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Abstract

A transcompiler or source to source compiler is a type of compiler
that translates source code from a programming language at a level of
abstraction to another programming language at the same level, contrary
to a traditional compiler which translates from a level of abstraction to a
lower one.

This project is an implementation of a transcompiler from C to Rust, a
relatively recent systems programming language that operates at a similar
level of abstraction but with a focus on safety in regards to memory.

The scope of this project is limited, but it should work on most small
C programs that do not use advanced features (like thorough memory
management or pointer arithmetic) or that work with multiple threads.

Resum

Un transcompilador, o compilador de font a font, és un tipus de com-
pilador que tradueix codi font d’un llenguatge de programació a un cert
nivell d’abstracció a un altre llenguatge al mateix nivell, a diferència d’un
compilador tradicional que tradueix d’un cert nivell d’abstracció a un
d’inferior.

Aquest treball és una implementació d’un transcompilador de C a
Rust, un llenguatge de programació de sistemes relativament recent que
opera a un nivell d’abstracció similar però amb un èmfasi a la seguretat
en termes de memòria.

L’abast del treball és limitat, però hauria de funcionar en la majoria
de programes petits en C que no utilitzin caracteŕıstiques avançades del
llenguatge (com extensiva gestió de memòria o aritmètica de punters) o
que siguin multifil.

Resumen

Un transcompilador, o compilador de fuente a fuente, es un tipo de
compilador que traduce código fuente de un lenguaje de programación a
un nivel de abstracción determinado a otro lenguaje al mismo nivel, a
diferencia de un compilador tradicional que traduce de un cierto nivel de
abstracción a otro de inferior.

Este trabajo es una implementación de un transcompilador de C a
Rust, un lenguaje de programación de sistemas relativamente nuevo que
opera en un nivel de abstracción similar pero con un énfasis en la seguridad
en términos de memoria.

El alcance de este trabajo es limitado, pero debeŕıa funcionar en la
mayoŕıa de programas pequeños en C que no utilicen caracteŕısticas avan-
zadas del lenguaje (como extensiva gestión de memoria o aritmética de
punteros) o que sean multihilo.
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1. Introduction

Transcompilers are a type of compiler that usually translate source code
between languages at the same level of abstraction.

The first compilers were designed and developed during the 1950s, mostly
to provide a language at a higher level of abstraction than assembly code1.

As programming languages became more feature-rich and computer archi-
tectures became more complex, the use of compilers saw a rise in usage, while
less and less code was written directly in assembly.

While the first transcompilers were created to port codebases from a specific
platform to another, a use case still present nowadays, there have been new uses
for such type of compilers, like extending languages or creating new languages
that compile to existing ones to increase its ease of use or eliminate potential
errors when using the existing ones.

That said, while widely used (specially with the latter use case), there is
little documentation on what differentiates them to traditional compilers or
their peculiarities, which make for a good subject to study.

This report goes over some of the uses and peculiarities of transcompilers,
as well as presenting one such transcompiler and its design with the intent of
further studying this type of software.

1.1. Motivation

The motivation behind this project lays in the will to learn more about
transcompilers, and compilers in general. While much is known about compiler
design, it is a subject that does not attract as much research as new technologies
like artificial intelligence or computer vision2. Additionally, most compilers still
use the base structure that they were using when they first appeared, and most
of its research goes to further improve the speeds of the compilation process and
the optimization of its output and not its design or structure. Therefore, it is
an interesting subject to study as it can be seen why the current day structures
work and have a solid base.

Another reason this was the chosen project was the ability to work with a
relatively new language, and see its differences in design with a more traditional
language like C. In this case, the focal point of interest was that Rust as a
language aims to provide a similar feature set to that of C while removing
some of its arguably worst parts, like undefined behaviour or careless memory
management.

1The first commercial compiler was IBM’s FORTRAN compiler[1].
2According to arxiv.org, the amount of papers released in the month of January, 2018,

in each of those two subjects alone were more than eight times of those released regarding
programming languages, let alone compilers.
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1.2. Organization

This report is divided by the following sections:

1.- Introduction: The current section.

2.- Background: This section contains several briefings about core concepts
that have been used during the creation of this project.

3.- Architecture and design: This section contains the explanation of how the
project was structured, as well as how it works internally when being
executed.

4.- Tests and examples: This section explains the methodology used when
developing the project, as well as a list of features that work and a list of
ones that do not. Additionally, there are some examples at the end that
show the results obtained when using the project.

5.- Conclusions: This section contains a self-evaluation of the project, as well
as future lines to expand and improve the project.
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2. Background

2.1. Rust

Rust is a systems programming language sponsored by Mozilla Research,
which describes it as a ”safe, concurrent, practical language”[2]. The Rust
project was created because other languages at this level of abstraction and
efficiency, such as C and C++, are unsatisfactory. In particular:

There is too little attention paid to safety.

They have poor concurrency support.

There is a lack of practical affordances.

They offer limited control over resources.

Rust exists as an alternative that provides both efficient code and a comfortable
level of abstraction, while improving on all four of these points. [2]

This design philosophy has led the language to have a feature set with an
emphasis on safety, control of memory layout and concurrency. Additionally,
performance of idiomatic Rust is comparable to C++.[2]

One of the strongest points of Rust is that, while using strictly safe Rust,
one should never see any kind of undefined behaviour. This is achieved via strict
controls at compile time: where a C compiler would maybe throw a warning,
the Rust compiler will throw an error and prevent compiling a binary which
does not have its behaviour explicitly stated in the source code. An example of
this would be dereferencing a raw pointer: because the compiler does not know
if the program has access to the memory address the pointer corresponds to,
the Rust compiler will throw an error when trying to do this, whereas the C
compiler will not.

While the previous is true, in Rust the programmer can do things that the
compiler would consider undefined behaviour by using the unsafe keyword. Ev-
erything in the unsafe block will not throw errors related to undefined behaviour
(normal errors still apply) and the compiler will assume that the programmer
knows what it will do. The following is the list of things that the Rust compiler
considers undefined behaviour:

Dereferencing null, dangling or unaligned pointers.

