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1. ABSTRACT   
 

In the last 30 years, gene therapy has constituted a significant area of biomedical 

research, focused on improving the direct introduction of genetic material into the 

body by regulation of the activity of some deficient or harmful genes. Therefore, this 

method allows a nearly physiological and continuous production of some proteins, 

avoiding the periodic administration of external recombinant proteins. However, 

members of the international sports community are aware of the fact that elite 

sportsmen are seeking a physical advantage in competition misusing gene therapy, the 

following called gene doping.  

According to World Anti-Doping Agency (WADA), gene doping includes “The use of 

polymers of nucleic acids or nucleic acid analogues, the use of gene editing agents 

designed to alter genome sequences and/or the transcriptional or epigenetic 

regulation of gene expression and the use of cells, whether they are genetically 

modified cells or not”. Consequently, gene doping could potentially be used to 

increase muscle size and strength, enhance endurance, promote more rapid healing of 

sports injuries and reduce its associated pain. In this project, it has been selected 

erythropoietin for gene doping as it is considered an ideal candidate for its role in 

increasing endurance and enhance capacity to deliver oxygen to various tissues. 

RESUM 

En els últims 30 anys, la teràpia genètica ha constituït una àrea significant en la recerca 

biomèdica, centrada en millorar la introducció directa de material genètic en el cos per 

regular l’activitat de gens deficients o nocius. Per tant, aquest mètode permet una 

producció relativament fisiològica i continua de determinades proteïnes, evitant 

l’administració periòdica de proteïnes recombinants. Tanmateix, els membres de la 

comunitat internacional esportiva són conscients de que actualment els atletes d’elit 

estan buscant un avantatge físic en les competicions utilitzant la teràpia genètica, 

també anomenada dopatge genètic.  

Segons l’agència antidopatge mundial (WADA), el dopatge genètic inclou “L’ús de 

polímers d’àcids nucleics o àcids nucleics anàlegs, l’ús d’agents que modifiquen els 

gens per tal d’alterar les seqüències genòmiques i/o la regulació de l’expressió 

genètica transcripcional o epigenèticament i també, l’ús de cèl·lules indistintivament si 

estan modificades genèticament com no”. Per tant, el dopatge genètic es podria 

emprar potencialment per incrementar la massa muscular i la força, prolongar la 

resistència, promoure la cura més ràpida de lesions esportives i reduir-ne el dolor 

associat. En aquest treball, s’ha escollit l’eritropoetina per al dopatge genètic ja que es 

considera un candidat ideal per al seu rol en incrementar la resistència i la capacitat de 

distribuir oxigen a varis teixits. 
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2. INTEGRATION OF THE DIFFERENT SCOPES 
 

This work integrated different educational fields. The main one was Biochemistry and 

Molecular Biology. Since the principal issue of this project was gene doping, it was very 

significant to study and understand interactions with erythropoietin receptor and 

transcriptional factors that influence its gene expression. It was also important to go 

into detail about the principal types of gene doping and the actual situation of 

detecting gene doping. Afterwards, this subject was vital to propose a model to 

standardise gene doping detection that could withstand legal scrutiny.  

As secondary educational fields, Physiology and Pathophysiology, History and 

Legislation were included. Physiology and Pathophysiology was essential to understand 

the erythropoietin physiological role such as the pathway of erythropoiesis, from stem 

cells to erythrocytes. History was used to comprehend how important gene doping has 

been getting in the last thirty years and to realise the implicated difficulties in getting a 

success in gene doping. Regarding Legislation, WADA was the main focus as it is the 

anti-doping international agency. Furthermore, it was emphasised its pending success 

in implementing a standard, viable and economical method to detect gene doping. 
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3. INTRODUCTION  
 

After only a short history of three decades, advances in gene technology and therapy 

have shown to have potential to treat human diseases. Despite this ability, gene 

therapy remains in the area of experimental medicine, and much clinical study is 

necessary to demonstrate efficacy and safety. However, progress in gene transfer 

technology could be misused to enhance athletic performance in sports, called gene 

doping. Its main attraction, as against traditional drug-based doping, lies in the 

apparent difficulty in detecting its use. It is assumed that both the transgene and the 

expressed protein would be indistinguishable from their endogenous equivalent (1). As 

a matter of fact, gene doping represents a threat to the integrity of sport, weaken the 

principles of fair play and can involve a potential harm in athletes, society and the 

environment (2). 

To date, plenty of genes have been identified whose products may affect physical 

performance and, therefore, they become potential candidates for gene doping. In 

fact, many of these gene products have also been discovered to be linked to diseases 

in humans. This intensive research has been focused on developing gene therapy 

approaches for their treatment. 

Additionally, most of genes develop different roles in the body. Given their complex 

biological functions, it would be essential to consider what other changes might take 

place when modulating one single gene, as it could be altered the function of other 

essential genes. Among the most relevant candidate genes for gene doping, 

erythropoietin is particularly interesting due to its role in rising endurance. The 

expressed protein stimulates erythropoiesis, increases blood oxygenation and oxygen 

delivery to tissues. Indeed, these pathways are beneficial to treat particular anemias 

using gene therapy (1). 

As a matter of fact, it is required an updated review of the technologies of gene 

transfer, the genes with potential to influence physical performance, and 

advancements in legitimate gene therapy. In order to deal with this situation, it will be 

essential to study deeply the different techniques used, as they are getting more 

sophisticated and, consequently, harder to detect (2).  
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4. OBJECTIVES 

 

The main aim of this project is to evaluate the current situation of gene doping in a 

global context. The key purposes could be classified in three: 

1. Perform a bibliographical research of erythropoietin physiological role, such as its 

gene expression’s regulation and interactions with erythropoietin receptor.  

2. Define the concept of gene doping according to WADA, evaluate different gene 

doping methods and their detection, as well as describe adverse side effects related to 

its misuse.  

