pyramidal (excitatory) and
interneurons (inhibitory) neurons. Those are distributed heterogeneously
within six layers (supragranular, SG: layer 1-3; granular: layer 4; IG: layer
5-6) that result from the neuronal migration during development (Arion
et al., 2007). Under this structure neurons communicate through vertical
and horizontal connections in the cortex (Lorente de Nó, 1934; Cajal, 1952;
Bannister, 2005).

In a generalized view of the neocortical circuit, pyramidal cells mainly
conform the excitatory flow between layers: starting within layer 4 which
receives input from the thalamus to further communicate with layer 2/3; then
layer 2/3 projects to layer 5, which projects to layer 6, and has a feedback
connection to layer 2/3. This feedback loop between layer 2/3 and layer
5 seems to overcome the inhibition that superficial layers may cause to the
cortex. At the same time, layer 6 returns the information to layer 4 closing the
loop (Fig. 1.2). Also, intralaminar excitatory communication is present within
layer 2/3 and layer 5, being stronger in the latter (Douglas and Martin, 2004;
Thomson and Lamy, 2007; Wester and Contreras, 2012).

Whereas excitatory neurons establish most of their connections between
layers; inhibitory neurons mainly form synapses within their local layer
(Douglas and Martin, 2004; Thomson and Lamy, 2007). Regarding inhibitory
circuitry, layer 1 which is composed primarily of interneurons together with
apical dendrites and axon terminals, seems to confine the communication
between neurons. This layer seizes feedback projections from other areas as
well as receives subcortical inputs (Douglas and Martin, 2004). To the greatest
extent, inhibitory circuits within the entire cortex regulate excitatory circuits,
although recent studies point to a direct role of inhibition in contributing to
functional networks (Ascoli et al., 2008; Maffei, 2017).

Considering the previously described massively interconnected wiring
network, many studies have explored how such cortical structure takes
part on the origin and spreading of SO (Sanchez-Vives and McCormick,
2000; Wester and Contreras, 2012; Beltramo et al., 2013; Reyes-Puerta et al.,
2016). A recent in vivo study (Fiáth et al., 2016) reported the contribution
of different layers on this rhythmic activity. Briefly, the authors explored
the spatial distribution of synaptic/transmembrane currents and spiking
activity along the laminar cortex during SO. As a result, current source density
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FIGURE 1.2: Laminar-temporal interactions between main
neurons in the cortex Time towards the right displaying 5
consecutive synaptic crossing. Gray circles, pyramidal cells.
Black circles, interneurons. P: pyramidal cells. B: basket
cells. Tax: thalamic afferents. L6Pax: Layer 6 pyramidal
arbors projecting to layer 4. Reproduced from Annual Review

of Neuroscience (Douglas and Martin, 2004).

(CSD) analysis revealed the longer source on superficial layers, while a sink
appeared in the middle layers during Up states. Layer 4 displayed the higher
depolarization on LFP recording while the multiunit activity (MUA) was
maximal at layer 5, exhibiting more frequent firing at the onset of Up states,
and suggesting a possible initiating role of layer 4 and a major contribution of
layer 5 on Up state generation (Fiáth et al., 2016).

Regarding layer 2/3 the probability of connection between neurons is
higher if they allocate a common input, nevertheless connectivity in this layer
is weaker than in layer 5 in cortical slice preparations (Wester and Contreras,
2012). It has been proved how layer 5, which communicates columns with
larger EPSPs than layer 2/3 (Douglas and Martin, 2004), resulted to be
more efficient to transfer excitation to other nearby cells under optogenetic
activation of pyramidal cells in in vivo mice (Beltramo et al., 2013); what is
more, layer 5 that depolarizes layer 2/3 during SO propagation, also receives
feedback propagation from layer 2/3 to later spread the activity within the
cortical columns (Wester and Contreras, 2012). In addition, simultaneous



8 Chapter 1. Introduction

recordings performed with voltage sensitive dye imaging and multielectrodes
showed shorter latencies between spike firing and Up state onset at IG layer
than at SG layers, confirming the upward propagation of SO from deep to
superficial layers (Sanchez-Vives and McCormick, 2000; Reyes-Puerta et al.,
2016). Thus, once the activity is recruited, the propagation occurs radially
and homogeneously from deep to superficial layers without preference for the
direction (Reyes-Puerta et al., 2016).
In spite of this combined neural activity between IG and SG layers, which can
induce spontaneous transmitter release in any neuron leading to depolarized
states (Chauvette et al., 2010), the large amount of synapses arriving to layer
5, as well as the presence of a subtype of pyramidal cells (low-frequency
bursting) in this layer which might drive the Up states onsets (Lőrincz et al.,
2015), indicate that layer 5 mediates transitions from Down to Up states.
Moreover, activity within layer 5 is able to hold and spread horizontally the
cortical rhythm without the contribution of layer 2/3 (Sanchez-Vives and
McCormick, 2000; Wester and Contreras, 2012). Hence, a large amount of
evidence points to layer 5 as crucial for the generation and propagation of SO
(Sanchez-Vives and McCormick, 2000; Wester and Contreras, 2012; Beltramo
et al., 2013; Fiáth et al., 2016; Reyes-Puerta et al., 2016; Blaeser et al., 2017).

Overall, it seems that SO start in layer 5 and spread radially to superficial
layers. The feedback projections from superficial layers to deep layers,
together with the horizontal projection within layer 5 drive the propagation
across columns in the cortical network (Sakata and Harris, 2009; Okun and
Lampl, 2008). However, it has not yet been studied to what extent the
spatiotemporal pattern of the SO is determined by the cortical structure,
and how the global excitability of the neuronal population can modulate its
spatiotemporal dynamics.

1.2 From synaptic activity to electric fields

Synaptic activity is considered the most important component for a dynamic
interaction between neural networks. However, the electrical phenomenon
that arises when different charges move across neuronal membranes
generating currents should not be dismissed. EEG measurements at the
scalp surface indicate that synaptic and electric fields (EFs) coexist in neural
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tissue, and what is more they propagate within it (Buzsáki et al., 2012). Thus,
synapses, together with other active mechanisms, contribute to extracellular
electric currents that, when superimposed at a specific position, generate field
potentials (Kajikawa and Schroeder, 2011; Herreras, 2016). In this manner, it
remains a challenge to separate synaptic from non-synaptic components when
measuring neural activity.
LFP is the low-pass component of the extracellular currents, and it is widely
used as an extracellular measure of brain activity. As long as the LFP is a
remote rather than a local measurement (Kajikawa and Schroeder, 2011),
there is a strong possibility that it reflects activity of structures far from the
recording point (Herreras, 2016). Thus, many studies have explored its origin
in order to better understand the activity that it mirrors (Weiss and Faber,
2010; Kajikawa and Schroeder, 2011; Buzsáki et al., 2012; Anastassiou et al.,
2015; Herreras, 2016).

1.2.1 How do electric fields emerge?

By and large, pyramidal cells are considered the major contributors to
extracellular fields as a result of their shape (their long somatodendritic axis
generates strong dipoles) and abundance in the cortex. In addition, their
spatial distribution and temporal synchrony determine the magnitude of
extracellular currents (Fig. 1.3A) (Weiss and Faber, 2010; Buzsáki et al., 2012).
Current sources with neuronal origin present a dipolar structure (Herreras,
2016); in addition, the large current fluctuations at the pyramidal somas
occurring when activity is synchronized leads to distinct polarity zones
(positive and negative) (Buzsáki et al., 2012). This way, an extracellular dipole
is formed between IG and SG layers in the cortical network; the parallel
distribution of pyramidal cells causes a current flow perpendicular to their
axis that when superimposed generates the active dipole. An outcome of this
is the polarity inversion observed at SG layers in the LFP when recording SO
across cortical layers (Fiáth et al., 2016)(Fig. 4.1). Thus, the fact that both SG
and IG layers reflect depolarization of neuronal populations during Up states
with different polarities on the LFP (positive and negative, respectively), is
in line with the idea that LFP polarity does not mirror the active currents of
synapses (Kajikawa and Schroeder, 2011; Herreras, 2016).

Those current flows along the vertical axis of pyramidal neurons, which result



10 Chapter 1. Introduction

FIGURE 1.3: Amplification of EF by chemical synapses on
pyramidal cells A, Schematic of pyramidal cells arranged in
a parallel orientation. Color code indicate the extracellular
potential. B. Feedback effect between synaptic activity and
its EF. Reproduced from Frontiers in Neural Circuits (Weiss and

Faber, 2010).

in a dipole on the cortical network, illustrate the variation along time of the
EFs, in other words, they illustrate EF propagation (Buzsáki et al., 2012). The
transmission of EF through biological tissue from a source to a measurement
sensor defines the term volume conduction (Rutkove, 2007). The expansion
of the volume conduction will be determined by the current dipole, already
described, and the conductivity of the medium (Buzsáki et al., 2012).

1.2.2 Electric fields within the brain tissue

Regarding the conductivity in the brain tissue, there is controversy
about whether we should consider the brain as a homogeneous or a
non-homogeneous medium. On one hand, cortical impedances measured in
the visual cortex of in vivo monkeys described the tissue as a homogeneous
medium where the EF propagation is isotropic and permits an equitable
propagation of any frequency, meaning that tissue impedance is frequency
independent. According to this, LFP dimension will be determined by the size
of the signal rather than by tissue properties (Logothetis et al., 2007). On the
other hand, frequency attenuation is observed when measuring extracellular
potentials, leading to higher spacial coherence in SO than in high frequency
oscillations (Destexhe et al., 1999). The homogeneous isotropic medium does
not reflect the frequency dependent attenuation, so it is not adequate for
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modeling LFP signals. A non-homogeneous extracellular conductivity results
in a low pass filter that makes the low frequency events attenuate less with
distance, generating the LFP/EEG signals. These frequency filtering properties
of the tissue are determined by the structural composition of the medium,
which requires considering the extracellular medium non-homogeneous and
anisotropic (Bédard et al., 2004). This debate remains open the question
whether the tissue has any influence on the EF propagation.

Considering the above, greater attention has been focused on the role of
volume conduction and EF propagation in the brain tissue, as they are also
reflected on extracellular signals toghether with the spiking activity.
Good evidence that emphases the need to pay heed to non-synaptic
mechanisms when measuring LFP was reported in the study of Kajikawa and
Schroeder, where sources (positive charges traveling to the extracellular space)
and sinks (positive charges traveling to the intracellular space) obtained with
current source density analysis (CSD) could not reproduce the observed LFP.
Besides, responses to different tones recorded at two different sites elicited
different spatial propagation of LFP, CSD and MUA. While CSD and MUA
disappeared when moving the frequency tone from the best frequency tone,
LFP measurement remained (the order of the spatial spread differences were:
LFP >CSD >MUA) (Kajikawa and Schroeder, 2011). Therefore, volume
conduction may exert a greater impact on LFP than on MUA (or CSD).
Hence, the neural activity reflected on LFP signals propagate not only through
synaptic events, but also through non-synaptic mechanisms.

Indeed, recent work on an unfolded hippocampus preparation showed
how epileptiform activity propagates by EFs at surprisingly low speed
(∼0.1 m/s) independently of synaptic activity (Zhang et al., 2014). To
further investigate the role of the extracellular medium on this propagation,
osmolarity was increased in order to enlarge the distances between neurons
and widen the extracellular space (Traynelis and Dingledine, 1989). The result
was a reduction of 46.8 % in speed propagation (Shahar et al., 2009; Qiu et al.,
2015) revealing that extracellular space has an influence on EF propagation,
particularly decreasing its velocity when increasing the space.
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1.3 Synaptic activity and electric field dialogue

Under this scenario where synaptic and non-synaptic mechanisms coexist,
there is a feedback effect between the structural neural activity and the
endogenous EFs which shape and modulate the final network activity (Fig.
1.3B) (Jefferys, 1995; Fröhlich and McCormick, 2010; Weiss and Faber, 2010;
Anastassiou et al., 2011; Schmidt et al., 2014; Anastassiou and Koch, 2015).
The interactions of EF are shaped by the temporal dynamics of synaptic
activity (Weiss and Faber, 2010). When these interactions lead to changes
in the membrane potential of neurons, and consequently in spiking, it can
yield a non-synaptic mechanism known as ephaptic coupling (Anastassiou
and Koch, 2015). Ephaptic coupling mainly affects population activity under
hypersynchronous states (Buzsáki et al., 2012); it can induce small but coherent
changes in the firing timing of neuronal populations, thus implying that field
effects can modulate oscillatory activity (Reato et al., 2010).

The three main components of neural activity (synapses, neurons and
networks) are sensitive to extracellular EF (Anastassiou and Koch, 2015). EF
can alter the presynaptic membrane potential by inducing changes in the ionic
flows. Also, EF can influence chemical synaptic transmission in a network by
clearing negative glutamatergic charges or through changes in voltage gated
channels, as well as by mediating neurotransmission and collaborating in fast
rhythmogenesis (Weiss and Faber, 2010).

Researchers that have tried to address the effect of endogenous EF on
neuronal activity by applying exogenous EF through two parallel electrodes
outside the tissue preparation (Radman et al., 2007; Fröhlich and McCormick,
2010; Reato et al., 2010; Schmidt et al., 2014), report a critical effect of weak EF
stimulation on spiking neural activity due to its impact on membrane voltage.
Besides, in a 12 pipette set up, where electrical stimulation was applied inside
and outside individual cells while recording extracellular fields at different
specific locations next to an active neuron, elicited ephaptic coupling at
the level of single cells. Extracellular EF was not able to induce any action
potential, but it did entrain subthreshold activity and spike trains when it
oscillated at slow rhythms (1 Hz) (Anastassiou et al., 2011).
These results reinforce the idea that EF effects can be strong enough to be
magnified on the network dynamics. In particular, in vitro experiments on
hippocampal slices, together with an in silico model supported that weak
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applied EFs influenced oscillatory activity (Reato et al., 2010); in this manner,
ephaptic coupling synchronizes networks with a stronger feedback effect
on oscillatory patterns, specially on SO (Fröhlich and McCormick, 2010;
Anastassiou et al., 2011; Anastassiou and Koch, 2015).

It was the pioneering work of Fröhlich and McCormick in 2010 which
clearly exhibited the effect of an endogenous (and not exogenous) EF on
spontaneous oscillatory activity. In cortical ferret slices eliciting SO, they
applied weak external EF stimulation (2-4 V/m) through two parallel
electrodes that mimicked the endogenous in vivo field activity recorded in
anesthetized ferrets. This EF stimulation was able to modulated the oscillatory
network activity (Fig. 1.4), supporting the idea that endogenous EFs are not a
mere idling of the neural activity (Weiss and Faber, 2010). Further exploration
of the feedback between EF and synaptic activity demonstrated that the state
of the targeted network is critical for the effect that EF might induce; so,
only weak EF stimulations with frequencies similar to the ongoing oscillation
induced changes in the endogenous activity (Schmidt et al., 2014).

FIGURE 1.4: In vivo EF modulates In vitro SO Left: no field
applied (control). Right: in vivo field applied. Top: applied
in vivo field. Middle: multiunit activity recorded in cortical
slices. Bottom: multiunit activity averaged from 20-30 trials.

Adapted from Neuron (Fröhlich and McCormick, 2010).
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Despite these experiments demonstrated the feedback interaction between
EFs and synaptic activity, they did not address the modulation of synaptic
activity by its authentic endogenous EF.

1.3.1 The slow oscillation as the key player

Considering the above, the SO represents a suitable testbed to study the
synaptic and non-synaptic propagation, as well as the interaction between
both components. First, the SO reflects an emergent property of the network
where the neural activity is synchronized in active and silent states (Steriade
et al., 1993b). Second, it can be spontaneously generated (and also induced) in
vitro preserving its fundamental properties (Sanchez-Vives and McCormick,
2000) while easing specific manipulations (see Materials and Methods chapter)
to better control the local cortical circuit, and thus explore its dynamics
along the cortical structure. Third, as emergent property of the network, it is
more sensitive to the field effects than single neurons activity (Anastassiou
and Koch, 2015); and at the same time, as oscillatory pattern, it will reveal
better the effect of endogenous EF in the neuronal activity (Weiss and Faber,
2010). Fourth, SO has been proved to be the oscillatory rhythm producing the
greatest effect on ephaptic coupling (Anastassiou et al., 2011).

Moreover, the SO seems to be the default mode activity of the cortical
mantle during deep sleep, anesthesia, or even in cortical slices preparation
(Sanchez-Vives and Mattia, 2014; Sanchez-Vives et al., 2017b). Such
synchronized cortical activity occurs during functional and anatomical
disconnection from other inputs and is associated to a broad range of
different functions, from metabolic homeostasis (Xie et al., 2013) and cellular
maintenance (Vyazovskiy and Harris, 2013), to plasticity recalibration (Reig
et al., 2006; Reig and Sanchez-Vives, 2007) and memory consolidation
(Marshall et al., 2006). Additionally, the SO has been suspected to be the
basal frequency needed to group other higher frequencies (spindle and delta)
contributing to the reorganization of distant networks (Neske, 2015). Thus,
elucidating the SO mechanisms will give information about the properties
of the underlying network, and can be useful to develop mechanistic
investigations for neurological disease were the functions just mentioned are
imbalanced (Ruiz-Mejias et al., 2016; Castano-Prat et al., 2017).
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Chapter 2

Objectives

The principal aim of this thesis is to determine the role of synaptic and
non-synaptic (endogenous electric fields) components in the generation and
propagation of slow waves.

Regarding the propagation of slow waves, the objectives are:

1. To explore the spatiotemporal patterns of slow wave propagation across
cortical columns and layers.

2. To determine how excitability modulates the spatiotemporal regularity
of the slow oscillatory activity in the cortical network.

Regarding the non-synaptic propagation of slow waves, the objectives are:

1. To explore the propagation of endogenous electric fields induced by
slow waves in the cortical tissue, dissecting them from the synaptic
components.

2. To study the influence that the laminar structure and the size of the
extracellular space may exert on the electric field propagation of slow
waves.

3. To investigate the modulation that endogenous electric fields may induce
on cortical slow waves.





17

Chapter 3

Materials and Methods

3.1 Experimental procedure

The main methods used during this doctoral thesis consisted of in vitro
experiments performed in 98 visual cortical slices from ferrets (Mustela putorius
furo) (Sanchez-Vives and McCormick, 2000). Cortical slice preparation allows
us to explore and manipulate the local cortical microcircuit easily accessing
all cortical layers. In addition, this preparation is well known for eliciting
robust spontaneous slow oscillations (SO) (Sanchez-Vives and McCormick,
2000; Compte et al., 2008; Sanchez-Vives, 2012) similar to the ones observed
during slow-wave sleep (Steriade et al., 1993b). These advantages made the in
vitro preparation ideal to achieve the objectives mentioned above.
Two different sets of experiments were done to study synaptic and
non-synaptic propagation of an active cortical circuit. Preparation and
maintenance of slices, as well as extracellular local field recordings were
common along all experiments. Different protocols and analysis were
performed, mainly for the non-synaptic propagation experiments, which will
be described in detail.

3.1.1 Preparation and maintenance of slices

Ferrets (4-10 months old, both sex) were anesthetized with sodium
pentobarbital (40 mg/kg) and decapitated. The entire forebrain was rapidly
removed to oxygenated cold (4-10◦C) bathing medium (Sanchez-Vives, 2012).
Ferrets were treated in accordance with the European Union guidelines on
protection of vertebrates used for experimentation (Strasbourg 3/18/1986). All
experiments were approved by the local ethical committee.
Coronal slices (0.4 mm thick) from visual cortex (areas 17, 18 and 19) were
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used. A modification of the sucrose-substitution technique (Aghajanian
and Rasmussen, 1989) was used to increase tissue viability. During slice
preparation, the tissue was placed in a solution in which NaCl was replaced
with sucrose while maintaining osmolarity. After preparation, the slices were
placed in an interface style recording chamber (Fine Sciences Tools, Foster
City, CA), where they were superfused with an equal mixture in volume
of the normal bathing medium, artificial cerebral spinal fluid (ACSF) and
the sucrose-substituted solution, for 15 minutes. Following this, normal
bathing medium was switched into the recording chamber and the slices were
superfused for 1 hour and 20 minutes; the normal bathing medium contained
(in mM): NaCl, 126; KCl, 2.5; MgSO4, 2; Na2HPO4, 1; CaCl2, 2; NaHCO3,
26; dextrose, 10; and was aerated with 95 % O2, 5 % CO2 to a final pH of 7.4.
Then, a modified slice solution was used throughout the rest of the experiment;
it was similar to the normal bathing medium except for different levels of
the following (in mM): KCl, 4; MgSO4, 1; and CaCl2, 1 (Sanchez-Vives and
McCormick, 2000; Sanchez-Vives, 2012). Bath temperature was maintained at
34-36◦C.

Complete cut of the slice

In order to separate the synaptic from the electric fields (EF) (non-synaptic)
activity, I performed a complete cut of the slice perpendicular to white matter
with a scalpel blade on 73 out of the 98 slices. The cut was done while the slices
were in the interface chamber, which allows the two sides to remaine tightly in
contact, without discontinuity between them, as could be seen through the
microscope (Fig. 3.1). The slices remained mechanically stable and firmly
adhered at the bottom of the chamber formed by filter paper (Fig. 3.3). At
the end of every experiment, we removed the two sections of the slice from
the filter paper, confirming that they were indeed completely separated, which
was the case in all the experiments.

3.1.2 Extracellular recordings

Extracellular local field potential (LFP) recordings were obtained with 16
gold electrodes plated with platinum black disposed on a recording grid (Fig.
3.1). The recording array was placed on top of the slices and 16 simultaneous
recordings were obtained. In the sectioned slices 10 electrodes recorded at the
left side of the cut and 6 electrodes at the right side (Fig. 3.1).
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FIGURE 3.1: Sectioned cortical slice. A. Sectioned cortical
slice picture with a 16 channel array positioned on the surface.
Notice the tenuous line at the scissors level showing the cut
without discontinuity between the resulting slice pieces. B.
Schematic of the sectioned cortical slice with 10 electrodes
recording at the left side and 6 electrodes recording at the right

side. WM: white matter; L1-6: layers 1 to 6.

The grid including an array of holes was designed and fabricated using
SU-8 negative photoresist or polyamide (Fig. 3.2). The holes allowed
oxygenation of the slices, they were used to provide mechanical stability and
to allow pipettes to reach the slice for local drug applications (Fig. 3.3).
In each of the recording points, there were 2-3 electrodes (separated by 200
µm) (diodes or triodes, respectively). They were positioned such that half of
them would record from supragranular (SG) and the other half would record
from infragranular (IG) layers (diodes / triodes were 750 µm apart in the
vertical axis), as well as from 3 different cortical columns (1.5 mm apart in the
horizontal axis) (Fig. 3.1 and 3.2A).
The electrodes were 50 µm in diameter, resulting in an impedance values of |Z|
∼ 10MΩ at 1 kHz. The impedance was decreased 2-fold by electrochemically
coating the electrodes with a layer of black platinum, what enhanced the
electrode behavior, resulting in electrode impedance values being two orders
of magnitude below the amplifiers input impedance over the whole frequency
range. Electrode impedances and phases were tested with known signals
prior to the recordings for each array (Fig. 3.2B); this way we excluded the
possibility of phase delays or distortion that differences in electrode coating
could induce.

Neural activity was referenced to an electrode placed at the bottom of the
chamber in contact with the ACSF. Unfiltered signals were acquired with
Multichannel System amplifier and digitized at 10 KHz with a Power1401
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FIGURE 3.2: 16 electrodes array. A. Customized recording
grid with 16 electrodes (black dots) organized in 2 or 3
groups with holes (white dots) between them. B. Impedance
characterization before (gray line) and after (black line)
coating with black platinum for the whole frequency range.

interface and Spike2 software (CED, Cambridge, UK). No filters were added
during the recording stage to avoid signal distortion.

3.1.3 Experimental protocols

To study different excitability levels on the propagation of slow waves,
the ionic composition of the ACSF was modified on 13 slices by varying
the K+ concentration from 1 mM to 7 mM (Sancristóbal et al., 2016), these
values are located at the same level as the one found in vivo (Amzica et al.,
2002; Bazhenov et al., 2004). That modification changes the extracellular K+

concentration leading to variations in the excitatory network level.

To explore the influence of structure and extracellular space on the
non-synaptic propagation of slow waves, as well as the modulation between
both disconnected networks, different protocols and manipulations were
performed on the sectioned slices, they are described below.

Drug applications

Different pharmacological agents were used: glutamic acid (glutamate) from
RBI, tetrodotoxin (TTX) from Tocris, bicuculline methiodide (BMI) from Sigma
and saccharose from Scharlau. Applications were either local or bathed
depending on the purpose to achieve (explained below).

Glutamate (0.5 mM) and TTX (30 µM) were delivered locally through a
glass micropipette. In both cases, borosilicate glass capillaries were pulled on
a Sutter Instrument P-97, their tips were broken (1-4 µm diameter) and later
filled with the drug. Brief pulses of pressure (ranging from 4 to 150 ms, and 5
to 30 psi; adjusted depending on the response to evoke) were applied. Such
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local applications were delivered at different positions within the slice.

Glutamic acid. Local applications of glutamate are widely known to evoke
highly stable responses by activating glutamate receptors and recruiting
local network activity (Sanchez-Vives and McCormick, 1997; Sanchez-Vives
et al., 1997, 2008). Such applications allow us to better control the time and
location where the Up states (or glutamate response) are originated to study
their non-synaptic propagation. They were used, not only to study the EF
propagation across the cut, but also to investigate modulation between the two
disconnected networks by: (1) inducing small responses in one side to increase
excitability and see if endogenous EF could trigger spontaneous Up states
in a more depolarized network; and (2) inducing suprathreshold responses
at different frequencies to be able to entrain the disconnected network in a
desired frequency.
Tetrodotoxin. TTX, selective inhibitor of Na+ channel conductance that
abolishes spontaneous multiunit activity. It was applied to rule out interactions
between synaptic and non-synaptic activity.

BMI (2.4 - 3 µM) and saccharose (40 mM) were bath applied. It should
be noted that in the interface chamber used it takes around 20 minutes to get
a stable concentration in the bath, so all measurements were taken after this
period.

Bicuculline methiodide. BMI is a GABAA receptor blocker that acts as a
competitive inhibitor of GABA. It was used to transform the spontaneous SO
in epileptiform activity (Sanchez-Vives et al., 2010), generating large responses
strongly evident across the cut.
Saccharose. Saccharose 40 mM was used to increase osmolarity and with
it the extracellular space. A concentration of 40 mM saccharose causes an
increase of 40 mOsm (from 328 mOsm on control condition, to 368 mOsm
under hyperosmolar condition), that involves a 12% increment, what has been
proved to have an effect on the propagation of epileptiform activity (Shahar
et al., 2009; Qiu et al., 2015).

Inverted slices

To further explore the influence of the laminar cortical structure in the
non-synaptic propagation of slow waves, one side of the cut slices was
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overturned, such that IG layers were next to SG layers and vice versa. This
manipulation was done consecutively to the cut in the interface style recording
chamber, the bath flow was increased while gently rotating the right side of the
slice with the forceps tips. The result was a sectioned cortical slice where one
side had an inverted laminar structure (Fig. 3.3).

FIGURE 3.3: Sectioned visual cortical slices adhered at the
filter paper in the interface chamber. A. Magnification of
an inverted slice. B. Same preparation with the array on top
of the inverted slice and two glass pipettes used for local

applications passing through the array holes.

Electric field stimulation

In order to achieve synchronization between both disconnected networks,
the excitability of the whole slice was increased by means of external EF
manipulations. Thus, direct current (DC) stimulation was applied as described
in Fröhlich and McCormick, 2010 and Sanchez-Vives et al., 2017a. Briefly,
two customized AgCl electrodes (1 mm diameter, 10 mm length) were placed
parallel to the cortical surface, this arrangement allowed us to generate a
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uniform EF parallel to the apical - dendrite axis of pyramidal cells. Thus,
positive fields (oriented from IG layers to SG layers) depolarized pyramidal
cells leading to an increase in the network excitability; while, negative fields
(oriented from SG layers to IG layers) decreased the network excitability by
hyperpolarizing pyramidal cells (Fig. 3.4). The different EF applied (±1-4
V/m) were calibrated before every experiment. The current to generate the
field was produced with a stimulus isolator (360A, WPI, Aston, UK).

FIGURE 3.4: Scheme of the recording configuration under EF
stimulation. Stimulation electrodes parallel to white matter
(WM). Positive/negative EF parallel to the pyramidal neurons
axis (red/gray, respectively). 16 electrodes recording from

supragranular (SG) and infragranular (IG) layers.

3.1.4 Histology

Nissl staining was used for visualizing lamination of the cortex and studying
slow wave propagation across columns and layers. After recording, 9 slices
were marked where the array was positioned and fixed in paraformaldehyde
(4%) for later Nissl staining. Slices 400 µm were washed during 4-5 days in
0.1 M PB containing 30% saccharose. Then 50 µm thick slices were cut in a
Thermo Scientific MICROM HM 450 microtome and placed on gelatin-coated
glass slides. After drying overnight, slices were incubated 2 hours in ethanol
70% for the subsequent double toluidine staining: first, nuclei were stained
by an incubation of 15 minutes on toluidine blue and afterward dehydrate
with ascending alcohol series, 5 minutes incubation on xylene was done to
clarify the tissue for the second staining. Second, similar incubations, 10-15
minutes toluidine and different increasing alcohols, finishing with two xylene
incubations were used to stain cytoplasm. Finally, slices were mounted in
DePeX medium. Images were visualized and taken with a confocal laser
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microscope.
Layers were limited according to density and size of the observed cells
(Homman-Ludiye et al., 2010) (Fig. 3.5).

FIGURE 3.5: Nissl stained visual cortical slice. A. Complete
visual cortical slice Nissl stained with the 16 channels
electrode array superimposed (black circles) according to the
observed marks (white arrows). Layer limits displayed with
dashed lines. B. Amplifications of A displaying differences
between layers. L1:the less dense layer, L2: the thinnest layer
with mainly bulky cells, L3: the thickest layer with mixture of
small and bulky cells; L4: layer with big pyramidal neurons
(top arrow) mixed with smaller cells displaying a clearer
columnar pattern (dash circle); L5: layer less dense than L4
and L6 with big pyramidal cells (arrow); L6: mixture of small

and big cells.

Nissl staining was performed in collaboration with Alberto Muñoz Céspedes at
Javier de Felipe laboratory (Instituto Cajal, Madrid).

3.2 Data analysis

All analysis were performed offline with either custom-written or Matlab
toolbox scripts (The MathWorks Inc. Natick, MA). Spike2 software was used
for offline analysis when stated. All average values are presented as mean ±
SE.