Reading uninitialized memory.

Unwinding into another language

Producing invalid primitive values (like a bool that is not 0 or 1).

Causing a data race[3]
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As it can be seen, the Rust language is limited when it comes to unde-
fined behaviour and quite permissive as it considers ”safe” things like having a
deadlock, a race condition, leak memory or overflow integers, among others.

With that said, this projects aims to provide (almost always) safe Rust
code.

2.2. Compilers

A compiler is computer software that transforms code written in one pro-
gramming language into another. The name compiler is mainly used for those
programs that translate source code from a high-level programming language
to a lower level language.

A compiler is divided in two big parts: analysis and code generation. The
analysis part is always the same:

Lexical analysis: Initial reading of the source code. The source code is
read and divided into tokens, each of which corresponds to a symbol in
the programming language.

Syntax analysis: This phase takes the list of tokens produced in the previ-
ous phase and arranges these in a tree-structure (knows as abstract syntax
tree or AST) that reflects the structure os the program. This phase is
often called parsing.

Semantic analysis: This phase analyses syntax tree to determine if the
program violates certain consistency requirements, e.g., if a variable is
used but not declared in C. The previous tree is not modified.[4]

In some cases a preprocessor is present, which prepares the source text before
entering the first phase. As an example, gcc’s preprocessor merges the source
code of the file to compile with the headers found in the #includes of the
main file, as well as processing the #define statements and making the proper
substitutions in the code.

The code generation part is usually compound of:

Intermediate code generation: The program (an AST in this phase) is
translated to a machine-independent intermediate language, usually in the
form of tables. This is used to ease the compiling task towards multiple
targets, i.e., different CPU architectures.

Code optimization: In this phase the code found in the intermediate lan-
guage tables is optimized, but still keeping it in this language. An example
would be eliminating unused variables or functions that are never called.

Code generation: The final code is produced from the translation tables.
In a traditional compiler, the result would be the source program trans-
lated to assembly language ready to be executed.
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While the previous is true, it is not uncommon for a compiler to go straight
from the abstract syntax tree to the final code or to not directly optimize code,
like the Java compiler (which does not optimize the source code when translating
to bytecode). Additionally, there are compilers that do another linking phase
where the multiple parts of a program are merged after compiling each of them
individually.

In transcompilers’ case, it is usually not necessary the intermediate code
generation as they compile always to another programming language (a single
compilation target). This project works this way, translating the abstract syntax
tree directly to the final code in Rust.

2.3. Transcompilers

A transcompiler or source-to-source compiler is a type of compiler that takes
the source code of a program written in a programming language as input and
outputs the equivalent code in another programming language.

A transcompiler translates between two languages that operate at the same
level of abstraction, while a traditional compiler translates from a high-level
language to another in a lower level.

2.3.1. Previous work

The first source to source compiler was developed in 1981. It translated
.ASM source code for the Intel 8080 processor into .A86 source code for the
Intel 8086[5]. Since then, a multitude of transcompilers have been developed,
specially for internal use in the enterprise sector, to port codebases from a
programming language to another. Current day examples of such use would be
Emscripten[8], which compiles C and C++ to JavaScript (in this case it works
from a lower level language to one higher) so standalone applications can be
easily ported and embedded in the web, or BaCon[9], which converts BASIC
code to C.

While this use case is still present, the increasing popularity of languages such
as Python and JavaScript, due to their important presence on the Internet and
ease of use, has brought a new use for transcompilers: creating new languages
that compile to the widely used ones while bringing new features. Examples
of that would be CoffeeScript[10] and TypeScript[11], both of which compile to
JavaScript3 while providing new features (like type checking and build systems)
or preventing common errors while providing optimizations.

Although the later use of transcompiler is readily available as well as its
source, the former is usually not. This project works more like a traditional
transcompiler, in the sense its use case is to translate a codebase from a language
to another, with manual revision afterwards to ensure correct functionality and
optimization.

3CoffeeScript is its own language that compiles to JavaScript, while TypeScript considers
itself a superset of JavaScript that compiles to it.
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2.3.2. Tools used

The main tool used is the pycparser[6] library, which is a parser for the
C language, written in Python. This library does the first three phases of the
transcompiling process (lexical, syntactical and semantic analysis).

This library uses, in turn, another: PLY[7], which is an implementation of
lex and yacc parsing tools in Python. Specifically, it is a general purpose L-R
parser.

pycparser uses PLY to do the parsing, the former providing the later the C
language grammar provided in Annex A of the C99 standard (ISO/IEC 9899).
Then, pycparser generates the AST corresponding to the original source code.
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3. Architecture and design

3.1. Architecture

The project is structured akin to a compiler, see figure 1:

Preprocessor: This block processes, if requested via the command line op-
tion -d, the compiler directives #define, creating its equivalent definitions
in Rust. Afterwards it creates a version of the input source file without
the #include directives that are part of a library (by standard defined as
#include <filename>) to prevent problems with standard library pars-
ing from pycparser. If requested via the command line option -i, the
remaining #includes will also be removed.

Once the file to parse has been prepared, it creates the file which describes
the dependencies to the Rust compiler (Cargo.toml) using the user-set file
dependencies.json (for more information on this files, see section 3.4).

Finally, it prepares the dependency statements to be added in the source
file (similar to the #include lines in C).

pycparser: The library receives as input the source file processed by the
previous block, passes it through the gcc preprocessor (which at this point
only removes comments and processes the #defines found in the source
code), and it parses it, generating with it the abstract syntax tree from
the original source code.

Code generator: The final code in Rust is generated from the abstract
syntax tree created in the previous block.

This blocks are called and managed by the main module of the project,
c-to-rs.py, which is also the responsible for all file input/output as well as
managing command line options.

