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Abstract 

 

Mixed QM/MM models are widely used to explore the structure, reactivity and 

electronic properties of complex chemical systems. Whereas such models typically 

include electrostatics, and potentially polarization in so-called electrostatic and 

polarizable embedding approaches, respectively, non-electrostatic dispersion and 

repulsion interactions are instead commonly described through classical potentials 
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despite their quantum mechanical origin. Here we present an extension of the 

Tkatchenko-Scheffler semiempirical van der Waals (vdWTS) scheme aimed at 

describing dispersion and repulsion interactions between quantum and classical regions 

within a QM/MM polarizable embedding framework. Starting from the vdWTS 

expression, we define a dispersion and a repulsion term, both of them density-dependent 

and consistently based on a Lennard-Jones-like potential. We explore transferable atom 

type-based parametrization strategies for the MM parameters, based on either vdWTS 

calculations performed on isolated fragments or on a direct estimation of the parameters 

from atomic polarizabilities taken from a polarizable force field.  We investigate the 

performance of the implementation by computing self-consistent interaction energies 

for the S22 benchmark set, designed to represent typical non-covalent interactions in 

biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our 

results suggest that the present implementation is a promising strategy to include 

dispersion and repulsion in multiscale QM/MM models incorporating their explicit 

dependence on the electronic density. 

 

 

  



	 3	

1. Introduction 

Multiscale quantum/molecular mechanics (QM/MM) methods have become a uniquely 

powerful tool in quantum chemistry for determining energies and properties of 

(supra)molecular systems in either solutions, biomatrices, or in composite systems.1,2 

Currently, the largest part of QM/MM implementations only account for the 

electrostatic part of the QM/classical interactions (this scheme is generally indicated as 

electrostatic embedding), but more recently, polarizable embedding, where mutual 

induction effects between the QM and the MM subsystems are also included, have 

appeared in the literature.3–10  

Non-electrostatic interactions, namely dispersion and Pauli repulsion, are instead 

commonly described through standard atom-based parametrization of the London 

forces,11 through a Lennard-Jones type of potential,12 in analogy to what is done for 

fully classical simulations.13 Although this parametrization yields a correction to the 

total energy of the system, it does not affect the QM Hamiltonian. Some examples have 

been presented so far which go beyond this approximation. A parametrization at the 

Hartree-Fock level which includes dispersion was presented in 1996 by Van Duijnen 

and De Vries.14 An alternative which has gained momentum in recent years is provided 

by the Effective Fragment Potential (EFP) method,15 which computes interaction 

energies based on extensive quantum mechanical parametrization of the MM fragments. 

The first model (EFP1)16 was available for water molecules and thus of limited general 

applicability but the second model (EFP2) is generic and can in principle be employed 

for any kind of fragments. The EFP method shows very good performance,17 but the 

parametrization of the non-electrostatic contribution is however not affecting the 

electronic degrees of freedom directly.18 

One of the strengths of electrostatic and polarizable embeddings is instead their 

formulation within a general quantum mechanical response theory framework meaning 

that this method is capable not only of predicting energies but also general response 

properties. In order for dispersion and Pauli repulsion to enter into the computational 

method on the same footing as electrostatics and polarization, a fully self-consistent 

formulation is required where the appropriate QM operators are formulated and 

included into the expression for the effective Hamiltonian. An example in this direction, 

the charge-dependent exchange and dispersion (QXD) model reported by Kuechler, 

Giese and York,19,20 addressed this issue through a scaled overlap model for exchange 

and dispersion interactions that is a function of atomic charge. Very recently, another 
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approach has been presented21 by combining a polarizable QM/fluctuating charge 

(FQ) approach8 with the formalism developed by Tkatchenko and Scheffler (vdWTS)22 

for the dispersion and introducing an auxiliary density on the MM portion for 

calculating the repulsion by a density-overlap formula. The approach is applicable to 

water as solvent. 

In this work, we present an extension and a generalization of a polarizable QM/MM 

approach to specifically include also dispersion and repulsion QM operators. The 

specific QM/MM model used, known as QM/MMPol,6 is based on the combination of 

fixed point charges and induced dipoles for describing the MM atoms, For the 

dispersion contribution, the Tkatchenko and Scheffler formalism (vdWTS)22 is used 

while the repulsion term is automatically obtained by exploiting a Lennard-Jones-like 

relation with the dispersion. In such a way, both nonelectrostatic contributions will be 

obtained in a single step through the assignment of the dispersion coefficients for the 

MM sites. The method can treat any atom-type and it thus can be applied not only to a 

solvent but also to more complex environments such as proteins and other biomatrices. 

We note that recently, the vdWTS approach has also been extended to plane waves.23 

We especially focus on the generality and portability of the calculated parameters, in 

order to remove the need of an ad hoc procedure for each MM fragment, in line with the 

transferability assumption that characterizes classical force fields. Our results indicate 

that vdWTS-derived parameters are indeed largely transferable among elements with 

different hybridization states or located in different molecular environments, thus 

allowing an accurate description of dispersion and repulsion interactions through the 

QM/MM boundary.  

We test our method for dispersion and repulsion terms on interaction energies for non-

covalent complexes contained in the S22 benchmark set, designed to represent typical 

interactions in biological systems. By adopting the parameters defined in the original 

Tkatchenko-Scheffler formulation, we find that our approach is able to accurately 

describe the interaction energies of complexes dominated by dispersion. Not 

surprisingly, we find it necessary to adjust the free radius of polar hydrogens bound to 

heteroatoms in hydrogen-bonded and mixed complexes. After this minimal calibration, 

the overall polarizable potential with dispersion-repulsion terms is able to accurately 

describe interaction energies for the whole S22 benchmark set, with mean absolute 

errors ∼1-2 kcal/mol compared to full QM reference calculations. In addition, we show 

that this performance is not degraded in out-of-equilibrium structures. Overall, we show 
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that the present implementation is a promising strategy to incorporate dispersion and 

repulsion effects in QM/MM models including their explicit dependence on the QM 

wave function.  