3. Choose the most promising method to detect erythropoietin gene doping, as there 

is no available an official system yet. This analysis should be robust, viable and 

economic in order to be implemented by WADA.    

 

5. MATERIALS AND METHODS 

 

The first approach of gene doping was the book Genetically modified athletes: 

biomedical ethics, gene doping and sport. It has been consulted dozens of 

bibliographical sources found since the active search in databases like PubMed or 

Scopus. While developing this project it has been used scientific reviews and also 

original articles to redact. It has not been applied any restriction to publication date, 

but it has been given preference to more present papers. Occasionally, it has been 

researched some web pages, like U.S. National library of medicine, to clarify some 

concepts and to look up the definition of gene doping by WADA. Furthermore, Jordi 

Segura Noguera and Sergi Coll Camenforte from IMIM aided me in selecting the most 

promising method of detecting erythropoietin gene doping and stressed the 

importance of standardization.   
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6. RESULTS 

6.1 HISTORY AND LEGISLATION 

 

6.1.1 History of gene therapy  

The first direct human gene therapy trial took place in 1974 to treat two patients 

suffering from hyperargininemia, an urea cycle disorder. It was believed that the wild-

type Shope papilloma virus encoded the gene for arginase activity so the gene could be 

transferred by administering the virus intravenously. Unfortunately, the trial was 

unsuccessful as there was not a change in the arginine levels.  

The first human gene therapy trial approved by the Food and Drug Administration 

(FDA) took place in 1990. It was treated a patient with adenosine deaminase (ADA) 

deficiency associated with severe combined immunodeficiency (SCID). It was 

administered an autologous ex vivo therapy with white blood cells, which became the 

first clearly successful gene therapy.  

The result in ex vivo gene therapy has been genetic and phenotypic improvement of 

these diseases with normalization or significant improvement in immune parameters. 

Furthermore, the latest approach in gene therapy ex vivo is partial correction of the 

inborn genetic condition.  

Unfortunately, these clinical trials have demonstrated potential risk, which may be 

inherently associated with the use of integrating retroviral vectors. The main viral 

vectors used in gene doping are explained in 6.3.1.1 Viral gene transfer. Three children 

with X-linked inheritance combined immunodeficiency developed T-cell leukemia, 

because retrovirus inserted near to a proto-oncogene and one of them died. In 

another gene therapy trial, while using a recombinant adenovirus (rAd) to in vivo 

deliver a gene encoding for ornithine transcarbamilase, one patient died of an acute 

and uncontrollable reaction to the vector. The administration was direct to the liver 

through the hepatic artery, and caused intravascular coagulation and multi-organ 

failure.  

Gendicine™ was the first gene therapy product for clinical use in humans. It was 

approved by the Chinese State Food and Drug Administration in 2003 for the 

treatment of head and neck squamous cell carcinoma. This treatment was based on an 

adenoviral gene delivery system that inserts p53 gene into tumor cells stimulating cell 

death. European Medicines Agency (EMA) recommended for the first time gene 

therapy product Glybera®, alipogene tiparvovec, for approval in the European Union in 

2012. It was based on a recombinant adeno-associated viral (rAAV) vector and it was 

approved for the deficit of lipoprotein lipase (3).  
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Strimvelis® was the first ex vivo stem-cell gene therapy to be approved in Europe. This 

treatment consisted in hematopoietic progenitor CD34+ cells transduced with 

retroviral vector that encoded for the human adenosine deaminase cDNA sequence. 

This was used in patients with adenosine deaminase deficiency associated to severe 

combined immunodeficiency, that were not suitable to undergo bone-marrow 

transplant due to lack of matching donor. Nowadays, most gene clinical trials are 

currently in phase I or II with less than 3% of all trials in clinical development (Table 1) 

(3). 

 

Table 1: Timeline of gene therapy 

6.1.2 History of blood and erythropoietin manipulation 

The first evidence linking erythropoietin (Epo) genetic alteration to enhanced athletic 

performance was suspected of a skier in 1964. Later studies concluded that he had a 

natural mutation in Epo receptor gene that resulted in the generation of a greater 

number of erythrocytes and enhanced capacity to deliver oxygen to various tissues 

including muscles (4). 

During the Olympic Games held at moderate altitude, 2250 m at sea level, altitude-

induced blood adaptations, such as an increase in haemoglobin concentration, were 

considered responsible for athletes living at altitude winning most of the endurance 

races in 1968. Consequently, it was demonstrated that elevation in haemoglobin 

concentration and oxygen delivery improved performance. It was speculated that the 

first accounts of blood transfusions in sport were in the 1970s by athletes. The next 

form of Epo doping was recombinant human Epo (rHuEpo) in the 1990s. In 2000, it was 

demonstrated that rHuEpo administration also increased haematocrit as well as time 

to exhaustion. Nowadays, it is known that some athletes are using rHuEpo in 

combination with blood transfusions.  

In 1990, erythropoietin was included on the list of prohibited substances by the 

International Olympic Committee as it was suspected its misuse, although no approved 

1974 
• First human gene therapy: hyperarginemia 

1990 

 
• First gene therapy approved by FDA: ADA- SCID 

 
2003 

• First gene therapy product for clinical use: Gendicine® 

2012 
• First EMA recommendation of gene therapy: Glybera® 

2016 
• First ex vivo stem-cell gene therapy to be approved in Europe: Strimvelis® 
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test existed. As rHuEpo was directly undetectable at the time and as well as to protect 

the health of athletes, it was introduced the 50% haematocrit rule in 1997 by the 

International Cycling Union. So, any racing cyclist who had a haematocrit above 50% 

was declared ineligible and was excluded from the race. Despite this rule, WADA was 

created in 1999, an independent international agency. His mission was based on 

setting standards for doping detection and coordinating sports organisations and 

public authorities.  

