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Noise focusing in neuronal tissues: Symmetry breaking and localization in excitable
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We introduce a coarse-grained stochastic model for the spontaneous activity of neuronal cultures to explain the
phenomenon of noise focusing, which entails localization of the noise activity in excitable networks with metric
correlations. The system is modeled as a continuum excitable medium with a state-dependent spatial coupling
that accounts for the dynamics of synaptic connections. The most salient feature is the emergence at the mesoscale
of a vector field V(r), which acts as an advective carrier of the noise. This entails an explicit symmetry breaking
of isotropy and homogeneity that stems from the amplification of the quenched fluctuations of the network by the
activity avalanches, concomitant with the excitable dynamics. We discuss the microscopic interpretation of V(r)
and propose an explicit construction of it. The coarse-grained model shows excellent agreement with simulations
at the network level. The generic nature of the observed phenomena is discussed.
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I. INTRODUCTION

The study of emergent, self-organized phenomena in neu-
ronal networks is perceived as an important key to understand
brain behavior and function [1,2]. From a physical perspective,
in vitro neuronal cultures have proven to be an ideal model
system to search for insights that may unveil general principles
of collective neuronal dynamics [3–6]. One aspect of particular
interest and direct relevance to actual biological tissues is the
study of spontaneous activity of neuronal cultures. In particu-
lar, a puzzling phenomenon that is robustly observed at early
stages of culture development is the emergence of coherence in
the form of nearly periodic bursting of the whole network, out
of random spontaneous firing of neurons [7–11]. The detailed
scrutiny of this phenomenon in experiments in vitro and
in silico simulations has led to the concept of noise focusing
[12]. The idea is that the network structure amplifies and
propagates the noise in such a way that spontaneous activity
strongly concentrates at specific sites, which nucleate bursts
that then propagate through the whole system. Remarkably,
even though the occurrence of these bursts is nearly periodic,
the nucleation sites alternate randomly.

It is our purpose to transcend the qualitative picture
emerging from Ref. [12] by developing a theoretical frame-
work that enables a deeper quantitative understanding of the
phenomenon of noise focusing and its contextualization from
the perspectives of excitable systems [13], constructive effects
of noise [14], and transport in complex networks [15]. The
proposed model reproduces the experimental observations in
cultures and at the same time provides insights on the origin
of the inherent symmetry breaking emerging from the network
quenched disorder.

The phenomenon of noise focusing, as introduced in
Ref. [12], is characteristic of directed networks of excitable
units with metric connectivity correlations, where each node is
assumed to fire randomly with a mean rate, due to internal noise
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sources. For disconnected neurons, this produces a background
of incoherent spiking activity. When the neurons (nodes) are
connected, each spontaneous firing transmits a simultaneous
input to all nodes it is connected to that adds to their internal
noise, thus facilitating their firing probability, by virtue of
their integrate-and-fire dynamics. This generates cascades of
activity, resulting in a distribution of avalanches with power-
law statistics [12]. Here we will refer to the spatio-temporally
structured activity induced by the spontaneous firing on the
network as “dressed noise.”

In the experiments in cultures of Ref. [12], neurons were
randomly fixed in space, and they established connections to
their neighbors by extending their axon in random directions.
The network was thus embedded in a metric space, and
it was statistically homogeneous and isotropic. The metric
correlations inherent to the network generation had a finite
connectivity correlation length �, of the order of the size of
dendritic tree of neurons. Typically, a circle with radius �

contained of the order of 100 neurons. � yields a natural scale
for the coarse-graining approach that we develop here. At this
scale, the quenched relative fluctuations of homogeneously
and isotropically distributed quantities are relatively small.

The key observation that we exploit here is that the
amplification of noise through the network is anisotropic,
as a result of the sensitivity of the dynamics to the detailed
wiring, implying that at each point there is a preferential
direction of avalanche growth. Directed propagation of the
dressed noise may thus be expected. We postulate that, at
the coarse-grained level, there exists a fixed local vector that
acts as an advective carrier of the activity. This implies that,
in a system that is statistically homogeneous and isotropic
at the microscopic (network) level, the quenched fluctuations
of the actual network realization are amplified and show up at
the mesoscale in the form of an explicit symmetry breaking.