 

 

2. Theory 

The presentation of the new implementation of dispersion-repulsion terms within a 

QM/MM framework is organized as follows. First we introduce, separately, the 

expressions used for dispersion and repulsion energies. Then we present their common 

extension to a self-consistent approach. 

 

2.1 Dispersion Energy term 

The starting point of our dispersion model is the van der-Waals (vdW) density 

functional scheme originally proposed by Tkatchenko and Scheffler22 (vdWTS). The 

original derivation of this vdWTS functional builds on the usual London expression for 

the pairwise short-term attraction between two atoms, which goes with the inverse sixth 

power of the distance:24 

𝐸!"# = − !
!

𝑓!" 𝑛 𝑟 𝐶!,!" 𝑛 𝑟 𝑅!"!!!"     (1) 

where the sum goes over all pairs of atoms 𝐴𝐵 in the system. 𝑅!" is the interatomic 

distance between atoms 𝐴 and 𝐵, 𝐶!,!" is the effective dipole vdW coefficient and 𝑓!" is 

a damping function to correct for the divergence at short distances. Both the dipole vdW 

coefficient and the damping function are density-dependent. The expression for the 

effective vdW dipole coefficient is 

𝐶!,!" = 𝛾! 𝑛 𝑟 𝛾! 𝑛 𝑟 𝐶!,!"
!"##     (2) 

where the atomic volume ratio 𝛾! is defined as 

𝛾! 𝑛 𝑟 = !! ! !

!!
!"## = !!!! ! ! ! !!!

!!!!
!"## ! !!!

    (3) 

In this expression 𝜔! is the Hirshfeld weight.25 In the practical implementation of the 

Hirshfeld partitioning, the integrals in Eq. 3 are evaluated numerically using the 

standard approach used in DFT calculations,26 i.e. 

𝑟!𝜔 𝑟 𝑛 𝑟 𝑑𝑟! ≃ 𝑤!Ω!,!𝑛 𝑟!!      (4) 

where 𝑤! are the quadrature weights, and we adopted an extended definition of the 

Hirshfeld weights, 



	 6	

Ω!,! = 𝜑!
!!,!
!"##

!!,!
!"##

!
+ 1− 𝜑! 𝛿 ! ,! = 𝜑!

!!,!
!"##

!!,!
!"## + 1− 𝜑! 𝛿 ! ,!  (5) 

In the above expression, the quantity 𝛿 ! ,! is equal to one only if the integration grid 

point i belongs to the integration grid centered on atom A, while  𝜑! is a continuous 

switching function (with continuous derivatives) whose argument is ln𝑛!,! ln 10. In 

this work we used the switching function introduced in Ref. [27]. This extended 

definition of the Hirshfeld weight is more robust and is important for the self-consistent 

implementation of the method (see below). In this work, we use atomic free densities 

𝑛!,!
!"## that were generated as described in Ref. [28]. 

The free 𝐶! coefficient is defined as 

𝐶!,!"
!"## = !!!,!!!!,!!

!!
!

!!
!!!,!!!

!!
!

!!
!!!,!!

      (6) 

and the damping factor is defined as 

𝑓!" = 1+ 𝑒
!! !!"

!!!!"
! !!

!!

     (7) 

The density dependence of the damping function enters through 𝑅!"! , which accordingly 

is defined as 

𝑅!"! = 𝛾! 𝑛 𝑟 ! !𝑅!,!"##! + 𝛾! 𝑛 𝑟 ! !𝑅!,!"##!    (8) 

In order to adapt the QM formalism described above to the description of dispersion 

interactions between a solute treated quantum mechanically and a classical environment 

described by an embedding potential, we begin by partitioning the energy expression in 

Eq. 1, dividing the atoms between molecules treated at the QM level, 𝑚, and the 

classically treated environment 𝑠 

𝐸!"! = 𝐸!"#!! + 𝐸!"#!" + 𝐸!"#!!      (9) 

In a similar manner, the electronic density is likewise partitioned into a molecular part 

𝑛! 𝑟  and an environment part 𝑛! 𝑟 . The latter is not present in the calculation 

because the environment molecules are treated classically. However, in order to derive 

the dispersion parameters for the molecules making up the environment, we will assume 

that the parameters for the environment atoms can be obtained by a corresponding 

calculation on each molecule in the environment separately. 