Although rHuEpo is structurally similar to endogenous erythropoietin, it was developed 

a direct urinary test that could differentiate isoforms in isoelectric profiles. This test 

became the first approved method for the direct detection of rHuEpo doping, even its 

limited detection of hours. The Athlete Biological Passport (ABP) was introduced in 

2008 as a new tool to detect alteration of blood markers, which is explained in 6.4.1 

Screening for blood parameters. Nevertheless, ABP is not enough sensitive and some 

athletes are now using microdoses of rHuEpo in a range from 10 to 40 IU/kg body 

mass. These microdoses increase haemoglobin mass without large fluctuations 

according to ABP. To sum up, adapting to anti-doping methods by the athletes requires 

a constant developing and implementing new detection methods (5).  

6.1.3 Legislation of gene doping 

WADA is the international organization responsible for promoting, coordinating and 

monitoring the global fight against doping in sport in all its forms. In order to cope with 

doping, WADA has collected different substances and methods related to doping. 

Substances are classified as Non-approved substances, Anabolic agents, Beta-2 

agonists, Hormone and metabolic modulators, Diuretics and masking agents and 

Peptide hormones, growth factors, related substances and mimetics. The classification 

of prohibited methods includes manipulation of blood and blood components, 

chemical or physical manipulation, and gene doping.  

WADA has admitted that gene doping represents a threat to the integrity of sport and 

the health of athletes so it was forbidden in 2004. However, genetic modification is still 

not fully theorised in anti-doping policy and it is already causing problems in elite 

sportsmen. To handle with this unfair situation, WADA has organized workshops about 

gene doping since 2002. Moreover, in 2004, it was created an expert group on gene 

doping, which task is to study the latest advances in the field of gene therapy and the 

methods for detecting gene doping (6). 

  

https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/non-approved-substances
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/non-approved-substances
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/beta-2-agonists
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/beta-2-agonists
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/hormone-and-metabolic-modulators
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/hormone-and-metabolic-modulators
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/peptide-hormones-growth-factors-related-substances-and-mimetics
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/manipulation-of-blood-and-blood-components
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/manipulation-of-blood-and-blood-components
https://www.wada-ama.org/en/prohibited-list/prohibited-at-all-times/chemical-and-physical-manipulation
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6.2 ERYTHROPOIETIN 
 

Erythropoietin is a hormone involved in the proliferation and differentiation of 

erythrocyte and the maintenance of a physiological level of erythrocyte mass. It is a 

glycoprotein synthesized by the kidney in response to low blood oxygenation, among 

other factors. It has been widely studied since it was discovered his first therapeutic 

use with anemia. In fact, this molecule is an effective treatment for severe anemia 

associated with chronic kidney disease, acquired immune deficiency syndrome (AIDS) 

and chemotherapy of cancer. Nowadays, it is been studying in anemic patients with 

cardiac failure, like strokes, as a neuroprotective agent (7). 

6.2.1 Erythropoiesis  

Erythropoiesis is part of the haematopoiesis, which involves the production of mature 

cells in the blood and lymphoid organs. In periods of increased erythrocyte loss, due to 

haemolysis or haemorrhage, the production of erythrocytes increases. However, 

overproduction of erythrocytes does not occur, even in a severe loss of erythrocytes. 

Maturing erythroid progenitor cells expand in number and decrease in size. The first 

committed erythroid cell type forms characteristic colonies called a burst-forming unit-

erythroid cell and further differentiate into colony-forming unit-erythroid cells. These 

cells begin synthesis of haemoglobin and differentiate into erythroblasts, which 

enucleate and form reticulocytes. After several days, mitochondria are degraded, 

reticulin declines, and the cells become mature red blood cells (RBC) (Figure 1). As 

erythrocytes lack DNA, they can neither divide nor alter gene expression in response to 

stimuli (7). 

 

Figure 1: The process of erythropoiesis, adapted from (7) 

Erythropoiesis occurs in specialized zones of bone marrow, surrounded with 

macrophages. In healthy humans, erythrocytes constitute 99% of circulating cells and 

approximately 45% of the blood volume. To sustain this level of RBC production, a 25% 

of the cells in a normal bone marrow are erythroid precursors. Although erythroid 



Erythropoietin gene doping Iolanda Mitjans Suriol 

 

9 
 

precursors only represent a smaller proportion of 1%, its lifespan is 3–4 months under 

normal conditions, but it can be decreased in chronic kidney diseases (7). 

6.2.2 Erythropoietin gene expression 

The expression of the Epo gene is mainly in the liver encoded in chromosome position 

7q22 and it is under the control of several transcription factors. GATA binding protein 

2 (GATA-2) and nuclear factor kappa B (NF-κB) act and inhibit Epo gene expression on 

the 5′ promoter. On the other hand, the main mechanism by which hypoxia stimulates 

the expression of the Epo gene is binding of hypoxia inducible transcription factor (HIF) 

(Figure 2). 

The hypoxia-inducible Epo enhancer, which is located on 3’ of the Epo gene, contains 

two transcription factor binding sites. HIF binds the proximal site of the Epo enhancer 

downstream. HIF-α protein levels are controlled by HIF-prolyl hydroxylases (HIF-PH), 

enzimes that hydroxylate the α-subunit of HIF, targeting it for ubiquitination by the 

Von Hippel–Lindau protein and subsequent degradation by the proteasome. HIF-PH 

activity generally increases with high levels of oxygen, which led an augmented HIF 

protein levels and the rate of Epo production and, consequently, erythropoiesis also 

increases (8). 

 

Figure 2: Transcriptional factors that stimulates or inhibates Epo gene expression (9) 

Epo deficiency is the main cause of the anemia in chronic kidney disease and a 

contributing factor in the anemias induced for inflammation and cancer. There are 

some active compounds capable of stimulating endogenous Epo production in 

preclinical or clinical trials for treatment of anemia. These agents include stabilizers of 

the HIFs, which stimulate his expression through the Epo enhancer, and GATA 

inhibitors (8). 
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6.2.3 EpoR 

Erythropoietin receptor (EpoR) is a type I transmembrane protein that belongs to the 

cytokine receptor superfamily and its principal function is regulation of erythropoiesis. 
Activation of EpoR is initiated by the direct binding of a single Epo molecule to two 

transmembrane EpoR proteins that form a homodimer on the surface of erythroid 

progenitor cells. The binding of Epo induces a conformational change in EpoR that 

makes the transmembrane and intracellular regions of the receptor get closer. 