II. MODEL EQUATIONS AND DISCUSSION

For the coarse-grained description we propose a FitzHugh-
Nagumo model [13], with a nullcline structure that enables
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a transition between excitable and oscillatory behavior. A
simple diffusive spatial coupling with a diffusion coefficient
D will be assumed to account for the spreading of the
coarse-grained activity. In addition we must account for
synaptic depression, namely, the fact that the strength of
each network link is dynamic and decreases upon continued
activity, up to complete disabling in saturation conditions.
In cultures, the synaptic recovery time τD is much larger
than other time scales (see Appendix A). Accordingly, we
consider a state-dependent spatial coupling by introducing
an additional depression variable w(r,t) to the u(r,t)-v(r,t)
FitzHugh-Nagumo variables of the form

u̇ = f (u) − κv + (1 − w)N [u] + η(r,t), (1)

v̇ = γ (u + g − hv), (2)

ẇ = − 1

τD

w + βun(1 − w), (3)

where η(r,t) is a Gaussian white noise with zero mean
and 〈η(r,t)η(r′,t ′)〉 = ε0δ(r − r′)δ(t − t ′), that stands for the
intrinsic noise, and f (u) = au3 + bu2 + cu + d. With an
appropriate choice of parameters a,b,c,d,κ,γ,g, and h, we
constrain the variables u and v to the interval (0,1). The
field u is the coarse-grained local spiking activity, with u ∼ 0
corresponding to the activity of intrinsic noise, and u ∼ 1 to
saturation of the network. The recovery field v relaxes slowly
compared to u. The spatial coupling is contained in the term
N [u] (see below) so it is lost at saturation, i.e., for w ∼ 1, as the
synapses are depleted. The nonlinear coupling with u is such
that w has an S-shaped dependence on the rate of an incoming
spike train (see Appendix A). Accordingly, its stationary value
takes the form of a Hill function w = un/[(βτD)−1 + un]. We
take n as sufficiently large (n = 8) to ensure an appropriate
delay of the growth of w in response of that of u.

The distinctive feature of our model is the term N [u] in
Eq. (1), which is postulated to include the dynamics of the
dressed noise, and combines both deterministic and stochastic
terms,

N [u] ≡ D
u − ∇ · [uV(r,t)] + α(r)u, (4)

V(r,t) ≡ V0(r) + ξ (r,t), (5)

including a zero-mean multiplicative Gaussian white noise
with 〈ξi(r,t)ξj (r′,t ′)〉 = 2εδij δ(r − r′)δ(t − t ′). This dressed
noise introduces two new fields, α(r) and V(r,t). The field
α is a source term that accounts for a local amplification
of the activity. The fundamental novelty is the vector that
we call the avalanche field V(r,t), which enters the equation
defining an activity current uV. The physical picture is that
the activity that is created by the local source term αu is
advected by an effective velocity field characteristic of the
network. The noise term ξ (r) accounts for the stochasticity
of the underlying avalanches. We choose a white noise for
simplicity, implying that the avalanches are sufficiently fast
in the coarse-grained time scale of observation [16]. Because
of the statistical isotropy and homogeneity of the network
construction, the ensemble average over network realizations
is 〈V0(r)〉 = 0 and 〈α(r)〉 = const, so the explicit forms of the
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FIG. 1. Phase-portrait and set of nullclines for the model for zero
spatial dimensions. The trajectory of a small perturbation at t0 is
also shown (solid line). (a) Projection of the nullclines in the (u,v)
coordinates. The system has a single fixed point (solid circle), and
the nullcline for u̇ = 0 is plotted at the stationary value of w = wst

(dash-dot line) and also at w = 1 (dashed line). The nullcline for
ẇ = 0 (not shown) corresponds to a horizontal line crossing the fixed
point, since it is indendent of v. (b) Projection of the nullclines in
(u,w) coordinates. The u̇ = 0 nullcline is plotted at v = vst (dotted
line).

fields V0(r) and α(r) encode dynamical effects associated to
the quenched fluctuations of each specific network.

Our model can accommodate in principle two different
points of view that have been adopted in the literature to
interpret the localization of burst initiation: (1) some special
regions or groups of neurons (leaders) may be more active and
recruit activity in their surroundings up to a critical amount
that generates a propagating front, as in the one-dimensional
studies [17,18], and (2) the nucleation sites may be sinks
of some kind of average flow of activity originated in large
basins of attraction [12]. The local mechanism (1) can be
made consistent with the measured nucleation probability
densities (hereinafter, the nucleation maps) assuming a strong
inhomogeneity of α. However, this scenario is not consistent
with the detailed observation of the preburst activity in silico
which, combined with independent tests of nonlocality in both
simulations and experiments [12], settled the issue in favor
of scenario (2). Consequently, for simplicity we assume α as
constant. Upon rewriting αu − ∇ · (uV0) = αeffu − V0 · ∇u,
it is convenient to define αeff(r) ≡ α − ∇ · V0 [19].

The mechanism that governs the transition from excitable to
pulsating behavior is already captured by the zero-dimensional
version of our model. Since w is much slower than u and v, we
assume that u and v define a FitzHugh-Nagumo model where
the nullclines slowly drift in time following w quasistatically
(see Fig. 1). The stable state defining the excitable regime
is thus slowly approaching the transition to the oscillatory
regime through a supercritical Hopf bifurcation [20] as the
term (1 − w)αu grows. We assume that for α = 0 and V = 0
the system remains in the excitable regime. In the complete 2D
model, as w relaxes, the transition may occur at the regions of
sufficiently high values of αeff , i.e., of −∇ · V0. Which one of
these peaks will end up nucleating a burst will be ultimately
controlled by the multiplicative noise term ξ (r). The precise
statistics of nucleation will also be affected by the presence of
the advective term −V0 · ∇u, as V0 may include a solenoidal
component. Once the excitation of u is triggered, the spatial
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coupling leads to a front that propagates through the whole
system bringing all neurons to saturation, as u drags w. The
network is thus shut down by the passing of the pulse, and a
cycle of synaptic recovery resets the system.