The first term in Eq. 9 is identical to Eq. 1, but restricted to the atoms of the molecule 

treated using QM, the second term is the molecule-environment dispersion energy and 

the last contribution is the dispersion energy of the environment, which is calculated by 
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classical means, e.g. through a parametrized function, depending on the force field of 

the MM part. We will consequently not consider this contribution further. In order to 

evaluate 𝐸!"#!"  we start from Eq. 1, where now atoms 𝐴 belong to the molecule and 

atoms 𝐵 to the environment: 

𝐸!"#!" = − 𝑓!" 𝑛! 𝑟 𝐶!,!" 𝑛! 𝑟 𝑅!"!!!"   (10) 

The expression is slightly modified: the factor 1 2 is removed because the indices run 

on two distinct sets and the density is the molecular density 𝑛!, which is now computed 

in the presence of the environment, i.e. incorporating now effects of environment 

electrostatics and polarization as described previously. The expression for the effective 

vdW coefficient in case of a molecule-environment pair of atoms becomes: 

𝐶!,!" = 𝛾! 𝑛! 𝑟 𝛾!𝐶!,!"
!"##     (11) 

where 𝛾! is computed in the same way as for an isolated molecule, whereas 𝛾! is pre-

computed for each atom in a generic molecule making up the environment. 𝛾!  is 

therefore a constant, not bearing any density dependence. Furthermore, the expression 

for the damping function is unchanged, whereas 𝑅!"!  is now computed as 

𝑅!"! = 𝛾! 𝑛! 𝑟 ! !𝑅!,!"##! + 𝛾!! !𝑅!,!"##!    (12) 

reflecting again the lack of explicit density dependence of 𝛾!. Thus, based on tabulated 

values for the free-atom parameters as well as pre-calculated atomic 𝛾 values for the 

atoms making up the environment enables a prediction of the solute-environment 

dispersion energy taking explicitly into account only the solute density dependence. 

In the following section we will pursue such atomic environment 𝛾 calculations and 

investigate the possibility to divide these into specific atom-types following the 

conventional strategy adopted in the construction of molecular mechanical force fields. 

 

2.2 Repulsion Energy term 

The Pauli repulsion energy is formally defined as the sum of penetration and exchange 

contribution  

 E!"#!" = !
!

dr!dr!
!!(!!,!!)!!(!!,!!)

!!"
   (13)  

This expression can be extended to a QM/MM partition working out a suitable 

approximate form for the density matrix of the classical region, for instance, using an 

extension of the Amovilli-Mennucci approach29 in the framework of the polarizable 

continuum model.21,30 However, a computationally inexpensive alternative way to 
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include these effects is to assume an effective Lennard-Jones (LJ) behavior of the 

repulsion-dispersion terms: 

 𝐸!",!"#!" = 𝐶!",!"𝑅!"!!"!"     (14)  

If the equilibrium position of the A–B potential is defined as 𝑅!"! (eq. 6), one obtains 

𝐶!",!" =
!
!
𝐶!,!"(𝑅!"! )!     (15)  

and therefore: 

𝐸!",!"#!" = !
!
𝐶!,!"(𝑅!"! )!𝑅!"!!"!"    (16) 

By using this expression, a single step will be necessary to simultaneously obtain 

dispersion and repulsion parameters. This is indeed a quite cost-effective strategy that 

allows an easy extension of the model to different kind of classical environments. 

 

2.3 Self Consistent Field implementation 

The self consistent field implementation of the approach presented here is obtained by 

expanding the QM electron density n! r  in a finite basis set and taking the derivative 

with respect to the density matrix P!" , in order to define the contribution to the Fock (or 

Kohn-Sham) matrix. All density-dependent terms in the QM/MM dispersion and 

repulsion expression are actually function of the atomic volume ratio 𝛾![n! r ] , 

therefore one obtains: 

𝐹!"#!" =
𝜕𝐸!"#!"

𝜕𝛾! n! r
𝜕𝛾! n! r

𝜕𝑃!"
= 

− !!!" !! !
!!! !! !

𝐶!,!" 𝑛! 𝑟 + !!!,!" !! !
!!! !! !

𝑓!" 𝑛! 𝑟 !!! !! !
!!!"

𝑅!"!!!"  (17) 

 

𝐹!"#!" =
𝜕𝐸!",!"#!"

𝜕𝛾! n! r
𝜕𝛾! n! r

𝜕𝑃!"
= 

!
!

!!!,!" !! !
!!! !! !

(𝑅!"! )! + 6(𝑅!"! )! !!!"
! !! !

!!! !! !
𝐶!,!" 𝑛! 𝑟 !!! !! !

!!!"
𝑅!"!!"!"  (18) 

where the partial derivatives with respect to the atomic volume ratio 𝛾! are 

𝜕𝑓!" 𝑛! 𝑟
𝜕𝛾! n! r =

𝜕𝑓!" 𝑛! 𝑟
𝜕𝑅!"! n! r

𝜕𝑅!"! 𝑛! 𝑟
𝜕𝛾! n! r = 

− 1+ 𝑒
!! !!"

!!!!"
! !!

!!
!!!"

!! !!"
! ! 𝑒

!! !!"
!!!!"

! !! !!!"
! !! !

!!! !! !
   (19) 
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!!!"
! !! !

!!! !! !
=

!!,!"##
!

!!! !! !
!
!
   (20) 

!!!,!" !! !
!!! !! !

= 𝛾!𝐶!,!"
!"##   (21) 

By introducing the expressions (19)-(21) in the “vdW” and “rep” terms of the Fock 

operator, we get:  

𝐹!"#!" = 𝑓!" 𝑛! 𝑟 !!!"
!! !!"

! ! 𝑒
!! !!"

!!!!"
! !! !!,!"##

!

!!! !! !
!
!
𝐶!,!" 𝑛! 𝑟 −!" 

𝛾!𝐶!,!"
!"##𝑓!" 𝑛! 𝑟 𝑓!" 𝑛! 𝑟 !!! !! !

!!!"
𝑅!"!! (22) 

𝐹!"#!" = 𝛾!𝐶!,!"
!"## !!"

!

!
+

!!,!"##
!

!! !! !
!
!
𝐶!,!" 𝑛! 𝑟 (𝑅!"! )! !!! !! !

!!!"
𝑅!"!!"!"  (23) 

where, from eq. (3), the derivative of the atomic volume ratio takes the simple form: 
!!! !! !