3.2.1 Multiunit Activity and Up/Down state detection

From all of the recordings multiunit activity (MUA) was estimated to further
detect Up and Down states from the SO as described in previous works
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(Compte et al., 2008, 2009; Reig et al., 2010; Sanchez-Vives et al., 2010;
Ruiz-Mejias et al., 2011; Mattia and Sanchez-Vives, 2012; D’Andola et al.,
2017). Briefly, MUA was estimated as the change in power of the Fourier high
frequency components from the LFP signal. Later, population firing rate was
obtained from the MUA (Mattia and Del Giudice, 2002). To detect Up states
a threshold was set in the log(MUA) as described in Reig et al., 2010 and
Ruiz-Mejias et al., 2011 (Fig. 4.2).
From the transformed log(MUA) signal different parameters were quantified:
frequency of the SO, Up and Down state durations, mean and maximum firing
rates in the Up states. Coefficients of variation (CV)(standard deviation/mean)
were used to measure variability.

3.2.2 Slow wave propagation analysis

To study slow wave propagation within the slice the analysis was based in the
Up/Down detection already described. Thus, times at which each electrode
crossed the threshold in the log(MUA) were taken and transformed into time
lags. Next, these time lags were interpolated such that a wave-front could be
draw (Fig. 4.4) (Capone et al., under review; Sancristóbal et al., 2016).
Waves that propagated through every columns were considered and clustered
by Principal Component Analysis based on the origin, speed and direction to
differentiate types of propagation.
These clustered waves allowed us to compute an early propagation strip (EPS)
from the points where the wavefront tip occurred earlier. EPS plots were
overlapped with their respective Nissl stained slice pictures to measure the
portion of the EPS area included in each layer (Capone et al., in preparation).
Also, for each clustered wave, percentages of correlations between them were
computed for spatial consistency (SC) quantification to explore regularity
patterns under different excitability levels (Sancristóbal et al., 2016).

Analysis in the propagation of slow waves were performed in collaboration with
Maurizio Mattia (Instituto Superiore di Sanitá, Rome, Italy). Specifically, EPS
analysis were performed by Cristiano Capone and spatial consistency analysis by Pol
Boada.
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3.2.3 Analysis of non-synaptic propagation of slow waves

To explore the propagation of slow waves in the absence of synaptic activity
the first step was to detect the EF waves in a synaptic disconnected network.
With that purpose mean responses were obtained by averaging the signal
across repetitions of spontaneous (or evoked) Up states, triggered glutamate
responses or epileptiform responses, and tested for significant differences
from baseline values.
Cases where the studied response on one side of the slice overlapped on time
with the spontaneous Up states (or epileptiform responses) of the other side
were discarded from the averages.

To characterize the damping, distortion and delays on the endogenous
EF waves a curve fitting was computed in a time window of 2.5 seconds on
the glutamate responses. Delays were quantified from the latency between
the waves peaks at both sides of the cut. Widening and compression were
measured with respect to the original wave to evaluate the distortion. Thus,
peak compression (PC) was defined as the duration difference between the
waves at both side of the cut (the wave reference -Dr -, where the waves are
originated; and the waves recorded on electrodes at the other side - De -)
divided by the reference duration (Gonzalez-Andino et al., under review).

PC =
Dr −De
Dr

(3.1)

Analysis to characterize the propagation of slow waves in the absence of synaptic
activity were performed in collaboration with Sara L. González Andino and Rolando
Grave de Peralta Menendez (Electrical Neuroimaging Group, Geneva, Switzerland).

Once we were able to asses the presence of the EF responses, we proceeded
to study the modulation of SO by endogenous EF with different analysis
depending on the protocol performed (detailed below). In all the cases
frequency of Up/Down cycle was quantified at both sides of the cut based on
the log(MUA) detection, as described at the beginning of this section.

Correlations. On the slices where DC stimulation was applied we
computed correlations between both sides of the cut to look for synchrony.
Cross-covariation coefficients were computed on the log(MUA) signal with
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Matlab toolbox.
Also, phase locking values (PLV) (Lachaux et al., 1999) for SO were quantified
between two different channels from both sides.

Exponential fitting. On the slices where glutamate puffers were delivered
at different frequencies to entrain the rhythmicity of the disconnected network
the analysis was as follows.
First, Up/Down detection was computed to obtained the SO frequency at
both sides. The frequency change of the glutamate release, was considered the
reference time from which an exponential fit was adjusted on the frequency
increase/decrease of the side where no glutamate was applied.

y = a(1− e− 1
b t) (3.2)

y = a(e−
1
b t) (3.3)

Being b the time constant τ (63.2 %) that represents the time needed for the
non stimulated side to be modulated and to change its frequency. Cases where
τ reached values higher than 120 seconds (time period analyzed after the
frequency change) were discarded as outliers.

Then, normalized differences of frequencies (ND) were computed to better
compare the frequency variation between both sides.

ND =

∣∣∣∣∣F2 − F1

F2+F1

2

∣∣∣∣∣ (3.4)

For the side where the frequency was induced, F1 and F2 were determined by
the local application glutamate periodicity. For the modulated side, F1 is the
median obtained in the 90 seconds previous to the frequency change, and F2

is the asymptotic value of the exponential.

Analysis to study the modulation of SO by endogenous EF were performed in
collaboration with Lorena Perez and Álvaro Navarro from our laboratory.



28 Chapter 3. Materials and Methods

3.2.4 Statistics

Values are presented as mean ± SE. Either parametric (Student’s t-test) or
non parametric (Mann-Whitney U test or Wilconson sign-rank test) were used
depending on the properties of the samples to be compared.
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Chapter 4

Results

Results reported in this thesis show the spatiotemporal dynamics of the slow
oscillations (SO) in an in vitro preparation of ferret visual cortex. Specifically,
spontaneous SO were recorded with 16-channel array (see Materials and
Methods) covering different columns and layers within the cortical slices (Fig.
4.1A). This is the first time that, to our knowledge, these 2D recordings are from
a slice. A total of 98 slices spontaneously generating SO in most electrodes in
the array were used. Figure 4.1B displays a representative case eliciting the
spontaneous rhythmic pattern in the 16 electrodes.

FIGURE 4.1: SO recorded with 16-electrode array. A. Picture
(top) and scheme (bottom) of a 16-channel array over a visual

cortical slice. B. 16 channels eliciting spontaneous SO.
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From each raw local field potential (LFP) the network relative firing rate was
estimated to further compute Up/Down state transitions and durations as
illustrated in figure 4.2A with the red line. Also, the associated multiunit
activity (MUA) color coded in the raster plot and the waveform average
obtained from the relative firing rate were used to calculate transitions states
(Fig. 4.2B-C) (see Materials and Methods).

FIGURE 4.2: Analysis of the population activity during
SO. A. Relative firing rate (black) and LFP recording (blue).
Up and Down state detection is represented with a red
line. B. Raster plot of 60 aligned Up states. C. Waveform
average of the relative firing rate that is used to calculate
Down-Up/Up-Down transitions and maximum firing rate.
The shade represents the SD. LFP, local field potential; MUA,

multiunit activity.

4.1 Propagation of slow waves

To achieve the first objective regarding the propagation of slow waves across
columns and layers, I recorded spontaneous SO traveling along the cortical
visual network on 12 slices. The first step was to identify the active and silent
periods that composed SO. Thus, estimation of the multiunit activity (MUA)
was used to analyze population firing rate (see Materials and Methods). From
this estimation, Up and Down states were represented by the high and low
firing rate peaks, respectively (Fig. 4.3B). Down peak standard deviation was
considered the threshold to further detect transitions between Up and Down
states; and from theses, Up/Down state durations and cycle frequency were
measured (Fig. 4.3C).
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Similar results to previous works performed with conventional extracellular
recordings were observed (Sanchez-Vives and McCormick, 2000;
Sanchez-Vives et al., 2010; Reig et al., 2010): bimodal distribution of the
MUA and state durations showing the differences between Up (∼ 310 ms)
and Down (∼ 3 s) states activity. Also MUA time course for state transitions
elicited an average oscillatory cycle frequency of ∼ 0.3 Hz (Fig. 4.3 B-D). This
way, we proved the reliability of the new surface array recording spontaneous
SO (Capone et al., under review).

FIGURE 4.3: Propagation of slow waves. Analysis of
population activity in one slice recorded with a 16-channel
array. A. Nissl stained slice with layer limits (dashed white
lines) and 16 electrodes (circles, unused electrodes displayed
in gray) superimposed. B-C. Bimodal distribution of the MUA
and state duration (respectively) for Up (red) and Down (blue)
states. Vertical dashed lines, mean values. D. Average MUA
(top). Down-Up transitions (dashed line) and maximum
firing rate (MUA, color code). E. Time course of the MUA
estimated from eleven channels. Horizontal dashed line

represents MUA threshold for detecting Up states onsets.

4.1.1 Up/Down cycle propagation across visual cortical slices

Thanks to the simultaneous recordings with the 16-electrode array, we
observed that spontaneous Up states were not isolated events, they



32 Chapter 4. Results

propagated across the slice in agreement with past studies (Sanchez-Vives
et al., 2010; Wester and Contreras, 2012; Reyes-Puerta et al., 2016). To compute
propagation within the slice we measured time lags between Up state onsets
of every channel, particular example is shown on figure 4.3 E-top, where slow
waves propagate in the horizontal direction from the left (blue traces) to the
right (purple traces).

Results across experiments displayed different propagation patterns in
the horizontal direction. To further explore the spatiotemporal dynamics,
full waves (waves propagating across the three columns of the array) were
clustered in a fixed number of 10 wave clusters (Fig. 4.4B). For each cluster,
average Up state onsets were used to estimate the time course of waves along
the rectangular area covered by the array, obtaining a spatial interpolation that
reflected the different wave profiles (Fig. 4.4C) (see Materials and Methods). No
preference for the ignition site was found across experiments: ∼59 % of waves
were originated at the lateral columns of the array, while ∼34 % appeared
first at the center (Fig. 4.4D). Besides, a confined shape perpendicular to
the cortical surface underlay the faster velocity along the vertical (depth)
direction with respect to the horizontal (lateral). The time course obtained
from the interpolation previously described exhibited propagation speeds of
slow waves similar to previous studies: 5.8 ± 1.8 mm/s lateral (horizontal
direction) and 8.9 ± 3.4 mm/s in depth (vertical direction).(Fig. 4.4E).
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FIGURE 4.4: Spatial interpolation from clustered waves.
A. Clustered traveling waves from an example experiment
displayed on a time lag matrix, gray areas failed Up state
detections. B. Same as A for full waves (waves propagating
across the three columns of the array). C. Time course of
average wavefronts obtained from the interpolation of Up
state onsets for two different clusters. D. Average fraction of
full and partial waves and electrodes from where Up states
are originated (n=12 slices). E. Box plots of the speed of
waves traveling lateral (horizontal, X) and in depth (vertical,
Y) directions. Dashed lines, extreme values; central mark,

median.

4.1.2 Laminar structure shapes slow wave propagation

Previous in vitro studies demonstrated the role of layer 5 in the origin
of spontaneous SO (Sanchez-Vives and McCormick, 2000; Wester and
Contreras, 2012). To investigate the link between the propagation of emergent
spontaneous activity and cortical structure, we explored how the excitation
features of waves were preserved across the different obtained clusters.
Specifically, an early propagation strip (EPS) was identified from the location
where Up state onset times appeared earlier along the horizontal direction
(Fig. 4.5A) (see Materials and Methods). The EPS density obtained from
different clustered waves of the same slice were similar, supporting the idea
that wavefronts shapes are independent of the origin site and the propagation
direction (Fig. 4.5B). To prove whether these EPS represented the part of the
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slice with the highest excitability we interpolated the average durations of
Up states (TUp) (Fig. 4.5C) and the maximum MUA (Fig. 4.5D) of Up states
along the area covered by the array. The outcome of these interpolations was
continuous strips overlapping with the EPS density (Fig. 4.5E).

FIGURE 4.5: Up state properties match spatial dynamics of
SO. A. Same as in figure 4.4 C for two different example
waves. Dotted lines, early propagation strip (EPS); arrows
propagation direction. B. Density of EPS. Gray lines, EPS of
each wave cluster traveling along X direction. Brown thick
line, average EPS from the wave clusters. C. Interpolation
of Up state duration. Green thick line, maximum Up state
duration at different X. D. Interpolation of maximum MUA
of Up state. Cyan thick line, maximum MUA at different X.
E. Superimposed average EPS, maximum Up and maximum

MUA from plots B-D.

Altogether, these results elicited the maximum level of excitability at
infragranular (IG) layers, which should correspond with the role of layer 5 on
leading the generation of SO (Sanchez-Vives and McCormick, 2000; Wester
and Contreras, 2012, Capone et al., under review). To verify whether neurons in
layer 5 were the first to activate with respect to others within the same column,
slices were Nissl stained and layer limits determined based on density and
size of cells bodies. Then, we overlapped the laminar structure and the EPS
density to further quantify the area covered by the EPS. The result was a major
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overlapped with layer 5, the area exhibiting the maximum MUA and longest
Up states. When comparing EPS area overlapping the different layers, layer
2/3 and layer 6 values were significantly lower than the ones obtained for
layer 4 and layer 5 (Fig. 4.6).

FIGURE 4.6: Structure shapes propagation. A. Particular
example of EPS density superimposed to the corresponding
slice with layers limited. B. Average values of EPS area

covering every layer of the total slices stained (n=9).

These observations suggest that layer 5, together with layer 4 determine the
propagation across columns with its structure (Capone et al., under review).

4.1.3 Excitability level for a regular propagation pattern

The next objective was to determine how excitability modulates the
spatiotemporal regularity of slow waves. To act on the excitability of
neuronal networks it is needed to modify the resting membrane potential
of neurons, which is mainly controlled by K+ equilibrium potential. Thus,
variations in the extracellular K+ concentration lead to changes in the neuronal
population excitability. With that purpose I modified the extracellular K+

level from 1 mM to 7 mM on 13 slices. This variation in the extracellular K+

concentration led to an increase in the excitability of the network, which is
represented by the standard deviation of the Down states log(MUA) (Fig.
4.7A). In addition, this increase in the global excitability was associated with
an increase in the occurrence of Up states as expected (Fig. 4.7B). Then, we
quantified the variability induced on the Up/Down cycle by such increased
excitability computing coefficient of variation (CV). In this case however,
there was not an increase with increasing K+ levels, instead a minimum
variability appeared at intermediate levels of excitability for SO frequency
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in all the slices (Fig. 4.7C). The concentration at which CV displayed the
minimum value varied between K+ 3 and 4 mM, this variability was due to
differences in the basal excitability level across slices; for that reason values
were normalized, we calculated z-score of the CVs and aligned the level of
K+ placing the minima at zero. Average values for Up/Down cycle CV and
Down state duration CV showed the minimum variation for intermediate
K+ concentrations, while Up states duration did not show any significant
variation with distinct K+ concentrations (Fig. 4.7D-E), meaning that it was
less dependent on the network excitability (Sancristóbal et al., 2016).

FIGURE 4.7: Effect of extracellular K+ concentration on the
SO. A. Standard deviation of log(MUA) during Down states
under different K+ level. B. Example of log(MUA) traces
under three different K+ concentrations. C. CV of SO cycle
frequency versus relative K+ concentration for 13 individual
cases. D-E. Average CV of SO cycle frequency and Up/Down
duration (red/blue), respectively. Error bars, standard
deviation. Adapted from Nature Physics (Sancristóbal et al.,

2016).

Knowing that an intermediate excitability level originates regular rhythmic
SO in vitro with a low temporal dispersion (i.e minor CV of cycle duration).
Next, we took advantage of the simultaneous recording obtained with the
16-electrode array, being able to explore spatial dynamics of slow waves
under the same conditions. Thereby, for each K+ concentration we studied the
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regularity of the Up state propagation, quantified here as spatial consistency
(SC) (see Materials and Methods). This measure revealed an irregular
propagation of Up states for low and high K+ levels, while a well-defined
spatial pattern appeared for intermediate concentrations. Color plots for a
particular example under three different K+ concentrations are shown on
figure 4.8A, clearly displaying more than 60% consistency (red areas) at 4 mM
concentration. Indeed, population average values showed that this spatial
consistency was negatively correlated with the temporal CV of the SO cycle
(Fig. 4.8B).

FIGURE 4.8: Spatial Consistency. A. Spatial consistency
of the average wavefronts color-coded (percentage) for a
particular slice under three different excitability levels. B.
Average z-score values for the spatial consistency (SC) and the
coefficient of variation (CV) from 8 slices. Error bars, standard
deviation. Adapted from Nature Physics (Sancristóbal et al.,

2016).

These results point out that an intermediate level of excitability in the neuronal
population leads to the highest spatiotemporal regularity of slow waves, a
phenomenon that is called stochastic coherence. Stochastic coherence has been
described in individual neurons but hardly as a network phenomenon, which
is a novelty reported here as a mechanisms for Up/Down cycle dynamics
(Sancristóbal et al., 2016).
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4.2 Electric field propagation of slow waves

The previous section showed how synaptic transmission is the main
mechanism for the generation and spreading of SO in the cortical network.
However, previous studies reveal that neural population activity generates
endogenous electric fields (EFs), which in turn have an effect on local and
distant neurons and their synaptic transmission (Fröhlich and McCormick,
2010; Anastassiou et al., 2011; Zhang et al., 2014). Thus, our next purpose was
to dissect the synaptic from the EF propagation of slow waves. We performed
a complete cut of the slice perpendicular to cortical layers in 73 slices while
both sides remained in close contact (Fig. 4.9A). Sectioning the slice often
resulted in two independent networks with different oscillatory patterns as
can be observed on figure 4.9A. For this particular case, raw LFP traces from
the left site (black), displayed slower oscillatory frequency than the ones from
the right (red traces). Their respective autocorrelograms on the right represent
more clearly the differences in periodicity between both sites.

4.2.1 Slow wave propagation between disconnected columns

The presence of two independent networks confirmed the existence of
interrupted synaptic connectivity between cortical columns, along with the
fact that at the end of the recording it was always checked that they were two
totally independent pieces of cortex. Under this scenario, we observed that
spontaneous Up states could be recorded across the cut albeit with a large
decrease in amplitude (Fig. 4.9 B-C).Such decrease in amplitude represented
the dimensionless measure known as damping, a property shared by different
spontaneous and evoked responses when propagating across the two
independent networks. We will refer to damping as the percentage remaining
from the original Up state. Figure 4.10 exhibits four individual examples:
a spontaneous Up state (black), an evoked Up state with glutamate (blue),
an evoked glutamate response (green) and a spontaneous epileptiform event
(red). Epileptiform activity was induced by bath applying the GABAA blocker
bicuculline (2.4-3 µM)(see Materials and Methods). Blockade of inhibition
resulted in large events that, although they were reduced to less than a 10%
due to the EF propagation, the waves at the other side of the cut were easily
detectable (Fig. 4.10A, bottom)(Gonzalez-Andino et al., under review).
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FIGURE 4.9: EF propagation of slow waves. A. Left, raw LFP
traces from supragranular (SG) and infragranular layers (IG)
at the three different locations indicated on the top scheme.
Right, autocorrelograms of the multiunit activity recorded
at location 2 IG and 3 IG showing two different patterns of
activity. Black, left side of the slice; red, right side of the slice.
B. Top, 4 spontaneous Up states recorded at location 2 and the
simultaneous EFs originated at location 3 (the other side of
the cut). Traces amplification on the most right. Bottom, four
waves averaged of the shadowed periods (800ms). C. Same as

B for the opposite direction.

Voltage cross-correlations over time between the recorded signals at both sides
showed their maximum values with delays (Fig. 4.10B). Besides, in cases
where fast components occurred (Fig. 4.10A blue and red, asterisks), these
were filtered clearly showing the distortion that characterized EF propagation
across disconnected networks. Delays and distortions represented on figure
4.10 examples were consistent across repetitions and slices. In particular,
mean cross-correlation for epileptiform responses, within the 250ms following
the onset of the original signal, was low (mean max CC = 0.33 ± 26, n = 7
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slices), corresponding to the damping that characterizes EF waves propagation
(Gonzalez-Andino et al., under review).

FIGURE 4.10: EF propagation of spontaneous and evoked
activity. A. Four different responses originated at site 1
and propagating across the cut to site 2 (spontaneous Up
states (black), evoked Up states with glutamate (blue), evoked
glutamate responses (green) and spontaneous epileptiform
events (red). B. Cross-correlation of both signals over
the shadowed period (800ms, 300ms, 550ms and 320ms

respectively). Colour code as in A.

4.2.2 EF propagation of slow waves to a TTX-blocked network

Hitherto, the described EF propagation took place between two different
networks synaptically active. This could lead to interactions between EF and
synaptic activity. An example of this phenomenon is illustrated in figure
4.11A, where the first Up state on site 1 (indicated with an asterisk) might
be the synaptic reverberation blended with the EF wave of the glutamate
response evoked at 2 (black traces). To avoid these episodes we applied
tetrodotoxin (TTX) (30 µM) locally on the side where the EF was recorded in
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7 slices. TTX prevents synaptic activity by blocking sodium conductances.
The result was suprathreshold activity abolished on site 1 (green traces) while
glutamate responses kept on being evoked on site 2 (gray traces) (Fig. 4.11B).
The associated EF waves remained with the same amplitude before and after
TTX application (mean p=0.21, t-test) (Fig. 4.11C-top). Moreover, average
cross-correlations value between EF waves before ana after TTX application
was highly significant (0.91 ± 0.6) without varying the delay with respect to
the evoked glutamate response at site 2.
For the example illustrated in figure 4.11, EF waves propagated with a delay
of 104 ms. Overall the 7 slices where synaptic activity was blocked, time lags
(between the evoked glutamate responses and their respective EF waves) were
practically equal before and after TTX application (92.2 ± 17 ms and 96.4 ± 23
ms, respectively; p=0.23, t-test).

FIGURE 4.11: EF propagation to a TTX-blockade network. A.
Raw LFP recordings (top traces) and their respective multiunit
activity (MUA, bottom traces) at both sides of the slice (sites 1
and 2 on the top scheme) while evoking glutamate responses
at site 2. B. Same as in A when applying TTX at site 1. Notice
how spontaneous SO and multiunit activity disappear only in
one side due to the local synaptic blockade (green). C. Left,
average responses from A and B recordings superimposed for
each side (standard errors overlaid). Right, delays between

site 1 and 2 after TTX application.

Additionally, to explore if the cut was acting on the damping and delays
previously described, we blocked synaptic activity at the same side where the
glutamate was evoked (Fig. 4.12). By doing this we could compare the EF
propagation within pharmacologically and physically synaptic-disconnected



42 Chapter 4. Results

networks. Glutamate responses were induced at site 2 (black traces) while
local TTX applications were delivered at site 1, the result was similar damping
at both sites (1 and 3) (Fig. 4.12A gray and green traces). Those similarities
were maintained when blocking synaptic activity in the disconnected network
(site 3) (Fig. 4.12B).

FIGURE 4.12: EF similarities between a pharmacologically
and a physically disconnected network. A. Average
waveform of the responses recorded at the three sites when
blocking synaptic activity and evoking glutamate responses
at the same side of the cut (but different site, TTX at site 1 and
glutamate at site 2). B. Same as in A with synaptic activity

abolished at the other side of the cut (site 3).

Altogether, these data suggest that EF propagation across cortical columns
was not contaminated by spontaneous synaptic activity, it propagated
independently within the tissue. Besides, the interface created by the cut
between the two non-connected networks had no role on the damping and
delays that characterize the EF propagation (Gonzalez-Andino et al., under
review).

4.2.3 Distortion, delays and speed: characterizing endogenous
EF propagation

As we have described, slow waves propagation mainly occurred within layer
4 and layer 5 matching their structures, with onsets of Up state variable in
time.
Regarding non-synaptic propagation, to characterize the influence of the
cortical structure in the EF propagation it is better to exactly know the
spatiotemporal origin of the response that leads such EF activity. With that
purpose we used glutamate-evoked responses, which represent postsynaptic
activation of a limited population of neurons. Glutamate responses can be of



4.2. Electric field propagation of slow waves 43

different amplitude depending on the amount applied, from a small response
that recruits an Up state to a large response (Sanchez-Vives and McCormick,
1997; Sanchez-Vives et al., 1997, 2008). These triggered events have the
advantages of being a controlled rather than a spontaneous event, and thus
to measure them in a precise time window; as well as, to control the exact
location where they have been generated.

We measured how different parameters of the mean EF-propagated glutamate
responses varied depending on the stimulated and the recorded layer (Fig.
4.13A). Specifically, we computed duration, amplitude and distortion (peak
compression/widening), and speed. Significant differences were observed
between EF waves recorded and coming from different layers (Fig. 4.13 and
4.14).

EF waves recorded at SG layers (blue) were significantly narrower and
smaller than EF waves recorded at IG layer (red) in both cases: when
glutamate responses were evoked at SG (EF wave at SG: 4.86 ± 3.01 µV and
0.33 ± 0.02 s; EF wave at IG: 15.31 ± 8.13 µV and 0.4 ± 0.02 s) (hollow bars)
and when glutamate responses were evoked at IG layers (EF wave at SG: 3.94
± 5.41 µV and 0.34 ± 0.01 s; EF wave at IG: 25.54 ± 6.10 µV and 0.41 ± 0.01 s)
(full bars) (Fig. 4.13 B-D).
Distortion was measured by computing the compression and widening of the
peak. Positive values represent compression of the wave when propagating
across the cut, while negative values represent widening (see Materials and
Methods section). Only when EF propagated from IG layers to synaptically
disconnected SG layers was there compression in the waves (0.05 ± 0.05) (Fig.
4.13E). While when glutamate responses propagated across the cut from SG
layers to IG layers signals widened (Fig. 4.13E).
Finally, significant differences were observed between duration, amplitude
and distortion of the EF wave propagation within SG layers (blue hollow bars)
and IG layers (full red bars) (Fig. 4.13C-E).
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FIGURE 4.13: Distortion of endogenous EF propagation. A.
Schematic of the recording configuration. Top, glutamate
responses evoked at supragranular layers (Ev SG); bottom,
glutamate responses evoked at infragranular layers (Ev IG).
B. Average responses at the four sites indicated in A for
a particular slice. C-E. Population averages displaying
significant differences on duration, amplitude and distortion
(respectively) of EF waves on 12 slices. Hollow and full bars
indicate evoked responses at SG and IG layers, respectively.
Blue and red indicate EF waves recorded at SG and IG
layers, respectively. ∗p≤0.05, ∗∗p≤0.01,∗∗∗p≤0.001;t-test or

Mann-Whitney U test.

Considering propagation speed, there was no significant differences between
locations where the glutamate responses were induced. But, when the
glutamate response was originated at IG layers, it propagated significantly
faster to the same layer across the cut than to SG layers (15.7 ± 10.15 mm/s to
IG, 9.5 ± 19.57 mm/s to SG) (Fig. 4.14 C, bottom). Moreover, we observed that
EF velocity, despite showing significant difference with synaptic transmission
velocity (EF: 18.3 ± 2.85 mm/s; synaptic: 13.6 ± 2.70 mm/s; p<0.001,
Mann-Whitney U-text), was the same order of magnitude (mm/s) instead
than instantaneous as volume conduction transmission (Gonzalez-Andino et
al., under review).
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FIGURE 4.14: Speed of endogenous EF propagation. A-B.
Same as in figure 4.13A-B, showing the time trigger of
the glutamate application to better display delays. C.
Speed population averages of the EF propagation when
inducing the glutamate response at supraganular (SG, top)
and infragranular (IG, bottom) layers of 12 slices. Bar code
as in figure 4.13 ∗p≤0.05, ∗∗p≤0.01,∗∗∗p≤0.001; t-test or

Mann-Whitney U test

4.2.4 Slow wave activity and its EF propagation within a
disrupted laminar cortical structure

To further explore whether changes in the laminar cortical structure influence
the interaction between synaptic and EF activity, one side of the slice was
rotated. Such manipulation was done after cutting the slice in the interface
chamber as previously described, and the right side of the slice was gently
overturned 180◦so that SG layers were next to IG layers and vice versa (Fig.
3.3 and 4.15A), care was taken that there was close contact. This configuration
caused an abrupt change in the structure of the tissue, resulting in a sectioned
cortical slice where one side had an inverted laminar structure. This was done
in 6 slices where this protocol was performed.

Even when we investigated in detail any possible influence of the cortical
structure disruption on the SO parameters, we did not detect any influence on
the frequency oscillatory pattern from one side to the other. The main changes
were observed in the characteristics of Up states, which were inverted with
respect to layers on the right side. Interestingly, in the inverted side (site
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2), there was a trend towards longer Up states in SG layer than in IG layers
(SG: 0.42 ± 0.04 s; IG: 0.36 ± 0.05 s) (Fig. 4.15B), which is the opposite of a
very consistent observation in physiological conditions where Up states at IG
layers are longer (SG: 0.37 ± 0.05; IG: 0.39 ± 0.05 s) (Fig. 4.17Bb-Cb gray bars).
The same phenomenon occurred with mean firing rates, which trended to be
higher in SG layers than in IG layers on the right side (SG: 0.40 ± 0.03; IG: 0.38
± 0.01) (Fig. 4.15C), as well as with maximum firing rates (SG: 1.68 ± 0.18 IG:
1.35 ± 0.25)(Fig. 4.15D). Although significant differences were not observed, a
trend to elicit opposite behaviors can be noticed between both sides.

FIGURE 4.15: Effect of layer inversion on SO. A.
Top, schematic of the recording configuration. Bottom,
representative Up state at each recording site. (B-D) Mean
average values of Up state duration, mean firing rate and
maximum firing rate from 6 slices. Mean and maximum firing
rate are the absolute values of Up state computed from the
transform log MUA (see Materials and Methods) (∗∗p≤0.01;

Paired student t-test).

We next explored the influence of the cortical structure on the propagation of
endogenous EF waves. For this, we used spontaneous Up states at IG layer
on site 2 (Fig. 4.16A) as the reference responses that led to EF waves at the
other side of the cut (sites 3 and 4 in figure 4.16A). Interestingly, rotating the
right side of the slice led to amplitude values of EF waves that trended to be
larger in SG layers (site 4 in figure 4.16A) than in IG layers (site 3 in figure
4.16A) (SG: 19.67 ± 9.2 µV; IG: 17.89 ± 11.23 µV) (Fig. 4.16A-B). This tendency
observed in sectioned slices where one side was rotated (larger amplitude in
SG than in IG layers) was the opposite to the tendency observed in sectioned
slices where there was no rotation (larger amplitude in IG than in SG layers).
Duration and peak compression of EF waves elicited a similar tendency in
both sectioned slices (with and without rotated side): IG layers showed EF
waves with longer duration than the EF waves in SG layers (Fig. 4.16C), and
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EF waves widened at IG layers and were compressed at SG layers (Fig. 4.16D).