Initial code Preprocessor pycparser Code generator Final code

Figure 1: Block diagram of the project
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3.1.1. Work done and usage

The work done on this project was focused on the following, ordered by
amount of work:

Code generator: The entire implementation of the code generator was part
of the project, and where the most amount of time was put in.

Preprocessor: Most of the preprocessing work done by the program was
implemented for this project, with a small amount of work done by the C
preprocessor.

Main module: The assembly of all the parts to make the transcompiler
work was also part of the project. This includes the integration of the
previous parts as well as the usage of the pycparser library and the cus-
tomization options.

Usage

To transcompile a file, the following command will do it as long as Python
2.6 or higher and pycparser are installed:

>python c-to-rs.py {file to transcompile}
This will execute the program and output the transcompiled version of the

source file in the command to the out/src folder. To run said program (as long
as Rust is installed), the user must go to the out folder and run: cargo run.
The following are the command line options available with the transcompiler:

-h: Prints the help of the transcompiler to the terminal.

-ni: This option will remove all the #includes (even those that are not a
part of a library), making the program transcompile exclusively the source
file indicated in the command. This should be used if the user wants to
create a similar file structure in the Rust program akin to that in the C
one.

-v: Both the abstract syntax tree and the final source code will be printed
to the terminal when the transcompilation process finishes.

-d: The transcompiler will create an equivalent to each of the #defines in
the source file that are constant declarations (will not work with macros).
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3.2. Analysis of a transcompilation example

Due to the complexity of the transcompiler, it is simpler to explain how
it functions via an example. Given the following source code as input to the
program:

#include <s t d i o . h>

void p r i n t n ( int n)
{

for ( int i = 0 ; i < n ; i++)
p r i n t f ( ” I t e r a c i o %d\n” , i ) ;

}

int add one ( int n)
{

return ++n ;
}

void main ( )
{

int n = 10 ;
p r i n t n (n ) ;
p r i n t f ( ”\nPausa\n\n” ) ;
p r i n t n ( add one (n ) ) ;

}
Listing 1: Example source code to transcompile

Preprocessor
When entering the preprocessor, the first #include is removed, and the

resulting file is passed on to the parser. Additionally, it generates the file
Cargo.toml with the building options and the dependencies described in dependencies.json,
in this case the example no dependencies will be introduced into Cargo.toml

as the example dependencies found in said false have its use flag to false.
It also prepares the statements to include the libraries in the source file

(equivalent to the #includes in C).
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pycparser

The temporary file generated from the previous block is parsed by the library,
generating an abstract syntax tree of the original source code.

An abstract syntax tree is the result of taking the tokens resulting from
the initial parsing (also done by pycparser) and recombining them into a data
structure that reflects the actual structure of the original source code.

The following is the abstract syntax tree of the example with its custom
nodes:

FileAST :
FuncDef :

Decl : p r i n t n
FuncDecl :

ParamList :
Decl : n

TypeDecl : n
I d e n t i f i e r T y p e : [ ’ int ’ ]

TypeDecl : p r i n t n
I d e n t i f i e r T y p e : [ ’ void ’ ]

Compound :
For :

Dec lL i s t :
Decl : i

TypeDecl : i
I d e n t i f i e r T y p e : [ ’ int ’ ]

Constant : int , 0
BinaryOp : <

ID : i
ID : n

UnaryOp : p++
ID : i

FuncCall :
ID : p r i n t f
ExprList :

Constant : s t r i ng , ” I t e r a c i o %d\n”
ID : i

FuncDef :
Decl : add one

FuncDecl :
ParamList :

Decl : n
TypeDecl : n

I d e n t i f i e r T y p e : [ ’ int ’ ]
TypeDecl : add one

I d e n t i f i e r T y p e : [ ’ int ’ ]
Compound :

UnaryOp : p++
ID : n

Return :
ID : n
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FuncDef :
Decl : main

FuncDecl :
TypeDecl : main

I d e n t i f i e r T y p e : [ ’ void ’ ]
Compound :

Decl : n
TypeDecl : n

I d e n t i f i e r T y p e : [ ’ int ’ ]
Constant : int , 10

FuncCall :
ID : p r i n t n
ExprList :

ID : n
FuncCall :

ID : p r i n t f
ExprList :

Constant : s t r i ng , ”\nPausa\n\n”
FuncCall :

ID : p r i n t n
ExprList :

FuncCall :
ID : add one
ExprList :

ID : n

Listing 2: Abstract syntax tree of the C program. Every line corresponds to
a node, with the first word being the type of the node and the rest being
parameters of it. If a node is indented in relation to its predecessor it means it
is the child node of said predecessor.
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Code generator
This final block takes the previous tree, traverses it and generates the final

Rust code. When visiting a node, that node is the responsible of taking the
result of its children nodes, modify it if needed, and merging it. Finally, it adds
the dependency statements generated by the preprocessor and appends them in
the beginning of the text.

From the previous tree, the resulting code is as follows:

fn p r i n t n (mut n : i 32 ) {
{

l e t mut i : i 32 = 0 ;
whi l e i < n {
pr in t ! ( ” I t e r a c i o {}\n” , i ) ;

i += 1 ;
}

}
}

fn add one (mut n : i 32 ) −> i 32 {
n += 1 ;
re turn n ;

}

fn main ( ) {
l e t mut n : i 32 = 10 ;
p r i n t n (n ) ;
p r i n t ! ( ”\ nPausa\n\n ” ) ;
p r i n t n ( add one (n ) ) ;

}
Listing 3: Final code in Rust, result of transcompiling the initial source code.

3.3. Details of the code generation from the previous ex-
ample

As it has been stated in the previous section, most of the workload in this
project was in the code generation block.
To explain further how it works, we shall use the last phase from the previous
example and do it step by step.

The abstract syntax tree resulting from the previous phase has three main
nodes, one for the definition of each function (nodes of type FuncDef).

Similarly to C, Rust has two main parts when defining a function, the dec-
laration or header and the body or compound. In the declaration it is defined
the name of the function, its return type and the necessary parameters, while
the body contains the actual implementation of said function.