!!!"
= !

!!
!"## 𝑟!𝜔! 𝑟 𝜒!(𝑟)𝜒!(𝑟)𝑑𝑟! (24) 

 

3. Computational Details 

The self-consistent dispersion-repulsion model is here applied to ground state 

interaction energies computed for the S22 benchmark set, which is designed to represent 

typical noncovalent interactions in biological systems, including complexes with 

predominant hydrogen bond and dispersion contributions, as well as a mixture of these 

two.31 Calculations are based on the PBE functional32 combined with the 6-31G(d), 6-

31+G(d) or 6-311++G(d,p) basis sets.  Single point calculations were performed for the 

complexes and the individual molecules at the S22 benchmark geometries, and 

interaction energies were corrected for basis-set superposition errors (BSSE) using the 

counterpoise correction (CP).33 

The performance of the QM/MM dispersion-repulsion implementation was then tested 

using different strategies, which differ in (i) the way the 𝛾! values representing the 

atomic volume ratios of the MM atoms were parametrized and (ii) if the calculations are 

based on densities modified due to electrostatics and polarization or only electrostatics, 

as described using the polarizable or electrostatic embedding potentials.  

Electrostatic and polarization terms are described through the MMPol polarizable 

embedding scheme in which the embedding potential consists of atom-centered charges 

and isotropic polarizabilities, in addition to the 𝛾! dispersion parameters.6 In particular, 
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we adopted the AL set of isotropic polarizabilities derived by Wang and co-workers,34 

and partial charges derived using the Polchat tool35 in order to account for self-

polarization effects.36 In electrostatic embedding calculations no polarizabilities were 

assigned to the MM atoms and the charges were derived following the RESP approach37 

using the Antechamber module of the Amber 14 software.38 Finally, electrostatic and 

polarizable embedding calculations were also performed adopting the LJ classical 

empirical potentials from the Amber ff14SB39 and ff12pol40 force fields, respectively. 

Different sets of 𝛾! parameters were considered. First, specific sets of 𝛾! values were 

parametrized for each atom in the individual molecules making up the S22 set. These 

calculations were based on the PBE functional using the standard QM formulation of 

the vdWTS dispersion term (set A). In order to investigate the degree of transferability of 

the dispersion parameters and avoid the need for ad hoc parametrizations, we then 

computed and applied the average 𝛾! values for each element (set B) present in the S22 

set of molecules (avoiding repeated molecules), as well as a more flexible set in which 

separate values were averaged for polar and apolar Hs and for each hybridization state 

of the C, N and O atoms (set C).  Finally, we explored an alternative scheme in which 

the 𝛾!  values were directly approximated by the ratio ~𝛼!!!/𝛼!! , where 𝛼!!! is the 

isotropic polarizability used to model the polarization term in the expression for the 

embedding potential and 𝛼!! denotes the free-atom reference value (set D). 

In all cases, the parametrization of the MM 𝛾! values and point charges was performed 

at the PBE/6-31G(d), PBE/6-31+G(d) or PBE/6-311++G(d,p) levels of theory. In order 

to investigate the dependence of the 𝛾! values on the functional adopted, however, 

additional calculations were performed at the B3LYP/6-311++G(d,p) level of theory. 

We note that, for each complex in the S22 benchmark set, QM/MM interaction energies 

were computed twice, either considering one or the other interacting molecules at the 

corresponding QM or MM level of description.  

Finally, QM and QM/MM interaction energy profiles were computed for selected 

complexes by increasing/decreasing the intermolecular distance along the vector 

connecting the geometric centers of the molecules while keeping the internal geometries 

of the fragments frozen.  

All calculations were performed in a locally modified version of the Gaussian 

development version,41 in which we implemented the QM vdWTS and QM/MM 

dispersion+repulsion scheme. We used the free atom reference values (𝛼!! , 𝐶!,!! and 
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𝑅!,!"##! ) and damping factor parameters (𝑑 = 20 and 𝑠! = 0.94) adopted in the original 

implementation of the vdWTS scheme by Tkatchenko and Scheffler22, with 𝛼!! and 𝐶!,!! 

values taken from the database reported by Chu and Dalgarno and free-atom vdW radii 

𝑅!,!"##!  equal to 1.64, 1.90, 1.77 and 1.66 Å for H, C, N and O atoms, respectively.42 For 

polar hydrogens bound to heteroatoms, the latter was adjusted to values 0.7 and 1.3 Å 

for hydrogens participating or not in hydrogen bonds, respectively. 

4. Results and discussion 

In order to validate the implementation, we computed interaction energies for the 22 

non-covalent complexes contained in the popular S22 benchmark set.31,43 In Table 1 we 

provide a summary of the mean absolute errors (MAE) obtained in each case, as 

compared to the CCSD(T)/CBS-CP benchmark data (CBS – complete basis set). All the 

CP corrected interaction energies calculated for each complex at the PBE/6-31G(d), 

PBE/6-31+G(d) or PBE/6-311++G(d,p) levels of theory are reported in Tables S1, S2 

and S3, respectively. 

The errors reported in Table 1 clearly illustrate the drastic improvement of the results 

upon the addition of the vdWTS term to the energies. When the vdWTS contribution is 

not included, the performance of the PBE functional with the basis sets adopted is rather 

poor, with MAEs close to 3 kcal/mol in all cases. The addition of the dispersion term, 

however, lowers the errors to ∼0.4-0.6 kcal/mol, depending on the basis set adopted. 