Following binding, the Epo–EpoR complex is activated, internalized, and some is 

degraded in lysosomes, with the remainder recycled to the cell surface (Figure 3). 

Moreover, EpoR requires a tyrosine kinase janus kinase 2 (JAK2), to induce the 

signaling cascade. JAK2, which interacts with EpoR at the juxtamembrane region, is  

transphosphorylation and consequently, activated. After JAK2 activation, JAK2 

phosphorylates  tyrosine residues in EpoR, which serve as docking sites for mediators 

of the signal transducer and activator of transcription 5 (STAT5) and 

phosphatidylinositol-3 (PI3) kinase/ protein kinase B (Akt) signaling pathways. Survival, 

proliferation and differentiation of erythroid progenitor cells are thereby stimulated 

(10).  

 

Figure 3: The signaling pathways stimulated by EpoR upon binding to Epo (10) 
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6.2.4 Adverse side effects of erythropoietin 

Under normoxic physiological conditions, haemoglobin levels are regulated by 

the blood oxygen mainly via HIF. Epo and their derivatives increase the erythrocyte 

number and the transport capacity of oxygen, which increases blood viscosity and the 

probability of thromboembolic events. Besides increasing blood viscosity, long-term 

use of Epo can result in various side effects such as red cell aplasia and heart failure. In 

patients with an iron deficiency, Epo can elevate platelet counts and increase the risk 

of cardiovascular problems, including cardiac arrest, arrhythmia, hypertension, 

thrombosis, myocardial infarction and edema. Moreover, Epo is involved 

in angiogenesis, and his withdrawal may lead to lysis of young RBC called neocytolysis.  

Otherwise, Epo has also been reported to have other effects, such as promotion of 

tumor cell growth or survival. One mechanism could involve the expression of 

functional EpoR in tumors or endothelial cells. Consequently, Epo directly stimulated 

tumor growth or antagonized tumor therapies (11). 

  

http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/hemorheology
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/pure-red-cell-aplasia
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/iron-deficiency
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/platelet
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/cardiovascular-system
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/cardiac-arrest
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/cardiac-dysrhythmia
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/hypertension
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/thrombosis
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/myocardial-infarction
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/edema
http://www.sciencedirect.com.sire.ub.edu/topics/medicine-and-dentistry/angiogenesis
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6.3 EPO GENE DOPING 
 

 

In contrast to gene therapy, the objective of gene doping is the overproduction of 

specific substances, hormones or enzymes which can enhance realisation of sport. The 

main method used is viral gene transfer. The gene is usually inserted with a carrier 

called vector, which are certain viruses that can deliver the new gene by infecting the 

cell. These viruses are modified in order not to cause any disease 6.3.1.1 Viral gene 

transfer. The vector can be injected intramuscular or intravenously into a specific 

tissue in the body, where it is taken up by individual cells, where the vector injects new 

gene into nucleus and consequently the cell makes protein using this new gene (Figure 

4). On the other hand, a sample of the patient's cells can be removed and exposed to 

the vector in a cell culture, after the cells containing the vector are returned to the 

patient; this is called ex vivo gene transfer (12). 

 

Figure 4: Scheme of gene therapy (12) 

6.3.1 Types of Epo gene doping 

6.3.1.1 Viral gene transfer  
 

Viruses are vectors that get access to host cells and transfer their genetic material with 

high efficiency. Removing distinct viral genes allow viral replication to be hindered and 

genes can be inserted. The choice of virus depends on some features such as the 

packaging capacity of the recombinant vector or the chromosomal integration (Table 2). 

The main drawback for transgene expression is the host’s immune system, which can 

attack the viral vector system or the transgene product (13). 
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  Adenovirus Adeno-associated 
virus 

Retrovirus 

Features of wild 
type virus 

Non-enveloped double 
stranded DNA virus 

Small non-enveloped 
single stranded DNA 
virus 

Enveloped single 
stranded RNA 
virus (two copies) 

Packaging capacity 
of the 
recombinant 
vector 

30 kb  4,5 kb 8–10 kb 

Chromosomal 
integration 

Remains mainly episomal Small part integrates 
into host cell genome 
(≈1%) 

Integrates into 
the host cell 
genome of 
dividing cells 

Risk of insertional 
oncogenesis 

Small Small High risk 

Long term gene 
expression 

No Yes Yes 

Advantages for 
Epo gene transfer 

- 3rd generation shows 
less immunogenicity 
compared to further 
generations 
- Can be produced at high 
titres 

- Low 
immunogenicity 
- High efficiency to 
transduce muscle 
cells 

- Shows long term 
gene expression 
- Usually used ex 
vivo 

Disadvantage 
for in vivo Epo 
gene transfer 

Short term gene 
expression due to its 
remaining 
immunogenicity 

Difficult to produce 
at high titres 

Inability to infect 
non-dividing cells 
such as muscle 
cells. 

 

Table 2: Features of viral vector systems, adapted from (12) 

Following the initial success of viral Epo gene transfer in immune-deficient mice, more 

studies were conducted using adenovirus, adeno-associated virus, and retrovirus in 

rodents and non-human primates (Table 3). 

Due to the low immunogenicity of rAAV and its high efficiency in transducing muscle 

tissue, almost all studies employed rAAV vector systems for Epo gene delivery. It was 

shown that prolonged transgene expression and elevated haematocrit over the course 

of 600 days in non-human primates after a single i.m. injection of rAAV carrying the 

Rhesus macaques Epo gene. However, it was reported some immune responses 

targeting the endogenous Epo protein, leading to severe anemia and death. The 

complete mechanism is not already known, but it seems to be associated with high 

level production of Epo at ectopic sites (13). 