When traversing the tree, the program visits the nodes starting at the root,
FileAST and then visiting its children, but a node cannot generate its entire
code until all its children nodes have returned. Therefore, we will start at the
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last nodes (leafs of the tree, the most indented nodes) and go upwards (to its
parents, found in the lines immediately before) in this example. To make it eas-
ier, we will do it separately for each function and, more specifically, separately
for both the header and body of said functions.

print n function

In the example, when generating the equivalent function print n, it first
creates the header and then the body, so we will start with the header too.

FuncDef :
Decl : p r i n t n

FuncDecl :
ParamList :

Decl : n
TypeDecl : n

I d e n t i f i e r T y p e : [ ’ int ’ ]
TypeDecl : p r i n t n

I d e n t i f i e r T y p e : [ ’ void ’ ]

Listing 4: AST for the header of the print n function

As stated before, the program starts at the Decl node when creating the
header of the function, but it cannot fully generate said header until all its
children nodes have return. Therefore, the first node that will be fully traversed
(as in, the program has returned from it) will be the IdentifierType for the
variable n, followed by its parent node TypeDecl: n.

The program visits the IdentifierType node, it returns the equivalent
type to ’int’, defined in the file equivalencies.json (see section 3.3).
Would the file not contain an equivalent type for it, the trancompiler
simply would return the same type as in C. In this case, it returns the
type i32 as its the equivalent in Rust.

Once returned from the IdentifierType node, the program visits the
TypeDecl node, which has the attribute n as the name of the variable.
Therefore, it returns n : i32 which indicates that the variable n is of
type i32.

On the Decl node it sees the children that has just returned is of type
TypeDecl, so it generates a variable declaration: let mut n : i32 and
returns.

The ParamList node, as its name indicates is used to declare parameters
for functions’ headers. Therefore, the program knows that no variables
will be declared in this section so it removes the let statement from the
expression let mut n : i32 that was the result of one of its children.
Then, it returns the expressions once it has ’cleaned’ them.
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The program returns to the FuncDecl node, but it still has children to
visit, so it visits the other branch, which ends on the node IdentifierType
that defines the type that the function will return, in this case ’void’.
Therefore it returns nothing.

When reaching the TypeDecl node of the print n function, the program
sees its has no type (void) so it simply returns the name of the function.

The FuncDecl node is used to represent the headers of a function, so the
program will generate the equivalent header in Rust when traversing it.
In this case, seeing the type is void it will generate: fn print n(mut n:

i32) and return.

Finally, the Decl node will see that its children is of type FuncDecl so it
will not modify the statement and simply return.

At this point, the program has completely generated the header for the
print n function, fn print n(mut n: i32), and is on the FuncDef node once
again. To complete the function declaration it will now visit the body and
generate its equivalent.

FuncDef :
Compound :

For :
Dec lL i s t :

Decl : i
TypeDecl : i

I d e n t i f i e r T y p e : [ ’ int ’ ]
Constant : int , 0

BinaryOp : <
ID : i
ID : n

UnaryOp : p++
ID : i

FuncCall :
ID : p r i n t f
ExprList :

Constant : s t r i ng , ” I t e r a c i o %d\n”
ID : i

Listing 5: AST for the body of the print n function

The parent node for the body of a function is always a Compound node. When
encountering a node of such type, the program simply encases all its child nodes
between {} and returns to the parent node. In this case, there is only one child,
so the program will visit it, generate the equivalent code, create the block and
return. To do so, we will start on the IdentifierType node and go from there.

Like on the header generation, the IdentifierType node returns the
equivalent to ’int’, i32.
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Once again the TypeDecl simply takes its attribute, the variable i, and the
type from its child node and creates the expression i : i32, returning
it.

On the node of type Decl, the program encounters a variable declaration,
but also a Constant as its child, so it visits it. The result of visiting the
Constant is its value, in this case 0. Therefore, the program returns to the
node Decl and creates both the variable declaration and its assignation:
let mut i: i32 = 0;.

The parent of Decl, DeclList always return its children’s values.

The program is again on the For node, but to create the equivalent of a
for statement in Rust, it needs to visit all its children.

The program first visits the stopping condition, in this case the BinaryOp

node. When traversing this node, the program simply visits its two chil-
dren and creates the expression. In the example, the children are ID nodes,
which always return the name of the variable who’s id represents, in this
case the variables i and n. Therefore, the program creates the expression
i < n and returns.

Now the program encounters the repeating statement, in this case a UnaryOp.
In the same fashion as just before, the child node returns the name of the
variable, i and the program generates the equivalent operation. In Rust,
the post-increment operation does not exist (neither do the pre-increment
or its equivalent with decrement), so the program generates the expression
i += 1.

Now the program encounters an extra node, which means this for loop
only has one statement. This is not possible in Rust, so it will be created
the same way as if the loop had multiple statements in it. The node is of
type FuncCall, which needs to visit its children before proceeding.

The first child is an ID node. Instead of returning the name of the function,
this time the program checks if there exists an equivalent function or macro
to this function id, and returns it instead. In this case, it returns the
print! macro.

The ExprList contains the arguments for the function call. It will first
visit its children node and concatenate them with a comma between them.
In this case, it will first find the Constant node, which when visited will
return the equivalent string but changing the formatting expression (%d)
by the one used in Rust ({}). Then it will visit the ID node which, as
before, will return the name of the variable. Finally, the program will
generate the expression "Iteracio {}", i and return.

The program will be back once more at the FuncCall node, but now with
all its children visited. Therefore, it will generate the expression with the
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name of the function or macro in Rust and its arguments, in this case
print!("Iteracio {}", i); and return.

Then, the program returns to the For node, but now it has visited all
its children already, so it can properly generate the equivalent to the for
loop. In Rust, for loops work exclusively with iterators[12], so it cannot
be directly transcompiled to them. Instead, the program will generate an
equivalent while loop. The way it works is:

• First creates a block, so that the variables declared inside the loop
are not available outside of it.