Interestingly, the further flexibility of the 6-311++G(d,p) basis set provides results 

essentially with the same quality as 6-31+G(d) basis set. Because dispersion is 

accounted for through the vdWTS term, the importance of the good description of 

polarizability through a large basis set is in this case less important. 

Table 1. Mean absolute errors (kcal/mol) in interaction energies computed at different 

levels of theory for the S22 benchmark set as compared to reference CCSD(T)/CBS-CP 

data. The set includes 7 hydrogen-bonded (HB) complexes, 8 complexes dominated by 

dispersion interactions (DD), and 7 complexes of mixed character (Mix). 

 

6-31G(d) 6-31+G(d) 6-311++G(d,p) 

 ΔEPBE-CP ΔEPBE+TS-CP ΔEPBE-CP ΔEPBE+TS-CP ΔEPBE-CP ΔEPBE+TS-CP 

HB 1.05 0.90 1.64 0.66 1.24 0.57 

DD 5.40 0.68 4.85 0.34 4.77 0.40 

Mix 1.82 0.25 1.92 0.25 1.92 0.25 

All  2.88 0.61 2.90 0.41 2.74 0.41 



	 12	

 

If we focus on our best estimates calculated at the PBE/6-311++G(d,p)-CP level of 

theory, shown in Fig. 1, the incorporation of the vdWTS term greatly reduces the errors 

from 2.74 to 0.41 kcal/mol considering all the noncovalent complexes, leading to an 

excellent correlation between calculated and reference CCSD(T) data (slope and 

squared correlation coefficients of 1.02 and 0.99). As expected the impact of the vdWTS 

term is stronger for dispersion-dominated complexes, but the errors in all three classes 

of complexes considered is lowered. In particular, the MAEs for hydrogen-bonded, 

dispersion-dominated and mixed character complexes are 0.57, 0.40 and 0.25 kcal/mol 

when employing the largest basis set. Such errors compare well with the reported errors 

of 0.46, 0.30 and 0.14 kcal/mol for PBE in the original implementation of the vdWTS 

scheme.22 The minor differences obtained can be attributed to the different basis sets 

employed, and thereby overall demonstrate the correctness of our implementation. 

 

 
 

Figure 1. Interaction energies computed for the S22 benchmark set at the PBE/6-

311++G(d,p)-CP and PBE+TS/6-311++G(d,p)-CP levels of theory compared to 

CCSD(T)/CBS-CP reference data. 

 

We then explored the performance of the QM/MM dispersion-repulsion formulation, 

with special attention to the transferability of the atomic volume ratio parameters 𝛾, 

which are defined as a fixed parameter for each atom in the MM region. Thus, first we 
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parametrized the 𝛾 parameters from PBE+TS and B3LYP+TS calculations performed 

on the isolated molecules (set A). In this scheme, the 𝛾 parameters are computed ad hoc 

for each molecule, in a strategy reminiscent of the derivation of individual point charge 

models in classical force fields. We then averaged the resulting 𝛾 parameters over 

elements, as obtained for all unique molecules included in the S22 set, and we 

recomputed the interaction energies based on such averaged parameters (set B). We also 

explored a more flexible definition of the atom types, distinguishing between polar and 

apolar hydrogen atoms, and among the hybridization states of the heavy atoms (set C), 

given the known relation among polarizability and hybridization.  Finally, we explored 

a simpler approach, where the 𝛾 parameters were directly estimated from the Amber AL 

isotropic polarizabilities used to model polarization effects in the environment region 

(set D). In Table 2, we report the 𝛾 parameters adopted in the B, C and D sets, as well as 

the corresponding standard deviations. Because only one atom of Nsp and Nsp3 type was 

contained in the S22 set, the values for this atom types in set C correspond to a single 

atom.  

If we focus on the transferability of the 𝛾's, we immediately observe that the values for 

a given element in set B present rather small standard deviations, ranging from 0.02 – 

0.03 for C and H, and somewhat larger values for N and O (around 0.05) at the 

PBE+TS/6-31+G(d)  and PBE+TS/6-311++G(d,p) level of theory, whereas the adoption 

of the smaller 6-31G(d) basis set leads to slightly smaller deviations. On the other hand, 

the introduction of additional atom types in the set C shows smaller deviations, 

illustrating the fact that the 𝛾's are more transferable among atoms with the same 

hybridization state. For C, 𝛾 slightly decreases when passing from sp to sp2 and sp3 

hybridization states, as one would expect. For N, 𝛾 again decreases when moving from 

Nsp to Nsp2, but then it increases again when passing to Nsp3. As noted before, however, 

the Nsp and Nsp3 values here are only based on a single atom in the S22 set, so its value 

is not averaged over different environments as it is, for example, for Nsp2, averaged over 

16 cases. 
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Table 2. Atomic volume ratio parameters 𝛾 and corresponding standard deviations 

adopted for the molecules in the S22 benchmark set. 