The same tendency in the characteristics of EF waves were observed in
three slices (with the right side rotated) where glutamate responses were
induced to better control the origin of the response. From these three cases
we could compute the speed of propagation from the peak to peak delays
that turned out to be similar between layers (from SG to IG: 19.35 ± 9.45
mm/s; from IG to SG: 18.98 ± 9.19 mm/s) (not shown), and in the same range
measured for the larger population presented in previous section (4.2.3).

FIGURE 4.16: Effect of layer inversion on EF waves A. Left,
schematic of the recording configuration. Right, waveform
average responses at the four indicated sites. B-D. Mean
values of amplitude, duration and peak compression from 6
slices. Blue, supragranular layer (SG); red, infragranular layer

(IG).

In summary, the reversion observed in the amplitude of the recorded EF
waves (larger in SG than IG layers), together with the resulting damping
(29,06 ± 38,68 % from SG to IG, and 52.2 ± 18.07% from IG to SG) suggests
some dependence of these parameters on the local network where the EF
wave is originated, and not only on the network where it is recorded.

4.2.5 Influence of extracellular space on slow waves and its EF
propagation

To study the influence of extracellular space on the synaptic and non-synaptic
mechanisms of SO, we increased the osmolarity of the ACSF, which is known
to expand the extracellular space (Traynelis and Dingledine, 1989).
For this, saccharose (40 mM) was added to the ACSF solution to increase by
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12% the osmolarity (from 328 to 368 mOsm). Similar increases with other
agents have been proved to decrease synaptic and non-synaptic activity
(Shahar et al., 2009; Zhang et al., 2014; Qiu et al., 2015).

Spontaneous SO (<1Hz) in normal ACSF solution (328 mOsm) displayed Up
states, (0.39 ± 0.05 s duration) interspersed with Down states (3.47 ± 0.86 s
duration) in IG layers. Up/Down cycle frequency was 0.33 ± 0.06 Hz.

Increases in osmolarity resulted in alterations in the Up and Down states at SG
and IG layers (Fig. 4.17). Although significant differences were only observed
in the oscillatory frequency, which decreased from 0.33 ± 0.06 Hz in control
condition to 0.17 ± 0.02 in the hyperosmolar condition (p <0.05) (Fig. 4.17 Be),
changes in other parameters were non significant but consistent (observed in
6 out of 7 slices). Up and Down state durations tended to increase, from 0.39
± 0.05 s to 0.54 ± 0.1 s; and from 3.47 ± 0.86 s to 6.31 ± 1.44 s, respectively
(Fig. 4.17 Ba-c). These changes in the Up/Down cycle dynamics led to a more
irregular slow oscillatory pattern: the coefficient of variation (CV) of the SO
frequency increased (control: 7.03 ± 3.22, hyperosmolar: 31.89 ± 21.33) (Fig.
4.17 Bd).
In spite of this reduction in the capacity of the network to generate Up states,
there was an increase in mean firing rate during Up states (from 0.45 ± 0.04
under 328 mOsm, to 0.56 ± 0.09 under 368 mOsm), as well as in maximum
firing rate (from 1.89 ± 0.2 under 328mOsm, to 2.47 ± 0.28 under 368mOsm)
(Fig. 4.17 Be-f). Up/Down cycle variations reported here, which refer to IG
layers, elicited similar variation as the ones obtained in SG layers (Fig. 4.17C).

These results suggest that slightly increasing osmolarity altered the excitability
of the network, thereby decreasing the frequency of oscillations.
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FIGURE 4.17: Effect of hyperosmolar ACSF on SO. A. One
example under control (328 mOsm) (left) and hyperosmolar
(368 mOsm) ACSF (right). Relative firing rate (top) and
LFP recording (bottom). The red line represents the Up and
Down states detection. B. Average population data for the
two conditions (control: gray; hyperosmolar: red) showing
variations in the different parameters in infragranular (IG)
layers when increasing osmolarity by 12% in 7 slices. a, Down
state duration. b, Up state duration. c, SO frequency. d,
SO Frequency CV. e, Up state mean firing rate. f, Up state
maximum firing rate. C. Same as in B for supragranular (SG)
layers in 6 slices. ∗p≤0.05; Paired student t-test vs. control).

Our main objective was to study the influence on the EF induced by Up
states across the cut. Regarding EF propagation of spontaneous Up states
in a hyperosmolar medium, we observed similar damping as previously
reported (20.45%) in section 4.2.1. When computing average amplitude values
of EF waves, these were significantly reduced with respect to the control
condition (328mOsm, 15.24 ± 2.8 µV; 368 mOsm, 7.5 ± 1.9 µV at IG layers)
(Fig. 4.18A-B). Such reduction was due to a decrease in amplitude of the
original LFP signal (328mOsm, 56.37 ± 9.4 µV; 368 mOsm, 37.47 ± 2.8 µV).
Significant differences were also observed in peak compression: spontaneous
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Up states were compressed when propagating across the cut under the control
condition (0.39 ± 0.16 at SG, 0.27 ± 0.09 at IG), while they were widened in
an expanded extracellular medium (-0.08± 0.11 at SG; -0.15 ± 0.05 at IG) (Fig.
4.18D).
When computing time delays from peak to peak in four slices, EF waves in
SG layers displayed slower velocities under a hyperosmolar medium (10.22 ±
3.9 mm/s with 328 mOsm versus 8.39 ± 3.21 mm/s with 368 mOsm) while
EF waves in IG layers remained similar (10.47 ± 4.09 mm/s with 328 mOsm
versus 10.52 ± 1.98 mm/s with 368 mOsm) (Fig. 4.18E).
A similar decrease in EF wave propagation was observed in three slices
under a hyperosmolar medium where glutamate responses were evoked (not
shown).

FIGURE 4.18: Effect of hyperosmolar ACSF on EF
propagation. A. Schematic of the recording configuration
(top). Average responses at the four sites indicated in the
scheme (middle and bottom). B-E. Mean values of amplitude,
duration, peak compression and speed from 6 slices. (Hollow
bars, supragranular layer (SG); full bars, infragranular layer

(IG).

By expanding the extracellular space we were able to decrease EF propagation
of slow waves. Similar observations have been made with epileptiform bursts
caused by 4-aminopyridine (Zhang et al., 2014; Qiu et al., 2015) or low-Mg2+

(Shahar et al., 2009) in hippocampal slices.
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4.2.6 Influence of external EF stimulation on slow waves and
their EF propagation

Next, we explored the influence of external EF stimulation on the endogenous
EF propagation of slow waves. Previous studies have used external EF
stimulation to mimic endogenous fields (Fröhlich and McCormick, 2010);
here we have already disconnected the endogenous fields from the synaptic
activity, thus we have used the exogenous EF to modulate the network
excitability and affect the detectability of endogenous EFs.

Therefore, uniform external EFs were applied by direct current (DC)
stimulations through two parallel AgCl electrodes in 8 sectioned slices (Fig.
4.19B). It is widely known that positive DC stimulation induces somatic
depolarizations that lead to an increase in the excitability of neurons (Fröhlich
and McCormick, 2010; Schmidt et al., 2014). Thus, we applied DC stimulation
with increasing intensities (from -4 V/m to +4 V/m) which enhanced the
frequency of SO cycle at both sides of the cut without having any relevant
effect on spontaneous Up state properties (Fig. 4.19), as reported in previous
studies (Sanchez-Vives et al., 2017a).
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FIGURE 4.19: Effect of EF stimulation on SO. A. One example
of Up/Down state detection (red lines) under two different
intensities of EFs (left, right) and in a control condition (0
V/m). Relative firing rate (top) and LFP recording (bottom).
B. Schematic of the recording configuration with the two AgCl
electrodes parallel to the apical surface. C. SO frequency
increase for different EF stimulations (gray, individual cases;

black, average values from 8 slices).

Our hypothesis was that increasing DC stimulation would result in larger
EF waves that could increase the probability of inducing suprathreshold
responses. According to the results described before (section 4.2.4 and 4.2.5)
suggesting that the EF wave amplitude depends on the original signal where
it comes from, the absence of effect on Up states amplitude and duration
with DC stimulation led to no differences in EF waves traveling across the
cut. Figure 4.20 shows the lack of a clear variation or tendency in amplitude,
damping, duration and peak compression of EF waves with increasing DC
stimulation (similar results observed with glutamate responses) (not shown).

According to our hypothesis (see above), DC stimulation could be driving
the EF wave to induce suprathreshold responses, hence contributing to the
generation of Up states in the disconnected network. In this case, these
suprathreshold responses would have been discarded according to analysis
criteria (periods with Up states overlapped from both sides were removed
from the averaged EF waves) (see Materials and Methods). However, we found
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FIGURE 4.20: Effect of external EF stimulation on
endogenous EF waves. A-D. Amplitude, damping, duration
and peak compression of EF waves at site 3 shown in E
(bottom). Insets, normalized data with respect to control
(0 V/m) values. Blue, supragranular layers (SG); red,
infragranular layers (IG). E. Top, line plot showing the
percentages of Up state detected at site 2 that led to EF waves
(red), and that overlapped with Up states onset/offset at site

3 (blue). Bottom, schematic of the recording configuration.

that from all Up states recorded on site 2 the majority did not overlap with
Up state onset or offset on site 3; in fact, most of them were recorded with
similar damping at the other side of the cut (Fig. 4.20 E). Thus, against our
hypothesis, enhanced excitability did not result into higher probability of
inducing suprathreshold responses.

4.3 Endogenous electric fields modulate the

occurrence slow oscillations

So far, the results described previously in this thesis demonstrated that
propagation activity of SO and the EFs that they generate coexist in the
neural tissue. Past studies demonstrated that external EFs are able to entrain
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neocortical network activity (Fröhlich and McCormick, 2010; Anastassiou
et al., 2011). Taking advantage of our sectioned in vitro preparation, where
synaptic and endogenous EFs can be disassociated, we next explored the
interaction of activity across the two synaptically disconnected networks.

4.3.1 Synchronizing two synaptically disconnected networks
with external EF stimulation

Synchronous Up states at both sides of the cut could occur randomly. We
wanted to test whether enhancing excitability with exogenous EFs would
increase SO synchronization between both sides of the cut. To study whether
there was any modulated synchronization across both disconnected networks,
we computed cross-covariation coefficients between site 2 (IG) and site 3
(IG) (Fig. 4.19B) under control conditions (no stimulation applied) and with
different intensities of DC stimulation (negative and positive) in 8 slices.
Hence, we obtained the cross-covariation coefficient that corresponds to the
cross-correlation between both sides where the mean had been subtracted.
Even though DC stimulation increased the cross-covariation coefficient, the
only value significantly different from the control condition (0 V/m) was at -1
V/m.

FIGURE 4.21: Synchrony between disconnected
cortical columns at different EF stimulations. A. Mean
cross-covariation coefficients between two selected channels
from both sides of the slice at different EF intensities in 8

slices. B. Same as A for phase-locking values (PLV).

As changes in the cross-covariation coefficient were too small, we looked for
a more sensitive measurement such as the phase locking value (PLV), which
is a statistical measure used to study synchronization of neural activity. The
PLV computed between site 2 (IG) and site 3 (IG) led to similar results as the
cross-covariation coefficient: higher values with DC stimulation however not
significant (Fig. 4.21B).
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Although, a linear relationship in average PLV was not observed with
increasing DC stimulation, it is worth to note the results for low EF
stimulations (±1 V/m), which suggest that DC electric stimulation of low
intensity may be enough to synchronize two independent networks.

4.3.2 Modulation of subthreshold glutamate-induced
responses by endogenous EF

We have shown above that DC stimulation on both sides of the slice
modulates excitability. However, the increase in excitability with increasing
DC stimulation did not result in an enhanced synchronization of spontaneous
SO between both disconnected networks. To further explore the possibility
of inducing SO in spite of the interrupted cortical synaptic connectivity, we
used small local applications of glutamate to slightly increase the excitability
only in one side at a desired time without evoking an Up state. I will refer to
these as subthreshold responses that do not trigger Up states. This should be
differentiated from the classical use of subthreshold responses referring to those
that do not evoke action potentials.
First, small local applications of glutamate were adjusted to induce
depolarization without evoking Up states on one side (side 2) (Fig. 4.22
A, top: Off-On). Next, full blown Up states (or glutamate-evoked responses)
were induced on the other side (side 1). Thus, two glutamate applications
were applied at the same time on both sides of the slice (on the left side to
induce Up states, on the right side to locally increase excitability without
evoking Up states) (Fig. 4.22 A, middle: On-On).
With this strategy we wanted to amplify the potential effect of the endogenous
EF across the cut. Although endogenous EFs could not induce SO in a
non-synaptically connected network even when we locally increased the
excitability with small glutamate applications, they did significantly increase
amplitude (p<0.005) and duration (p<0.01) of the subthreshold induced
responses (Fig. 4.22 C-D, mean values from 260 waves analyzed offline
with Spike2 software: 20 waves x 13 slices). These increases were reverted
to control values (i.e, same values presented when adjusting the glutamate
application at side 2) when the glutamate application inducing Up states on
the left side stopped (Fig. 4.22 A, bottom; B-D), further confirming that the
changes observed were due to the endogenous EFs generated by evoked Up
states on the left side.
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FIGURE 4.22: Modulation of subthreshold
glutamate-induced responses by endogenous EFs. A.
Induced wave responses by local glutamate application.
Schematic of the recording configuration (left) and 20
averaged waves obtained from the glutamate applications
at site 1 and 2 (right). Top, subthreshold responses induced
at site 2 prior to glutamate response induction at site 1.
Middle, responses from glutamate applications on both
sides (inducing glutamate responses at 1 and subthreshold
responses at 2). Bottom, subthreshold responses at site 2 after
the induction at site 1. Most bottom, designated features.
B,C,D. Mean values for latency, amplitude and duration
(respectively) of the subtheshold response at site 2. Values
are normalized to the first subthreshold response. ∗p≤0.05,

∗∗p≤0.01,∗∗∗p≤0.001; Paired student t-test vs. control).

4.3.3 Frequency modulation of SO by endogenous EFs

We have seen in the previous section how the endogenous EFs generated by
evoked Up states modulate subthreshold glutamate-induced responses. Here,
we used another strategy to detect the influence of endogenous EFs on the
temporal pattern of occurrence of spontaneous SO.

So, in order to further explore the impact of endogenous EFs on spontaneous
synaptic activity, we used glutamate-evoked Up states to modulate
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non-synaptically the neural activity across disconnected networks. By
using local glutamate applications we could control the periodicity of the
Up state occurrence. Thus, different oscillatory frequencies were induced
on the left side of the slice (Fig. 4.23 A-top scheme). By doing this we
explored the impact on the spontaneous oscillatory frequency of the right
side. Interestingly, this manipulation resulted in a frequency variation in
the spontaneous SO on the right side of the cut. Increasing (decreasing)
the glutamate application periodicity induced an increase (decrease) in the
spontaneous SO frequency of the disconnected network (Fig. 4.23A-B).

FIGURE 4.23: Frequency modulation of spontaneous SO
by endogenous EFs. A. Relative firing rate (black), LFP
recording (blue) and Up and Down state detection (red lines)
for spontaneous activity (top) and two evoked oscillatory
frequencies: 0.66 Hz and 0.33 Hz (middle and bottom,
respectively). Left, left side on the slice; right, right side on the
slice. B. Mean SO frequency from a 50-second period analyzed
at four different frequencies (one control and three evoked in

the following order: 0.66, 0.33 and 0.4 Hz).

We next explored the kinetics of such entrainment. To explore the time course
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of the interaction, we changed the frequency on the left side and we measured
the evolution of the frequency on the right. We observed that the interaction
followed an exponential time course. An exponential fit was adjusted (Fig.
4.24 B - red line); the time constant τ (red dot) of this exponential fit was
considered as the time that the signal took to change the frequency on the
right side depending on the glutamate application on the left side (average
values: 8.62 ± 5.18 s for increasing frequencies, n = 11 frequency variations - 1
outlier discarded - ; 36.15 ± 17.71 s for decreasing frequencies, n = 6 frequency
variations - 4 outliers discarded - ; from a total of 12 slices, 4 slices discarded)
(see Materials and Methods).
Because the SO cycle did not exactly reach the same frequency on both sides
of the slice with glutamate applications, normalized differences of frequencies
(ND) (see Eq. 3.4) were quantified at each side of the slice to better compare
the frequency variations observed (see Material and Methods). The dispersion
plot in figure 4.24 C represents the ND for the glutamate application frequency
versus the ND of the spontaneous SO frequency on the right side. The result
was a linear relationship between both NDs: the induced on the left side and
the spontaneous modulated on the right side, with significant linear regression
values (R2 = 0.42, p = 0.01 for 22 variation in frequency; in a total of 13 slices; 3
slices where no modulation was observed were discarded) (Fig. 4.24 D).

This entrainment was also explored after disrupting the cortical layer structure
by rotating the right side (in 3 slices) or increasing the extracellular space by
adding saccharose (40 mM) to the ACSF solution (in 2 slices). In these two
cases a clear modulation was not observed: the evoked glutamate application
on the left did not induce any influence on SO frequency on the right.

In summary, endogenous EFs were able to modulate the SO frequency
of a disconnected network when maintaining the physiological conditions.
Disrupting the layer structure or expanding the extracellular space prevented
the modulation.
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FIGURE 4.24: Frequency modulation kinetics. A. Raster plots
of three consecutive recordings from one representative slice
(375 s) for a time window of 4 s (time period covering one
or two Up/Down cycles). Three frequency variations can
be observed (from 0.2 to 0.5 Hz, top; from 0.5 to 0.2 Hz,
middle; from 0.2 to 0.33 Hz, bottom), on the left where it is
induced, perfectly defined; on the right, a clear modulation
over time (from top to bottom) of the spontaneous SO. B.
Exponential fit for a particular change in frequency (top in
A) displaying: the glutamate application frequency (black);
the spontaneous SO frequency of the disconnected network
(blue) and its exponential fit displaying the τ (red dot). C.
Dispersion plot of the ND at both sides of the slice. Increases
in frequencies, blue; decreases in frequencies, red. (n=22

frequency variations, 13 slices)
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Chapter 5

Discussion

The two major aims of this PhD work were to explore the synaptic and
non-synaptic propagation of SO within the laminar cortical network. The
results reported here illustrate that SO are generated spontaneously in the
cortical network. Different excitability levels modulate the frequency and the
spatiotemporal dynamics of the slow waves reaching the maximal regularity
with intermediate excitability levels. Moreover, the propagation of these slow
waves across the cortex is led by the region eliciting the maximum firing
rate in the cortical structure. Further we showed that such cortical rhythm
generates propagating endogenous EFs, opening the possibility to better study
the conductive properties of neural tissue. Finally, these endogenous EFs have
in turn a feedback effect that can further modulate the synaptic activity.

5.1 Propagation of slow oscillations

To explore local and global dynamics of the cortical network I used a
16-channel array over cortical slices which covered different cortical columns
and layers allowing to study the propagation of SO, one of the most spatially
synchronized rhythmic patterns within the brain (Destexhe et al., 1999). In
our slice preparation different ignition sites along the cortical structure were
observed, but a longitudinal strip with the maximum firing rate led to a
consistent parallel propagation to the cortical surface for all the different
cluster waves detected (Fig. 4.4). In humans, the slow wave propagation has
different origin sites with different propagation directions within the cortex,
drawing out a preference pattern of propagation from anterior to posterior
areas (Massimini et al., 2004). Thus in both, coronal slices and the full cortex
superficial propagation, slow waves can start at any point but there are
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prefered paths for their propagation.
The propagation pattern led by layer 5 reported here agrees with the
spreading of SO in deep layers described in previous studies (Sanchez-Vives
and McCormick, 2000; Wester and Contreras, 2012).

5.1.1 Slow oscillations accommodate within layer 5

The experimental recordings from slices that I obtained during the course of
this PhD revealed that Up states were consistently originated in and spread
through deep layers of the cortical structure. Particularly, overlapping the EPS
density with the anatomical slice reconstruction showed that the propagation
pattern accommodated well with the structure of layer 5 and to some extent
with layer 4 (Fig. 4.6). Average values of the area covered by the EPS did not
show significant differences between layer 4 and layer 5, suggesting that even
if layer 5 had the major contribution to the generation of SO, the neuronal
population of layer 4 might also be involved in its spatiotemporal dynamics
(Fiáth et al., 2016).

Layer 5 comprises a large number of synaptic connections between columns
and layers within the cortex (Wester and Contreras, 2012; Beltramo et al.,
2013), thus being more likely involved in the origin of SO (Sanchez-Vives and
McCormick, 2000; Chauvette et al., 2010). Indeed, most animal studies have
shown that layer 5 plays a key role in the origin and propagation of slow
waves (Sanchez-Vives et al., 2010; Beltramo et al., 2013; Neske, 2015; Blaeser
et al., 2017). In contrast, a human study reported that the superficial layers are
the ones eliciting stronger multi- and single- unit activity (Csercsa et al., 2010)
and thus endowing SG layers with a role in the genesis of SO. Assuming that
the network structure determines how neurons synchronize with each other
to generate transition network states such as the SO pattern (Blaeser et al.,
2017), the differences observed between humans and rodents regarding SO
generation could be due to the differences in their cortical cytoarchitecture
(DeFelipe, 2011). The human cortex is thicker than the rodent one, with SG
layers conforming half of the cortex, while in rodents more than half of the
cortex corresponds to IG layer. If any layer can be involved in the initiation
of Up states as far as its neurons have the ability to synchronize (Chauvette
et al., 2010), the neuronal density of each respective layer could explain why
SO are originated at superficial layers in humans and at deep layers in rodent
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preparations.

Results on the propagation speed across different columns (5.5 ± 1.5 mm/s)
(Fig. 4.4E) are similar to the velocities reported in past works using the same
preparation, which yielded propagation speeds of 7.2 mm/s (Sanchez-Vives
et al., 2010) and 10.9 mm/s (Sanchez-Vives and McCormick, 2000). However,
other preparations eliciting SO in vitro in rat brain slices measured 20 mm/s
propagation speed with voltage sensitive dye images (Wester and Contreras,
2012). This higher speed might be due to the recording technique which also
examines subthreshold activity of neurons, while our LFP analysis, based on
the logMUA (Fig. 4.3), only reflects suprathreshold activity of those cells.
Higher speeds appeared also in in vivo preparations: 23.4 mm/s in visual
cortex of anesthetized mice (Ruiz-Mejias et al., 2011), and 37 mm/s within
the whole cortex reported with calcium imaging (Stroh et al., 2013). The
lower velocities observed in in vitro experiments would be explained by
the elimination of long range cortico-cortical connectivity and also by the
disconnection from the thalamus.

5.1.2 Slow oscillations: a collective network phenomenon

To further explore the spatiotemporal dynamics of SO within the laminar
cortex, I varied the extracellular K+ concentration to globally modulate the
excitability of neurons within the network. We observed that intermediate K+

levels maximized the temporal and spacial regularity of the SO (Sancristóbal
et al., 2016). Low excitability levels decreased the probability of Up state
occurrence while increasing the variability of Down state duration. With high
excitability levels the occurrence of Up states increased also enhancing the
variability of the SO frequency (Fig. 4.7 and 4.8).
Together these results showed the self-regulation of the cortical dynamics
with different excitability levels. An intermediate amount of synaptic noise,
here determined by the neuronal excitability, is needed to maximized the SO
regularity, what correspond to a collective stochastic coherence phenomenon
(Sancristóbal et al., 2016). A similar phenomenon has been observed in
cell cultures where random firing of neurons led to a cascade of activity in
neuronal populations generating coherent spontaneous activity (Soriano and
Casademunt, 2015).
Also, evidence regarding SO as a network phenomenon increases when
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endogenous fields are considered to be involved in the generation and
maintenance of neural oscillations (Weiss and Faber, 2010)(see next section).

5.2 Endogenous electric fields generated by slow

oscillations

SO have been regarded as a relevant experimental approach to investigate
the interactions between endogenous EFs and synaptic activity (Fröhlich and
McCormick, 2010; Reato et al., 2010; Schmidt et al., 2014). The SO represents
a large spatially synchronized activity which generates endogenous EFs that,
in turn, might be involved in the orchestration of such oscillatory rhythm
(Fröhlich and McCormick, 2010) by inducing ephaptic coupling between
neurons (Anastassiou et al., 2011).
LFP, an accessible measure widely used to study mesoscopic brain activity,
is an informative signal to experimentally explore the electrical activity
measured in clinical applications with EEG, magnetoencephalogram (MEG)
or electrocorticogram (Buzsáki et al., 2012). LFP provides insights not
only about the suprathreshold activity, but also about the subthreshold
components and the charges distribution within the tissue (Herreras, 2016),
here manifested as EF waves. Additionally, LFP can reflect the activity of
networks that are far from the recording point (Kajikawa and Schroeder,
2011; Herreras, 2016), enabling us to measure the propagation of signals
within synaptically disconnected networks located several millimeters apart.
Therefore, considering all the advantages just mentioned, LFP offers a suitable
and reliable measure for studying the synaptic and non-synaptic components
of slow waves.

In the experimental approach used here, cutting the cortical slice in two pieces
perpendicularly to the white matter, while maintaining both sides tightly in
contact, yielded two independent networks with different oscillatory patterns.
Importantly, the independence between both networks meant that there
was no synaptic propagation of slow waves across the cut. This way, the
activity (Up states) originated in one side of the cut could be recorded as EF
waves at the other side. Thereby, the limitation of studying endogenous EFs
with external field stimulation was overcome, and instead of measuring a
mimicked or induced activity (Fröhlich and McCormick, 2010; Reato et al.,
2010; Schmidt et al., 2014), we just recorded the endogenous EF generated by
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the spontaneous SO.

5.2.1 Endogeneous EF propagation is damped and delayed

Surprisingly, EF propagation of spontaneous and evoked activity elicited
damping and delays when traveling across the cut between both disconnected
networks (Fig. 4.10). This observation goes against the assumption that
neural tissue acts as a homogeneous ohmic conductor where EFs travel nearly
instantaneously and undistorted from their origin. To rule out the possibility
that the presence of the cut itself was acting on the observed damping and
delays, we compared the EF propagation between pharmacologically and
physically disconnected networks (Fig. 4.12). The similarity between both
recorded waves confirmed that the interface created by the cut was not the
cause of the observed damping and delays. Moreover, if the cut had had
any impact on the propagation, we would have then expected an increase,
and not a decrease, in the conductivity of the medium; the remaining space
would have been filled with ACSF mimicking better the isotropic properties
of homogeneous ohmic mediums that do not account for damping and delays
(Logothetis et al., 2007).

5.2.2 The cortical network as a non-homogeneous tissue

Accompanying the damping effects, propagation of EF waves traveling
across cortical columns and layers was characterized by distortions. As a
consequence of this, differences arose between EF waves recorded at IG and
SG layers; EF waves at IG were wider and larger than EF waves at SG layers
(Fig. 4.13). These results point out that the EF propagation is sensitive to the
structure and composition of the neural tissue. Thus, the knowledge collected
from our experimental model questions the assumption that neural tissue is a
homogeneous ohmic conductor, and rather suggests that the wiring cortical
network conforms a non-homogeneous medium. Our results are in agreement
with previous studies where impedance measurements of the tissue showed
non-ohmic and filtering properties of the extracellular medium due to ionic
diffusion (Gomes et al., 2016).
However, the conductive properties of the neural tissue still remains
controversial. In a recent report, Gratiy and colleagues postulated that the
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displacement of currents in the extracellular space (ionic diffusion) can be
neglected on extracellular signals as CSD (Gratiy et al., 2017); therefore, tissue
could be considered as a homogeneous medium where EF propagation is
isotropic (Logothetis et al., 2007). Within the framework of this debate, one
should consider whether CSD can be used to infer conductivity properties
of the neural tissue. There are numerous complex interactions taking place
during network activity, such as synaptic activity, current distribution within
the space, temporal dynamics of those currents, dipoles generations etc.
that can be recorded with extracellular signals (Bédard et al., 2004; Buzsáki
et al., 2012). Evidence that CSD does not totally reflect all those processes
occurring during neural activity as LFP signals do (Kajikawa and Schroeder,
2011) awakes some pertinent doubts about the assumptions of CSD theory
revisited by Gratiy and collaborators. Along this line of reasoning, even if
the ionic diffusion could be neglected when interpreting CSD measurements
(Gratiy et al., 2017), such disregard might not be an indicator of the ohmic
and filtering properties of the tissue. Also, the possibility of ignoring ionic
diffusion cannot be generalized to every pattern of activity, and for instance
alternative interpretations may account for slow rhythms (<1 Hz) where
ionic diffusion exerts a larger contribution (Gratiy et al., 2017). Hence, in our
present study, damping and delays observed within the EF propagation of
slow waves might be an echo of the non-ohmic properties of the tissue, where
ionic diffusion could be contributing (Gomes et al., 2016).

Further evidence about the inhomogeneities of the tissue were found
when we computed the EF propagation speed. Velocities measured from the
delays turned out to be very low (18.3 ± 2.85 mm/s) (Fig. 4.14), similar to the
synaptic propagation velocities (13.6± 2.7 mm/s) rather than instantaneous as
expected in a homogeneous medium. The speed we found (18.3 ± 2.85 mm/s)
was similar to the electric propagation speed of epileptiform activity measured
in unfolded hippocampal slices (∼100 mm/s) where the endogenous field
transmission was independent of synaptic activity (Zhang et al., 2014).

In previous studies, spatial and temporal analysis of fast and slow rhythms in
anesthetized and chronically implanted cats showed larger spatial correlations
for slow waves than for fast oscillations (Destexhe et al., 1999). These data
further suggest that the frequencies do not attenuate equally within the tissue:
fast frequencies attenuate more than slow frequencies (Bédard et al., 2004).
Hence, considering the existing variations in the attenuation of frequencies
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reported in activity patterns similar to ours (SO) (Bédard et al., 2004), it
would be reasonable to speculate that the damping and low speed reported in
our study could result from a filtering of high frequencies within the tissue.
This would accumulate more evidence to consider the cortical structure as a
non-homogeneous medium with frequency dependence (Bédard et al., 2004),
rather than as an ohmic conductor with a frequency independent impedance
(Logothetis et al., 2007).