• Then appends the declarations found in the DeclList at the begin-
ning of the block.

• The program then generates the while loop with the same stopping
condition (the result of the BinaryOp) as the original loop.

• It puts all the statements found inside the original for loop in the
equivalent while loop. In this case, the code generated from visiting
the FuncCall node.

• Finally, it adds the repeating statement (the result of UnaryOp) at
the end of the while loop and closes both the loop and the block.

Which results in the following:

{
l e t mut i : i 32 = 0 ;
whi l e i < n {

pr in t ! ( ” I t e r a c i o {}\n” , i ) ;
i += 1 ;

}
}

Listing 6: Result of the code generator visiting the For node and its children.

And then returns to the Compound node.

The program finally arrives once again at the Compound node, which, as
stated before, simply surrounds the code resulting from visiting its children
with {} and then returns to the previous node.
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Once both the header and the body of the function have been generated, the
program returns to the FuncDef node, where it simply appends them, creating:

fn p r i n t n (mut n : i 32 ) {
{

l e t mut i : i 32 = 0 ;
whi l e i < n {

pr in t ! ( ” I t e r a c i o {}\n” , i ) ;
i += 1 ;

}
}

}
Listing 7: Result of the code generator visiting the FuncDef node for the print n
function.

add one function

In the same vein as with the print n function, the transcompiler will first
generate the header of the add one function and then the body.

FuncDef :
Decl : add one

FuncDecl :
ParamList :

Decl : n
TypeDecl : n

I d e n t i f i e r T y p e : [ ’ int ’ ]
TypeDecl : add one

I d e n t i f i e r T y p e : [ ’ int ’ ]

Listing 8: AST for the header of the add one function

This part of the tree is extremely similar to the one corresponding to the
header of the print n function (see Listing 4), with the only main differences
being the names of the functions and the fact that this one returns something.

The ParamList section will be executed exactly the same way it was done
in the previous function.

When visiting the IdentifierType corresponding to the return of the
function (the one under the TypeDecl: add one) the program will return
an actual type to its parent (namely i32 in this case).

This time, when the program reaches the FuncDecl node it sees that the
function has a return type in Rust, therefore in creates the header the same
way as before but adding a return type indicator, creating the statement:
fn add one(mut n: i32) -> i32.

With this, the header of the function has been created and the transcompiler
moves onto the body.
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FuncDef :
Compound :

UnaryOp : p++
ID : n

Return :
ID : n

Listing 9: AST for the body of the add one function

As stated before, the body is a Compound node and its children. In this case
there are two children of said node, therefore two statements inside the function.

First it will visit the UnaryOp node, which will get the equivalent id from
its child node, ID, and create the equivalent statement. As seen before, the
post-increment operation does not exist in Rust, therefore the resulting
operation once transcompiled is n += 1;.

When visiting Return nodes, the program simply creates a statement in
the form of return + result of its children. In this case, being its
only child the ID node, the final result will be return n;.

The program will reach the Compound node once more, where again it
simply surrounds the result of the children nodes with {} and returns.

Finally, on the FuncDef node with all its children visited, the program simply
appends the header and the body, creating the transcompiled function:

fn add one (mut n : i 32 ) −> i 32 {
n += 1 ;
re turn n ;

}
Listing 10: Result of the code generator visiting the FuncDef node for the
add one function.

main function

Once again, the transcompiler will first generate the header and then the
body.

FuncDef :
Decl : main

FuncDecl :
TypeDecl : main

I d e n t i f i e r T y p e : [ ’ void ’ ]

Listing 11: AST for the header of the main function

As it can be seen in the AST corresponding to the header of the main func-
tion, it differs from the previous two cases in that it does not have a ParamList

node. That is because in the original source code, no parameters are passed to
said function.
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The transcompiler will traverse the nodes that correspond to the type of
the return of the main function, realising it is void in the same fashion it
did on the print n function’s case.

When returning to the FuncDecl node, the transcompiler will see that
no ParamList node is present so it will generate a main function without
arguments. The statement it will create is fn main().

Once the function’s header has been generated, the transcompiler will move
towards the body’s nodes.

FuncDef :
Compound :

Decl : n
TypeDecl : n

I d e n t i f i e r T y p e : [ ’ int ’ ]
Constant : int , 10

FuncCall :
ID : p r i n t n

ExprList :
ID : n

FuncCall :
ID : p r i n t f

ExprList :
Constant : s t r i ng , ”\nPausa\n\n”

FuncCall :
ID : p r i n t n

ExprList :
FuncCall :

ID : add one
ExprList :

ID : n

Listing 12: AST for the header of the body function

Again, the body of the function is generated from a single Compound node.
In this case, four different children spring from said Compound node, as there
are four statements in the body of the main function.

The first statement is a variable declaration, which starts at the Decl

node, and will develop in the same way as it has been previously shown in
the print n function, resulting in a similar statement: let mut n: i32

= 0;

The second and third statements are function calls that are developed
once again like they were in the print n function, the differences being
that this time both function calls only have one child to the ExprList

node, and that the first call (to the print n function) does not have a
function equivalent in Rust, as the call is made to another function within
the source code.
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Finally, the program encounters two nested function calls (in the AST one
is a child to the other). The transcompiler will first generate the add one

function call, similarly to the previous cases, and produce the add one(n);

statement.

When the parent FuncCall node is reached again by the transcompiler, it
will see that the parameters list contains another function call, so it will
remove the semicolon from said parameter, remove all traces of indentation
and then encase it between parenthesis, creating the final function call:
print n(add one(n));.

Once the program reaches the FuncDef node again, it will once more con-
catenate the header and the body of the main function, generating:

fn main ( ) {
l e t mut n : i 32 = 10 ;
p r i n t n (n ) ;
p r i n t ! ( ”\ nPausa\n\n ” ) ;
p r i n t n ( add one (n ) ) ;

}
Listing 13: Result of the code generator visiting the FuncDef node for the
add one function.