Set B: 𝛾 parameters averaged per element  

   𝛾!"#  𝛾!!!"# 

 ndata 6-31G(d) 6-31+G(d) 6-311++G(d,p) 6-311++G(d,p) 

H 70 0.57 ± 0.03 0.66 ± 0.03 0.65 ± 0.03 0.65 ± 0.03 

C 56 0.79 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 

N 18 0.88 ± 0.04 0.90 ± 0.05 0.89 ± 0.05 0.89 ± 0.05 

O 10 0.89 ± 0.03 0.98 ± 0.05 0.97 ± 0.05 0.97 ± 0.05 

Set C: 𝛾 parameters averaged per atom type  

 ndata 6-31G(d) 6-31+G(d) 6-311++G(d,p) 6-311++G(d,p) 

Hapolar 50 0.59 ± 0.02 0.66 ± 0.02 0.65 ± 0.02 0.65 ± 0.02 

Hpolar 20 0.54 ± 0.02 0.66 ± 0.04 0.66 ± 0.04 0.65 ± 0.04 

Csp 3 0.76 ± 0.03 0.84 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 

Csp2 51 0.80 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.83 ± 0.02 

Csp3 2 0.75 ± 0.03 0.77 ± 0.02 0.77 ± 0.03 0.77 ± 0.03 

Nsp 1 0.91 0.97 0.97 0.97 

Nsp2 16 0.87 ± 0.04 0.89 ± 0.05 0.89 ± 0.05 0.89 ± 0.05 

Nsp3 1 0.88 0.93 0.92 0.92 

Osp2 7 0.91 ± 0.01 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 

Osp3 3 0.84 ± 0.01 0.92 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 

Set D: 𝛾 parameters estimated from AL Amber polarizabilitiesa 

 𝛾!"#$%    

H 0.64    

C1 (sp) 0.78    

C2 (sp2) 0.73    

C3 (sp3) 0.53    

N (non-nitro N) 0.88    

O2 (sp2) 0.76    

O3 (sp3) 0.77    
a 𝛾 values approximated by the ratio ~𝛼!!!/𝛼!! with 𝛼!!! values from Ref [34]. 
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Interestingly, the 𝛾 values seem to be quite robust both with respect to the choice of 

basis set or DFT functional. The exception is the small 6-31G(d) basis set, where 

significant differences appear in the derived  𝛾's, as the inclusion of diffuse functions is 

rather important to correctly describe the shape of the electron densities. On the 

contrary, both 6-31+G(d) and 6-311++G(d,p) basis sets give virtually the same results. 

Moreover, the adoption of either PBE or B3LYP functionals also leads to essentially 

equivalent parameters. Therefore, 𝛾 values parametrized for a given functional seem to 

be widely transferable to be used with other functionals. 

We applied the different sets of 𝛾 parameters to compute the QM/MM interaction 

energies, which were then compared to full QM calculations. For Set A, both 

electrostatic and polarizable embedding calculations were performed in order to explore 

the impact of explicit MM polarization on the results. For the sake of comparison, we 

also performed electrostatic and polarizable embedding calculations based on the 

classical Amber ff14SB and ff12pol LJ potentials instead of the density-dependent 

dispersion-repulsion term. For each AB complex in the S22 benchmark set, we 

performed two different calculations QM(A)/MM(B) and QM(B)/MM(A), depending 

on which molecule was described classically.  

 

As a first test, PBE/6-311++G(d,p) interaction energies were computed with a 

polarizable embedding (Set A of 𝛾 parameters) using the free atom reference values 

originally developed for the vdWTS scheme.22 Quite strikingly, the QM/MM model, 

which includes electrostatics, polarization, dispersion and repulsion terms, is able to 

accurately describe non-covalent interactions in all complexes lacking hydrogen bonds 

with no additional tuning of the dispersion-repulsion parameters needed. For such 

complexes, we obtain a mean absolute error (MAE) of 1.2 kcal/mol, and only two 

complexes present errors slightly larger than 2 kcal/mol (adenine·thymine stacked and 

benzene·indole T-shaped complexes). In complexes were the interaction involves 

hydrogen bonds, however, repulsion is strongly overestimated leading to highly 

repulsive interactions in most cases (except for the ammonia and phenol dimers), which 

results in a MAE of 30 kcal/mol. This indicates that the density-dependent atomic 

volume ratio γ cannot capture the reduction of the van der Waals radius of QM 

hydrogens when they participate in hydrogen bonds with the MM region.44 A more 

consistent treatment for both the QM and MM region thus relies on tuning the free-atom 
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vdW radii 𝑅!,!"##!  for hydrogen. Our results indicated that using a value of 0.7 Å for 

polar hydrogens allows a satisfactory description of all complexes considered, leading 

to a MAE of 1.4 kcal/mol. The largest error was found for the formic acid dimer, which 

displays the shortest hydrogen-bond distance in the set, in which the interaction is 7.8 

kcal/mol higher than the reference. Further reduction of the polar hydrogen radius to 

improve the description of the formic acid dimer, in turn, led to a worsening of the 

shape of interaction energy profiles computed for other hydrogen-bonded systems, so 

we choose to keep the 0.7 Å value. We note that different values for van der Waals radii 

in aliphatic and polar hydrogens are often applied in LJ potentials of classical force 

fields, for example in Amber ff14SB, where the radius of aliphatic H (HC atom type) 

equal to 1.487 Å is reduced to 0.6 Å for the polar case (H atom type). Once we adjusted 

the value of the radius for polar hydrogens, we computed the interaction energies for the 

S22 set adopting the different schemes for 𝛾 parameters shown in Table 2.  

 

In Table 3 we report the mean absolute errors (MAE) in QM/MM interaction energies 

obtained adopting the 4 sets of 𝛾 parameters as well as the LJ Amber potentials with 

respect to full QM PBE+TS calculations (see Tables S4-S10 for the complete list of 

interaction energies). Most of these QM/MM calculations are based on densities 

obtained by including effects of environment electrostatics and polarization. In order to 

investigate how environment polarization impact our results, however, we also 

computed the set A and the Amber LJ energies based on densities obtained using 

electrostatic embedding. The comparison between the Set A and Set A with electrostatic 

embedding, indeed shows a clear improvement when polarization is included, with the 

MAE decreasing from 2.8 to 1.4 kcal/mol. This improvement is due to the increased 

overall electrostatics in hydrogen-bonded complexes when MM polarization is 

accounted for. However, the results also indicate that the impact of environment 

electrostatics and polarization only induces very small changes in the 𝛾 parameters of 

the QM region, and dispersion-repulsion terms in both cases are almost identical with 

differences below 0.2 kcal/mol. The relative insensitivity of the 𝛾 to the impact of MM 

polarization supports their transferability among different environments.  