In this context, where the characteristics of the tissue might determine
the EF propagation, I further investigated whether the anatomical structure
has any repercussion in the EF propagation. For this purpose, I tested the effect
that an abrupt change in the laminar cortical structure would cause by rotating
one side of the slice. This experiment revealed that, EF waves traveling from
IG to SG layers were larger than the EFs traveling from SG to IG, the EF waves
detected at SG exhibited larger amplitude than at IG, although there were
no significant differences (Fig. 4.16). This result was the opposite to the one
reported on slices without rotation (longer wave amplitude at IG than at SG).
Because IG layers caused larger EF waves than SG layers, disregarding the
recording site, one could conclude that the EF wave depended on the network
where it was originated. This would be at odds with the previous idea that the
tissue behaves as a non-ohmic and frequency-dependence conductor where
the measured signals might not totally depend on their origin site. Conversely,
considering that substrates with weak synaptic responses receive greater
impact of the non-synaptic components occurring in the network (Kajikawa
and Schroeder, 2011), SG layers should then reflect better responsiveness to
EF waves originated at IG.
However, our experimental procedure, consisting in rotating one side of the
slice, involves certain limitations such as damaging the slice or hampering
the position of the recording sites with the superficial arrays, that might
obscure a possible effect of the structure. Therefore, better approaches are
needed to understand to what extent the laminar cortical structure influences
EF propagation. In this regard, different tests could be done, for example
one interesting experiment to address this matter would be to study EF
propagation in the reelin mutant mouse, which shows a disrupted pattern of
cortical lamination due to defective polarization and migration of neural cells
during cortical development (Wagener et al., 2010; Pielecka-Fortuna et al.,
2015; Guy et al., 2016). Therefore, if the laminar structure has any influence
on EF propagation, differences in the EF propagation reported here must be
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absent in the cortex of those animals.

To further investigate the influence of the medium in the EF propagation, the
extracellular space was increased by increasing the ACSF osmolarity. It is
well known that hyperosmolarity expands the extracellular space (Traynelis
and Dingledine, 1989). This expansion creates more space between neurons
resulting in an increase in the conductivity of the medium. So, assuming there
is a contribution of ionic diffusion in the EF propagation of SO, the increase
in space would make the charges to be more scattered within the medium
leading to smaller EF waves and slower EF propagation as observed in our
results (Fig. 4.18). Such reduction in the EF propagation is in agreement
with previous in vitro and in silico studies in hippocampus where osmolarity
changes were explored (Shahar et al., 2009; Qiu et al., 2015), confirming that
the extracellular space influences the endogenous EF activity.

5.3 Endogenous electric fields modulate the

occurrence of slow oscillations

Previous approaches to study the feedback loop between endogenous EF
and synaptic activity have used external DC stimulation through parallel
electrodes (Radman et al., 2007; Fröhlich and McCormick, 2010; Reato et al.,
2010; Schmidt et al., 2014), without solving the experimental challenge of
isolating synaptic activity and its authentic endogenous EF. Our in vitro
preparation has overcome this challenge, allowing a better exploration of the
interactions between endogenous EF and synaptic activity.

In this work, we used DC stimulation in an attempt to enhance the local
excitability and increase the chance that the EF would evoke suprthreshold
responses (Up state). Increasing EF stimulation led to faster SO at both sides
of the cut (Fig. 4.19), but did not promote the induction of suprathreshold
activity by endogenous EF (Fig. 4.20). This could be due to the DC stimulation
inducing suprathreshold activity randomly. However, when I induced
controlled subthreshold responses with small local applications of glutamate
to check if endogenous EF could convert them into proper Up states, no
suprathreshold activity was triggered either (Fig. 4.22). These results agree
with previous works, where EFs did not trigger action potentials but they
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did have an effect on the spike timing (Radman et al., 2007; Reato et al., 2010;
Anastassiou and Koch, 2015). Indeed, we observed an increase in synchrony
between the two disconnected networks with DC stimulation (4.21), which
might be the result of a greater bidirectional effect of each endogenous EF over
the corresponding population activity timing on the disconnected networks.
Moreover, the higher correlation between both networks was more notorious
for weak EF stimulations (±1 V/m), stimulations that kept the oscillatory
rhythms close to their basal frequency (without extremely hyperpolarizing or
depolarizing the networks). These results concur with what has been observed
in in vitro experiments and in silico, namely, that low EF stimulations have a
significant effect on oscillatory activity (Fröhlich and McCormick, 2010; Reato
et al., 2010) and frequency shifts only appear with EF stimulations that match
the intrinsic oscillations (Schmidt et al., 2014).

Even if the reported increases in synchrony with DC stimulation denoted
entrainment of SO by EFs, it was difficult to know to what extent this was
due to the exogenous EF applied through the parallel electrodes or to the pure
endogenous EF originated by the slow waves. Simultaneously, there was a
double modulation from one network to the other that was difficult to tease
apart.
To clarify the entrainment that the noise induced by external EF stimulation
might be masking, the frequency of SO was precisely controlled with local
application of glutamate. Up states were induced only in one side of the slice at
different periodicities. Frequency changes in the glutamate application in one
network led to frequency changes in the spontaneous SO in the disconnected
network, unraveling an entrainment of slow wave rhythms by endogenous EF
(Fig. 4.24). It should be noticed that the side modulated by the endogenous
EF did not reach frequencies similar to the glutamate applications, meaning
that evoked Up states on one side did not directly trigger Up state occurrence
on the other. This is in line with the notion that endogenous EFs are able to
synchronize neural activity by modulating its timing but they cannot trigger
any additional synaptic activity (Anastassiou et al., 2011).

Variations in the structure (cortical layer disruption) or the extracellular
medium (osmolarity increase) avoided the modulation, suggesting that
physiological conditions under which SO are originated must be preserved to
study ephaptic coupling between independent networks.
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Why can endogenous EFs not trigger Up states but can induce variations in
the frequency of SO? The main reason would involve resonance of neurons
and networks. Resonance of a neuron is the propensity that it has to
respond more strongly to an input, modulating either its spike probability or
subthreshold activity. Thus, resonance becomes the link between subthreshold
and suprathreshold responses (Dwyer et al., 2012). Indeed, theta resonance
in layer 5 pyramidal neurons has been described as one of the contributors to
drive cortical network activity (Schmidt et al., 2016). Moreover, such resonance
was demonstrated in freely behaving animals to allow the entrainment of the
cortex by the hippocampus through parvalbumin interneurons (Stark et al.,
2013). Thus, the modulation observed between both disconnected networks
in our experiments could be due to the resonance properties of neurons.
Future research will hopefully shed light on how intrinsic properties of
neurons are affected by endogenous EFs, and to what extent such fields affect
the activity of individual neurons leading to changes in the global network
activity.

5.4 Concluding remarks and perspectives

In summary, the findings exposed within this thesis have unraveled that slow
waves are not local events, they propagate along the cortical network. The
propagation of SO within the cortex is largely influenced by the structure
of the cortical tissue. Also, an intermediate excitability level controlled
by extracellular K+ leads to the highest spatiotemporal regularity. This
excitability level represents the synaptic noise, revealing that a collective
stochastic coherence phenomenon leads to the maximal regularity of SO. In
addition, slow waves generate EFs which travel independently of synaptic
transmission within the cortical tissue, suggesting that cortical rhythms
emerge from interconnected networks and might be influenced by the EFs
generated by these networks. Moreover, these EFs travel with damping
at a slow propagation speed, similar to the synaptic propagation velocities
(18.3 ± 2.85 mm/s), rather than instantaneous as volume conduction,
suggesting that neural tissue is non-homogeneous. All together, these
results imply that interpretation of LFP, EEG/MEG needs to be reconsidered
as most experimental and clinical approaches assume that neural tissue
is a homogeneous ohmic conductor. Finally, endogenous fields modulate
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the SO frequency of a synaptically disconnected network, suggesting that
non-synaptic mechanisms may be able to couple populations of neurons.
Such coupling may affect information processing in the cortex and synaptic
plasticity; thus, the ability of EFs to modulate neuronal timing might be
explored as a promising therapeutical intervention to restore abnormal spike
timing that characterize many neurobiological disorders.
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Chapter 6

Conclusions

1. Slow waves are not local events, but they propagate along cortical slices
parallel to the surface.

2. The slow wave propagation across cortical columns is variable in
initiation sites and speed. Our concrete measures suggest that under
the in vitro conditions that we work, it is a memoryless random process,
similarly to what has been observed in deep anesthesia.

3. Slow wave propagation across columns is led by an early propagation
strip that is shaped by the structure of cortical layer 4 and layer 5,
coinciding with the highest firing rate and longest Up states that act as
leader of the propagating wave.

4. The neuronal population excitability can be modulated by extracellular
K+ concentration, leading to changes in the background synaptic noise,
and in the frequency and variability of slow oscillations.

5. Slow oscillations reach the highest spatiotemporal regularity with an
intermediate excitability level, and thus noise level, similar to that in
physiological conditions, what is known as stochastic coherence.

6. Initiation and termination of Up states are a global network phenomenon
led by a collective stochastic coherence regime.

7. Slow waves generate an endogenous electric field that travels with
damping and delays, suggesting that cortical rhythms emerging
from synaptically interconnected networks may be influenced by the
interaction of the electric fields generated by these networks.

8. Local blockade of synaptic activity with TTX did not affect electric
field propagation, revealing that electric fields travel independently
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of synaptic activity across pharmacologically and physically
synaptic-disconnected cortical networks.

9. Endogenous electric field propagation is characterized by distortions
when traveling across cortical columns and layers, suggesting that EF
propagation is sensitive to the structure and the composition of the
neural tissue.

10. Our measures of electric field propagation speeds are low (18.3 ±
2.85 mm/s), being similar to synaptic propagation speeds rather than
instantaneous as volume conduction transmission.

11. Experimental manipulation that changes the cortical structure, such as
layer inversion, suggest that electric fields have a critical influence in
shaping emergent activity.

12. Increasing the extracellular space with a hyperosmolar solution reduces
amplitude and increases duration of electric field waves with respect to
a control condition, changing the distortion suffered by spontaneous Up
states when traveling across the cut (compression in control conditions,
widening in hyperosmolar conditions).

13. External DC electric stimulation does not induce any variation on
spontaneous Up states; in consequence no changes were observed in the
characteristics of electric field waves generated by them.

14. External DC electric stimulations of low intensity, such as ±1 V/m, can
be enough to synchronize non-synaptically two independent networks.

15. Endogenous electric fields can hardly induce suprathreshold activity
in a synaptically disconnected network, but they are able to enhance
subthreshold responses.

16. Endogenous electric fields modulate slow wave frequency of a
synaptically disconnected network, suggesting that non-molecular
mechanisms may be able to couple neurons non-synaptically.

17. Slow oscillations propagate in the cortical network shaped by the
laminar structure and generating electric fields that in turn modulate the
frequency of slow waves.
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Belén Sancristóbal, Beatriz Rebollo, Pol Boada, Maria V Sanchez-Vives, and
Jordi Garcia-Ojalvo. Collective stochastic coherence in recurrent neuronal
networks. Nature Physics, 12(9):881–887, 2016.

Stephen L Schmidt, Apoorva K Iyengar, A Alban Foulser, Michael R
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Mircea Steriade, Angel Nuñez, and Florin Amzica. Intracellular analysis
of relations between the slow ( <1 hz) neocortical oscillation and other
sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13(8):
3266–3283, 1993c.

Mircea Steriade, Diego Contreras, Florin Amzica, and Igor Timofeev.
Synchronization of fast (30-40 hz) spontaneous oscillations in intrathalamic
and thalamocortical networks. Journal of Neuroscience, 16(8):2788–2808, 1996.

Olav Stetter, Jordi Soriano, Theo Geisel, Demian Battaglia, Pedro L Garrido,
Joaquı́n Marro, Joaquı́n J Torres, and JM Cortés. From structure to function,
via dynamics. In AIP Conference Proceedings, volume 1510, pages 64–73. AIP,
2013.

Albrecht Stroh, Helmuth Adelsberger, Alexander Groh, Charlotta Rühlmann,
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Collective stochastic coherence in recurrent
neuronal networks
Belén Sancristóbal1†, Beatriz Rebollo2, Pol Boada2, Maria V. Sanchez-Vives2,3*
and Jordi Garcia-Ojalvo1*

Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can show substantial
regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists
with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based
initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum
collective coherence for an intermediate noise level. We report this behaviour in the slow oscillation regime exhibited by a
cerebral cortex network under dynamical conditions resembling slow-wave sleep and anaesthesia. Computational analysis of a
biologically realistic networkmodel reveals that an intermediate level of background noise leads to quasi-regular dynamics.We
verify this prediction experimentally in cortical slices subject to varying amounts of extracellular potassium, which modulates
neuronal excitability and thus synaptic noise. The model also predicts that this e�ectively regular state should exhibit noise-
induced memory of the spatial propagation profile of the collective oscillations, which is also verified experimentally. Taken
together, these results allow us to construe the high regularity observed experimentally in the brain as an instance of collective
stochastic coherence.

Recurrent networks are directed graphs with cyclic paths that
can exhibit self-sustained collective dynamics. When the
network nodes are threshold elements, a sufficiently large

background noise will render their activity stochastic. Yet, the
collective behaviour of the network is frequently highly regular in
time. This raises the question of how the stochastic nature of the
network elements coexists with the quasi-deterministic character of
the collective dynamics. Although coupling has long been proposed
as a regularizing mechanism for interacting sloppy oscillators1,2,
the situation is much less clear when the individual elements are
not intrinsic oscillators, but exhibit noise-driven pulsatile dynamics,
such as in excitable elements. A relevant instance of this situation is
given by neuronal networks.

Here we study the interplay between noise and collective dy-
namics in networks of neurons from the cerebral cortex operating
in the state of slow oscillations, a dynamical regime that has been
suggested as the default activity of the cortex3. In this physiological
state, typical of slow-wave sleep and anaesthesia4, the membrane
potential of cortical neurons alternates at frequencies of the order of
1Hz between the so-called UP and DOWN states5,6. UP states are
characterized by a depolarization of the membrane voltage towards
the spiking threshold and a sustained firing activity of the neurons,
similar to their dynamics during wakefulness. In contrast, in the
DOWN states, neurons are mostly silent and exhibit a hyperpolar-
ized membrane voltage. The fact that UP and DOWN states exist
spontaneously in vitro7,8, in the absence of external stimulation,
suggests that this dynamical regime is self-sustained, appearing
locally without requiring either large-scale cortical interactions or
external inputs. In other words, the recurrent connectivity between
neurons is sufficient for the emergence of these slow oscillations9.

We examine the recurrent network dynamics exhibited in vitro
by slices of the ferret cerebral cortex. In our experiments, noise
is determined by the level of neuronal excitability, which can
be controlled by the extracellular potassium concentration in
the medium. In contrast to previous studies10, no external time-
dependent signals are applied to the system, which operates
spontaneously in a regime very close to what is observed in vivo7.
The regularity of the slow oscillations decreases when the brain
comes out of deep anaesthesia11, anticipating the loss of the slow
oscillatory regime and the emergence of the sustained depolarized
state characteristic of wakefulness12.

Theoretical work has shown that the sequence of UP andDOWN
states can be highly irregular in the presence of noisy inputs,
provided inhibition is decreased13, for low AMPA conductances
of the connections between pyramidal neurons and inhibitory
interneurons14, or more generally by changing the stability balance
between metastable UP and DOWN attractors—for instance,
through modulation of the fatigue- and adaptation-mediated
inhibitory feedback9. The nature of the more regular regime
characteristic of the sleep state is, however, still under debate. Is
it a deterministic or a noise-driven state? Here we explore the
latter possibility in an isolated network of the cerebral cortex.
We observe that the cortical network generates slow oscillations
that exhibit maximal regularity for an intermediate amount of
background synaptic noise, in what can be construed as an instance
of stochastic coherence.

In generic (uncoupled) excitable systems, stochastic coherence
arises from the fact that the entry into the excited state is noise-
driven, whereas the exit is basically controlled by deterministic
processes and is followed by a refractory period, after which
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no reinitiation is possible for a certain time window under
moderate noise15,16. In those conditions, increasing noise leads
to more frequent initiations, which eventually pile up at the
refractory period with strong regularity, whereas, for larger
noise, refractoriness breaks down and the dynamics becomes
irregular again. Here we conjecture that UP/DOWN oscillations
exhibit this behaviour, motivated by the realization that the
neuronal networks underlying the phenomenon show the
three main requirements of stochastic coherence (stochastic
initiation, deterministic termination, and refractoriness) at the
collective level.

First, the initiation of theUP state is triggered by the spontaneous
(noise-driven) simultaneous firing of a few excitatory neurons.
Second, the termination of the UP state can be explained by an
accumulation of adaptation during the UP state, which can be
expected to be mainly deterministic9. The transition from the
UP to the DOWN state can be accounted for by the activity-
dependent adaptation of neurons caused by the activation of
potassium channels that reduce the sensitivity to synaptic inputs7,17.
This is a cumulative processes driven by the high (and well-
defined) firing rate characteristic of the UP regime, and is thus
essentially deterministic. Other cumulative mechanisms for UP-
state termination have been proposed, including synapse fatigue
caused by depression18,19, but they are also mostly independent of
noise at the network level. Importantly, all thesemechanisms require
a recovery of the network excitability following the UP state, leading
to refractoriness7.

We thus propose that stochastic coherence provides amechanism
by which the natural excitability of the cortex determines the
regularity of the UP/DOWN dynamics, by controlling the amount
of background synaptic noise acting on the neurons. In that way, an
intermediate level of excitability which coincides with physiological
conditions20 would lead to maximally coherent slow oscillations.
In that scenario, the variations in regularity that are characteristic
of sleep-to-wake transitions21,22 would arise from regulated changes
in cortical excitability. In contrast to previous studies of stochastic
coherence at the level of individual neurons15,23,24, the stochastic
coherence reported here is a purely collective phenomenon, because
both the initiation and the termination of the UP states arise
only at the network level (initiation resulting from recurrent
activation, and termination emerging from potassium channel-
mediated adaptation, which comes into effect only during network-
driven, high-frequency UP-state activity).

Collective stochastic coherence in a spiking network model
Following Compte et al.17, we consider a network of excitatory
and inhibitory neurons described by conductance-based models
(see Methods for a full description). Network clustering enables
recurrence of neuronal activity, through which randomly occurring
spikes lead to a cascade of neuronal firing events (UP state). This is
shown in the top panel of Fig. 1a, which depicts the typical dynamics
of two neurons from the network, one excitatory and the other
inhibitory. The UP state terminates mainly via a potassium channel
dependent on the intracellular sodium concentration, IKNa, which is
known to be expressed throughout the brain25. An increase in the
sodium concentration due to the enhancement of the firing activity
of the cell during the UP state activates this adaptive current, which
in turn renders the neuron insensitive to upcoming presynaptic
action potentials26. This mechanism leads to a hyperpolarization of
the neurons that increases in amplitude and duration with the firing
rate27,28, and terminates the UP state17. To quantify the dynamics of
the entire neuronal population we use themultiunit activity (MUA),
whose value on a logarithmic scale is estimated as the average
spectral power of the local field potential (LFP) in a particular
frequency band, relative to the total power29 (see Methods). The
time evolution of the LFP (Fig. 1a, middle) and of the log(MUA)
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Figure 1 | UP/DOWN oscillations in a cortical network model. a, Time
traces of two specific neurons in the network (top panel), including an
excitatory neuron (black line) and an inhibitory neuron (red line). The LFP
and log(MUA) time traces of the full network are shown in the middle and
bottom panels, respectively. Magenta lines in the bottom panel indicate the
boundaries of the UP states computed from the log(MUA) signal.
b, Average firing rate of the excitatory and inhibitory subpopulations of the
complete network during the UP state for varying extracellular potassium
concentration. c, z-score of the log(MUA) standard deviation in the DOWN
state for increasing extracellular potassium concentration. Error bars in b
and c represent the corrected sample standard deviation. Computations are
made across five di�erent simulations with distinct realizations of the
connectivity matrix and external input. ρ denotes the Pearson correlation
coe�cient.

(Fig. 1a, bottom) exhibit clear slow oscillations, which reflect the
cyclic time course of the synaptic currents flowing within the
network and, at the same time, the firing activity of neurons.

TheUP states shown in Fig. 1a are driven by background synaptic
activity impinging stochastically on each neuron, coming from their
presynaptic neighbours. The main way in which this background
synaptic noise can vary is through changes in the excitability of
the local network. To modify the excitability (ignoring external
inputs), and thus change the background synaptic noise, we varied
the resting membrane potential of all neurons by acting on the
equilibrium potential of potassium, which plays the largest role in
establishing the neuron’s resting potential. This can be replicated
experimentally by modifying the concentration of potassium in
the extracellular medium, [K+]o. In fact, recordings performed in
cats during transitions from slow-wave to REM sleep showed an
enhancement of [K+]o (ref. 30), suggesting its influence in neuronal
excitability and network dynamics. In ourmodel we increased [K+]o
from 2.4mM to 7.5mM, examining its effect on the dynamics of
the individual neurons. The firing rate during the UP states, shown
in Fig. 1b for both excitatory and inhibitory neurons, reveals that
the firing activity of both neuron types increases with [K+]o. Note
that inhibition overcomes excitation for high excitability, preventing
runaway activity that would otherwise appear in this recurrently
connected model network.
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To establish the relationship between network excitability and the

initiation of UP states, we next quantify the activity of the network
during the DOWN states (which is small but non-negligible). This
activity is estimated by the log(MUA), which is known to correlate
with spiking activity28,29. Variability in this quantity during the
DOWN states can thus be associated with background synaptic
noise. We compute the standard deviation of the log(MUA) during
theDOWNstates as a function of [K+]o. The result, shown in Fig. 1c,
reveals a clear increase of the standard deviation as the extracellular
potassium level rises (with a high linear correlation, ρ, and low
p-value) . We thus identify the excitability, controlled by [K+]o, with
the noise acting on the network.

The response of the network to an increase in excitability is
shown in Fig. 2a. The figure depicts the temporal evolution of
the membrane potential of a representative neuron of the model
network for three different values of the extracellular potassium
concentration. For low [K+]o (top panel) the excitability level is
small, and consequently the initiation of UP states is infrequent.
As the excitability increases (middle and bottom panels of Fig. 2a)
the UP events become more frequent, owing to higher noise levels,
and the firing rate during the UP state also increases (in agreement
with Fig. 1b).

We next examine how the variability of the oscillatory dynamics
depends on noise (excitability), by computing the coefficient of
variation of the durations of the UP and DOWN events. As shown
in Fig. 2b, for low excitability levels, the variability of the UP phase
duration is basically constant, in agreement with our assumption
that termination is essentially deterministic unless noise is too
large. In contrast, the variability of the DOWN phase duration
decreases sharply with noise for low noise levels, growing again
when noise dominates the dynamics. The coefficient of variation
(CV) of the full cycle duration (Fig. 2c) follows closely that of the
DOWN state, showing a clear minimum for intermediate noise
(excitability), which is the main hallmark of stochastic coherence.
This behaviour is not due to the concomitant increase in firing
rate arising from growing excitability (Fig. 1b): as shown in the
Supplementary Section 3, increasing the external noise acting on the
neurons produces the same effect, with essentially no variation in
the firing rate.

Evidence in cortical slices
To validate experimentally the prediction made by our
computational model we turned to in vitro cortical slices of
ferret visual cortex, which generate UP/DOWN state transitions
spontaneously6,7,31. We studied the rhythmic activity patterns
generated under various levels of synaptic noise by varying the
extracellular potassium concentration [K+]o (Fig. 3a), as discussed
in the previous section. Spontaneous slow oscillationswere recorded
at extracellular potassium concentrations ranging from 1mM to
7mM (ref. 7) (see Supplementary Section 2 for experimental
details). These values are of the same order of magnitude of the
potassium levels found typically in vivo, located around 3mM
(refs 20,32,33).

First, we testedwhether an increase of the extracellular potassium
concentration led to an increase in the background noise of the
network, as measured by the standard deviation of the log(MUA)
during the DOWN states. Figure 3b confirms that this is indeed
the case. The response of the population firing rate, measured
again in terms of the log(MUA), is shown in Fig. 3c for three
different potassium levels. As expected, higher potassium leads to
more frequent UP states. To quantify the variability in the duration
of the complete UP/DOWN cycle, we evaluated the coefficient of
variation of that quantity as a function of the potassium level.
As shown in Fig. 3d, all the experimental trials (N = 13 slices)
exhibit a minimum in the variability for an intermediate excitability
level, although the minima occur at slightly different extracellular
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Figure 2 | Stochastic coherence in a cortical network model. a, Temporal
evolution of the membrane potential of a representative excitatory neuron
of the network for three di�erent values of the extracellular potassium
concentration [K+]o. b, Coe�cient of variation (CV) of the duration of the
UP and DOWN events (red and blue, respectively). The Pearson coe�cient
ρ and the p-value quantify the correlation between each CV and the one
shown in c, and the statistical significance of such correlation, respectively.
c, CV of the duration of the full UP/DOWN cycle. Note that z-scores are
shown in the y axes of b and c. In those panels, error bars denote corrected
sample standard deviation.

potassium concentrations across slices. Differences across slices
and experiments may arise due to distinct basal excitability levels
secondary to intrinsic connectivity. To account for these differences,
we aligned the level of potassium to place the minima of all trials
at zero, and calculated the average z-score of the CVs. The result,
plotted in Fig. 3e, shows a minimum variability for an intermediate
level of excitability, thus confirming the predicted existence of
stochastic coherence. Note that the normalization implicit in the
z-score computation does not change the relationship between the
dependent variables and [K+]o. The results also show that the CV
of the UP state is much less dependent on the excitability level
than that of the DOWN state for low excitability (Fig. 3f), in
qualitative agreement with the modelling results. Taken together,
our experiments confirm that the network activity acts as a collective
order parameter that controls the regularity of the global rhythm.

Noise-induced spatial memory
The neuronal network underlying the emergence of UP/DOWN
dynamics in our model is organized in space: the connection
probability between pairs of neurons is higher the closer the
neurons are to each other (see Methods). This gives the UP states
a propagative character: noise-driven initiation of the neuronal
activity occurs at a given point in the network, and propagates away
from it with a speed that depends on the strength of the synaptic
coupling and on the excitatory/inhibitory balance17. We thus ask
what is the effect of background synaptic noise, and of the associated
noise-induced regularity, on the spatiotemporal organization of
the UP/DOWN dynamics. In fact, previous theoretical studies34
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have suggested the existence of noise-induced memory in spatially
extended systemswith non-collective excitability, when operating in
a regime of stochastic coherence.

To test whether our system can exhibit noise-induced spatial
memory, we examined the spatiotemporal behaviour of our
neuronal networkmodel for increasing excitability levels. To capture
clear UP wavefronts, we decreased the speed of propagation by
reducing the spread of the excitatory connectivity in the model. The
results are presented in Fig. 4a–c, which shows the wavefronts of
the UP states exhibited by the model network (aligned horizontally
so that they are superimposed in time) for three different amounts
of extracellular potassium concentration (corresponding to three
levels of excitability, and thus of background synaptic noise). The
wavefronts are shown as contour plots computed over the spike-
time histograms of groups of 40 consecutive neurons spanning the
entire array. These plots suggest that the propagation of UP states is
rather irregular for both low and high excitability (noise), whereas
it follows a well-defined spatial pattern with clear initiation sites
for intermediate noise levels. This is quantified in terms of the
spatial consistency (SC) of the UP wavefronts, which is inversely
related to the amount of spatial dispersion among the wavefronts
shown in Fig. 4a–c (see Methods). This quantity exhibits a clear
maximum as the potassium concentration increases, as shown in
Fig. 4d. On the other hand, the temporal dispersion of the initiation
events (as quantified by the CV) shows a clear minimum as the

excitability increases. Therefore, our model predicts the existence
of noise-induced spatial memory in the propagation of UP states
for intermediate levels of background synaptic noise, which concurs
with the regularity of the collective dynamics.

To verify this theoretical prediction, we measured the electrical
activity of cortical slices with the electrode array shown in Fig. 5a–c
(see Supplementary Section 2). This set-up allows us to monitor
the spatiotemporal dynamics of the LFP exhibited by the cortical
slice, and we do so for varying levels of extracellular potassium.
An example of the behaviour of the tissue for a given experimental
trial is depicted in Fig. 5d, again for three different levels of
excitability. As we did with the modelling results, we quantified
the spatial consistency of the UP wavefronts as described in the
Methods. This measure is shown in the colour maps of Fig. 5d
for a given experiment. The plot reveals that the UP wavefronts
follow more regular patterns of propagation (dark red areas) for an
intermediate excitability level, as predicted by our computational
model. The behaviour of this spatial consistency for varying
extracellular potassium levels is negatively correlated with the
temporal dispersion (coefficient of variation) of the UP/DOWN
cycle durations, as illustrated in Fig. 5e, in agreement with the
theoretical prediction. An analysis of the statistical significance
of the curves shown in Fig. 5e using mixed-effects modelling35
allows us to reject the null hypothesis that potassium affects neither
CV (p< 10−10) nor SC (p< 0.005). This supports our conclusion
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that potassium (noise) affects both the temporal and the spatial
dispersion of the UP/DOWN dynamics.

Physiological implications
It is well known that excitable systems (of which neurons are
an example) can tune noise to enhance the regularity of their
pulsing dynamics15,16,36 at a characteristic timescale that is intrinsic
to the system37, instead of being imposed externally38–44. This effect
has been observed in single neurons45 and in the somatosensory
pathway of anaesthetized cats46 in response to ad hoc noisy inputs.
In contrast to these works, here we have studied a purely cortical
in vitro system under the influence of its own intrinsic noise,
operating in a dynamic regime of slow oscillations that mimic those
during slow-wave sleep and anaesthesia. Our results reveal that an
intermediate amount of background noise maximizes the regularity
of the UP/DOWN cycle. Modulating the regularity of these slow
oscillations, which are an emerging property of the network, could
facilitate the control of cortical information processing, by enabling
mechanisms such as communication through coherence47,48, or
in general any mechanism that requires a periodic information
carrier. Differently from other studies23,49 that consider a white noise

added to the membrane voltage, in our model the source of noise
arises within the network, in the form of irregular presynaptic
spike trains affecting all neurons of the network, and coming from
neighbouring areas. This noise can be tuned experimentally via the
membrane excitability of the individual neurons, determined by the
potassium concentration [K+]o in the extracellular medium. In this
scenario, population activity appears as a collective phenomenon
that underlies the control of rhythmicity.

Both the network model and the experimental recordings
confirm that slow UP/DOWN rhythms are modulated by random
fluctuations, and achieve a maximum periodicity at an intermediate
amplitude of those fluctuations. At low excitability levels, the
probability of eliciting anUP state is low, and the occurrence of these
events fluctuates strongly with time, giving rise to high variability
in the durations of the DOWN states. On the other hand, for
high levels of excitability, the refractory period can be overcome
more easily (that is, the system is re-excited sooner following
the UP termination). This is in agreement with the behaviour
observed in the transition from sleep to awake, or from deep
to light anaesthesia11, where the UP/DOWN transitions become
more frequent and irregular. Between the two extremes, the UP
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states are consistently evoked at a similar phase of the DOWN
state, and a recurrent collective period emerges. The specifics of
this regular UP/DOWN regime depend on the balance between
recurrent excitation and inhibition28.