Once all three FuncDef nodes have been visited, the transcompiler will return
to the FileAST node, where it will concatenate in turn all three functions and,
seeing there are no other nodes pending to visit, return the final code in Rust
to the main module, where it will be saved to disk.

3.4. Files and customization

This project is mostly written in Python, with JSON files for modifiable
settings. Said files can be found in the project folder, c-to-rs.

The main files of the project are the Python files and the two JSON files:

c-to-rs.py: Main module of the project. Deals with command line op-
tions and file input/output.

pre processor.py: Preprocessor for the transcompiler.

rust visitor.py: Code generator for the transcompiler. It can be edited
to include specific functions’ transcompilation rules.

dependencies.json: User-editable file that contains the dependencies
that the Rust project will have.

equivalencies.json: User-editable file that contains the equivalencies
between C and Rust, including functions types and compiler directives
(#pragmas).
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Additionally, in the project folder there can be found two other folders: out
and examples. examples contain multiple small programs in C that transcom-
pile correctly and were used to develop the main module. On the other hand,
out is the folder where the transcompiled source code will be generated in, along
with the file that describes the Rust project generated to the compiler.

The main customizations a user can do to the project are: changing what
C types are transcompiled to, changing what C functions are transcompiled to
(used mostly for standard library functions) and changing the dependencies of
the final Rust project.

To change what the C types and functions are transcompiled to, the user
can change the elements equivalent types and funtions with equivalents

in the equivalencies.json file. If a user wants to modify how a specific func-
tion is transcompiled (in the project it is set for malloc, calloc and abs func-
tions), they must put the name of the function in the functions with parsing

element in the same file. Then, a specific function must be created in the code
generator (rust visitor.py file) with the name analize {function name}
where function name is the name in C of the function. This new function will
be called at runtime by the transcompiler when encountering the function de-
fined in functions with parsing.

To add or remove a library to be used on the Rust project (called crates

in Rust) the user only has to modify the dependencies.json file including the
name, the version and if it has to be used or not. Additionally, if the crate

contains a macro that is going to be used by the transcompiled version of the
code, it is only necessary to indicate it in the dependencies.json file and the
transcompiler will handle both telling the compiler that macros will be used and
that the crate contains them.

Finally, the process to generate an equivalent program that uses a function
from library is:

Find a suitable library (crate) with said equivalent function4.

Add the equivalence in the equivalencies.json file.

Add the crate to the dependencies.json file with the necessary argu-
ments.

Transcompile.

All possible customizations include examples already implemented.

4All the publicly available crates can be found at https://crates.io.
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4. Tests and examples

This project was developed similarly to test-driven development. That is,
every new feature (in this case, features of the C language to be transcompiled)
was introduced via a test (in this project, a source file that included said new
feature to transcompile). In short, the iteration for every new feature included
in the project was:

Write a test (source file in C) that includes the new feature to transcom-
pile. If it transcompiles correctly, behaves as expected and there seem to
be no problems, this feature is included.

If it does not transcompile correctly or when transcompiled it does not
execute as expected, implement said feature in the transcompiler so it
works correctly.

Test all previous working features, including the new one. If one does not
work, refactor until all do.

Clean up code.[14]

Therefore, all tests under the examples/ folder of the project should transcom-
pile correctly and produce the same result when executing the source code com-
piled in C and in Rust.

The main differences between the development of this project and test-driven
development were that the tests were not unitary (as in, each test only includes
one feature) and that they were not automated.

4.1. What is working

In the current state of the project, most basic functionalities of C are cor-
rectly transcompiled to Rust and work in a similar manner. The following can
be transcompiled:

Variable declarations: All variable declarations should work correctly. The
only exceptions would be when using a non-existing type in Rust while
not providing an equivalent. In this case, the transcompiler will interpret
it as the type is called the same way producing expressions in the vein of
let mut n: int64 t; which would throw a compiler error.

Function declarations: All function declarations (header and body gener-
ation) should work correctly. This does not mean that an error with a
statement in the body of the function could exist.

struct declaration and use: There should not be any problems related to
the use of structs outside of errors caused from type declarations of its
members.
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Function calls: Any type of function calls, including function composition,
should be transcompiled properly as long as the functions that are being
called are present in the code as well.

Static array declaration and use: any array allocated at compile time will
be translated to Rust correctly, as well as any access to a valid position in
it. There might be some errors when using non-integer types to reference
an array index, because Rust requires any index to be of type usize, which
may not be cast properly.

Loops: Any type of loop (while, for or do/while) should work without
issues. Both other types of flow control within loops (namely contine and
break statements) should also work as intended.

Heap allocation: Most dynamic allocation of objects onto the heap (via
malloc() or similar) should work correctly. Because of the way Rust
operates, those objects will be freed once they go out of scope (similar to
smart pointers in modern C++).

Selection statements: Typical selection statements (if/else and switch/case,
as well as the ternary operator) should work correctly under most circum-
stances.

Standard unary operators: All the unary operators with the exception of
address of (& operator) should transcompile correctly. It is important to
note that the address of operator will transcompile to the ”borrowing”
operator in Rust[13]. Also worth noting that the dereferencing operator
(*) will not always behave correctly as it requires an unsafe block to
be used in Rust with raw pointers. Finally, the pre-increment and post-
increment operators (++) will both transcompile to an equivalent of the
pre-increment, as is the case with pre-decrement and post-decrement (--).

Binary operators: All binary operators are transcompiled correctly, in-
cluding, but not restricted to, bitwise operators. Note that the result of
a comparison binary operator, e.g., <, >, == return a bool type in Rust
instead of 1 or 0.

typedefs: Definition of new aliases for existing types or definition of new
types works correctly.

Explicit casting: Casting a variable of one type into another will work as
intended when transcompiling.