Regarding the performance of the model with respect to basis set, it is somewhat 

unexpected that the 6-31G(d) basis set provides errors ~0.5 kcal/mol lower than those 

obtained with 6-31+G(d) and 6-311++G(d,p) ones for hydrogen-bonded systems. This 
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can be explained by two different effects. On one side, the electrostatic interactions are 

attenuated with 6-31G(d), but this effect is counteracted by a considerably smaller 

repulsion due to the systematic underestimation of atomic volumes using this basis. 

This effect, for instance, lowers the 𝛾 value of polar hydrogens from 0.65 to 0.54, as 

shown in Table 2. The changes in electrostatics and dispersion-repulsion nearly cancel 

each other in most systems analyzed, leading to overall differences less than 0.5 

kcal/mol with the exception of the formic acid dimer, where the close hydrogen-bond 

distance leads to a more drastic decrease on repulsion leading to change of 3 kcal/mol, 

which explains the changes in MAEs obtained using different basis sets. 

The impact of assuming the transferability of the 𝛾's among different atoms can be 

assessed by comparing the results obtained using sets A, B and C. In this case, we 

observe that the MAEs are only marginally increased. For example, at the PBE+TS/6-

311++G(d,p) level of theory, adopting transferable 𝛾's for each element or atom type 

only increases the MAEs from 1.4 to 1.5 kcal/mol, compared to the adoption of ad hoc 

sets of 𝛾's derived for a given molecule. We note, however, that whereas the adoption of 

transferable parameters has a minor impact on the energies of dispersion-dominated 

complexes, for hydrogen-bonded systems the MAE increases from 2.1 to 2.4 and 2.5 

kcal/mol. These results are in line with the D2 and D3 dispersion corrections introduced 

by Grimme and co-workers for DFT, where transferability is also assumed by adopting 

dispersion coefficients specific per element type or hybridization state, respectively, the 

latter defined in terms of fractional coordination numbers.45  

Alternatively, if we roughly estimate the 𝛾's from the polarizabilities taken from the 

Amber AL force field (set D), we find very similar results compared to sets B and C, 

also based on transferable parameters. Indeed, the systematic underestimation of 𝛾's for 

set D apparent in Table 2 leads to a similar effect to the adoption of the 6-31G(d) basis 

set discussed above. Thus, the results for set D with large basis sets are improved, 

whereas its performance when compared to sets A, B and C based on 6-31G(d) 

calculations show a very similar performance.  
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Table 3. Mean absolute errors (kcal/mol) in the interaction energies of the S22 

benchmark set as estimated from full QM+TS and QM/MM calculations at the PBE 

level of theory using different descriptions for the MM region. Values reported in 

parentheses refer to an electrostatic (instead of polarizable) embedding.a 

 6-31G(d) 6-31+G(d) 6-311++G(d,p) 

 Set A  

HB 1.6 (5.6) 2.2 (5.8) 2.1 (6.2) 

DD 0.4 (0.5) 0.9 (1.1) 1.0 (1.2) 

Mix 0.9 (1.0) 1.1 (1.2) 1.1 (1.2) 

All  0.9 (2.3) 1.4 (2.6) 1.4 (2.8) 

 Set B  

HB 1.7 2.5 2.4 

DD 0.4 0.9 0.9 

Mix 1.0 1.2 1.1 

All  1.0 1.5 1.5 

 Set C  

HB 1.6 2.6 2.5 

DD 0.4 0.9 0.9 

Mix 0.9 1.2 1.1 

All  1.0 1.5 1.5 

 Set D  

HB 1.6 2.4 2.2 

DD 0.4 0.7 0.8 

Mix 1.0 1.1 1.1 

All  1.0 1.4 1.3 

 Amber ff12pol (Amber ff14SB)a  

HB 3.0 (1.9) 6.7 (1.4) 6.2 (1.1) 

DD 0.3 (0.4) 0.6 (0.7) 0.7 (0.8) 

Mix 0.7 (0.8) 0.8 (0.6) 0.8 (0.6) 

All  1.3 (1.0) 2.6 (0.9) 2.5 (0.8) 
a QM/MM calculations based on densities for the QM fragment obtained with 

electrostatic embedding. 
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We have also computed QM/MM interaction energies with electrostatic and polarizable 

embeddings by simply adding an empirical LJ dispersion-repulsion term taken from the 

Amber ff14SB and ff12pol classical force fields, as is typically done in many QM/MM 

applications. Amber electrostatic embedding calculations  display MAEs of ~1  

kcal/mol, similar to the best results obtained using the 6-31G(d) basis set for our 

dispersion-repulsion model. The considerable increase in the flexibility given by Amber 

atom types, however, seems to improve some situations, like the formic acid dimer. 

Such improvement however could be the result of a cancellation of errors, as the 

adoption of the polarizable Amber ff12pol force field leads to larger errors, although the 

latter is expected to provide a better description of electrostatics. The interaction 

energies obtained for all complexes adopting different MM descriptions are reported in 

Tables S4-S10. Overall, these results support the transferability of the 𝛾's among similar 

atoms in different molecules, and suggest that excellent results can be obtained without 

needing specific parametrizations for different molecules. 