These results shed light on the self-regulation of cortical
dynamics across different states of excitability, and reveal the
existence of a regime of collective stochastic coherence leading to
a maximal regularity of the dynamics for intermediate excitability.
This is an emerging behaviour reminiscent of the phenomenon of
coherence resonance, which has been reported in a large variety
of physical and chemical excitable systems over the years16. In
contrast with those previous studies, however, the effect described
here is an emerging property of the network, arising from the
collective interaction between the neurons. Given the stochastic and
intrinsically emerging character of brain function, our results might
be evidence of the functional benefits of noise in the activity of the
central nervous system.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Description of the network model.We consider a network composed of 1,280
neurons, 80% of which are excitatory whereas the remaining 20% are inhibitory50.
The neurons, modelled as described in Supplementary Section 1, were arranged in
two open one-dimensional chains, one for the excitatory population and the other
for the inhibitory population, with one inhibitory neuron placed every four
adjacent excitatory neurons. All connections between cells are chemical synapses
(no gap junctions are considered), and each neuron connects with 20±5 other
neurons. The two chains are 5mm long, with no empty space between adjacent
neurons. We use the coupling architecture introduced by ref. 17, in which the
probability that two neurons are connected is determined by the distance x
between them, according to a Gaussian probability distribution
P(x)=e−x2/2σ 2

/
√
2πσ 2, with no autapses being allowed. The standard deviation σ

is set to 250 µm for the excitatory connections, and 125 µm for the inhibitory
connections. As a reference, the size of an excitatory neuron can be considered
∼5 µm (50 times smaller than its σ ) and that of an inhibitory neuron ∼19 µm
(about 13 times smaller than its σ ). The neurons are also driven by random spike
trains drawn from a Poisson distribution, representing the effect of neurons that
are not included explicitly in the network. Experimentally, this random input
corresponds to fluctuations in the excitability of neurons neighbouring the area
where the slow oscillation is taking place.

Estimation of the local field potential (LFP). The local field potential (LFP) is
computed as the sum of the absolute values of the excitatory and inhibitory
synaptic currents acting on the excitatory neurons51–53:

LFP=Re

∑
(|IAMPA|+|INMDA|+|IGABA|) (1)

The terms IAMPA and INMDA account for both the external excitatory heterogeneous
Poisson spike train and the recurrent excitatory synaptic current due to network
connectivity. In turn, IGABA corresponds to the recurrent inhibitory synaptic
current. Re represents the resistance of a typical electrode used for extracellular
measurements, here chosen to be 1M�. The LFP is sampled at 1 kHz. The
initiation and termination of the UP and DOWN states were identified by means of
the log(MUA), a measure extracted from the power spectrum of the LFP
(equation (1)) within the frequency range 0.2–0.5 kHz (see next section for a
complete description).

Estimation of the log(MUA). The multiunit activity (MUA) is estimated as the
power change in the Fourier components of the recorded (or simulated) LFP at
high frequencies. The time-dependent MUA is computed from the power spectrum
in 50-ms windows, each frequency normalized by the corresponding amplitude of
the power spectrum computed over the whole time series, and averaged within the
0.2–1.5 kHz band (0.2–0.5 kHz in the simulations, except in Supplementary Fig. 1B,
where the range 0.1–0.5 kHz was used). The MUA signal is then logarithmically
scaled and smoothed by a moving average with a sliding window of 80ms (ref. 54).
The UP and DOWN states were singled out by setting a threshold in the log(MUA)
signal. The threshold was set between peaks of the bimodal distributions of
log(MUA), corresponding to the UP and DOWN states. The peak related to the

DOWN state was used as reference, setting there log(MUA)=0. The z-score of the
log(MUA) is computed by subtracting from each SD curve its mean value for all
simulations/experiments across the extracellular potassium range, normalizing it
by its standard deviation, and averaging the results across replicates.

Spatial consistency analysis. To quantify the regularity of the UP waves we
proceed as follows. First, after detection of every UP state, we compute the times at
which each electrode crosses a given threshold (as mentioned in the section above).
Electrodes whose signals are very noisy are not used for the analysis. On the other
hand, we consider only those UP states that are detected in all three columns in
which the array is arranged (see Fig. 5a,b)—but not necessarily in all the electrodes
in each column. This condition enables us to consider those waves that propagate
through all three columns across the slice. We transform those first-passage times
into time lags by subtracting the initial time at which the UP wave is first detected
somewhere within the array. If one of the propagating UP states is not detected in
one of the electrodes used for the analysis, we assign to that electrode, for that
particular wave, a time lag that is an average from other time lags belonging to the
five most similar propagating wavefronts.

Next, we interpolate the time lags using a thin-plate spline by means of the
MATLAB function tpaps. The new data points form a grid of 105×49 points.
Hence we have as many grids as detected UP states. Each grid is further subdivided
into a coarse matrix of 15×7 cells. We then compute the correlation between each
one of these cells with the equivalent cell belonging to the other detected UP waves.
Therefore, the correlation between two UP waves leads to 105(=15×7) correlation
coefficients, and the correlation between N UP waves leads to (N (N −1)/2)×105
coefficients.

Finally, we compute the spatial consistency (SC) of the wavefronts in terms of
the percentage of highly correlated matrix elements (>0.7) between all wave pairs
for each of the cells. The colour maps in Fig. 5d represent the spatial consistency for
all cells in the 15×7 coarse matrix. The same approach is followed in our
one-dimensional model, where the time lags are obtained from 16 clusters of
consecutive excitatory neurons covering the entire one-dimensional model
network, and an interpolation is performed to generate a vector of 49 cells.
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Abstract 

Cortical slow oscillations (SO) of neural activity spontaneously emerge and propagate 

during deep sleep and anesthesia and are also expressed in isolated brain slices and 

cortical slabs. We lack full understanding of how SO integrate different structural levels 

underlying local excitability of cell assemblies and their mutual interaction. Here, we 

focus on ongoing slow waves (SWs) in ferret cortical slices reconstructed from a 16-

electrodes array, designed to probe the neuronal activity at multiple spatial scales. In 

spite of the variable propagation patterns observed, we reproducibly found a smooth 

strip of loci leading the SW fronts, overlapped with cortical layers 4 and 5, along which 

Up states were the longest and displayed the highest firing rate. Propagation modes 

were uncorrelated in time, signaling a memoryless generation of SWs. All these features 

could be modeled by a multi-modular large-scale network of spiking neurons with a 

specific balance between local and intermodular connectivity. Modules work as 

relaxation oscillators with a weakly stable Down state and a peak of local excitability to 

model layers 4 and 5. These conditions allow for both optimal sensitivity to the network 

structure and richness of propagation modes, a potential neuronal substrate for 

dynamic flexibility in more general contexts. 
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Introduction 

Propagating waves are a natural strategy to transfer information across the cortical web 

of neurons. For example, the processing of sensory stimuli by the brain is the result of a 

coordinated activity of all its cellular components, which are huge in number and 

distributed in space. Activation waves travelling across the cortical surface appears to 

be one of the possible ways in which such orchestration takes place (Ermentrout and 

Kleinfeld 2001; Sato et al. 2012). Travelling waves emerge in topologically organized 

media (Cross and Hohenberg 1993), where the nonlinear dynamics of its interacting 

elements contribute to generate complex and state-dependent responses to external 

stimulations: a way to implement sensory information processing. A wide body of 

literature supports this view, as activity waves elicited by sensory stimuli are invariantly 

found to propagate across the cortex of anesthetized animals (Bringuier et al. 1999; 

Jancke et al. 2004; Benucci et al. 2007; Xu et al. 2007; Stroh et al. 2013). This findings 

are corroborated by the similar spatiotemporal patterns of cortical activity measured in 

behaving animals (Rubino et al. 2006; Ferezou et al. 2007; Muller et al. 2014). 

Remarkably, these stimulus-evoked waves are not only a mere echo of the incoming 

input from the environment. Indeed, stimulus-evoked activations can continuously and 

cyclically propagate across the visual cortex even when sensory information does not 

change in time, as in the case of binocular rivalry induced by presenting to the two eyes 

dissimilar patterns (Lee et al. 2007). Moreover, perceptual waves spread well beyond 

primary sensory cortices giving rise to a self-sustained activity propagation which 

eventually involves other cortical areas at higher hierarchical levels, and can persist in 

time for fractions of seconds after stimulus presentation  (Ferezou et al. 2007; Xu et al. 

2007). 

Hence it is not by chance that activation waves are spontaneously expressed by 

the cortical tissue also when it is kept isolated from the environment, as it happens in 

the intact brain of many species during slow-wave (SW) sleep  (Cirelli and Tononi 

2008; Siegel 2008) and under deep anaesthesia (Alkire et al. 2008). A default activity 

mode (Sanchez-Vives and Mattia 2014) which invariantly emerges also in the extreme 

condition of brain slices maintained in vitro (Sanchez-Vives and McCormick 2000; 

Wester and Contreras 2012). Despite the reproducibility of this SW activity, the 

ongoing spatiotemporal patterns composing this default mode display a high degree of 

dynamical richness. Indeed, in vivo SWs are endowed with a remarkable balance 

between stochastic and deterministic components. In this brain state, waves 

preferentially initiates in frontal cortex and propagates backward to parietal/occipital 
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cortical areas (Massimini et al. 2004; Mohajerani et al. 2010; Ruiz-Mejias et al. 2011; 

Stroh et al. 2013; Sheroziya and Timofeev 2014). On the other hand, these propagating 

wavefronts follow pathways widely distributed across the cortex with variable speeds. 

This variability is area-specific (Ruiz-Mejias et al. 2011), further highlighting that SW 

activity is shaped by the underlying structure of the cortex. The relationship between 

structure and SWs is corroborated also by recent findings showing that wavefront 

propagation is influenced by past experience (Han et al. 2008) and that activation 

variability is not a wandering between random activity patterns but rather it is the 

stochastic rehearsal of previously encoded sensory responses (Luczak et al. 2009). 

Here we investigate the balance between global nonlinear dynamics supporting 

SW activity, the intrinsic richness of ongoing spatiotemporal patterns, and the 

sensitivity to the structure of the underlying cortical medium. More specifically, we 

focused on the laminar structure of the cortex, known to shape in vitro SWs (Sanchez-

Vives and McCormick 2000; Wester and Contreras 2012). By clustering the phase-

locked slow oscillations (SO) between high-firing (Up) and quiescent (Down) states 

across the cortical slices, we quantitatively characterized the large variability of SO 

ignition sites and wave propagation modes. Reconstructed travelling waves revealed 

loci across the slices, reproducibly leading the propagation of Up state onset. These loci 

were distributed along a smooth strip that, upon checking with anatomical 

reconstruction, largely overlapped layers 4 and 5. By matching semi-quantitatively 

large scale simulations of a multi-modular slice model to the measured slow-waves, we 

found that cell assemblies in this smooth excitable strip must work as relaxation 

oscillators, with finite-size fluctuations destabilizing an otherwise stable Down state. 

We also found that simulations reproduce the observed overlap between the excitable 

strip and the region with maximum firing rate and longest Up state durations, only if 

the intra- and inter-module coupling strengths are optimally balanced, thereby further 

strengthening the relationship between spontaneous activity and network structure. 
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Materials and Methods 

Slice preparation and histology.  

In vitro experiments were done on 0.4 mm thick  visual cortical slices (areas 17, 18 and 

19) from 5 to 10 month old male ferrets (Mustela putorius furo) that were anesthetized 

with sodium pentobarbital (40 mg/kg) and decapitated. Their brain were removed and 

placed in the cold (4-10ºC) cutting solution. Ferrets were cared in accordance with the 

European Union guidelines on protection of vertebrates used for experimentation 

(Strasbourg 3/18/1986) as well as approved by the local ethical committee.  During 

cutting of slices on a vibratome, the tissue was place in a solution in which the NaCl was 

substituted with sucrose. Following transfer to the interface-style recording chamber 

(Fine Sciences Tools, Foster City, CA), the slices were incubated in ‘traditional’ slice 

solution containing 126 mM NaCl, 2.5 mM KCl, 2 mM MgSO4, 1 mM NaHPO4, 2 mM 

CaCl2, 26 mM NaHCO3 and 10 mM dextrose, aerated with 95% O2, 5% CO2 to a final pH 

of 7.4. After approximately 1 hour, the slice solution was modified to contain 1 mM 

MgCl2, 1 mM CaCl2 and 4 mM KCl (Sanchez-Vives and McCormick 2000). Bath 

temperature was maintained at 34-36oC. 

Extracellular multiple unit recordings were obtained with flexible arrays of 16 

electrodes arranged in columns as in Fig. 1A (Illa et al. 2015). The multi electrode array 

(MEA) covered most of the area occupied by a cortical slice. It consisted of six groups of 

electrodes positioned to record electrophysiological activity from supra- and infra- 

granular layers (692µm apart) and from what should correspond to 3 different cortical 

columns (1500µm apart). The unfiltered field potential (raw signal) was acquired at 20 

kHz with Multichannel System amplifier and digitized with a 1401 CED acquisition 

board and Spike2 software (Cambridge Electronic Design). 

At the end of each experiment slices were fixed in paraformaldehyde (4%), 

cryoprotected in 30% sucrose solution in phosphate buffer (0.1 M, pH7.4), frozen in dry 

ice and cut in a Thermo Scientific MICROM HM 450 freezing sliding microtome. The 

sections (50 µm thick) were mounted in glass slides and Nissl stained, dehydrated, 

coverslipped and photographed. Layer limits were drawn according to the size and 

density of observed cells and the MEA position was superimposed on the basis of the 

identification of marks performed at the end of the recording session. 

To check the reliability of the interpolation procedure introduced to investigate 

the relationship between spontaneous electrophysiological activity and network 

structure in the slice regions far from MEA position, we performed the same 



6 

 

experiments on 5 additional cortical slices including the simultaneous recordings from 

an additional extra electrode placed sequencially in 5 different location within the area 

covered by the MEA (see Supplementary Material for details).    

MUA estimate and state detection  

Up and Down states and multi-unit activity (MUA) were estimated from the recorded 

raw signals as in (Reig et al. 2010; Sanchez-Vives et al. 2010). Briefly, the power spectra 

from sliding windows of 5 ms of the raw signal were computed. MUA were estimated as 

the relative change of the power in the frequency band [0.2, 1.5] kHz. Average MUA 

following Up-to-Down transitions was used as reference value and set to 1. Such 

spectral estimate of the MUA was not affected by the electrode filtering properties and 

provided a good estimate of the relative firing rate of the pool of neurons nearby the 

electrode tip. We then smoothed log(MUA) performing a moving average with a sliding 

window of 80 ms. From the long-tailed histogram of log(MUA) (see Fig. 1B) an optimal 

threshold separating Up and Down activity states was set at 4 times the standard 

deviation (SD) of the Down peak. To avoid biases in the identification of wavefronts, 

the same threshold was used for each recording in the same slice, as all having similar 

Down peaks SD. This to avoid introducing biases among electrodes in the 

characterization of activation and silencing wavefronts. The threshold was also the 

same for detecting both Down-to-Up and Up-to-Down transitions.  

Slow waves detection and reconstruction  

Activation waves were detected when a Down-to-Up transition from multiple electrodes 

occurred within a time window ∆T initially chosen to 1 s. Then ∆T was iteratively 

reduced by a factor of 0.75, until each detected wave contained no more than one state 

transition per electrode. In order to recompose waves involving a subset of columns of 

electrodes wrongly detected as separated waves, a minimum inter-wave interval (IWI) 

was chosen and waves occurring within the IWI were considered as composing a single 

wave. The initial IWI was set to half the maximum time lag between initially detected 

waves. Then IWI was iteratively reduced by the 25%  if collected waves included the 

same electrode columns more than once or if the number of time lags composing the 

wave size is larger than the number of electrodes. After each IWI reduction, wave 

recollection is recomputed. This iterative process ended once the IWI was neither 

reduced nor increased, or when the number of waves including the same electrode 

more than once was less than 10% of the total number of detected waves. The iteration 

was stopped if the number of recomposed waves in the first step of iteration was higher 
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than a reasonable value of expected waves, that is the median number of transition for 

each channel. Otherwise we may have an artefactual amplification of small waves. 

Waves including the same electrode more than once and waves with state transitions in 

less than 4 electrodes per column were rejected. Such constrain was dictated by the 

necessity to fully sample the slice area covered by the MEA in order to have reliable 

predictions about ongoing network activity also relatively far from the position of the 

electrodes. 

Each wave was associated to an array ��� of relative time lags (where t = 1,…Wand 

i = 1,…N are the wave and the electrode indices), resulting from the difference between 

the detected state transition time in each electrode, and their average across electrodes. 

Such arrays of relative time lags, in turn composed the rows of the time lag matrix 

(TLM) showed in Figure 2A. TLM columns were grouped in 3 sets of electrodes, each 

related to a different electrode column of the MEA. We computed the average 

log(MUA) in each of these electrode column detecting Up/Down state transitions on 

these pooled signals relying on the same detection adopted for single electrodes. Those 

waves in which a Down-to-Up transition was detected in each of these columns was 

classified as "full", to distinguish them for the other remaining "partial" waves. Unless 

otherwise specified, only full waves were considered for the following analysis. In order 

to infer the wavefront time lags T(x,y) in the slice regions not covered by the electrodes, 

we interpolated without smoothing such times with a thin-plate spline. For each wave 

only those electrodes with detected MUA state transitions were taken into account. 

From T(x,y) the speed V(x,y) was computed as 

���, �	 = 1
�
����, �	�� �� + 
����, �	�� �� 

Slow wave features characterization  

We collected wave vectors describing full waves and clustered them using k-means 

algorithm to separate different modes of propagations characterized by different origin, 

speed and direction. In order to perform k-means clustering, we needed complete 

transition time vectors. We filled each empty entry in the vectors, that corresponds to a 

non recorded transition during a wave, with the average transition time recorded by the 

same electrode in the most similar 5 waves. The median error in the time lag of the 

“filled” elements estimated in this way was 30.0 ± 8.0 ms, one order of magnitude 

smaller than the characteristic time scale of wave propagation which typically took 
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more than 600 ms to cross the whole slice (see Supplementary Material).  For each 

recording we grouped waves in 10 clusters. We rejected clusters, and relative waves, 

with a mean speed lower than 2 mm/s. This threshold value has been chosen starting 

from the observation that the distribution of the speed over all experiments (not 

shown) is well fitted by the sum of two distributions. These distributions are peaked 

just above and below such threshold, respectively. Of these two components, the one 

corresponding to the highest speeds is  related to propagating modes described in the 

Results section. The other component with slowest speed seemed to be not associated 

to traveling activation wavefronts and for this reason we did not analyzed them. On 

average, 3 clusters for each experiment were rejected and the accepted ones were 

composed of 15 waves. 

For each wave from an accepted cluster, we computed the vertical (Vx) and 

horizontal (Vy) components of the wavefront velocity from T(x,y) as 

��� =	 �����,�	���� =	 �����,�	��
�.  

In order to characterize the spatiotemporal complexity of the identified waves we 

considered only in this case both full and partial waves described by the time series {���} 
and partial waves and evaluated the correlation AC(n) as a function of delay n as 

follows  

��� 	 = 	 �!∑ ∑ ���#$� −	�&'''	���� −	�&'''	()$�*�!�*� ,  

with N the number of electrodes and W the number of detected waves. �&''' = ∑ ���(�*�  . 

Note that, lag n did not explicitly relate to the time but rather to the ordinal number of 

the detected wave. 

Quantitative characterization of slow waves  

For each wave an early propagation strip (EPS) was identified as the set of points where 

the wavefront tip at different times first occurred in the horizontal direction. In other 

words, EPS(x) was the vertical position y where the time-lag surface T(x,y) displayed a 

minimum at fixed x: EPS��	 = argmin� ���, �	. EPSs were identified for all waves from 

accepted clusters. All the strips were convolved with a Gaussian kernel along the 

vertical direction and averaged to obtain a smoothed probability density function 

p(x,y). A cut-off to this density was further adopted by setting p(x,y) = 0 for p(x,y) < 
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0.75 pmax(x), where pmax(x) was the maximum of p(x,y) at a given x. After renormalizing 

this cut density average EPS��	 = 	4 �	5��, �	6�. and its SD were finally computed. 

For each electrode both the average Up state duration, and the maximum MUA 

during the Up state were computed for each wave in an accepted cluster. As for the 

time-lag surface T(x,y), these values were interpolated by a thin-plate spline allowing to 

obtain  TUP(x,y) and MUA(x,y), respectively. From these surfaces, the curves where 

maximum Up duration and MUA can be found at different horizontal positions x 

(argmax� �89��, �	 and argmax�MUA��, �	, respectively) were computed (see Figure 

4C-E). The distances between these curves and EPS(x) at the horizontal locations of the 

electrodes in the array (n = 8) were computed to estimate histograms in Figure 4F-G. 

We repeated the same analysis in additional set of similar experiments (n = 5 

slices) using an extra electrode placed subsequently in 5 different positions far from 

other electrodes of the MEA (see Figure 2F and Supplementary Material), in which one 

recording were discarded due to data acquisition instability bringing to have n = 24 

samples in the data set. For each SW the propagating wavefronts were computed 

relying on the thin-plate spline-based interpolation procedure described above. Such 

wavefronts were estimated both with and without the extra electrode (see Fig.2F and 

Supplementary Materials) to check the reliability by inspecting the resulting differences 

giving a measure of their misalignment in time. The same approach was used to 

estimate the measure error due to relying on the interpolation procedure in the 

identification of the EPS, and the strips in the slices where the Up state duration and 

the MUA are maximal (see Supplementary Material for further details).  

To study the wave speed dependence of propagation modes (Fig. 4H-I), we 

computed separately the average speeds VL(S) and VR(S) along the average EPS 

curvilinear abscissa S in the leftward and rightward direction, respectively. We finally 

computed an asymmetry index as the speed difference ∆V(S) = VR(S) − VL(S). Similarly 

we also computed the gradient of Up state durations 6�89�=	/6=. All these measures 

were sub-sampled in order to avoid spurious correlation effects. Decimated points were 

selected at steps ∆S = 0,21 mm, a length always greater than the decay constant of the 

autocorrelation of TUp(S).  

To test the overlap between EPS and some specific laminar structures of the 

cortical slices we considered the region where the EPS density p(x,y) > 0.05. Thus we 

measured the portion of its area included in each layer (Fig. 7). 
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Where not specified averages across the n = 12 experiments are reported as mean 

mean ± standard deviation (SD). 

All off-line analyses were performed using MATLAB (The MathWorks, Natick, 

MA). 

Theory, models and simulations.  

We used both network models of integrate-and-fire (IF) neurons and a minimal rate 

model to set the simulation parameters. The in silico slice is a multi-modular 

interconnected network of spiking neurons.  Similarly to (Mattia et al. 2013), cortical 

modules were composed of 350 leaky integrate-and-fire (LIF) excitatory (E, 80%) and 

inhibitory (I, 20%) neurons with spike frequency adaptation (SFA). Membrane 

potential V(t) of LIF neurons evolved according to 
?@�A	?A =	− @�A	BC + IEFG�t	 − IIJK�t	, 

where IEFG�t	 was the synaptic incoming current and τα was the membrane decay 

constant ( τE = 20 ms and τI = 10 ms). Spikes were emitted when V(t) crossed a 20 mV 

threshold, after which a 15 mV reset potential was set for an absolute refractory period 

of 10 ms (6 ms) for excitatory (inhibitory) neurons. IIJK�t	 was the activity-dependent 

after-hyperpolarizing potassium current acting as a fatigue mechanism modeling SFA 

for excitatory neurons: 
?LMNO�A	?A =	− LMNO�A	BMNO +	gIJK∑ δ�t − tQ	Q , with τAHP = 1 s and gAHP = 

0.06 mV/s. The δ(t-tk) were the spikes emitted by the neuron.  

Synaptic transmission was instantaneous, and RS�$�T	 = 	∑ UVVW XYT − TWV + XVZ +∑ U[��,WX�T − T[��,W	W . The k-th spike emitted at t = tjk by the local presynaptic neuron j 

affected the postsynaptic membrane potential with a synaptic efficacy Jj after a 

transmission delay δj. Synaptic efficacies were randomly chosen from a Gaussian 

distribution with mean Jαβ and SD ∆Jαβ depending on the type of presynaptic (β = {E, 

I}) and postsynaptic (α = {E, I}) neurons. We initially set JEE = 0.73 mV, JIE = 0.95 mV, 

JEI = 2.55 mV, and JII = 2.55 mV, whereas ∆Jαβ = 0.25 Jαβ for any α and β. Intramodular 

connectivity is  \]^_ = 80% (probability to have synaptic contact between two neurons 

of the same module) for any α and β, unless otherwise specified. Excitatory and 

inhibitory synaptic transmission delays were drawn from an exponential distribution 

with average 13.3 ms and 3.3 ms respectively. Each neuron receives also spikes coming 

from neurons outside the cortical module it belongs to, collectively modeled as a 

Poisson process with average spike frequency νext chosen to have under mean-field 

approximation an average firing rate νE = 0.7 Hz and νI = 1.75 Hz. Synaptic efficacies 
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Jext,k were randomly chosen from a Gaussian distribution with the same moments as the 

local excitatory connections. 

The neurons in the excitatory population were grouped in two sub-populations, 

25% in a foreground population (F) displaying Up/Down slow oscillations, and the 

remaining 75% in a background population (B) always firing at a relatively low firing 

rate (Fig. 5B). Oscillatory dynamics in the foreground population was obtained by  

potentiating synaptic self-excitation Ucc = d#	Uee, with a potentiation level d# = 1.8. To 

keep fixed νF = 0.7 Hz and νB = 0.89 Hz, Ugc = Ucg were decreased accordingly. 

In the in silico slice, modules were spatially arranged on a 2-dimensional grid 

composed of H × B sites (generally H = 9, B = 20). The intermodular connectivity \h]^i 

was set only between pairs of subpopulations with presynaptic excitatory neurons, 

modeling cortico-cortical long-range synaptic connections. When not otherwise 

specified  \h]^i = 0.2. Inter-module spike delays were sampled from an exponential 

distribution with 21 ms average. Connectivity decayed following a Gaussian function of 

the distance with standard deviation λ = 0.7 IMD (inter-modules distance). The 

resulting networks had a total size of Nneu = 63 000 neurons and Nsyn= 20 millions of 

synapses. The modulation of in silico slice excitability (Fig. 7D) was performed by 

changing the spike rate νExt of external spikes (νExt was multiplied by a factor ranging 

from 0.89 to 1.00). The layered structure of the in silico slices (Fig. 6) was incorporated 

by creating an excitable strip of modules with higher connectivity, such that modules 

far from the strip had the lower values of connectivity: the inter- and intramodular 

connectivity (\h]^i and \]^_, respectively) were reduced by a factor 0.8. Approaching the 

excitable strip connectivity this factor was gradually increased till the maximum 

connectivity strip (MCS) where \h]^i and \]^_ reach their maximum value, 

independently chosen for inter- and intra-modular connectivity . Numerical 

simulations of in silico slices were performed relying on an event-based approach 

described in (Mattia and Del Giudice 2000), spanning network times of 100 s.  

To use the same analytical approach developed for in vitro recordings to our in 

silico slices, we estimated the instantaneous firing rates ν(t) from the simulated 

population of excitatory neurons in each module, and used them as MUA after adding a 

relatively weak white noise to emulate unspecific background fluctuations of 

experimental recordings.  

The optimal choice for maximum \h]^i and \]^_ (Fig. 7) was found performing 

different simulation with different values of these parameters and looking for the 
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minimum value of the identification error between the EPS and the MCS. The 

identification error was estimated as the average vertical distance between the 2 strips.  

Simulations were evaluated on a grid of 9 × 9 points in the (max. \]^_, max. \h]^i) plane, 

ranging from 0.8 to 1.1. For each point 4 simulations were performed. The resulting 

surfaces were interpolated with a thin-plate spline with smoothing parameter p = 0.95. 

The dynamical features of each module were set relying on a mean-field theory. 

Mean-field (minimal rate) model had dynamics determined by the gain function Φ 

(Wilson and Cowan 1972) as follows:  

kl
m	6n�6T = 	o��np, \p	 −	n�q	6\�6T = 	−	 \�qr +	s�n�

� 
 

here np = {n�}  and \p = {\�}, with i = {F,B,I} pointing out the excitatory foreground, 

excitatory background and inhibitory populations composing the single model, 

respectively. Since the single module includes multiple interacting neural populations, 

the mean-field dynamics would be described by a multi-dimensional gain function. Our 

gain function Φ was computed as an ‘effective’ gain function ot, along the lines proposed 

by (Mascaro and Amit 1999). This approximation allows the reduction of the multi-

dimensional mean-field problem (Amit and Brunel 1997) to a two-dimensional one 

corresponding to the dynamics of the firing rate (ν) and of the fatigue level (c) of the 

foreground population of interest (Mattia and Sanchez-Vives 2012):  

kl
m	6n6T = 	ot�n, \	 − 	nq	6\6T = 	−	 \qr + sn � 

For this reduced dynamics of a single module nullclines (nu = 0 and \u = 0) can be 

derived, whose intersections represent fixed points. Modules were set to have a weakly 

stable Down state (meaning that low-firing rate intersection was on the lower branch of 

the ν nullcline, rather close to the point where this branch ended, see Figure 5C). 

Energy landscapes near the fixed point were defined by the integral of the function �ot�n, \	 − 	n	,  assuming for c its value in the same fixed point. 
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Results 

We probed spontaneous Up/Down slow oscillations (SO) traveling across 12 cortical 

slices from 5 ferrets by measuring the extracellular raw signals simultaneously recorded 

from a matrix of 16 electrodes with a multiscale arrangement (Fig. 1A, see Materials & 

Methods). MUA of each electrode was estimated as the relative power change of high-

frequency components of the raw signals in sliding windows of 5 ms (Reig et al. 2010; 

Sanchez-Vives et al. 2010). The large majority of the recording channels displayed a 

long-tailed distribution of the logarithmically scaled MUA (Fig. 1B, 80% of the 156 used 

electrodes) with high and low firing rate peaks corresponding to Up and Down states, 

respectively. For each slice, an optimal MUA threshold was selected relying on the 

Down peak standard deviation, to detect transition times between Up and Down states 

(see Materials and Methods). From these we measured the SO statistical features like 

state duration distributions of representative channels (Fig. 1C) and the average 

oscillation frequency of 0.31 ± 0.12 Hz (n = 12 slices), similarly to what previously 

found (Sanchez-Vives and McCormick 2000). MUA time course around state 

transitions (Fig. 1D) was qualitatively similar to that from conventional extracellular 

recordings (Reig et al. 2010; Sanchez-Vives et al. 2010), further proving the reliability 

of the new surface electrodes employed here in measuring MUA from cortical slices. 
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Figure 1. Multi-electrode recordings of slow Up/Down oscillations travelling across 

ferret cortical slices. A, Matrix of 16 electrodes (filled circles) superimposed to the 

histological slice of an example experiment. Gray circles, unused channels. B, Long-

tailed distribution of the MUA measured from an example electrode (histogram), fitted 

to the sum of two Gaussian distributions (red and blue) representing the activity of the 

Down and Up state, respectively. Vertical dashed lines, mean of the Gaussian 

distributions. C, Histograms of the detected Up and Down state durations (red and 

blue, respectively). Vertical dashed lines, average durations. D, Rastergram of MUA 

(bottom) centered around the detection time of Down-to-Up transitions (0 ms). Up 

states are sorted by duration. Top, average MUA. E, Example time course of the MUA 

simultaneously estimated from used channels. Horizontal dotted line, MUA threshold 

to detect Up state onset. Diamonds, crossing time of MUA threshold. Colors are as in 

Panel A, and characterize different electrodes. Vertical dashed line, average time of Up 

state onsets composing the same wavefront. The time lags of Down-to-Up transitions 

from this wavefront centroid are represented as a horizontal color bar (top). 