6.3.1.2 Regulation of Epo transgene expression 
 

 

A high number of regulatory systems have been developed to control or adjust 

transgene expression in order to avoid uncontrolled delivery of the Epo gene that leads 

to polycythemia with hemodynamic and rheologic problems. These systems include 
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antibiotics like doxycycline or immunosuppressives such as rapamycin, which only have 

found application in non-human primates studies. (Table 3) (13). 

Using a Tetracycline On (Tet-On) regulatory system in non-human primates wherein 

administration of doxycycline led to high Epo secretion and increased haematocrit. Tet 

Response Element (TRE) is 7 repeats of a 19 nucleotide tetracycline operator 

sequence, and is recognized by the tetracycline repressor (tetR). Using a Tet-On 

system, if tetracycline is present, tetR will bind to tetracycline and not to the TRE, 

permitting transcription. However, it was found a humoral immune response directed 

against regulatory system proteins, in which was attacked genetically modified 

myofibers (14). 

In contrast to the tetracycline dependent systems, the rapamycin regulated system 

contains exclusively human proteins, which should reduce the immune reaction. So, it 

was demonstrated long term expression of the Epo transgene in non-human primates 

for 6 years, which became the longest non-human primate study without immune 

response. However, it was described a persistent regulation of gene expression so, the 

degree of i.m. Epo gene transfer safety is still unclear and systematic administration is 

not possible yet (15). 

Viral Epo gene transfer Rodents Non-human primates Duration of 
the study 

rAd  - Cynomolgus macaques 84 days 

rAAV  - Rhesus macaques >600 days 

rAAV + Tet-regulated  - Cynomolgus macaques >5 years 

rAAV + rapamycin regulated  - Rhesus macaques >6 years 

 

Table 3: Selected Epo gene transfer studies using viral vector systems, adapted from (13) 

 

6.3.1.3 Non-viral gene transfer 

 

The most used vector system for non-viral gene delivery is plasmid DNA (pDNA). 

Compared to viral vectors, pDNA vectors are less immunogenic and they can be 

produced in large quantities easily at a reduced cost. However, the major limitation 

of in vivo use of pDNA is poor transfection efficiency and short duration of transgene 

expression (Table 4) (15). 

  

http://onlinelibrary.wiley.com.sire.ub.edu/doi/10.1002/dta.1347/full#dta1347-tbl-0003
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Non-viral Epo gene transfer Rodents Non-human primates Duration of the study 

Naked pDNA Balb/c mice - 90 days 

pDNA + HLV  - Rhesus monkeys >450 days 

Modified mRNA Balb/c mice - 4 weeks 

 

Table 4: Selected Epo gene transfer studies using non-viral gene transfer (13) 

The best results in the field of non-viral Epo gene transfer were improved using the 

hydrodynamic limb vein (HLV). This method can deliver pDNA, viral and non-viral 

vectors to limb skeletal muscle. This procedure for pDNA delivery requires an injection 

of a large volume of DNA containing fluid. Although it was observed a high 

interindividual variability, animals reached normal physiological counts of RBC, which is 

indicative of a lack of autoimmune reaction against endogenous Epo.  

In addition to DNA based gene delivery, it has also been reported the use of modified 

mRNA for Epo production. It was demonstrated that double modification of Epo mRNA 

significantly reduced binding to pattern recognition receptors and decreased activation 

of the immune system in vivo compared to unmodified RNA and prolongs transgene 

expression in vivo. mRNA interactions with various Toll-like receptors were reduced as 

well as activation of the innate immune system commonly associated with mRNA 

transcribed in vitro and in vivo. Moreover, the stability of mRNA increased in vivo and 

increase the haematocrit from 51% to 64% in 4 weeks. However, the efficiency of 

modified mRNA in non-human primates remains to be proven (13). 

6.3.1.4 Ex vivo gene transfer 
 

Ex vivo experiments have become other option in gene transfer, which is based on 

retrieving cells from a donor and genetically modifying these cells in culture. The 

first ex vivo gene therapies for Epo gene transfer was founded in the transplantation of 

myoblasts, smooth muscle cells, and fibroblasts. However, there were some limitations 

including immune response and poor survival of transduced cells (Table 5) (13). 

On the other hand, 10 human patients with moderate chronic renal failure 

reimplanted subcutaneous ‘Biopump-Epo’ implants. These consist in virus-vector-

treated with autologous subcutaneous tissue for continuous Epo production. 

Depending on the pre-determined ex vivo Epo secretion, it was released between 1 

and 7 Biopumps. Following transplantation, Epo levels peaked on day 3 in most cases 

and declined until day 10 because it was reported an immune response without 

increasing the haematocrit. Moreover, the implant was removable and the 

pharmacological effect could be reversed.  
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It seemed that encapsulating cells in microcapsules would be the solution to avoid 

immune response. The membrane surrounding cells would allow diffusion of proteins, 

simultaneously preventing cell contact with immune competent host cells. 

Nevertheless, microcapsules have not achieved clinical significance although it has 

been tested different cell types and materials. The main drawbacks seemed to be 

related to an inflammatory response against the capsule material and the easily 

deterioration of the microcapsules (15). 

Ex-vivo Epo gene transfer Rodents Primates Duration of the 
study 

Transplantation of myoblasts Fischer 344 rats - 80 days 

Biopump-Epo implants  - Homo sapiens 12 months 

Myoblast cells secreting Epo 
within polymer microcapsules 

Balb/c mice - 100 days 

 

Table 5: Ex-vivo Epo gene transfer 

6.3.2 Safety concerns related to gene doping  

Unfortunately, there are some problems related to gene doping (Table 6). One 

drawback is the quality of the gene material, this needs to be purified in order to avoid 

contamination with wild-type viruses. There is a risk of possible mutagenesis, which 

consists in a definitive change in the cell’s nucleic acid and the capacity to induce 

genetic modifications of chromosome structure, and consequently it could cause 

different diseases, like cancer or leukemia.  