K&R function declaration: This style of function declaration, while mostly
obsolete, is also supported because the pycparser library also supported
it and was non-issue to create that special case.
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4.2. Limitations

While most basic programs will transcompile correctly to Rust using this
project, there are still some limitations regarding, but not limited to:

Global variables: While constants work as is in Rust, mutable global vari-
ables in Rust are not safe (because when two threads access the same
variable it is considered undefined behaviour, therefore unsafe). The
workaround created by the project when encountering is surrounding any
global variable usage with an unsafe block which, while can work in most
single-threaded programs, is not the correct way to do it.

char usage: In C there are two main uses for variables of type char, both
as a character variable or as a short integer. Both of uses are available in
Rust, but there is a clear distinction between a numeric variable (types
i8 and u8 in Rust) and character variables (type char). Therefore, any
program that makes use of chars in both ways will not work as intended
when transcompiled as it is programmed to all variables of a type to
transcompile to only one type in Rust.

char as a string: There is a str primitive type in Rust, therefore most
standard library methods that are related to text are expected to use this
type instead as of an array of chars like in C. Depending on what usage
of text there is in the program to be transcompiled the final code in Rust
may or may not work.

Returning an operation: When returning a numeric type in C, if the return
statement contains an operation (like pre-subtraction) the Rust compiler
will throw an error as the proper return type for such function would be
(), the operation type.

Pointer usage: Only very basic pointer usage is supported (only when
allocating in the heap via allocator functions). Creating raw pointers from
existing variables is not supported and will not transcompile correctly.
Similarly, changing the types of a pointer, e.g., reading a floating point
binary codification as if it were an integer, will not work even if there
exists an equivalent in Rust (it is unsafe to). Moreover, dereferencing
anything that has not been allocated in the heap via traditional ways
will not transcompile because dereferencing a pointer to a non-compiler
controlled memory location is undefined behaviour. Additionally, when
allocating anything on the heap it will initialize those memory positions
to 0 (equivalent to calloc in C) regardless if the original program does
not, as not initializing memory that could be referenced to would also
cause undefined behaviour.

Printing non-standard types: While the basic printing functions are transcom-
piled correctly, some types may not be displayed properly and thus throw
a compiling error. As an example, trying to print an enum will throw a
formatting error.
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Variable naming: There might be some issues when naming a variable
with the same name as a member of an enum, as the transcompiler will
not know if it is a new variable or an actual reference to the enum.

Dependency on undefined behaviour: Anything that depends on undefined
behaviour (like overflowing an integer or leave memory initialized without
freeing it) may not work as intended.

Unions: The C-style union is considered unsafe in Rust, therefore it was
not included. This was changed once this project was completed, and now
it is safe to initialize unions and to read the active fields of a union.

Different type operations: When doing an operation between two different
types of variable (like adding a float and an integer), the Rust compiler
will throw an error for type mismatch unless there is an explicit cast for
one of the variables.

switch/case must have a default: In Rust, the equivalent to switch/case

must always contain a default statement or else it will throw a compiler
error.
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4.3. Examples

In this section, several examples of C code and its transcompiled Rust ver-
sions will be displayed, as well as a brief commentary on them.

Example 1

#inc lude <s t d i o . h>
enum WebEvent {PageLoad , PageUnload , Test } ;

void i n s p e c t (enum WebEvent event )
{

switch ( event )
{

case PageLoad :
p r i n t f (” page loaded \n ” ) ;
break ;

case PageUnload :
p r i n t f (” page unloaded\n ” ) ;
break ;

d e f a u l t :
p r i n t f (” not r e cogn i s ed \n ” ) ;
break ;

}
}

void main ( void )
{

enum WebEvent load = PageLoad ;
enum WebEvent unload = PageUnload ;
enum WebEvent t e s t ;

t e s t = Test ;

i n s p e c t ( load ) ;
i n s p e c t ( unload ) ;
i n s p e c t ( t e s t ) ;

}
Listing 14: Small program to test enums and switch/case statements.
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enum WebEvent { PageLoad , PageUnload , Test }
fn i n s p e c t (mut event : WebEvent) {

match ( event ) {
WebEvent : : PageLoad => {

pr in t ! ( ” page loaded \n ” ) ;
}
WebEvent : : PageUnload => {

pr in t ! ( ” page unloaded\n ” ) ;
}

=> {
pr in t ! ( ” not r e cogn i s ed \n ” ) ;

}
}

}

fn main ( ) {
l e t mut load : WebEvent = WebEvent : : PageLoad ;
l e t mut unload : WebEvent = WebEvent : : PageUnload ;
l e t mut t e s t : WebEvent ;
t e s t = WebEvent : : Test ;
i n s p e c t ( load ) ;
i n s p e c t ( unload ) ;
i n s p e c t ( t e s t ) ;

}
Listing 15: Transcompiled version of the previous program.

As it can be seen, the enum declaration is practically identical both in Rust and
C, with the exception of the last semicolon.

The switch/case statement in C has the match equivalent in Rust, which
does not require a break for each case as well as having the default keyword
changed to a .

Finally, every time an enum is used, in Rust it is required to state the original
enum type. In this case, it can be seen that WebEvent is present anywhere where
an enum of such type is used.