Diverse modes of wave propagation across cortical slices 

Spontaneous Up state onsets at single channel level did not occur as isolated events. As 

shown in Fig. 1E, Up states traveled across the cortical slice (Sanchez-Vives and 

McCormick 2000; Sanchez-Vives et al. 2010; Wester and Contreras 2012), giving rise 

to waves identifiable by the set of time lags between the MUA onsets occurring across 

channels (Fig. 1E-top, see Materials and Methods), and the average time of such local 

activations was used as reference time. In each experiment we found a wide variability 

of the propagation patterns (Fig. 2A), the large majority of which involved at least two 

of the three channel vertical columns composing the multi-electrode array (MEA) (96.7 

± 3.4% of detected waves, average across all n = 12 slices). In order to uncover whether 

such diversity hid some spatiotemporal organization of spontaneous slow oscillations, 

we analyzed with a k-means clustering the subset of full waves, those which propagated 

across all the three channel columns of the MEA (Fig. 2B, see Materials and Methods 

for details, an average of 80 ± 19% of the detected waves per slice, n = 12). Using a fixed 

number of 10 wave clusters, for each we estimated the time course of average activation 

wavefronts across the rectangular field covered by the MEA, by performing a spatial 

interpolation of the averaged time lags per channel (Fig. 2C, see Materials and Methods 

for details).  

From these wave profiles it was apparent that not only different directions in the 

horizontal propagation spontaneously occurred, but also that across experiments there 

was almost no preference in the ignition site (Fig. 2D): on average 59 ± 22 % of the 
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waves appeared first from the lateral columns of electrodes, while 34 ± 25 % originated 

close to the central column of the MEA (n = 12). Adding complexity to the phenomenon 

was also the evidence that more than one ignition site could contribute to the slice 

activation, as it is apparent from the first wave cluster in Fig. 2B (bottom) where an 

early Up state onset (blue matrix elements) occurred in the two most lateral electrode 

columns. Besides, whatever the mode of propagation was, average wavefronts displayed 

always a shape squeezed along the vertical axis, perpendicular to the pia of the cortical 

slice. This highlighted a slower velocity along the horizontal (lateral) direction with 

respect to the vertical (in depth) one (Fig. 2E): a difference confirmed at the population 

level, since the average velocities were 5.8 ± 1.8 mm/s and 8.9 ± 3.4 mm/s, respectively 

(n = 12), compatible with previous measures from similar experiments (Sanchez-Vives 

and McCormick 2000; Sanchez-Vives et al. 2010). 

As all these results rely on the interpolation procedure the region of slice 

uncovered by the MEA, we performed an additional set of experiments including an 

extra electrode placed in different locations far from the MEA electrode position to 

check possible time shift artificially introduce by the adopted method (Fig. 2F, see 

Materials and Methods, and Supplementary Material). Up state onset times measured 

including the extra electrode was directly compared with those obtained without taking 

it into account displayed a high degree of correlation (Fig.2G). At population level, the 

average of the absolute error between real and extrapolated time lags resulted to have 

across recordings a rather narrow distribution (Fig.2H), with a mean error of 51.0 ± 6.5 

ms (n = 24 from different slices and extra electrode positions) which corresponded to a 

shift of approximatively 10% the time taken by a wave to travel across the whole slice. 

We remark here that this is a result per se, as confirming the smoothness of SW 

propagation across cortical slices although dynamics underlying their generation is 

expected to be intimately nonlinear. 
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Figure 2. Variability of propagation modes of Up state onsets. A, Time lag matrix of 

detected Up state onsets from single traveling waves of an example experiment. Rows 

are as the top horizontal bar in Fig. 1E. Gray pixels, failed detections of Down-to-Up 

transition. Dashed vertical lines separate channels arranged in different vertical 

columns of the MEA (see panel C). Wavefronts are sorted by number of columns 

involved. Full and partial waves are those with 3 and 2 columns involved, respectively. 

Right, number of channels detecting the Up onset in each wave. B, Time lag matrix of 

full waves with failed detections of Up onsets replaced by estimates from similar 

wavefronts (see text). Waves are pooled in 10 groups by k-means clustering, separated 

by horizontal dashed lines. Gray-shading bar distinguishes different clusters. C, Time 

course of average wavefronts from two example clusters. Color code as in panel B and 

C. Consecutive wavefronts are separated by 50 ms. Time lags across the depicted area 

are interpolated from the average Up onset times across a wave cluster, relying on thin-

plate splines (see text). D, Box plots of the fraction of full and partial waves (all = 

partial + full) detected across experiments (n = 12), together with the column of 

electrodes from where waves originated (side, from 1st and 3rd column; center, from 2nd 
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column). E, Box plots of the average absolute velocity of wave clusters across 

experiments (n = 12) along the horizontal (X) and vertical (Y) direction of the electrode 

array, parallel and perpendicular to the cortical surface, respectively. In each box plot, 

whiskers (dashed lines) are extreme values of the distribution, edges are the 1st and 3rd 

quartiles and the central mark is the median. Where shown, circles are average values 

of the distribution. F, Example of interpolated activation wavefronts obtained 

including or not data from an extra electrode (solid and dashed lines, respectively). Red 

circle represent the location of extra electrode. G, Scatter plot for an example 

slice/eleectrode position of Down-to-Up transition times measured from the extra 

electrode (δtm) versus the interpolated ones estimated without taking account this 

electrode (δti). H, Histogram of the average absolute error estimated for each 

slice/electrode position (n = 24). 

Memoryless generation of spontaneous waves 

Traveling wavefronts of Up state onsets belong to the realm of phenomena occurring in 

noisy excitable media, known to spontaneously express spatiotemporal patterns (Cross 

and Hohenberg 1993; Sagués et al. 2007). Experimental evidence supports this view, as 

local excitation in space elicit propagating self-sustained wavefronts of in vitro activity 

(Wu et al. 1999; Wester and Contreras 2012). This phenomenon in slices displays a low 

degree of complexity, as spontaneous propagation modes are unidirectional (Golomb 

and Amitai 1997; Wu et al. 1999; Sanchez-Vives and McCormick 2000; Wester and 

Contreras 2012), i.e. wavefronts mainly propagate in a direction parallel to the cortical 

surface. Here, we characterized the dimensionality of the Up wavefronts by performing 

a principal component analysis (PCA) of the time lag matrices (Fig. 3A). Detected 

spatiotemporal patterns had low dimensionality (maximal dimensionality is 15 as the 

electrodes in the MEA are 16 and we set to 0 the average time lag per wave), as the first 

two principal components (PC) explained a large part of the time lag variance (Fig. 3B, 

average variance explained 82% ± 16%, n = 12). This is consistent with the previous 

reports on propagation patterns measured with optical imaging (Wu et al. 1999; Wester 

and Contreras 2012). Moreover, in the (PC1,PC2) plane where each full wave 

corresponded to a circle (Fig. 3A), two main clusters were often recognizable, 

representing the preferred mode of propagations, hence further decreasing the degree 

of complexity of spontaneous activity. This indeed corresponded to a rather stereotyped 

activation of the slices when belonging to the same mode (wave cluster) of propagation 

(see Supplementary Material). In the specific example shown in Fig. 3A, the two 

preferred modes corresponded to those shown in Fig. 2C for the same experiment, 

although other two smaller clusters were apparent in the first and third quadrant 

representing waves with different numbers and positions of ignition sites.  
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To uncover possible complexity in the time domain, we inspected the similarity 

degree between wavefronts occurring at different distances in time (see Materials and 

Methods). Visual inspection of the time course of φ (Fig. 3C), the angle (phase) 

associated in the plane (PC1,PC2) to each circle/wave in Fig. 3A, highlighted a rather 

irregular nature in the selection of the next wave onset between the two preferred 

propagation modes shown in Fig. 3A and 2C. This qualitative picture was confirmed at 

the population level: average autocorrelation ACn of the time lag arrays characterizing 

the waves at lag n (see Materials and Methods), was close to 0 (Fig. 3D). Also at single 

slice level, wave selection was memoryless (ACn = 0), with only one exception (Fig. 3E, 

red plot). In this experiment we found a significant positive correlation AC1 = 0.04 

(Wilcoxon signed-rank test, P < 0.01). Intriguingly, there we measured the longest Up 

state duration (540 ± 90 ms, more than 200 ms longer than the average duration of 310 

± 110 ms across experiments), supporting the hypothesis that this cortical slice was in a 

relatively more excitable state with respect to the others. The correlation between AC1 

and Up state duration (Fig. 3D) confirmed that the memory degree in the next wave 

selection was tighlty related to the excitability of the network, which in turn is expected 

to be associated to longer high-firing states. From this perspective, spontaneous waves 

in our basal excitability levels and frequencies between 0.11 and 0.40 Hz did not take 

into account of past events as expected in a subexcitable state (Sagués et al. 2007). 

Under this condition, endogenous fluctuations of the activity in the Down state were 

expected to elicit in random locations the onset of different Up wavefronts explaining 

the memoryless renewal origin of spontaneous waves in our in vitro model of SO.  
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Figure 3. Past modes of propagation do not influence next Up wavefronts. A, First two 

principal components (PC1 and PC2) of the time lag matrix in Fig. 2B. Each circle is an 

Up onset wavefront (an array of time lags), whose gray shading indicates the wave 

cluster it belongs to (gray levels as in Fig. 2B). B, Box plot of variance explained by PC1 

and the first two PCs across all experiments. C, Time course of the phase φ in the 

(PC1,PC2) plane of full (filled circles) and partial (dots) waves.Gray filling and 

experiment as in A. D, Scatterplot of the autocorrelation AC1 of the time lag arrays of 

consecutive waves versus the average duration of the Up state from a reference channel 

(that with the highest MUA in the Up state). Experiments included are those with a 

fraction of full waves greater than 80% (n = 7 out of 12). E, Autocorrelation ACn of the 

time lag arrays of waves at lag n. Black line and gray shading, average and SD of ACn 

across all experiments shown in D, respectively. Red line, average ACn for a specific 

outlier experiment, not included in the average. 

Structure has a role in shaping Up state and onset wavefronts 

If SO in cortical slices arose as in a subexcitable medium, we might expect that activity 

reverberation did not completely overwhelm the underlying intracortical connectivity 
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structure. Under this hypothesis, spontaneous activity should be (at least partially) 

shaped by the structure and excitability distribution of the cortical network, such that 

wave propagation and SO in single electrodes should retain and share some of this 

information. To investigate such possible interplay between structure and spontaneous 

activity, we started looking for features of the excitation waves preserved across 

different modes of propagation. More specifically, following each travelling Up onset 

wavefront we identified an early propagation strip (EPS, see Materials and Methods), 

the most advanced tip of Up onset times along X direction of the MEA (Fig. 4A, dotted 

lines). This would likely represent the most excitable part of the slice, where neuronal 

pools reacted first to the synaptic input provided by nearby active cortical regions. 

Intriguingly, EPS extracted from excitation waves were remarkably similar in the same 

experiment, irrespective from their mode of propagation (Fig. 4B), further supporting 

the hypothesis that the underlying intracortical connectivity establishes preferred 

routes across the slice, modeling the shape of wavefronts independently of ignition site 

and direction of propagation. 

A natural hypothesis is that EPS would correspond to sites of maximal 

excitability, which in turn led us to predict that also local SO properties would be 

different along the EPS. To test this hypothesis, we carried out the average Up state 

durations TUp across the area covered by MEA, by interpolating the TUp measured from 

the different MEA channels (Fig. 4C), similarly to what done for working out traveling 

wavefronts (see Materials and Methods). Another mean feature of SO related to the 

local excitability of neuronal assemblies was the maximum MUA during Up states 

(Fig.4D), computed as above by resorting to interpolation. Most excitable pools were 

expected to have the longest Up duration and maximum MUA, corresponding to a 

maximally stable Up state (Mattia and Sanchez-Vives 2012), we found them at sites 

composing continuous strips (green and cyan curves in Fig. 4C and D, respectively), 

which in turn displayed a remarkable overlap with the EPS estimated from wave 

propagation (Fig. 4E). This overlaps between excitable strips estimated from different 

features of slow wave activity in slice was apparent across all experiments, as the 

vertical distance between EPS (YEPS) and position of maximum MUA (Ymax. MUA in Fig. 

4F) and maximum TUp (Ymax. Tup in Fig. 4G) were not significantly different from 0 

(average distances were 47 ± 140 µm and 10 ± 90 µm, respectively; Wilcoxon sign-rank 

test, P > 0.05; see Materials and Methods for details). As also EPS and the strips of 

maximum MUA and TUp relied on the interpolation method introduced by commenting 

Fig. 2, we investigated the introduced error by measuring the differences when the 

extra electrode was or was not taken into account (see Materials and Methods, and 
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Supplementary Material). When computed as an average across all waves, EPSs 

estimated with and without the extra electrode (solid and dashed line in Fig.4H, 

respectively) widely overlapped. The average vertical distance had a narrow 

distribution across slices and extra electrode position (Fig. 4I), with a relatively small 

mean EPS location error of 39.5 ± 7.3 µm, approximatively about the 5% of the MEA 

vertical extension. Similar results were obtained for the strips of maximum MUA and 

TUp (see Supplementary Material). Finally, it is important to remark that all population 

analyses were computed at the horizontal center of the electrode columns where 

misalignment between interpolation and real measures was the smallest.   

 

Figure 4. Global Up wavefront properties match local dynamical features of SO. A, Two example Up 

wavefronts propagating in opposite directions as in Fig. 2C, from another example experiment. Gray 

curves with arrows, early propagation strip (EPS). B, Density of EPS from all detected waves. Brown 

thick line, weighted average of EPS density along X direction. Gray lines, EPSs of each cluster of 

traveling waves computed as in Fig. 2. C, Average Up state duration (TUp) interpolated across the slice 
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area covered by the matrix of electrodes (circles). Green thick line, maximum Up duration found at 

different X. D, Average maximum MUA during Up state interpolated as in panel C. Cyan thick line, 

maximum MUA found at different X. E, Superimposed weighted average of EPS, maximum Up state 

duration and MUA from panels B-D, respectively. F-G, Histograms of the vertical distance across all 

experiments (n = 12) between EPSs and line of maximal Up duration (F) or MUA (G). H, EPS 

estimated with and without the extra electrode (dashed and solid lines, respectively). Two example 

different positions of the extra electrode are showed (top and bottom panels, see Supplementary 

Material for details). I, Distributions of the average vertical error in interpolating the EPS across slice 

and extra electrode locations (n=24). J, Correlation between speed difference and dTUp/dX, the change 

per unit length of Up state duration along the EPS, in the same example experiment of panels A-E. 

Speed difference is between median velocities of waves propagating in opposite directions (see 

Materials and Methods for details). K, Histogram of the Pearson correlation ρ as in panel H for all 

experiments (n = 12). To the right of the red dashed line, correlations ρ are significant (P < 0.05).  

What shown here highlights a non-monotonic degree of excitability across the 

cortical depth (vertical Y direction of MEAs), displaying a maximum at intermediate 

layers where local populations emitted spikes at higher firing rates during Up state, 

compatibly with the leading role of Layer 5 in the generation of SO found in previous in 

vitro studies (Sanchez-Vives and McCormick 2000; Wester and Contreras 2012). On 

the other hand, a heterogeneous degree of excitability was also apparent along the 

direction parallel to the cortical surface (horizontal X direction of MEAs), as shown in 

Fig. 4C and D, as both maximum MUA and TUp increased from left to right. 

A gradient of maximum MUA and Up duration (TUp) along the excitable strip 

(solid lines in Fig. 4C and D), would intuitively produce an acceleration of the waves 

traveling in the same direction, while a deceleration should be measured for those 

waves propagating towards less excitable region of the slice. These could imply 

different speed profiles depending on the propagation mode, as acceleration in one way 

can be higher than the absolute value of the deceleration in the opposite direction. 

Indeed, accelerating waves would find a more excitable tissue, while in the other way 

wavefront would be pushed ahead by less excitable cortical assemblies.  According to 

this, a correlation is expected between the gradient of the excitability (the change of TUp 

per unit horizontal length dTUp/dX, see Materials and Methods) and the speed 

difference between leftward and rightward propagating wave (Fig. 4J). This correlation, 

related to the interplay between the spatiotemporal patterns and horizontal circuits of 

the cortex, was found in the majority of the experiments (Fig. 4K, 7 out of 12 

experiments had significant correlation, P < 0.05 with a Pearson correlation ρ > 0.5), 

further supporting the evidence of an intimate relationship between spontaneous 

activity and underlying cortical organization.  
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Weakly stable Down states behind slow oscillations  

The analysis described so far shows that cortical slices spontaneously express waves 

generated by nonlinear self-excitation; wave propagation exhibits a rich repertoire of 

spatiotemporal patterns, which we have shown to be related to the structural 

organization of the slice. Taken together, these observations suggest that the cortical 

network behaves as a nonlinear excitable system, that is balanced such that it avoids 

collapsing into stereotyped excited collective states (e.g. epileptic) while keeping 

sensitivity to the connectivity spatial structure. 

 

Figure 5. Slow-wave activity in a spiking neuronal network model of cortical slice. A, 

Simulated networks are organized as a lattice of interacting modules (small black 

circles). Top, each module is composed of two pools of excitatory (E) and inhibitory 

(I) LIF neurons. Excitatory neurons receive an additional state-dependent self-

inhibition (purple link) modeling spike frequency adaptation (SFA). B, Example slow 

oscillation in a simulated module. Top raster plot displays a subset of emitted spikes. 

Recurrent connectivity between excitatory neurons is shaped in order to have only a 

subset of them firing during Up states (depicted in panel A-top as a dashed circle in 

the excitatory pool). Center, firing rates ν(t) of different pools, and fatigue level c(t) 

proportional to self-inhibition inducing SFA. Bottom, raster of spikes emitted by 

neurons from different excitatory modules along X axis of the modeled slice. C, 

Nullclines (curves) and fixed-points (circles) of single module dynamics in the (ν,c) 

plane, under mean-field approximation. Green curve, example trajectory of the 
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module in the (ν,c) plane, with initial condition on the right of the ν-nullcline. D, 

Mean-field nullclines for the same module in (C) receiving two different inputs 

obtained increasing external rate of spikes by 7% (dark gray) and 20% (light gray). 

Superimposed are example trajectories for these two conditions, colored to encode 

time (see top color bar). E, MUA in logarithmic scale estimated from the firing rate 

ν(t) of the example cortical module in (B). Inset, histogram of Up and Down state 

durations detected from the modeled MUA with the same analytical tools used for in 

vitro recordings, as in Fig. 1C.  

We therefore undertook to understand, in a theoretical model, the determinants 

of such interplay between excitability and sensitivity to structural features. For this 

purpose, we set up a large-scale model of cortical slice as a network of modules 

arranged uniformly on a lattice, each of them exciting nearby modules which intensity 

decreasing with distance (Fig. 5A, Materials and Methods). Modules were composed of 

350 leaky integrate-and-fire (LIF) excitatory (80%) and inhibitory (20%) neurons each. 

SO occurred as the interplay between recurrent synaptic excitation and a history-

dependent self-inhibition (Fig. 5B), analogously to previous works (Bazhenov et al. 

2002; Compte et al. 2003; Holcman and Tsodyks 2006; Mattia and Sanchez-Vives 

2012). During Down state activity fluctuations can drive the module through recurrent 

excitation towards a high-firing Up state, self-sustained in time by local synaptic 

reverberation involving a subset of both excitatory and inhibitory neurons (Fig. 5B-

top). Each excitatory neuron possesses an activity-dependent inhibitory current 

modelling spike frequency adaptation (SFA) due to the influx of a hyperpolarizing 

potassium current proportional to a fatigue level c(t), which increases each time a spike 

is emitted (Koch 1999). During periods of high firing rate ν(t), fatigue c(t) accumulates 

(Fig. 5B-middle, purple line), eventually crossing a threshold level which destabilizes 

the Up state and determines the Up-to-Down transition and the beginning of the 

recovery phase during the Down state. Excitatory intermodular connectivity promotes a 

fast chain reaction following a local Down-to-Up transition, recruiting nearby inactive 

modules after recovery from previous active states, eventually generating global SO as 

in Figure 5B-bottom. A synthetic MUA from the firing rate of each module is computed 

by adding a Gaussian white noise unavoidably affecting electrophysiological recordings 

(Fig. 5E, Materials and Methods). This allow to analyze and compare experiments and 

simulations with the same tools, as those to work out state duration distribution (Fig. 

5E, inset). 

In order to quantitatively reproduce the statistics of experimental SO, two 

minimal requirements had to be met. Firstly, Down state should be weakly stable, such 

that Down-to-Up transitions can occur with non negligible probability due only to 
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fluctuations of local activity ν(t); alternatively, Down-to-Up transitions can be primed 

by the additional input due to the activation of nearby modules. Secondly, modules 

must be excitable, such that small supra-threshold inputs could elicit the onset of an Up 

state. 

Cortical modules with these features can be designed by relying on mean-field 

theory, where the module nonlinear dynamics can be fully depicted in the phase plane 

(ν,c) (see Materials and Methods). Figure 5C shows the nullclines (loci of zero time 

derivative) for ν (black) and c (red), for a parameters choice meeting the above 

requirements: the (stable) Down state is the only intersection between the nullclines 

(i.e. the only point attractor of the dynamics), and the green curve describes an example 

trajectory followed by the system for an initial condition to the right of the ν nullcline. 

As the Down state is very close to the knee of the ν nullcline, its stability is weak and 

noise can promote an escape from this state. If endogenous fluctuations are taken into 

account, while the system approaches the Down fixed point, it can fluctuate for long 

time around it (Fig. 5D, colored curve), until a large enough fluctuation makes it jump 

towards the upper branch of the ν nullcline (the Up state). If, at parity of other 

parameters, the synaptic input from other modules is increased, the ν nullcline shifts to 

the left (Fig. 5D gray curve), and an almost deterministic Down-to-Up transition is 

elicited. The two illustrated scenarios address the requirements above, and would 

represent i) the modules which due to fluctuations prime the activation wave onset 

(black nullcline) and ii) those ones which receiving input from nearby active modules 

contribute to the wave propagation (gray nullcline). 

Heterogeneous excitability shapes spatiotemporal activity patterns  

As the next step, the cortical slice model was employed to investigate the mentioned 

interplay between local excitability and structural features suited to reproduce the 

spatiotemporal properties of propagating waves found in our experiments (Figs. 2, 3 

and 4). For this purpose, we differentially modulated the excitability level of the cortical 

modules in the slice model, with the most excitable modules in a strip (dark inverted U 

strip in Fig. 6A, Materials and Methods). Following (Mattia and Sanchez-Vives 2012), 

the excitability of the cortical modules was regulated by changing the local connectivity \]^_ (probability to establish a synaptic contact between two excitatory neurons in the 

same module) and/or the external input from other modules, here dependent on the 

global connectivity \h]^i (probability of a connection with an excitatory neuron from 

nearby modules). Increasing \]^_ raised the firing rate of the Up states and 
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strengthened its stability (upper branch of the ν nullcline became higher and wider, 

gray to black curves in Fig. 6B). At the same time, Down state stability was weakened as 

the corresponding attracting energy valley became shallower (in Fig. 6C-top, gray to 

black curves). 

In this cortical slice model, synchronized SO across the lattice of modules 

collectively emerged as an activation wave (Fig. 6D). The spatiotemporal pattern 

started with the Up state onset in a neuronal assembly close to the most excitable strip 

(Fig. 6D, white dashed line), where modules with maximum \]^_ were located (MCS, 

maximum connectivity strip). From there, the activation wave propagated horizontally 

following the maximally excitable modules. Maximum MUA (dark red) occurred along 

the MCS as the tip of the Up onset wavefront, consistently with what shown in Fig. 4. 

More specifically, we characterized activation waves resorting to the cluster analysis 

used for the experiments, recognizing also in simulation different modes of propagation 

(Fig. 6E). Similar to what found in vitro, the in silico cortical slice displayed a 

remarkable overlap between the MCS (dashed line), the EPS estimated from wave 

propagation and the strip where maximum MUA and �vw were measured from SO of 

the single modules (Fig. 6F). This overlap did not depend on the particular shape of the 

MCS, as we tested by performing simulations with different strip shapes (not shown). 
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Figure 6. Spiking cortical model with non-homogeneous structure. A, Simulated 

networks have the same multi-modular arrangement as in Figure 5A, with the only 

difference that modules have a different degree of intra- (local) and intermodular 

(global) connectivity (see sketch above). Darkest circles (thickest synaptic link) are 

those with the highest connectivity. B Nullclines (curves) and fixed-points (circles) of 

single module dynamics in the (ν,c) plane, varying the connectivity level under mean-

field approximation. Gray levels code for connectivity, same as in (A). C, Energy 

landscapes (top) around the fixed-points varying connectivity as in (C). Bottom, a 

(rotated) zoom of the (ν,c) plane in (C). D, Snapshots at different times of the 

propagation of an Up wavefront across the cortical slice model. White dashed line is 

the maximum connectivity strip (MCS) corresponding to the region of the most 

excitable modules as in (A). Color coded is the MUA from simulations. E, Two 

examples of Up wavefronts propagating in opposite directions from the same 

simulation, as in Fig. 4A. F, Comparison between estimated EPS (brown), and strips of 

maximum Up state duration (green) and MUA (cyan), together with the exact position 

of the MCS set in the modeled slice (black dashed line). 
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An optimal balance between short- and long-range connectivity 

The capability to produce travelling waves of Up state onsets by assigning a pivotal role 

to a subset of maximally excitable neuronal assemblies, which in turn shape these 

spatiotemporal patterns does not offend intuition, and may appear as a rather 

straightforward expectation. With this in mind, we explored the sensitivity of the wave 

features expressed by the in silico slice to the choice of several key parameters of the 

network. 

The uniqueness of the dynamical regime needed to reproduce the collected in 

vitro experimental evidence described in Fig. 5, emerged also by testing the model 

network under the modulation of another critical parameter known to modulate the 

nonlinear dynamics of networks expressing SO (Mattia and Sanchez-Vives 2012): the 

intensity of an external excitatory input R[�� modeling the incoming background activity 

produced outside the modeled neuronal field (see Materials and Methods). By 

increasing R[��, SO in single modules displayed Up states with longer durations (Fig. 

7D), which in turn positively correlated  (Pearson correlation ρ = 0.56, P < 0.001) with 

the autocorrelation ��� between the time lag arrays representing wave propagation, the 

same as the one measured in experiments (Fig. 3): the larger the excitability, the longer 

the Up state and the higher the correlation between the mode of propagation of 

successive waves (wave lag 1). Similarly to what found in experiments, on average no 

memory was retained about the way waves propagated previously in time (Fig. 7E, 

black line at ��$ ≅ 0). A positive autocorrelation of the time lag arrays occurred only 

for those simulations with large enough R[�� (red circles in Fig. 7D) representing the 

most excitable model networks. In this case average correlation (Fig. 7E, red line) was 

significantly different from 0 (Wilcoxon rank sum test, P < 0.01), in good agreement 

with what found in vitro (Fig. 3D). 
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Figure 7. In silico optimal balance between global and local connectivity. A, Speed of 

traveling wavefronts in cortical slice models varying local (\]^_) and global (\h]^i) 

connectivity in the MCS. Connectivity of modules outside the MCS are adjusted 

accordingly (see text for details). Dashed line, set of network parameters yielding to a 

constant speed of waves of 9 mm/s compatible with experiments. B, Identification 

error of MCS from EPS for the same parameter set as in (A). C, Comparison between 

EPS and MCS for three different example slice models corresponding to the filled 

circles in (B). D, Average Up state duration versus autocorrelation AC� between time 

lag arrays of consecutive Up wavefronts, computed as in Fig. 3. Each circle is a 

simulated network with a different external excitatory input Rz{A to each excitatory 

neuron, modulating the module excitability. Filling color codes for the changes ∆Rz{A of 

the reference external input Rz{A in the network of panels (A-B) with \]^_ = \h]^i = 1. E, 

Autocorrelation ACG of the time lag arrays at different wave lags, as in Fig. 3D. Black 

line and gray shading depicts the average and SD over all simulations. Red line, ACG an 

outlier slice model with the highest Rz{A. 
Middle cortical layers lead wave propagation and SO 

Our matching observations from experiments and in silico slices strongly suggest that 

the cortical slice structure determines the features of in vitro spontaneous SO and their 

propagation across the tissue. A natural question follows up: does the most excitable 

region of cortical slices inferred from their spontaneous activity correspond to a specific 

anatomical structure? Previous in vitro studies highlighted a leading role of L5 in the 

generation of SO (Sanchez-Vives and McCormick 2000). Neurons in this layer were the 
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first to activate with respect to the others located at different depths in the same 

cortical column. However, the columnar interactions between supragranular and 

infragranular layers (L2/3 and L5) were found to underlie the activity propagation of in 

vitro SO (Wester and Contreras 2012). Here, we addressed the question by matching 

the laminar organization characterized from histology and the excitable regions 

inferred from the spontaneous activity of the slices (Fig. 8A). More specifically, in the 

cortical slices where histology was available (n = 9 out of 12 experiments), we computed 

the area covered by the distribution of EPS estimated from recorded waves in different 

layers (see Materials and Methods for details). As a result, we found a major overlap 

between L4 and L5 and EPS distribution (Fig. 8B), and hence with the slice region 

where maximum MUA and Up duration were also found. Fractions of EPS in L2/3 and 

L6 was significantly lower than those in L4 and L5 (Wilcoxon sign-rank test, P < 

0.001). Although EPS area overlapping with L4 was on average lower than the one on 

L5, the difference was not significant such that the functional identification of the most 

excitable region of cortical slice highlighted a shared role between these two layers. 