Moreover, it could be induced immunogenic reactions for the introduction of vectors, 

genes and the protein produced, which could slightly differ from the physiologically 

one. It could be an obstacle the modulation of gene expression, with the risk of 

excessive or insufficient production. This could originate a deregulation or an 

activation of an oncogene as there is a lack of control of transgene insertion.  

Gene doping can affect the environment for the elimination of body fluids, which 

contain genetically modified viruses or their derivatives. As well as, it could be the 

integration of genetic material into germ cells, consequently it could be transmitted to 

following generations (16). 

Safety concerns related to gene doping 

Quality of the gene material  Risk of mutagenesis  

Induce immunogenic reactions Change gene expression  

Environmental risk  Integration into germ cells  
 

Table 6: Summary of safety concerns related to gene doping   
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6.4 DETECTION OF EPO GENE DOPING IN BLOOD 

 

Suitable gene doping detection methods are a major requirement for preventing 

athletes from using gene doping technologies. The detection method must be enough 

sensitive to detect any type of doping and samples must be easily accessible with 

minimally invasive techniques, since biopsies are not accepted. There are many 

potential strategies to detect the abuse of Epo gene transfer in relation to different 

levels of detection (Table 7) (17). 

Level of detection Type of 
detection 

Problem Solution 

Doping effect: 
immune or blood 
parameters 

Indirect Specificity Determine limit values 

Transgenic protein Direct Homology to the 
natural protein 

Detection of posttranslational 
differences 

Transcriptome Indirect Specificity mRNA reference levels 

Transgenic DNA  Direct Homology to the 
genomic DNA 

Primers pairs for pre-
amplification must only bind to 
the  exon-junctions of cDNA 

 

Table 7: Different types of Epo gene transfer detection. 

6.4.1 Screening for blood parameters 
 

Screening for blood parameters was the first detection of Epo gene doping. In 2009, 

WADA approved the ABP, which is based on monitoring athletes' biological variables 

over time to facilitate indirect detection of doping. They are evaluated blood 

parameters, such as the concentration of haemoglobin and reticulocytes and the 

subsequent enhancement of oxygen transport. It can be also used the diagram OFF 

Score to amplify changes observed in haemoglobin concentrations and percentage of 

reticulocytes. In figure 5 it is shown an example of using Epo, ON phase, related to high 

percentage of reticulocytes before racing that compresses samples 3–7. Samples 8-10 

show no use of this substance. Afterwards, there is a cessation of erythropoietic 

stimulation that leads to a prolonged suppression of reticulocytes and an elevated 

erythrocytes and a slightly increase in haemoglobin, this is OFF phase. In addition, 

variation in ABP haematological parameters due to training or hypoxia exposure can 

influence the interpretation of the ABP results. Nevertheless, sophisticated doping 

protocols enable athletes to continuously dope below the detectable threshold. 

Consequently, indirect detection methods should be replaced by direct detection 

methods that allow unequivocal identification of gene doping (18). 
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Figure 5: Haematological module of the ABP (18) 

6.4.2 Detection of transgenic Epo protein 

 

It was discovered that endogen, genomic DNA (gDNA) and proteins artificially encoded 

by transgenic DNA (tDNA) in muscle cells can be distinguished by a conventional Epo 

test consisting of double blotting and migration on isoelectric focusing. The difference 

in these Epo molecules is their glycosylation pattern due to different post-translational 

modifications in various tissues. However, that post transcriptional modifications may 

differ depending on the gene transfer protocol, the route of vector administration, the 

vector used, the target tissue and finally of course, the target species (13). 

6.4.3 Detection of immune response 

  

Other option to distinguish gene doping would be to identify specific immune 

responses to the vector system or the transgene protein. In fact, T-lymphocyte and 

antibodies against vector particles could be detected easily using Enzyme-linked 

immunosorbent assay (ELISA). However, adaptive cell-mediated and adaptive humoral 

immune responses seem drawbacks and it could be some false positive test in case of 

a natural viral infection. Unfortunately, viral vectors used have a high prevalence and 

incidence of natural infections. Furthermore, such detection procedures would also 

have limited use as non-viral mediated gene transfer is unlikely to produce any 

immune response (13). 
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6.4.4 Detection using transcriptomics 

 

Abuse of gene doping can be detected screening the blood's transcriptome, as it can 

change gene expression patterns due to distinct influences such as diseases, exercise 

or the abuse of doping substances. Screening by microarrays allows defining specific 

biomarker or gene expression patterns. A potential advantage of the transcriptomic 

approach would be the ability to detect a wide range of Epo doping procedures, 

including all kinds of gene doping, as all of them share a common pathway following 

Epo-receptor activation. Furthermore, another approach would be to detect Epo 

mRNA expression at ectopic sites, which is indicative of gene transfer. However, the 

interindividual and intraindividual variations are drawbacks to validate potential 

biomarkers and to establish reference levels of mRNA because they are very similar to 

levels that would provide evidence for doping. However, it seems an alternative the 

use of micro RNA (miRNA), non-coding RNA molecules of approximately 22 nucleotides 

that modulate gene expression post transcriptionally, as a reliable biomarker. 

Nevertheless, knowledge about transcriptome and their variables is still limited and 

some athletes might carry an innate genetic feature or mutation, like an undiagnosed 

pathological condition, which could also alter their individual profile (13). 

6.4.5 Detection of Epo cDNA 

 

Other approach could be to target Epo cDNA using two quantitative nested qPCR 

(quantitative PCR) assays. It is combined a first round endpoint PCR of 25 cycles, with a 

second round of nested qPCR of 40 cycles. The product of the pre-amplification step is 

a linear molecule that is subsequently detected by qPCR. The nested qPCR assay is 

based on the strategy to pre-amplify five replicates per sample in the first round PCR. 