Both programs output the same when executed.
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Example 2

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

s t r u c t v e s s e l
{

f l o a t f i r s t v a r ;
i n t second var ;

} ;

void main ( void )
{

s t r u c t v e s s e l ves = { 2 . 0 , 4 } ;
i n t ∗ ar r = mal loc ( s i z e o f ( i n t ) ∗ 4 ) ;
i n t index = 0 ;
do
{

ar r [ index ] = ves . second var ;
ves . second var−−;
index++;
p r i n t f (” Second s t r u c t var i s : %d\n” , ves . second var ) ;
p r i n t f (” Last array ass ignement was : %d \n” , a r r [ index −1 ] ) ;

} whi le ( ( i n t ) ves . f i r s t v a r < ves . second var ) ;
f r e e ( a r r ) ;

}
Listing 16: Small program to test struct and memory allocation.

s t r u c t v e s s e l {
f i r s t v a r : f32 ,
second var : i32 ,

}

fn main ( ) {
l e t mut ves : v e s s e l = v e s s e l { f i r s t v a r : 2 . 0 , second var : 4} ;
l e t mut ar r : Box<[ i 32 ]> = Box : : new ( [ 0 i 32 ; 4 ] ) ;
l e t mut index : i 32 = 0 ;
loop {

ar r [ ( index ) as u s i z e ] = ves . second var ;
ves . second var −= 1 ;
index += 1 ;
p r i n t ! ( ” Second s t r u c t var i s : {}\n” , ves . second var ) ;
p r i n t ! ( ” Last array ass ignement was : {} \n” , a r r [ ( index − 1) as u s i z e ] ) ;
i f ! ( ( ves . f i r s t v a r as i 32 ) < ves . second var ) {break}

}
}

Listing 17: Transcompiled version of the previous program.

30



This example shows various things:
struct declaration is very similar in both C and Rust.

When creating the array in the main function, Rust requires the code to
have an initialization of the memory to allocate, contrary to C’s malloc

function, which does not initialize. In a sense, Rust does not have a malloc

equivalent but a calloc one.

The do/while loop is translated into a loop, which is an endless loop that
will only exit through a break. In this case, to generate the equivalent it
will do the same evaluation as the while in C but negated, only breaking
out of the loop when it is no longer true (same behaviour as C’s while).

In the example, when initializing the struct the first variable is declared
as 2.0. This has to be explicitly done this way, as the Rust compiler
would throw an error if initializing a floating point variable as an integer.

There is a cast when comparing the first and the second variable of the
struct. In Rust, comparing two variables of different nature (integer
and floating point, in this case) does not have a defined outcome. Only
comparing two types of the same nature will work, if not the compiler will
throw an error.

There is no free equivalent in Rust. That is because when any variable,
be it allocated statically or dynamically, is freed when going out of scope.
In this case, it will go out of scope when the block it is generated ends,
i.e., when the main function exits.
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Example 3

#inc lude <s t d i o . h>
typede f i n t i n t e g e r ;
void main ( void )
{

i n t e g e r i ;
i n t e g e r a = 1 ;
f o r ( i = 0 ; i < 15 ; i++)
{

i f ( i <= 3) cont inue ;
e l s e i f ( i >= 9) break ;
e l s e {

a ∗= i ;
a = ! ( a%2) ? a/2 : a ;

}
p r i n t f (” Current i t e r a t i o n : %d\n” , i ) ;

}
p r i n t f (” Fina l r e s u l t : %d\n” , a ) ;

}
Listing 18: Small program to test breaks and conditionals.

type i n t e g e r = i32 ;
fn main ( ) {

l e t mut i : i n t e g e r ;
l e t mut a : i n t e g e r = 1 ;
{

i = 0 ;
whi l e i < 15 {

i f i <= 3 {
i += 1 ;
cont inue ;

}
e l s e i f i >= 9 {

break ;
}
e l s e {

a ∗= i ;
a = i f ( ! a % 2) != 0 {a / 2} e l s e {a } ;

}
pr in t ! ( ” Current i t e r a t i o n : {}\n” , i ) ;

i += 1 ;
}

}
pr in t ! ( ” Fina l r e s u l t : {}\n” , a ) ;

}
Listing 19: Transcompiled version of the previous program.
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This last example shows the transcompilation of the typedef statement, in
this case the type statement in Rust which has the exact same behaviour.

It also shows once again the for loop transcompilation to a while loop,
but also shows other flow control options. The first that can be found is the
continue statement. In this case, being a while loop, the repeating statement
has to be executed once before continuing to the next iteration, or else it could
get stuck in some cases. Later there is the break statement, which works in the
same way it does in C.

There is also the transcompilation of a ternary operator. Rust does not
directly have this operator, but it does have an equivalent with the if/else

statements, which is used here.

For more examples, see the examples folder inside the project folder.
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5. Conclusions

The objective of this project was to design and implement a transcompiler
from C to Rust. With this project, most of what it set to do was achieved. It
is fully functional when working with the features previously discussed while
being relatively easy to use and extend or customize.

The result of this project provides the user enough tools to transcompile basic
C programs that do not make use of the language’s more advanced features in
an easy way, creating an equivalent program in Rust that, in theory, has the
same behaviour as its C counterpart but enforcing better practices in regards
of memory and variable ownership through Rust’s own compiler.

While most programs may not transcompile at first because library usage is
almost always present, the transcompiler offers enough customization options
that a user can get an equivalent program in Rust without much trouble, just
changing the settings in the customization files.

Finally, with this project it was seen why the old compiler design philosophies
still apply and that is why they are still used today, and that it is much easier
to create a compiler when using said designs as well as tools proven to work.

5.1. Future work

While this project is completely functional in its set of features, there is
still room for improvement in the form of new features (like concurrency sup-
port, pointer arithmetic or pointer transmutation) and expanding on the ones
it already has (better support for memory allocators, improvements in reference
creation and support).

Furthermore, if down the line it could seem feasible and of any utility, a
custom parsing method could be created to encompass all phases of a compiler
in the implementation of this project.

It has been stated before that there is an absence of an intermediate phase
between the abstract syntax tree generation and the code generation. In this
case it worked out just fine traversing the AST and generating the code on
the go because C programs’ syntax and structure is relatively similar to the one
found in Rust. However, if the source language was not the of the C-style family
of syntax, like Prolog or Haskell (both of which have syntaxes very different to
that of C), then the use of translation tables would be pretty much mandatory
to prevent huge amounts of backtracking when traversing the tree, so it could
be a good idea to redo this part if there was any interest to make this project
compile more than one language to Rust.

Another reason to create said tables would be that it would allow for a more
idiomatic Rust result when transcompiling, therefore increasing the correctness
of the result and most likely its performance.

All in all it is a complete project, but with the correct intent much can be
done to further expand it.
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