 

Figure 8. L4 and L5 overlap with the excitable cortical region predicted from 

spontaneous activity propagation of in vitro SO. A, EPS density and area covered by 

the MEA superimposed to the image of the corresponding cortical slice stained after 

electrophysiological recordings. Dashed lines, boundaries between layers. EPS density 

below 0.04 is not shown. B, Box plot of the area covered by EPS density higher than 

0.04 in each layer of the cortical slices for which histological characterization was 

performed (n = 9 out of 12). 
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Discussion  

Our cross-cutting study of the spontaneous alternation between Up and Down states 

propagating across cortical slices provides a novel perspective on the dynamical origin 

of such a multiscale phenomenon. We relayed on a dedicated experimental setup in 

which an array of multiple electrodes was arranged in small electrode clusters, thereby 

providing a multi-resolution probe to investigate at the same time both local and global 

network dynamics. By this means, we reproducibly found a rich repertoire of 

propagation modes all sharing three distinctive features. Firstly, activation waves 

systematically propagated parallel to the cortical surface, in agreement with previous 

works (Wu et al. 1999; Sanchez-Vives and McCormick 2000; Wester and Contreras 

2012), although a wide distribution of speeds and ignition sites was found within each 

single experiment. Almost no local activity bumps were observed. Wavefronts of Up 

state onset were mildly curved, corresponding to a measured vertical speed, along 

columnar orientation, twice the horizontal one. Secondly, irrespective of their 

variability, wavefronts revealed loci across the slices which reproducibly led SO 

propagation, composing a longitudinal smooth strip. Upon checking against anatomical 

reconstruction, this strip largely overlapped L4/L5, compatibly with the evidence that 

the most excitable cell assemblies reside in L5 both in vitro (Sanchez-Vives and 

McCormick 2000; Wester and Contreras 2012; Krause et al. 2014) and in vivo (Sakata 

and Harris 2009; Chauvette et al. 2010; Amigó et al. 2015). Finally, wave onset was an 

almost memoryless process, i.e. no correlations were found between propagation 

modes of successive waves. Such composite evidence traced a narrow path for the 

theoretical model we developed to understand its determinants: the prominent 

excitable strip pointed towards a distribution of local excitability; the variability of wave 

modes and their lack of memory hinted at an important role of noise. 

In fact, we found that a multi-modular large-scale in silico model of the slice, 

capable to reproduce all these features, must primarily incorporate a distribution of 

excitability in the form of heterogeneous synaptic self-excitation of the single modules. 

But we also found that local self-coupling must be optimally balanced with the mutual 

excitation between modules. These conditions ensured that our in silico slice acted as a 

structured sub-excitable medium in which each module displayed a marginally stable 

Down state from which, thanks to maximal sensitivity to endogenous finite-size noise 

and inter-modular input, relaxation oscillations could be generated. As a result, the 

most excitable strip overlapped the sites with maximal duration of the Up states, and 

with maximal firing during Up states, as confirmed by our experiments and further 
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highlighting the pivotal role of L4/L5 in leading SW activity. All findings support the 

hypothesis that this default mode spontaneously expressed by the cerebral cortex 

(Sanchez-Vives and Mattia 2014) is due to a privileged configuration of the network 

allowing both dynamical richness and sensitivity to underlying structure. 

Comparisons with previous studies  

Horizontal intracortical connections play an important role in determining the speed of 

activity propagation (Wadman and Gutnick 1993; Golomb and Amitai 1997; Sanchez-

Vives and McCormick 2000; Wester and Contreras 2012), together with the excitability 

level modulated for instance by the balance between excitation and inhibition 

(Sanchez-Vives et al. 2010), as also described in theoretical models of SW activity 

(Bazhenov et al. 2002; Compte et al. 2003). In the specific framework of in vitro 

spontaneous SO, the horizontal speed of SWs we measured (5.5 ± 1.5 mm/s) well 

matches those from previous works which range from 7.2  mm/s (Sanchez-Vives et al. 

2010) to 10.9 mm/s (Sanchez-Vives and McCormick 2000) in ferret cortical slices 

(same preparation adopted here), up to the 20 mm/s measured in rat brain slices  

(Wester and Contreras 2012). Note that, the high speed reported in the latter work may 

be due not only to the different animals, but also to the use of voltage-sensitive dyes 

(VSD) imaging, known to probe subthreshold membrane potential rather than the 

suprathreshold MUA we recorded. An even higher horizontal velocity of 30 mm/s was 

previously measured with VSD imaging in rat neocortical slices in low (0.1 mM) 

magnesium (Wu et al. 1999). SO frequency under these conditions was 7 − 10 Hz, 

significantly higher than that measured in our experiments (0.31 ± 0.12 Hz). If greater 

speed is attributed to greater excitability, the above theoretical argument would also 

imply: i) less variable wave propagation modes (due to reduced sensitivity to the 

underlying structure) and ii) more correlated successive propagation modes. Indeed, 

(Wu et al. 1999) also observed that waves usually propagated in the same direction. 

These predictions which might be ideally tested in experiments in which slice 

excitability is directly manipulated as in (Reig et al. 2010; Sanchez-Vives et al. 2010; 

Sancristóbal et al. 2016).  

Relations with in vivo slow-waves  

In anesthetized rodents SW activity is well documented, and reported to be similar to 

SWs during deep sleep (Alkire et al. 2008; Cirelli and Tononi 2008; Siegel 2008), thus 

raising a question as to their possibly similar dynamic origin to SWs in vitro. A first 

difference is that in vivo Down-to-Up wavefronts propagate faster, with a speed 
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tangential to the cortical surface which ranges from 25 to 40 mm/s  (Fucke et al. 2011; 

Ruiz-Mejias et al. 2011; Stroh et al. 2013; Sheroziya and Timofeev 2014). This is 

irrespective on the adopted probe which in these works varied from intracellular and 

extracellular recordings to two-photon calcium imaging. What we measured in our 

slices experiments as the vertical speed of the Up state onset, in vivo was observed by 

directly probing cortical columns during SO (Sakata and Harris 2009; Chauvette et al. 

2010). Columnar activation in vivo was more asymmetric as deep layers (L5 and L6) 

activated simultaneously, and the activity spreads towards superficial layers (L2/3) 

with a speed of about 30 mm/s, as a depth of 700 µm was covered in about 25 ms 

(Sakata and Harris 2009). Such quantitative differences in asymmetry and speeds may 

be plausibly related to the known lack of long-range cortico-cortical connections in 

vitro (Stepanyants et al. 2009; Schnepel et al. 2015), which is expected to be more 

pronounced along the direction tangential the cortical surface. This would explain why 

in the cortical slice the vertical speed is twice the horizontal one, while they are almost 

the same as in the intact brain. We also remark that the mentioned differences may 

affect the optimal balance between local excitability and inter-modular connectivity 

which we have shown here to be a major determinant of the kinematics of slow waves. 

Limitations of this study 

Here, activation and silencing of wavefronts were reconstructed relying on an 

interpolation procedure between the sparse electrodes of the MEA, and clustering 

together similar waves in order to improve the signal-to-noise ratio of the estimated 

state transition time lags. Under the assumption of reasonably smooth wavefronts, this 

method allowed to recover information about the wavefronts in slice regions where no 

electrodes were available. A failure of this assumption might imply a wrong  

identification of the depth of the strip leading wave propagation. To test its range of 

applicability, we performed simulations of the in silico slice with different shapes and 

slopes of the most excitable strip (not shown). As expected, the error in estimating the 

strip location from the measured EPS increased for steeper slopes. Nevertheless, its 

magnitude was always remarkably small. Of course, having denser arrays of electrodes 

would allow to relax the above assumption, without changing the analytic approach 

here introduced, which is independent from the MEA size. The flexibility of the 

approach would allow to apply it also to other experimental frameworks like the study 

of in vivo quasi-planar waves. 

Another possible limitation of this study is that we did not sort single units (SU) 

from the MUA. Yet, we do not expect any qualitative change in the characterization of 
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in vitro SWs from relying on SU activity instead of MUA. Indeed, using rather different 

methodologies with different spatial and temporal resolutions ranging from 

intracellular and extracellular recordings, to calcium and VSD imaging, the observed 

propagating modes shared in all cases similar features both in vivo (Fucke et al. 2011; 

Ruiz-Mejias et al. 2011; Stroh et al. 2013; Sheroziya and Timofeev 2014) and in vitro 

(Wu et al. 1999; Sanchez-Vives and McCormick 2000; Sanchez-Vives et al. 2010; 

Wester and Contreras 2012). 

Functional and dysfunctional implications  

An appealing result of the modeling study was the recognition that for the model to 

match the experimental it was critical a proper balance between local and mutual 

modules excitation. This together with the need of a weakly stable Down state, 

establishes a “sweet spot” of the network parameters where structure is influential but 

at the same time allows for a wide variety of propagation modes. As travelling waves 

have been proposed to contribute both to process and transfer information across 

peripheral areas of the cerebral cortex (Rubino et al. 2006; Ferezou et al. 2007; Sato et 

al. 2012; Muller et al. 2014), from a computational standpoint an intriguing implication 

arises. It has been proposed that optimal sensitivity to structure can be a smart way to 

implement “self-organized instability” (Solé et al. 2002). Whenever the environment 

changes and new stimuli are sensed, the cortical network moves to a different working 

point, likely no longer optimal. To bring the system back to an optimal working regime 

a mechanism is needed allowing to recover the proper weak stability of the Down state. 

A simple unspecific modulation of the network excitability would serve this purpose. As 

a result, the variability of stimulus-evoked waves would not be purely random, but 

rather sensitive to the network structure (Rabinovich et al. 2008). If such a self-

organization mechanism would exist, the emergence of a default mode made of 

propagating SO should appear as a direct consequence of it.  

On the other hand, pushing the cortical tissue outside this sweet spot likely 

distorts the spontaneous activity yielding the network to display pathological dynamics, 

which can persist if optimality is not recovered. For instance, a wrong balance between 

excitation and inhibition is now known to influence the speed of the SWs travelling 

across the frontal cortex of Down’s syndrome models (Ruiz-Mejias et al. 2016). An 

underexpressed synaptic inhibition seems to underlie the break of long-range 

coherence of SW activity in mouse models of the Alzheimer’s disease (Busche et al. 

2015). In these cases our analytical approach, combined with properly tuned in silico 

models, have a potential to help elucidate which combination of local excitability and 
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inter-modular synaptic coupling underlie SW activity changes, unraveling the 

mechanistic roots of pathological dynamics. 
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Title: Ohmic quasistatic models fail to describe the electromagnetic propagation of slow 

oscillations and epileptiform activity in cortical tissue 

 

Abstract 

Macroscopic models ofthe propagation of electromagnetic fields in neural tissue (from 

electroencephalography to local field potentials) assume the validity of the quasistatic 

approximation (QSA) of the Maxwell equations. Upon this approximation, which is 

extensively applied in both clinical (e.g. deep brain stimulation, electrical neuroimaging) 

and experimental neuroscience (e.g. current source density computation via Laplacian of 

Potentials), electromagnetic fields travel nearly instantaneously from the sources to the 

sensors. Yet, recent estimates suggest that the propagation speed of epileptiform activity 

within the hippocampal tissue is too low (~0.1m/s) to justify quasistatic assumptions. We 

tested the assumptions of the QSA by studying the electromagnetic propagation of slow 

wave oscillations (SWO) and epileptiform activity in neocortical slices after isolating 

synaptic from electromagnetic transmission. Contrary to the damped, undistorted, 

instantaneous propagation of SWOs (<1Hz) and epileptiform activity predicted by QSA over 

short distances, we observed substantial deformations and delays compatible with 

dispersion arising from ionic diffusion and/or polarization. Our results suggest that 

accurate macroscopic models of propagation of electromagnetic fields in neural tissue 

must consider the dispersive properties that account for the laminar and columnar 

microstructure of the cortex.  
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Introduction 

Macroscopic models of the propagation of electromagnetic fields (local field potential, 

LFP; electroencephalography, EEG; magnetoencephalography, MEG) in neural tissue 

assume the validity of the quasistatic approximation (QSA) of the Maxwell equations (1). In 

these models, the gray matter is typically considered as a homogeneous conductor 

described by a constant conductivity and therefore, dispersion, i.e. frequency-dependent 

dielectric parameters (conductivity and permittivity), which is inherent to good 

conductors (2), is ignored. With dispersion, the propagation speed of electromagnetic 

phenomena varies with frequency; therefore, delays and distortion characterize signal 

propagation. 

In contrast, the most salient property of quasistatic in ohmic (resistive) conductors is the 

absence of delays assuming that electric and magnetic fields travel instantaneously from 

their sources to the sensors. Consequently, under the QSA, electromagnetic fields are 

memoryless as they neither depend on their past values nor those of their sources. In this 

view, electromagnetic signals propagating in neural tissue can only afford damping 

(attenuation of the wave’s amplitude) but not delays or distortion.The QSA is not only 

relevant for computational macroscopic models but also for clinical and experimental 

neuroscience. Indeed, the design (3) and understanding of the effects of deep brain 

stimulation devices (4) or the models underlying non-invasive electrical neuroimaging (5) 

all rely on the QSA. Electrophysiological data analysis estimates the Current Source 

Density by calculating the Laplacian of the measured potentials (6). This approach might 

be invalid if the QSA is violated (7).  

Several reasons cast doubts on the validity of such a simplified model to estimate the 

behavior of electromagnetic fields in highly heterogeneous ionic conductors such as neural 

tissue. First, the neural tissue preferentially filters some frequencies more than others 
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(8)and LFP/EEG/MEG signals show a 1/f spectrum that is compatible with the existence of 

dispersion (9, 10). Second, ionic conductors are lossy materials in which absorption is 

important. As a consequence of causality (2), lossy materials are necessarily dispersive. 

Third, nearly all dielectric spectroscopy studies of cortical tissue report substantially high 

dielectric permittivity values at low frequencies, which isincompatible with the purely 

resistive (ohmic) model, as well as important low-frequency dispersion (11, 12). 

Noticeably, the lack of dispersion reported by Logothetis (13) in vivo seems to contradict 

the universal low-frequency dispersion that was experimentally observed and modeled by 

Jonscher (14), Ngai (15) and Dissado and Hill (16) in non-biological materials with ionic 

conductivity. Fourth, epileptiform activity in the hippocampus has been recently observed 

to propagate by electric field effects at a speed of 0.1 m/s (17), which is far too slow to 

justify the instantaneous propagation of the effects predicted by the QSA in the absence 

of dispersion. Fifth, a recent experimental study from Gomes et al. (18) indicates the 

necessity of revisiting the assumption of the extracellular space as a purely ohmic 

medium.   

Obtaining reliable estimates of the dielectric parameters in neural tissue via "broadband 

dielectric spectroscopy" (19) would readily inform about the accuracy of QSA models to 

describe electrophysiological phenomena. Unfortunately, the accuracy of dielectric 

spectroscopy is substantially compromised in the low-frequency range of interest to study 

neural rhythms. This compromise is a consequence of electrode polarization effects 

appearing at the electrode-electrolyte interface that subsist (20) even if a four-electrode 

system is used for estimation (13). Removal of polarization effects typically requires 

theoretical or phenomenological assumptions on the specific behavior of the polarization 

impedance (21, 22). Polarization effects, therefore, compromise the accuracy of dielectric 

estimates below 100Hz (21) rendering them unavailable below 10Hz (21, 22). 
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An alternative approach is to evaluate whether substantial delays and distortion 

accompany the propagation of the signals that we are interested in modeling, for 

instance,those obtained in neural tissue using standard LFP recordings in vitro. Rather 

than relying on current injection, which often enhances parasitic effects, one can inspect 

the propagation of spontaneously occurring neural activity such as slow wave oscillations 

(SWO), which are neural signals consistingof interspersed Up (with active neuronal firing) 

and Down (silent) states,  and which are similar to those observed during slow-wave sleep 

and deep anesthesia(27). Alternatively, one can pharmacologically evoke natural signals 

such as epileptiform activity or SWO. Also, it is possible to considerably reduce distortions 

of artifactual origin by carefully avoiding filtering and by choosing the recording 

electrodes and the amplifiers, making sure that electrode impedance remains negligible 

relative to amplifier input impedance over the frequency range of interest (23). Ifdespite 

these precautions,delays, and distortions still accompany the electromagnetic propagation 

of natural signals, then cortical tissue should be treated as the lossy dispersive dielectric 

that is predicted by the causality principle (24), which would be in agreement with the 

behavior observed for ionic conductors (25). 

We investigated the validity of the QSA by dissociating the electromagnetic from the 

synaptic contributions to the propagation of slow wave oscillations and epileptiform 

activity in cortical tissue. For this, we used ferret neocortical slices that spontaneously 

generate SWO (26). SWO and epileptiform activity provide an excellent testbed since they 

belong to the lowest frequency range of the electromagnetic spectrum where the QSA 

should be most accurate.To test whether the electromagnetic propagation of SWO and 

epileptiform activity can be explained by the QSA, we completely sectioned the cortical 

slice into two pieces by making an entire cut perpendicular to the white matter but 

allowing contact between the tissue on both sides. Three aspects of this 

electromagnetically propagated neural activity were characterized: the attenuation with 
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distance of the signal (damping), the propagation speed, and the possible existence of 

signal distortion.  

Materials and Methods 

General approach: Our main goal was to characterize how fields associated with 

physiologically relevant activity (SWOs or epileptiform discharges) propagate in the 

cortical tissue. We wanted to evaluate if distortion and delays accompany propagation 

independently of synaptic transmission. Indeed, if the neural tissue can be assumed as an 

ideal conductor operating under the QSA, then signal delays and distortions should be 

absent during extrasynaptic (field-mediated) propagation to source-free regions. On the 

contrary, substantial delays and distortion would provide indications of the need to 

account for dispersion to model signal propagation. Dispersion, arising from either ionic 

diffusion or polarization, would require replacing Poisson by Helmholtz equation (8) in 

current models and considering frequency varying dielectric parameters as discussed next.  

1. Theory  

The Maxwell equations allow describing the propagation of electromagnetic fields in 

biological tissue. For simplicity, we express here all equations in the frequency domain. 

All fields are complex valued functions that depend on space (r) and frequency (w). 

Temporal derivatives 
�
�� in the time domain are replaced by the multiplicative factor iw 

where i = √−1and w is measured in rad/s. With this convention, the Maxwell equations 

read: 

∇xE�r,w� = −iwB�r,w� (1)   ∇xH�r,w� = iwD�r, w� + J��r, w�  (2) 

∇. D�r, w� = ρ��r, w�  (3)  ∇. B�r, w� = 0     (4) 
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where E is the electric field vector [V/m], H the magnetic field vector [A/m], D the 

electric flux density (displacement) vector [As/m2], B the magnetic flux density 

(displacement) vector [Tesla], Jfthe current density vector [A/m 2], and ρ the scalar 

charge density [As/m 2]. The subscript f is used to indicate free charges and currents, i.e., 

to distinguish (ionic) charges that can move freely within the medium from bound charges. 

The current density J� consists of two parts:J� = J� + J�, with J�denoting a primary or 

impressed source, independent of the field and delivering energy to carriers (ions), and 

J�denoting the conduction current. 

The constitutive relations linking the flux densities (D and B) to the fields (E and H) for 

linear isotropic materials read as:  

D�r,w� = ϵ��1 + χ��r, w��E�r,w� = ϵ�r,w�E�r, w�  (5) 

B�r,w� = 	µ�[H�r, w� + χ!�r, w�H�r,w�] = µ�r, w�H�r,w� (6) 

J��r,w� = σ�r, w�E�r,w�      (7) 

Whereχe and χm are the electric and magnetic susceptibilities and ϵ, µ and σ are the 

permittivity, permeability, and conductivity, respectively. Since neural tissue is non-

magnetic, its permeability can be considered identical to empty space permeability, i.e., 

µ = µ0. 

To relate the Maxwell equations to electrophysiological measurements, it is more 

convenient: 1) to express the electric and magnetic fields in terms of the auxiliary 

potentials φ and A respectively, where A is the vector potential, and φ the scalar 

potential of interest to electrophysiology; and 2) to rely on a formalism in which electric 

and magnetic fields are uncoupled via the wave equation in the frequency domain, i.e., 

the Helmholtz equation. In the most general case of anisotropic and heterogeneous 
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materials,the Helmholtz equation can be writtenin terms of a complex permittivity ϵ� 

defined as:  ϵ� = ϵ�ϵ# − j σ

% = ϵ − j σ

%, with ϵ# being the relative permittivity (dielectric 

constant) �F.m()� of the material at frequency w. With this definition, the Helmholtz 

equation reads (28): 

∇. [ϵ��r,w�∇φ�r,w�] + jw∇. [ϵ��r, w�A�r, w�] = ∇.+,�#,%�
-%   (8) 

Eq. 8 is not easily solvable for arbitrary materials. In practice, it is common to 

approximate materials as if their dielectric parameters ϵ	and σ are piecewise constants in 

spacewhile keeping their frequency dependency.Electric properties, which fluctuate over 

space in neural tissue, are averaged over microscopically large-volume elements and 

summarized in the form of effective dielectric properties. These engineered variables, 

which summarize fields due to neuronal boundaries and structural details,  are determined 

from dielectric spectroscopy as in Gabriel’s database (21). In this case, the problem is 

reduced to the following non-homogeneous Helmholtz equation: 

∇.φ�r,w� + %/
0,/ φ�r, w� = ∇.+,�#,%�

-%12�#,%�    (9) 

The term 
%/
0,/ = −γ., with γ = α + jβ, is the so-called propagation constant, a frequency-

dependent complex valued function expressed in terms of the attenuation (α, Np/m�	and 

the phase (β, rad/m�	constants given by (29):  

α = %√µ

√. 891 + : σ

%∈<
. − 1=

>
/
andβ = %√µ∈

√. 891 + : σ

%∈<
. + 1=

>
/
    (10) 
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The attenuation constant defines the rate at which the different frequency components of 

the signal attenuate during propagation. The phase constant defines the rate at which the 

phase changes as the signal propagates.  

In neural tissue, it is standard to compute the fields using the quasistatic approximation 

(1), which practically amounts to:  

1) Quasistatic: Neglects the second term on the left side of Eq. 9, which amounts 

to assume that the propagation constant ? = 0. 

2) Ohmic or resistive: Neglects capacitive effects, i.e., neglects the term @AB on 

the denominator on the right-hand term in Eq. 9.  

These assumptions lead to the Poisson equation with a frequency-independent real-valued 

conductivity, which is solved in EEG/LFP modeling using appropriate boundary conditions 

(but see (30)). Importantly, despite the generalized use of the term quasistatic in the 

bioelectricity literature to refer to the Plonsey and Heppner approximation, it must be 

noticed that the Poisson equation in ohmic conductors describes static fields rather than 

electro-quasistatic phenomena. Nevertheless, for consistency with the literature in the 

domain, we will continue to refer to this approximation as the quasistatic approximation 

(QSA).  

Assuming γ = 0		in	Eq. 9	is applicable for the low frequencies of interest to 

electrophysiology if, and only if, the phase velocity GH, were sufficiently large so that the 

second term becomes negligible. A common confusion is to imagine that the propagation 

speed of electromagnetic phenomena is always very high, approaching the speed of light. 

Indeed, this is true in a lossless dielectric medium, where the conductivity is assumed zero 

and the propagation constant equals the phase constant (see e.g., (31)). In this case of 
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lossless dielectrics, the phase velocity is defined by v� = )
√J∈, coinciding with the speed of 

light in the material. If the permittivity does not vary with frequency, the group and phase 

velocity coincide and dispersion is absent.   

Things are different in good conductors, in particular in the low-frequency range where 

K
%1 ≫ 1	. Substitution in Eq. 9 of the attenuation and phase constants defined by Eq. 10 in 

good conductors leads to:  

α ≈ 9%µσ

. and N ≈ 9%µσ

.      (11) 

In good conductors, the real and imaginary parts of the propagation constant are 

approximately equal both depending on frequency. Therefore, even if the dielectric 

properties (ϵ	and σ)per se are relatively constant over a broad band of frequencies, a good 

conductor is always dispersive.  

In effect, the phase velocity GH, i.e., the speed at which each frequency component of 

the original source travels, is given by: 

GH =	OP ≈ O
Q ≈ )

√R∈ 9.O∈
S 	= 	9 .O

RTS = 	A9 .
ORTS = AU	[VW ]	    (12) 

where δ is the skin depth, i.e., a measure of the depth at which the electric field and the 

current density fall to 1/e of their value at the interface between the membrane (source) 

and the extracellular space. For example, in copper at 10 Hz, the skin depth is just 21mm, 

and the phase velocity is only 21 mm/s. With these estimates, it is hard to neglect the 

second term on the left-hand side in Eq. 9 as to justify the so-called QSA in neuroscience 

which, as previously mentioned, corresponds to static. Since in the most general case 

dielectric parameters can vary with frequency, we will use, from now on, the term 



10 

 

electromagnetic (EM) propagation to refer to the dynamic aspects of the propagation of 

fields in tissue that can be described by solutions to the Helmholtz (8) or approximated by 

static solutions to the Poisson equations. 

Under quasistatic, electrophysiological signals propagate unaltered in shape and with 

infinite speed. The situation is completely different outside quasistatic. The lower 

frequencies will travel further in a good conductor albeit at lower speeds than the high 

frequencies. Thus, good conductors will always exhibit frequency-dependent propagation 

speeds and will, therefore, show distortion and filtering even if the dielectric parameters 

themselves do not vary with frequency.  

1.1 Physical causality forces dispersion in good conductors 

The causality principle describes the temporal relationship between cause and effect 

stating that no effect can precede its cause. In electrodynamics, causality expresses that 

the response of a material to an electromagnetic perturbation must be zero before the 

onset of the perturbation. As a property specific to the material, causality cannot be 

directly inferred from Maxwell equations (1-4). Developing causality-compliant 

electromagnetic models implies that the dielectric parameters (conductivity and 

permittivity) are linked by the dispersion or Kramers-Kronig (KK) relations. Dispersion 

relations relate the imaginary part of ε, which characterizes the absorptive (damping) 

properties of the medium in conductors (24), to the real part of ε, which characterizes its 

dispersive (frequency-shifting) properties. 

Intuitively, dispersion relations are analogous to linear filters. Causal filters, which 

suppress some frequency components without leak of the signal into the past, lead to 

distortions and delays. Likewise, in conductors, because of causality, electromagnetic 

absorption of certain frequencies must be accompanied by phase shifts of other 
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frequencies. As phase shifts in the frequency domain imply delays in the time domain, 

some of the components of the signal should propagate at lower speeds than others 

(dispersion) to comply with causality. This results in distortions in the shape of the 

temporal wave of the propagated signal. The filtering analogy, nicely illustrated in Toll 

(24), reflects that in practice it is impossible to envision a physical system that is at the 

same time strongly absorptive, causal and dispersionless (2). 

Clearly, modeling dispersion effects is impossible under the QSA as the equations resulting 

from neglecting propagation effects (γ. = 0) are the static equations of Poisson/Laplace, 

which assume instantaneous and distortionless propagation. Consequently, if signal 

propagation in neural tissue is accompanied by distortion and delays, this would require a 

description based on the Helmholtz equation (Eq. 9).  

2. Experimental procedures   

Slice preparation: In vitro experiments were carried out on 400-µm-thick slices from the 

ferret occipital cortex, including primary visual cortical areas. Adult ferrets (5–8 months 

old, male) were anesthetized with sodium pentobarbital (40 mg/kg) and decapitated. The 

entire forebrain was rapidly removed and placed in oxygenated cold (4-10oC) bathing 

medium. Ferrets were cared forin accordance with the European Union guidelines on the 

protection of vertebrates used for experimentation (Strasbourg 3/18/1986), and the 

experiments were approved by the local ethical committee. Details on the preparation can 

be found in (32). The bath temperature was constantly monitored and maintained at 34-

36°C.  

Complete vertical cut of the cortical slice (Fig. 1):To separate the synaptic from the 

electromagnetic (EM) propagation, we performed a complete cut of the slice 

perpendicular to cortical layers using a scalpel blade. The cut was done while the slices 

were in the interface chamber. The recordings were carried out in the following solution 
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{Sanchez-Vives, 2000 #34}(in mM): NaCl, 126; Na2HPO4, 1; NaHCO3, 26; KCl, 4; MgSO4, 1; 

CaCl2, 1; dextrose, 10; and aerated with 95% O2, 5%CO2 to a final pH of 7.4 . The two sides 

of the cut remained in close contact as could be seen through the microscope (Fig. 1C), 

where no discontinuity was seen. This was allowed by maintaining the cut slices in an 

interface chamber, where the slices remained mechanically stable and firmly adhered at 

the bottom of the chamber consisting of filter paper.  

Then, the recording grid was placed on top of the sectioned slice, and simultaneous 

recordings were obtained from both sides by the same array for every experiment. Once 

the experiment was finished, we removed the two sections of the slice from the filter 

paper, confirming that they were indeed completely separated, which was the case in all 

the experiments (n= 22, 15 control and glutamate-induced waves and seven epileptiform 

activity induced by blocking GABAA-mediated inhibition with bicuculline). 

Extracellular recordings (Fig. 1): Extracellular local field potential (LFP) recordings were 

obtainedusingarrays containing 16 gold electrodes plated with platinum black disposed on 

a recording grid (Fig. 1A). A microprobe including an array of holes was designed and 

fabricated using SU-8 negative photoresist. The holes were used to allow oxygenation of 

the slices, to provide mechanical stability and to allow other electrodes or pipettes to 

reach the slice. In each of the recording points, we had 2-3 closely spaced 

electrodes(separated by 200 µm) positioned such that they would record from supra and  
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Figure 1. Extracellular recordings from a 16-electrode array positioned in a visual cortex slice. 

A. Customized microprobe consisting of 16electrodes (black dotsorganized into six groups 

of 2 to 3 closely placed electrodes (black dots; 50µm diameter, separated by 200µm). 

Holes in between the electrodes allow the contact between the slice and the oxygenated 

and humidified environment. B. Impedance characterization of the array. Electrode-

electrolyte impedance modulus shift measured in 0.9% NaCl before (gray line, bare gold 

sensors) and after (black line) modification of the sensors using platinum black. C. Flexible 

microprobe array positioned in a sectioned cortical slice, with eight electrodes aimed at 

supragranular layers (SG) and eight electrodes at infragranular layers (IG). D. Schematic of 

the recording configuration from a sectioned cortical slice. (Left) Ten electrodes recording 

from the left part of the slices and six from the right part.Dashed lines display layer limits.  

(Right) The scheme represents a situation where glutamate was locally applied to one part 

of the slice while applying TTX at the other part. Glu, glutamate; IG, infragranular layer; 

L1-L6, layers 1 through 6; SG, supragranular layer; TTX, tetrodotoxin; WM,white matter; Z, 

impedance. 