Afterwards, these samples are pooled and diluted before a second round qPCR. The 

establishment of a standard curve in the nested qPCR assay enables cDNA 

quantification. 

The priming strategy of the two nested qPCR assays involves two assays using the 

same pre-amplification primers to generate a 437 bp linear amplicon. In the second 

round qPCR a 114 bp amplicon (Assay #1), and a 133 bp amplicon (Assay #2) are 

generated. The pre-amplification primers bind to the exon junction 1 and 2 and exon 

junction 4 and 5, respectively. Regarding nested qPCR, primers in Assay #2 targets the 

exon-exon boundary 2 and 3 and exon 4 and both of them uses a common probe 

(Figure 6) (19).   
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Figure 6: Pre-amplification round: Setup of the nested qPCR assay. 5 replicates of a sample undergo a 
pre-amplification round of 25 cycles. In the pre-amplification round both assays use the same primer 
pair, which binds exon junction 1 and 2 and exon junction 4 and 5, respectively. qPCR round: Priming 
strategy of the nested qPCR setup for the amplification of the human Epo cDNA sequence. In the qPCR 
round Assay#1 and Assay#2 use different primer pairs, whereas the same binding site for the probe is 
used (19). 
 

The main requirement for pre-amplification round, was that both primers crossed 

an exon/exon junction. Its effectiveness may be compromised if Epo cDNA sequence 

is modified by insertion of small introns in a targeted exon junction or by site-directed 

mutagenesis of sequences for primers and/or probe annealing. Extensive modifications 

of Epo cDNA by changing all four exon/exon junctions, which would mask this 

transgene, it may also complicate its efficient transgene expression. The resultant from 

insertions of introns may be limited by viral vector packaging capacity. Also, as mRNA 

splicing is target tissue specific, the presence of introns may result in aberrant splicing 

when the transgene is expressed ectopically, as in the case of Epo expression in muscle 

rather than in its natural site of production, the kidney, potentially leading to a non-

functional protein. It can also be hypothesized that the developed gene doping 

detection approach may be confounded by the presence of processed pseudogenes 

leading to a false-positive result. However, it has not been reported any pseudogenes 

for Epo human genome (20). 
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6.5 ADVANCES IN DETECTING EPO GENE DOPING  
 

Analysis of vector genomes and transgene expression is typically performed by 

quantitative PCR (qPCR) using plasmid with transgenic sequences. Unfortunately, these 

methods differ between manufacturers, leading to inaccurate quantification or 

contaminations. To deal with these problems, in 2016, Baoutina et al. developed a 

method using synthetic certified DNA reference material (RM) to analyse human 

erythropoietin transgene. The authors elaborated a design strategy for synthetic RM 

with modified transgenic sequences to prevent false positives due to cross-

contamination. When this RM was amplified in transgene-specific assays, the 

amplicons differed in size and sequence from transgene’s amplicons. Afterwards, 

these differences could be established in post-PCR DNA fragment size analysis (DNA-

FSA). In this study, it was used two vectors carrying the Epo transgene, non-viral, 

naked Epo pDNA and viral, Epo rAAV (21). 

6.5.1 Design of the RM sequence 

Achieving a unique synthetic RM suitable for vector-independent measurements of 

tDNA was particularly important in gene doping detection, as the nature of the vector 

used for gene transfer was unknown. There were compared three forms, a circular and 

a linear plasmid form and a shorter DNA fragment form, each one in viral and non-viral 

vectors.  

The measurement system consisted in five validated qPCR assays targeting Epo cDNA. 

Epo RM incorporated synthetic reference sequence (RS) with five assays for 

reference sequence (ARS), one for each PCR assay. In each ARS design, there were 

sequences for binding the oligonucleotides of the assay. The sequences between 

these sites and the length of the amplicon from the ARS were different from those 

for the amplicon from the transgene. Afterwards, these differences could be 

established in DNA-FSA. Each ARS was designed by either removing several bases 

from the assay template in Epo cDNA, like in assays 1, 2 and 5, or inserting short 

sequences into the assay template, like in assays 3 and 4. The five ARS were in 

silico assembled into the RS together with three spacers (Figure 7) (21). 

https://www-nature-com.sire.ub.edu/articles/gt201647#f1
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Figure 7: Diagram of the designed RM. (a) RS comprises five ARS for five Epo transgene-specific PCR 
assays and spacers (S), and is flanked by polylinkers (PL) and sequences for the M13 primers (M13). 
There is a similar pattern within sections of different ARS, which indicates complementarity to the 
same exon within Epo cDNA. (b) Three forms of the RM with approximate locations of the site for ScaI 
used to linearise the circular plasmid and of the plasmid pUC (pUC) assay. The oligonucleotides 
forming each assay are schematically shown as a one-sided arrow (primers) or a single line with a star 
head (probe). The bars representing different fragments, like ARS, S and PL (21). 

6.5.2 Contributions of this study 

This design strategy could serve as a prototype for development of measurement 

tools for other transgenes in order to achieve results comparability between 

laboratories. RM could facilitate implementation of a PCR-based analysis of genetic 

material, since gene doping until genetic disorders, as well as to determine dosage 

and monitor biodistribution. Moreover, it could be generated a RM with modified 

sequences from several transgenes, so that one RM could be used for analysis of 

multiple transgenes or vectors. Furthermore, this method could detect gene doping 

based on the analysis of transcriptomics biomarkers (21).  
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7. DISCUSSION 

Potentiality of detection of Epo gene doping 
 

While traditional banned doping substances or methods are easily detectable, 

detection of gene doping does not have an official method yet. Screening for blood 

parameters was the first detection of Epo gene doping implemented by WADA. 

Biological variables were monitored, such as the concentration of haemoglobin and 

reticulocytes and the subsequent enhancement of oxygen transport. The main 

drawback of this method was that these parameters can be influenced by training or 

hypoxia exposure. 