Finally, we have also explored the performance of the QM/MM interaction energies 

along different distance profiles, in which the center-to-center separation between the 

molecules was increased/decreased while keeping the internal geometries of the 

molecules frozen at their S22 benchmark geometries, in order to assess the behavior of 

the model at non-equilibrium interfragment separations. The results for a selection of 

hydrogen bonded, dispersion-dominated and mixed complexes are shown in Fig. 2 (see 

Figs. S1-S3 for all complexes). 
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Figure 2. Comparison of full QM+TS and QM/MM (Set A – polarizable embedding) 

interaction energy profiles computed for selected complexes of the S22 benchmark set 

at the PBE/6-311++G(d,p) level of theory: a) hydrogen-bonded (HB) complexes, b) 

dispersion-dominated (DD) complexes and c) mixed complexes. Distances relative to 

the minimum energy geometry are built along the vector connecting the geometric 

centers.   

 

The overall profiles are well described in terms of both the location of the minima and 

the well depth. Some more critical cases, however, are identifiable. 

For hydrogen-bonded systems, the curve at close distances is too steep, probably due to 

the difficulty of describing the variation of the hydrogen vdW radius in such regime. 

For complexes formed by the interaction between a polar hydrogen and an aromatic ring 

(benzene · indole T-shape, benzene · water and benzene · ammonia), instead the 

optimal distances and the well depths obtained assuming a 0.7 Å free-atom radius for 

polar hydrogens were not well reproduced, as shown in Fig. S4. A similar behavior was 

also found in the weak ammonia dimer, which is characterized by a longer H···N 
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optimal distance with respect to the other hydrogen-bonded complexes analyzed. Thus, 

the adoption of the 0.7 Å free-atom radius for polar hydrogens seems to be well-suited 

for strong hydrogen-bonded systems, whereas for weaker complexes that radius should 

be somewhat enlarged. Test calculations indicated that indeed the adoption of a radius 

of 1.3 Å for polar hydrogens leads to a much better agreement for these complexes, and 

these is our final choice reflected in the profiles of Fig. 2.  

Overall, our results thus show that through a minimal parametrization of the free-atom 

radius of polar hydrogens involved or not in strong hydrogen bonds, the final QM/MM 

model allows to describe quite accurately the interactions in a QM/MM boundary when 

structures fluctuate around equilibrium geometries due to thermal effects, for example 

along a molecular dynamics simulation. 

 

Conclusions 

We presented an extension of the Tkatchenko-Scheffler semiempirical van der Waals 

scheme vdWTS aimed at describing dispersion interactions between quantum and 

classical regions in a QM/MM framework based on a polarizable embedding. In 

addition, we coupled the dispersion term with an analogous density-dependent repulsion 

term obtained by exploiting a LJ-like relation between the two, so that both 

contributions are obtained in a single step through the assignment of the dispersion 

coefficients for the MM sites.  

While keeping the density dependence of the dispersion parameters for the QM region, 

we explored different ways to define the atomic volume ratios γ for the MM part of the 

system. First, we investigated a strategy resembling the derivation of point charge 

models in classical force fields, by which γ values are parametrized ad hoc from DFT 

calculations of isolated MM fragments. We then explored the transferability of these 

parameters by deriving element-specific, or hybridization state-specific, γ values 

averaged for atomic sites in different molecular environments, in analogy with the 

transferability assumption widely used in Lennard-Jones parameters in MM force fields. 

As an even simpler scheme, we tested the possibility to estimate γ values by the ratio 

~𝛼!!!/𝛼!! , where 𝛼!!! is the same isotropic polarizability used in the polarizable 

embedding and 𝛼!! denotes the free-atom reference value.  

We assessed the performance of the implementation by computing total interaction 

energies for the S22 benchmark set, designed to represent typical non-covalent 

interactions in biological systems, which includes complexes with predominant 
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hydrogen bond and dispersion contributions, as well as systems of mixed character. Our 

results indicate a good performance of the QM/MM implementation, with mean 

absolute errors ∼1-2 kcal/mol in interaction energies compared to reference full QM 

calculations computed at the S22 benchmark geometries. To obtain such an agreement, 

we find it necessary to calibrate only the free-atom radius of the hydrogen atoms.  

Interestingly, we find similar performance either when dispersion parameters are 

parametrized on the basis of vdWTS calculations on separate fragments or when they are 

estimated from the polarizabilities taken from the polarizable force field. Moreover, our 

results show that γ values are widely transferable, and either element-specific or more 

flexible hybridization state-specific parameters can be used to model dispersion-

repulsion energies without a significant deterioration of the accuracy of the model. In 

addition, we find a weak dependence  on basis set and virtually insensitivy to the choice 

of DFT functional used in their derivation. This suggests that γ values derived at a given 

QM level of theory are also widely transferable to calculations based on other QM 

methods.  

Finally, we computed interaction energy profiles by increasing/decreasing the center-to-

center separation between fragments in the complexes of the S22 set while keeping the 

internal geometries frozen, in order to assess the performance of the model in out-of-

equilibrium inter-fragment separations. These results show a good agreement with 

reference full QM calculations for complexes dominated by hydrogen bonds, 

dispersion, or in mixed-character complexes. This indicates that the present 

implementation can be extended to describe dispersion-repulsion interactions through a 

QM/MM boundary when structures fluctuate around equilibrium geometries, such as 

along a molecular dynamics simulation.  

Overall, the novel implementation has shown to be a promising strategy to include 

dispersion-repulsion effects in multiscale QM/MM models by incorporating an explicit 

dependence on the QM electronic density. 
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