 

infragranular layers (750 µm apart) and from what should correspond to 3 different 

cortical columns (1.5 mm apart) (Fig.1A and 1C). In the array, ten electrodes recorded 

from one side of the cut and six electrodes from the other side (Fig. 1C and 1D). The 

electrodes were 50 µm in diameter, which resulted in high impedance values (at 1 kHz, 

|Z|~10 MΩ). We further decreased the impedance by electrochemically coating the 

electrode with a veryrough layer of black platinum. With this coating, a 2-fold decrease in 

the impedance values was achieved (Fig. 1B), resulting in electrode impedance values 

being two orders of magnitude below the amplifiers’ input impedance over the whole 

frequency range. Neural activity was referenced to an electrode placed at the bottom of 
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the chamber in contact with the artificial cerebrospinal fluid (ACSF). To exclude the 

possibility of phase delays or distortion induced by differences in electrode coating, 

electrode impedances and phases were tested with known signals before the recordings 

for each recording grid (Fig. 1B). Unfiltered signals were acquired with Multichannel 

System amplifier (> 1012 Ω paralleled by ten pF input impedance) and digitized at 10 KHz 

with a Power1401 interface and Spike2 software (CED, Cambridge, UK). No filters were 

added during the recording stage to avoid signal distortion. 

 Drug application: Glutamate (0.5mM) and tetrodotoxin (TTX)(30µM) were delivered using 

a brief pulse of nitrogen to a drug-containing micropipette (volumes of 10–20 pl, (26)), as 

indicated in the text (Fig. 1D). Glutamate was released into different positions within the 

slice every 4, 6 or 8 seconds, while TTX was applied to one specific location. The average 

response triggered by the release of glutamate was then computed at each position to 

cancel out spontaneous activity that was not synchronized to this event. Bicuculline 

methiodide (bicuculline) (GABAA blocker; 2.4-3 µM) was bath applied to evoke epileptiform 

activity. 

3. Signal analysis and statistics 

The analysis was based on the raw, unfiltered signals and was done using custom-built 

Matlab functions (Matlab R2007b, The Mathworks, Natick, MA). The smoothing seen in the 

figures is due to the process of averaging over stimulus repetitions.  

Slow wave onset: The onset of the spontaneous SWO was determined following a 

previously describedapproach (33). The onset was considered at the moment where the 

first derivative of the low-pass (<100 Hz) filtered extracellular potential crossed the zero 

line. The end was considered at the moment where the derivative of the signal crossed 

the zero line after reaching its maximum. This is the only analysis where off-line filtering 

was necessary, and filtering was based on zero-phase forward and reverse digital 
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filteringto minimize signal distortion or time delays. The slow wave onset determined from 

this approach was then used to align the unfiltered responses. 

Statistics: Both parametric and their equivalent non-parametric tests were used in all 

statistical comparisons. All samples were tested for normality using the Lilliefors test (34). 

When the test provided clear evidence for rejecting the null hypothesis of normality 

(p<0.01) we relied on the nonparametric version of the two-samples t-test, the Mann–

Whitney U. Paired comparisons were preceded by ANOVA and its nonparametric version 

(Friedman test) to assess overall differences between groups. Values are presented as 

mean ± S.D. 

Assessing the presence of response: Mean responses created by time-averaging the 

unfiltered data in individual electrodes were tested for significant changes from baseline 

(2s) values usingtwo samples, two-tailed t-test. Electrodes that showed a significant 

(p<0.01) increase/decrease in signal power, defined as the square of the raw voltage 

values with respect to the baseline distribution, were consideredto have a significant 

mean response. To identify periods where mean responses significantly deviated from 

baseline, we applied a sample-by-sample t-test comparing the distribution of values after 

glutamate stimulation with the distribution of all values during the baseline interval. The 

periods where the t-test was significant (p=0.001) were defined as periods of significant 

responses.  The same test was used to compare the responses before and after TTX, and 

the responses after TTX were additionally compared to the baseline period.  

Peak fitting to characterize damping, distortion, and delays: Statistics on the mean slice 

responses evoked by glutamate were estimated from the position, height (amplitude) and 

width (duration) of peaks by using an iterative least-square curve fitting. Curve fitting was 

performed using the Peak Fitter toolbox (version 5), available from the Matlab user-

contributed section. For each electrode, we iteratively fitted the 2.5 s signal following 
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glutamate release with an increasing number of peaks, varying from two to five, until the 

fitting error reached a minimum. Electrodes with poor fitting, indicated by fitting errors 

above 10%, were discarded from the statistical analyses.  

To evaluate distortion, we introduced a measure of peak compression (PC) defined as the 

difference between the width estimated at the electrode with the largest response in the 

stimulated triode (reference, Wr) and the width at all other electrodes (We), and all 

divided by the reference width, i.e., PC=(Wr-We)/Wr. Note that positive values of the 

peak compression denote peaks that are narrowed with respect to the reference, while 

negative values denote peak widening. Delays were measured from the difference in 

latency between the first peak detected at the reference electrode and the latency of the 

first peak at all the other electrodes. The propagation speed of SWOs was computed by 

dividing the inter-electrode distance by the estimated delay. To investigate the impact of 

the laminated neural geometry on electromagneticpropagation, we computed population 

statisticson the fitted peak parameters after splitting the data into four groups according 

to the layer onto where glutamate was released (supra/infragranular) and the layer from 

which the EM waves were recorded (supra/infragranular).  

Results 

We recorded from a total of 15 cortical slices that displayed spontaneous slow oscillatory 

activity, each oscillation cycle consisting on an Up (active) and a Down (silent) state (as in 

26). All of the slices were cut vertically (across layers) and the activity was recorded from 

both sides of the cut, whichremained in physical contact.  

Electromagnetic propagation of slow oscillations 

Cutting the slice resulted in two independent networks on each side, each of them with its 

slow oscillatory pattern of spontaneous oscillations (SWOs). We consistently observed that 
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the spontaneous SWOs that originated and propagated within one side of the slice could be 

recorded across the cut albeit with strongly reduced amplitudes (Fig. 2A). Mean Up states 

on one side of the cut, once aligned with the onset of spontaneous Up states on the other 

side, were significantly different from baseline in 86% of the cases (p<0.01, t-test; n= 13 

out of 15). Mean results on the 15 slices where spontaneous SWO were investigated 

indicate that spontaneous SWOs lost on average more than 50% of their initial energy (51.2 

± 34 % S.D.) over distances as short as 1.5 mm when propagated by EM effects without 

synaptic connectivity. Averaging across repetitions was necessary to minimize the impact 

of the spontaneous activity on the side where we assumed that time-locked events were 

uniquely determined by EM propagation. In the next sections, we resorted to evoked 

rather than spontaneous Up states for these reasons. 

Signal distortion and delays characterize the propagation of activity  

Triggered events such as Up states induced by local glutamate application (Fig. 2B) or 

glutamate responses per se (Fig. 2C) presented the advantages of providing a well-defined 

time window allowing to measure larger amplitudes across the cut. Moreover, 

pharmacological stimulation has advantages over electrical stimulation, since it reduces 

the risk of contaminating the data with capacitive electrode artifacts. 

Local application of glutamate in this preparation has been previously proved to be useful 

for evoking SWOs in a reliable way (26). The difference between Up states and glutamate 

responses is that Up states are based on local synaptic reverberation (26, 35) while 

glutamateresponses are a postsynaptic response of a local neuronal population. 

Spontaneous epileptiform events induced by addition of the GABAA blocker bicucullineto 

the bath led to rather large EM-propagated responses traveling across the cut  (Fig. 2D).  
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Figure 2. Damping, delays, and distortion characterize the electromagnetic (EM) propagation of 

both spontaneous and evoked activity.A-D. Four different recording examples of activity 

originated at position 1 (IG) and its simultaneous EM activity recorded at position 2 (IG). 

From top to bottom: A: spontaneous Up state (black); B: Up state evoked with glutamate 

(blue); C: glutamate response (green); D: spontaneous (not triggered) epileptiform 

discharge under 2.4µM bicuculline methiodide bath application. The rightmost panels show 

the cross-correlations between the voltages at positions 1 and 2 computed over the periods 

shadowed in A-D: 800ms, 300ms, 550ms, and 320ms, respectively. Asterisk on B and D, fast 

frequency components. IG, infragranular layer; SG, supragranular layer; CC, cross-

correlation. 

 

Damping was a shared property ofall EM-propagated events, independently ofthem being 

spontaneous or evoked, physiological or epileptiform. For instance, epileptiform 

discharges occurring by blocking inhibition withbicucullinewere large events (Fig. 2D) that 



19 

 

were well detectable across the cut. Yet, the slow component of epileptiform responses 

lost on average more than 90% of itsamplitude during propagation across the cut, passing 

from 500 µV at the site with the largest amplitude to 50 µV at the closest contact across 

the cut (n=7 events, recorded under GABAA receptor blockade with bicuculline).  

Cross-correlations between the propagated and the original signals never reached their 

maximum at zero lag; instead, they clearly showed perceptible delays (Fig. 2A-D, 

rightmost panels). Moreover, the strong filtering of the initial fast frequency components 

propagating over 1.5 mm is evident from the traces, indicating distortion (asterisks in Fig. 

2B and 2D).While the examples illustrated in Figure 2 correspond to the propagation of 

single events, the presence of delays was systematic across repetitions. The delays 

estimated from the mean cross-correlations (250 ms after event onset) over the seven 

slices where propagation of epileptiform events was investigated (more than 191 events) 

were on average 28.5 ± 20ms (i.e. 52 mm/s). Mean cross-correlation values of the seven 

slices were relatively low (mean max CC = 0.33±26), suggesting that propagated signals 

were distorted versions of the original epileptiform signal.  

Ruling out potential confounds between synaptic and EM propagation 

In Figure 3A we illustrate four examples of EM propagation of mean glutamate-induced 

responses (black traces with asterisk)and their respective EM propagation across the cut 

(red traces). Even though the responses are obviously damped across the cut, when 

expanded, the shape of the responses can be observed (Fig. 3A, center).Glutamate-

induced responses and their EM-propagated signals across the cut were different 

depending on the site where they had been generated (Fig. 3A), illustrating the 

asymmetries present across cortical layers and suggesting an impact of the local cortical 

structure on the EM propagation. 
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EM propagation across the cut was sometimes large enough to recruit the local neuronal 

population and eventually generate enough local reverberation, resulting into a full-blown 

Up state (e.g. Fig. 3B1). This is interesting in itself since it illustrates an interaction 

between EM and synaptic propagation that probably takes place physiologically. However, 

to properly quantify EM propagation, we need to separateEMfromsynaptic propagation. To 

do this, we locally applied 30 µM TTX to the recording area on one side ofthe cut (n=7 

slices; Fig. 3C, green). By doing this, we ensured that the observed response in this 

location strictly corresponded to the EM-transmitted signal given that TTX blocks synaptic 

transmission. We then evaluated the impact of TTX application on the EM-propagated 

response across the cut, specifically, the impact on its amplitude as well as on any 

existing delays or distortions. 

Damping and delays in the propagated signals before (Fig. 3B) and after (Fig. 3C) blocking 

the activity of local networks by TTX were comparable. TTX abolished spontaneous 

oscillations and multiunit activity in the channels surrounding its application (Fig. 3C, 

green) but it did not abolish the mean glutamate response significantly different from zero 

(p=3e-4, t-test) on the other side of the cut (Fig. 3C, gray). Response timing and 

amplitudes were assessed before and after TTX in the 2 s following the release of 

glutamate. TTX application did not change the main negative component of the EM-

propagated response (response peak) (mean p=0.21, t-test). The cross-correlations 

between the mean responses before and after TTX  were highly significant (mean 

0.91±0.6, n=7, p=2.5e-5) and peaked at zero lag. These findings suggest that the neural 

response evoked by glutamate propagated across the cut even though synaptic 

propagation was blocked, thus resulting in an EM-propagated signal. 
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Figure 3. Distortion and propagation delays measured on averaged responses are not due to 

synaptic delays. A. Black traces depict the mean responses evoked by periodic releases of 

glutamate (n=130) at different positions within the slice (indicated by an asterisk). Red 

traces show the mean responses computed after EM propagation across the cut;expanded 

vertical scale outside the slice schemes. B. Raw LFP (top traces) and MultiUnit activity 

(MUA, bottom traces) recorded at IG layers on both sides of the cut (contact 1 and 2) in 

response to glutamate release every 4 s on the right part (black). C. Local application of 

TTX at contact 1 blocking synaptic activity (spontaneous SWO, green), but not glutamate 

responses (gray). D. (Left) Superposition of the mean responses (standard errors overlaid) 

to glutamate before (red) and after (green) blocking synaptic transmission with TTX at 

contact 1 and across the cut at contact 2, before (black) and after(gray) TTX. (Right) Peak 

to peak delays are seen between contacts 1 and 2 after TTX.Abbreviations as in Fig. 2. 

 

The mean response of the non-stimulated side of the cut was similarly damped before and 

after TTX application (Fig. 3D). In this particular example, damping was accompanied by a 

delay of the propagated signal by 104 ms (Fig. 3D, right). Overall, signal delays between 

the stimulated site and the closest contacts on the other side of the cut before and after 

TTX were nearly identical (mean delay=92.2 ±17ms before TTX and mean delay=96.4±23ms 
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after TTX, p=0.23, t-test). Such similarities in peak to peak delays before and after TTX 

rule out synaptic conduction delays as a potential explanation for the low propagation 

speed of the EM effects on cortical tissue. In the shown example (Fig. 3D, right), the 

speed at which the envelope of the signal propagated over the 1.5mm separating both 

contacts resultedin a modest value of 14 mm/s. This speed is more than five orders of 

magnitude lower than the one estimated (equation 12) from available dielectric 

parameters (12) for 10 Hz (~200000 mm/s) but similar to the speed at which SWO typically 

propagate under intact synaptic connectivity (26).  

Distortion and delays characterize EM propagation 

Local application of glutamate evokes neural activity generated by the postsynaptic 

activation of glutamate receptors plus the subsequent recruitment of local networks. 

Predicting the potential patterns to be measured at a source-free location (e.g., the non-

stimulated side of the slice) as a function of all potentials recorded in the stimulated site 

would require knowing: 1) the currents arising everywhere, 2) the local geometry and 3) 

dielectric parameters below 10 Hz (36). However, as illustrated in Figures 4 and 5, the 

mean responses to glutamate, on which we based estimates of distortion and speed given 

next, tended to be very local to the stimulated triode with amplitudes quickly decaying at 

contacts potentially connected to the stimulated site (Fig. 4B, bottom row, and Fig. 5B 

top row). Therefore, responses estimated at electrodes on the other side of the cut were 

dominated by the responses at the stimulated contacts. In cases like this one, with a 

relatively simple spatial pattern of potentials, delays and distortions were still observed 

(Fig. 5B), suggesting that they progressively appearedbecause ofEM propagation in a 

dispersive tissue.Similarly, during the propagation of epileptiform events spontaneously 

generated in the left sectionof the cut, all electrodes on the left side showed the initial 

fast component that was missing on the right side of the cut.  
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Figure 4. Damping, Compression, and Widening of the EM propagated responses in 12 slices. A. 

Scheme showing the spatial distribution of channels and the corresponding cortical layers 

stimulated by local application of glutamate. B.Event-triggered average waveforms 

obtained from 102 repetitions of glutamate application to the location indicated in A. The 

location of the recordings is indicated by the number. C, D, and E illustrate population 

statistics of the damping and distortions of the EM-propagated waves. Statistics were 

computed from the fitting of event-triggered average peaks using a minimum of 50 

repetitions to compute each average. Population statistics (Mean & Standard Error) 

summarize results from 64 releases of glutamate at one of the triodes/diodes on 12 

different slices. *p<=0.05, **p<=0.01, ***p<=0.001 using t-test or Mann–Whitney U test. Stim 

(stimulation), Rec (recording electrode), 1-4 (electrode position for each recording), 

Hollow/full bars correspond to the application of glutamate at SG/IG, respectively. 

Dark/light gray, SG/IG recording, respectively.Other abbreviations as in Fig. 2. 

 

We also investigated if the presence of the cut played a major role in the observed delays 

and distortions. To do so, we blocked synaptic transmission on the leftmost pairs of 

electrodes (diodes) in five slices by locally applying TTX over them. This allowed us to 

explore how the responses to glutamate locally applied to the contacts in the middle of 

the slice propagated to a pharmacologically “synaptic-disconnected” rather than to a 
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physically “synaptic-disconnected” tissue. Delays and distortion during EM propagation to 

TTX-blocked areas (not shown) were like those observed in the presence of the cut, 

indicating that the artificial interface created by the cut was not the main source of 

delays and distortion.  

Propagation of glutamate-evoked slow waves as a function of local microstructure 

Cortical microstructures are expected to play a major role in shaping LFP propagation 

(37). We, therefore, evaluated if and how different parameters of the glutamate-evoked 

mean propagated peaks (duration, amplitude, peak compression/widening and 

propagation speed) varied as a function of both the stimulated and the recorded cortical 

layers (Fig. 4 and 5). The plots summarize results of 62 cases, with each case defined as 

the release of glutamate at a given triode (12 slices/6 triodes, 10out of 72 cases were 

discarded because peak fitting errors were above 10%). Only sites not synaptically 

connected to the stimulated site are summarized in the statistics. The responses were 

divided according to the layer where the electrode recording the EM-propagated response 

was positioned and the layer where the glutamate was released (Fig.4A,B, and 5A,B). 

We observed significant differences in the EM propagation as a function of the layer. In 

comparison to contacts within infragranular layers, those at supragranular layers showed 

significantly narrower (Fig.4B,C, p<0.01, t-test) and smaller peaks (p<0.01, t-test) upon 

both supragranular and infragranular stimulation. We quantified distortion using a measure 

of the peak widening/compression (Fig. 4E) that provided information specific to the 

nature of the distortion, positive values indicating compression and negative values 

indicating widening(see Materials and Methods). Overall, we observed that distortion was 

sensitive to the positions of the source (stimulated site) with respect to the receiver; 

andhighlysensitive to the layers traversed by the signals during their propagation. 
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 Figure 5. EM propagation speeds of glutamate responses are too slow to justify the quasistatic 

approximation (QSA).A-B. Same as figure 4A-B. In this case, the onset of the glutamate 

application is depicted. C. Mean EM propagation speeds computed as a function of the 

stimulated layer (Stim). Electrodes such as 1 in the bottom plot in B where no significant 

responses above/below baseline were detected (t-test)were excluded. Speed was 

computed as the difference in latency between the peak fitted to the stimulated site and 

the IG and SG sites on the other side of thecut divided by the distance between the 

stimulated electrodes. Abbreviations as in Fig. 2 and Fig. 4 (*p<0.05 using t-test). 

 

Application of glutamate to supragranular layers (Fig. 4E) led to significant peak widening 

recorded in infragranular layers (p=0.046, U-test). On the contrary, application of 

glutamate to infragranular stimulation led peak compression (p=0.0002, U-test) while 

propagating across the columns to supragranular layers (Fig. 4E). In short, signal distortion 

(peak widening/compression) was overall less severe when glutamate responses 

propagated from supra to infragranular layers than when traveling from infra to 

supragranular layers. The similar deformation of the responses between intact synaptic 

connectivity and absent connectivity suggests a role for cortical microstructure in shaping 

LFP responses. 

Regarding propagation speed, the horizontal propagation speed was relatively stable 

across layers since no significant differences were observed as a function of the stimulated 
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site (p=0.13, U-test) (Fig. 5). Propagation speeds were slightly faster when EM signals 

propagated through infragranular layers (Fig. 5C). EM propagation speed was significantly 

slower than propagation speed under intact synaptic connectivity (Mean intact 

connectivity: 13.6 ± 2.70 SD mm/s, Mean EM:  18.3 ± 2.85 SD; p=0.0006, Mann-Whitney U-

test).  

Discussion 

In this study,we found that electromagnetic propagation of SWO and epileptiform activity 

cannot be explained by the QSA.For this, we experimentally assessed the main 

assumptions underlying macroscopic models currently in use in the neuroscience literature 

(assumptions 1 and 2 in the theoretical section of the Methods) to describe the 

propagation of LFP and EEG/MEG signals in cortical tissue. It is often assumed that neural 

tissue behaves as an homogeneous ohmic conductor (i.e., neurons, membranes and 

extracellular space taken as mixed into a continuous model characterized by a frequency-

independent unique conductivity value). In this model, signals with different frequency 

content propagate without distortion and at infinite speeds from the sources to the 

sensors. This assumption seems at odds with theoretical predictions for good conductors 

(see equation 12) or with recent measurements of the dielectric properties (3, 21), which 

attribute large permittivity values and strongly dispersive properties to neural tissue 

within the electrophysiological range of interest in agreement with the theory (equations 

11 and 12). Experimental evidence against low-frequency dispersion was later provided by 

an in vivo study from Logothetis et al.(13), although results from Gomes et al. (18) which 

considered the low-frequency range under 10 Hz seem to contradict this finding. Directly 

estimating dielectric properties is particularly problematic within the low-frequency band 

where the parasitic polarization effects at the interface between tissue and electrodes 

seriously decrease the reliability of the estimates (20, 36), even if the four-electrode 

system is used (20). These effects are particularly acute during electrical stimulation.  
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To partially overcome these limitations, we investigated here the propagation of signals 

naturally evoked in neural tissue during physiological (SWOs) or pathological (epileptiform 

activity) cortical activity. Noteworthy, the use of the term “wave” to refer to SWOs does 

not refer to the physical concept of electromagnetic waves, but rather to the 

neuroscience concept of wave cycle of neural oscillations. We searched for unequivocal 

signs of low-frequency dispersion (signal distortion and delays) using pharmacological 

manipulations and recording settings aimed at minimizing artifactual contributions from 

the electrode-tissue interface. To isolate synaptic transmission (also responsible for signal 

delays) from electromagnetic (which we call here electromagnetic—EM) propagation, we 

performed a complete section of the cortical slice perpendicular to the cortical layers 

while ensuring that both sides of the cut remained in contact.  

In agreement with previous studies (18), we observed important deviations from 

predictions of the non-dispersive quasistatic approximation (QSA), which is often used to 

model the propagation of low-frequency SWO from intracranial, LFP and scalp (EEG/MEG) 

recordings. Instead of the expected undistorted and nearly instantaneous propagation 

predicted by the Poisson equation, SWOs underwent considerable distortion and delays 

during their propagation across the interrupted cortical tissue. Non-synaptic propagation 

speeds were strikingly low, approaching the values at which slow waves travel under 

intact horizontal synaptic connections (26, 38-40). Our estimated EM mean propagation 

speeds (~18mm/s) were, however, closer to the propagation speeds (~100mm/s) reported 

in hippocampal tissue (17) during the electric propagation of epileptiform activity than to 

quasistatic predictions. The large delays and the fact that our conclusions are based on 

comparing unfiltered signals within the same frequency band using the same 

instrumentation (23) makes it unlikely that electrode polarization was the source of the 

distortions.  
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Propagation speeds between non-synaptically connected areas were too slow to justify the 

QSA if cortical tissue were to be considered homogeneous. If there should be any 

difference because of the cut, this would be that any remaining space with no contact 

should be filled with the artificial cerebrospinal fluid (ACSF) in which the slice was 

immersed. Contact with ACSF would provide a more conductive interface forthe 

propagating waves, which would better mimic the purely resistive (ohmic) volume 

conductor model. Moreover, the comparison of the delays and distortions between 

symmetric contacts at both sides of the cut upon blockade of synaptic transmission by TTX 

on intact tissue revealed no differences, suggesting the little impact of the cut on the 

observed delays and distortions. 

Our obtained mean propagation speeds (~18mm/s) are six orders of magnitude lower than 

the speed predicted by dielectric estimates in Gabriel’s database (using equations 11 and 

12) and well below the instantaneous propagation speed assumed by the QSA. These very 

low propagation speeds for low frequencies are, as discussed in theMethods (1. Theory), in 

agreement with propagation speeds in excellent conductors and with the small but non-

zero penetration (skin) depths (see Eq. 12) that can be attributed to ionic diffusion (41). 

Indeed, the strong absorption (damping) of the EM-propagated slow wave accompanied by 

signal distortions and delays that we observed is not a surprising but instead a well-

characterized property of heterogeneous ionic conductors (25, 42) and a predictable 

consequence of the causality principle (2, 24).  

Most macroscopic models of the EEG/MEG and the LFP signal aim to characterize a highly 

heterogeneous tissue using dielectric properties that assume that the material is 

homogeneous. The cortical tissue is highly heterogeneous and consists of domains of 

different phases and materials (e.g., capacitive membranes alternating with conductive 

electrolytes as in the extracellular space). The tissue is then heterogeneous at a 

‘microscopic’ scale. While, under such circumstances, the heterogeneous material can be 
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viewed as a continuum on the microscopic scale and can be ascribed macroscopic or 

‘effective’ properties (42), a proper theoretical formalism to do so is currently lacking. It 

is however known from dielectric spectroscopy studies in heterogeneous media (42) that 

water membrane heterogeneity exhibits a typical dispersive dielectric behavior 

characterized by 1) a power law dependence of the effective electric conductivity at low 

frequencies (called alpha dispersion), often ascribed to the longitudinal and tangential 

diffusion of ions in the electrical double layer that surrounds charged membranes (43), 

and 2) large effective permittivity values at very low frequencies that are seen when 

interfaces with aqueous ionic substances are involved (44). Consequently, the large 

permittivity values reported by Gabriel (1996) and confirmed in vivo by Wagner (22)and 

the dispersion effects are neither unique to animal tissue nor necessarily artefactual in 

origin. Instead, they are more likely a general property of the microstructure of 

heterogeneous materials with ionic conduction and aqueous interfaces (45, 46). In support 

of this view, detailed LFP models (47) that restrict the QSA to the extracellular space in a 

purely ohmic medium, while incorporating neuronal geometries and membrane 

capacitances into the cable model, can reproduce signal delays and distortion comparable 

to ours (although see (48)). According to previous simulations that use a synaptic current 

as input and a non-quasistatic modeling framework (cable equation), delays and distortion 

are due to the intrinsic-dendritic filtering effect and therefore to tissue heterogeneities 

(Torbjørn V  Ness, Gaute Einenvoll, personal communication).  

The modeling and simulation studies from Bedard et al. (49) or Lindén et al. (47)  link the 

heterogeneous microstructure of neural tissue with its filtering properties. As shown by 

Bedard et al. (48), spatial gradients in the conductivity and permittivity induced by neural 

microstructures results in the filtering of the high-frequency components of the 

extracellular signals with distance. As previously discussed, filtering of some components 

should result in phase shifts and delays of other components, hence leading to signal 
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delays and distortion. Therefore,our observations of distortion and delays seem in line 

with previous modeling studies specific to neural tissue (47, 49), being in agreement with 

the causality principle and likely reflectinga universal property inherent to highly 

heterogeneous materials (42). These effects cannot be accountedfor within the 

homogeneous quasistatic modeling framework currently in use in many macroscopic 

models. 

The experimental findings of the current study are compatible with the necessity to rely 

on dispersive models (i.e., frequency varying dielectric properties) to build homogeneous 

macroscopic models of cortical tissue. We describe the propagation of the 

electromagnetic fields in a homogenized macroscopic model of neural tissue using 

effective parameters (permittivity and conductivity), a situation in which there are no 

divisions between cell membranes and extracellular space. As shown in the theoretical 

section, dispersion is a property inherent to conductors rather than capacitors 

(dielectrics). Consequently, the dispersive properties of neural tissue cannot be solely 

ascribed tothe capacitive properties of the neuron membrane which is typically considered 

as frequency independent. The microscopic origin of these dispersive properties within the 

low-frequency range is probably influenced by multiple physical and physicochemical 

effects including transport or ionic diffusion and polarization phenomena (37, 50, 51). 

Unfortunately, appropriate models able to describe the universality of ionic conduction 

laws in disordered materials (52) in the presence of aqueous charged interfaces are still 

absent. Currently, theoretical models attribute low-frequency dispersion (below 1kHz) to 

the longitudinal and tangential diffusion of ions within the electrical double layer that 

surrounds charged particles or membranes (43). Ionic diffusion is one of the likely 

microscopic mechanisms that can explain low propagation speeds and distortion (18), 

thereby leading to a distribution of relaxation times and therefore to frequency-

dependent dielectric parameters (dispersion). Furthermore, since our cut slices are in 
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contact, we cannot rule out certain contribution of ionic diffusion e.g. potassium ions 

traveling across the cut, to the described phenomena. However, further investigation on 

the microscopic mechanisms underlying dispersion is required since alternative 

mechanisms to ionic diffusion have been proposed(14, 50). 

Overall, the observation of delays and distortions during the propagation of physiological 

signals bears implications for the modeling, analysis, and interpretation of the LFP, 

intracranial data or scalp-recorded EEG/MEG signals. The approach taken in this study to 

investigate capacitive effects and dispersion for frequencies below 10 Hz (18, 22) is unable 

to provide concrete estimates for the permittivity and conductivity needed to build 

detailed macroscopic models. Therefore, it is not possible to fully appreciate the 

magnitude of errors incurred by quasistatic ohmic considerations. However, the studies by 

Wagner (22) or Butson and McIntyre (53), which evaluated the importance of including 

capacitive effects (permittivity) within models for transcranial magnetic stimulation (TMS) 

or deep brain stimulation (DBS) models, detected substantial differences.  

While Butner or Wagner and McIntyre ignored dispersion, our results confined to the 

extremelylow-frequency range below 10Hz are not necessarily relevant for DBS, which 

typically relies on higher frequencies. However, the situation is different for TMS or 

scalp/intracranial EEG models. In light of our study,  modeling errors are to be expected 

as well for head models used in electrical neuroimaging and particularly for those aimed 

at localizing epileptic activity or SWOs given their frequency content below 10Hz. 

Although a full quantitative assessment of the errors needs to await for more reliable 

dielectric data, we can already anticipate some of methodological and clinical approaches 

that might be impacted by our results. First, the fact that EMpropagationis delayed and 

signals are distorted bears consequences on the qualitative assessment of 

electrophysiological data. For instance, scalp measured epileptic spikes or slow waves are 
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not necessarily the instantaneous reflect of their intracerebral sources but might indeed 

reflect generators acting a few milliseconds before. Consequently, epileptic source 

localization needs to account for a temporal window preceding the scalp event to identify 

betterthe epileptic focus. Second, delays between intracranially recorded events cannot 

be anymore readily interpreted as neuronal transmission delays between circuit elements. 

Third, causality or connectivity studies based on spectral features derived from LFPs, 

intracranial recordings or scalp EEG signals should probably need to account for the strong 

variation in frequency filtering properties of brain tissue that translates into delays and 

eventual phase reversals of the propagated signals. At a certain distance from the source 

generating the pulse, these combined effects (selective frequency filtering and phase 

changes) might be wrongly interpreted as interrelationships between the phase and the 

power of different oscillations or as some rhythms causally driving others. Fourth, we 

observed phase reversals between contacts that were not synaptically connected in the 

absence of any underlying source/sink. Therefore, the possibility that phase changes or 

reversals arise from cortical microstructures (e.g., dendritic filtering or extracellular 

impedances), rather than from current sources and sinks, needs to be considered in cases 

where the goal is to localize the epileptic focus. In fact, with dispersion, a direct 

relationship between the Current Source Density (CSD) and the Laplacian of the measured 

potential cannot be anymore guaranteed, and new approaches to CSD estimation are thus 

required (7).  
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