The detection of vectors, even based on the immune response of the body to viral 

vectors, was often unable to discriminate between natural infection and artificial 

introduction of the virus. Moreover, it might not be possible to detect ex vivo gene 

transfer including Biopump or encapsulated cells because tDNA remains to 

transplanted cells and it is unlikely to spread to other cells or tissues. So, another 

approach would be to detect Epo mRNA expression at ectopic sites, which is indicative 

of gene transfer. 

Identification in body fluids of the small molecules like antibiotics used as promoters of 

inducible gene activity provides indirect evidence of gene manipulation without 

medical treatment. However, some of these drugs are commonly used and they are 

not included in the WADA list of prohibited substances and methods. Direct detection 

of vectors or locally injected genes is only possible if the analysis is conducted early 

enough after administration, the local treatment site is known in the case of injection 

and the athlete accepts invasive procedures such as biopsy. 

On the other hand, proteins encoded by gDNA and tDNA can distinguished by double 

blotting and migration on isoelectric focusing as they have different glycosylation 

pattern. This pattern is due to different post-translational modifications that may differ 

depending on the gene transfer protocol, the route of vector administration, the 

vector used, the target tissue and finally the target species. 

Screening the blood’s transcriptome allows to detect changes in mRNA levels 

compared with physiological levels. This quantification may be the main inconvenient 

as it would be require repeated measurements from gene expression patterns or 

specific biomarkers using microarrays. However, it would be an alternative the use of 

miRNA, nucleotides that modulate gene expression post transcriptionally, as a reliable 

biomarker. Nevertheless, knowledge of this field is still limited and some athletes 

might carry an innate genetic feature or mutation, like an undiagnosed pathological 

condition, which could also alter their individual profile. 
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Other approach could be to target Epo cDNA using two quantitative nested qPCR 

assays. It is combined a first round endpoint PCR and then a second round of nested 

qPCR of 40 cycles. The nested qPCR assay is based on the strategy to pre-amplify five 

replicates per sample in the first round PCR. Afterwards, these samples are pooled and 

diluted before a second round qPCR. The establishment of a standard curve in the 

nested qPCR assay enables cDNA quantification. The main requirement for pre-

amplification round, was that both primers crossed an exon/exon junction. Its 

effectiveness may be compromised if Epo cDNA sequence is modified by insertion of 

small introns in a targeted exon junction or by site-directed mutagenesis of sequences 

for primers or probe annealing. It should be emphasized that extensive modifications 

of Epo cDNA by changing exon/exon junctions, would mask this transgene and also 

complicate its efficient expression.  

Finally, a promising method of direct detection of Epo transgene performed by qPCR 

using synthetic certified DNA RM. When this RM was amplified in transgene-specific 

assays, the amplicons differed in size and sequence from transgene’s amplicons. 

Afterwards, these differences could be established in post-PCR DNA-FSA. The main 

advantage to this design strategy was that it could serve as a prototype for 

development of measurement tools for other transgenes or transcripts in order to 

achieve results comparability between laboratories. RM could facilitate 

implementation of a PCR-based analysis of genetic material, from gene doping to 

genetic disorders. Moreover, it could be generated a RM with modified sequences 

from several transgenes, so that one RM could be used for analysis of multiple 

transgenes or vectors. Furthermore, this method could detect gene doping based on 

the analysis of transcriptomics biomarkers.  
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8. CONCLUSIONS  

 

1. Nowadays, gene therapy is limited to some particular and serious diseases, while in 

the future it could be applied as a banned gene doping practice. In this situation, the 

sports medicine community will have to work closely with WADA in order to change 

and adjust legislation, particularly the genetic anti-doping rules.  

2. Erythropoietin gene expression requires a signaling phosphorylation cascade, which 

stimulates pathways of anti-apoptosis, proliferation and differentiation of erythroid 

progenitor cells. 

3. Adapting to anti-doping methods by the athletes requires a constant developing and 

implementing new detection methods. In order to ensure uniformity of results among 

laboratories, a method should be developed and standardised.  

4. The chosen method used to detect erythropoietin gene doping is based on RM. This 

RM, used as an intern control, could facilitate implementation of a PCR-based routine 

test for Epo gene doping that could withstand legal scrutiny. Furthermore, the 

modified sequence design strategy can be easily adapted to generate synthetic nucleic 

acid RMs for analysis of any transgene.  
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10. LIST OF ABBREVIATIONS 
 

ABP: Athlete biological passport  

ADA: Adenosine deaminase  

AIDS: Acquired immune deficiency 

syndrome  

Akt: protein kinase B  

ARS: Assays for reference sequence  

DNA-FSA: DNA fragment size analysis  

ELISA: Enzyme-linked immunosorbent 

assay  

EMA: European Medicines Agency 

Epo: Erythropoietin  

EpoR: Erythropoietin receptor  

FDA: Food and Drug Administration  

GATA-2: GATA binding protein 2 

gDNA: genomic DNA 

HIF: Hypoxia inducible transcription factor  

HIF-PH: HIF-prolyl hydroxylases  

HLV: Hydrodynamic limb vein  

IMIM: Institute of medical investigation  

JAK2: Janus kinase 2  

M13: M13 primers  

miRNA: micro RNA  

NF-κB: nuclear factor kappa B  

pDNA: plasmid DNA  

PI3: Phosphatidylinositol-3  

PL: Polylinkers  

pUC: Plasmid pUC  

qPCR: quantitative PCR  

rAAV: recombinant adeno-associated virus  

rAd: recombinant adenovirus  

RBC: Red blood cells  

rHuEpo: recombinant human Epo  

RM: Reference material  

SCID: Severe combined immunodeficiency  

RS: Reference sequence  

STAT5: Signal transducer and activator of 

transcription 5  

Tet: tetracycline 

Tet-On: Tetracycline on  

tetR: tetracycline repressor  

TRE: Tet response element  

tDNA: transgenic DNA  

WADA: World anti-doping agency 

 

 