III. CONSTRUCTION OF THE AVALANCHE FIELD

Before showing that this phenomenological model can
indeed account for the puzzling observations of Ref. [12],
we will gain additional fundamental insights by pursuing a
microscopic interpretation that provides a bottom-up con-
structive definition of V0. A microscopic definition of V0

must involve not only the details of the network wiring
but also of the dynamics. The dynamics are indeed quite
sensitive to the detailed wiring of the network and are easily
recognized in the nucleation maps. In Fig. 2 we show the
different nucleation maps for a given network (same adjacency
matrix) while varying the time constant τ of the excitatory
currents; from 10 ms (left) to 50 ms (right). Slower decaying
currents widen the nucleation sites and even allow their merger.
The information contained in the adjacency matrix is thus
insufficient to pinpoint the exact location and shape of the
nucleation sites. It is only through its interplay with the full
dynamics that the real nucleation sites are revealed.

The microscopic origin of the symmetry breaking is the
anisotropic growth of large avalanches. The difference be-
tween the avalanche center of mass and its initial point defines
a net displacement and, combined with the duration of the
avalanche (or the inverse occurrence frequency if larger than
the duration), yields a velocity that reflects the spatio-temporal
structure of the avalanche. In the Supplemental Material [21],
we explicitly implement this procedure to construct an average
velocity field for simple, spatially homogeneous networks.
For the general inhomogeneous case at hand, however, an
extension of this analysis becomes impractical. Alternatively,
we propose a more empiric approach within the same spirit
and based on our observations in silico. We assume that the
subset of ignition avalanches (IAs), that is, those that end up
nucleating a burst, dominates the statistical contributions to
V. These are large avalanches that peak at relatively small
regions, so that they excite the local percolation fraction that
excites a nucleus of the critical size [12]. Smaller avalanches
are more frequent but more isotropic, and large but not-igniting
avalanches are more spread, so we assume that they do not
contribute significantly [22].

For each IA j that is participated by a neuron i at position
ri , we assign a vector pointing towards the burst ignition point
rB
j . Adding up for the subset of IAs Ii participated by neuron i,

out of a total number of IAs NI , and averaging over the N�(r)
neurons within a disk of radius �, we have

V0(r) � λ
�

N�(r)NI

∑
|ri−r|<�

VI
i , (6)

VI
i =

∑
j∈Ii

(
rB
j − ri

)
, (7)

where � is the probability per unit time of occurrence of
an IA (for a nondepressed network), and λ is an unde-
termined dimensionless factor. Equation (6) is a hands-on
implementation of

V0(r) � λ�

∫
|r′−r|<�

dr′
∫

drB (rB − r′)P (rB |r′)P (r′), (8)

where P (r′) is the probability density of r′ participating in a
given IA, and P (rB |r′) the conditional probability density of
such an avalanche to end at rB . This assumes that avalanches
are sufficiently fast to neglect memory effects, and that the
activity field u(r) is roughly constant within the range �.

Accordingly, the nucleation map reads

PN (rB) =
∫

dr′P (rB |r′)P (r′). (9)

Equation (8) exhibits the nonlocal character of the information
contained in V0(r), which exhibits correlations over distances
much larger than �, typically of the order of the axon length.
The streamlines of V0 are plotted for an illustrative example
in Fig. 3, with the corresponding nucleation map, and together
with the streamlines of its irrotational I and solenoidal S
components, where V0 = I + S, with ∇ × I = 0 and ∇ · S =
0. The solenoidal component is typically smaller (〈|I|/|S|)〉 ≈
2), but not negligible, and has to be taken into consideration.
The parameter λ does not modify the streamlines but controls
the degree of localization of the nucleation map, which is
related to the level of network clustering [12]. This can be fitted
from the corresponding Lorenz curves for the area distribution
of the nucleation map.

The above procedure seems to yield and optimal avalanche
field to reproduce the distribution and statistics of the nu-
cleation sites. Indeed, we can compare with other simpler
alternatives to construct the avalanche fields that do not require
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FIG. 2. Sensitivity of the nucleation maps to the dynamics. Left to right (a–e): nucleation maps for a given network for different values of
the time constant of the excitatory currents τ from 10 to 50 ms.
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FIG. 3. Nucleation probability distribution function for a given
network (nucleation map) and its associated avalanche field. (a)
Nucleation map. (b) Streamlines of the associated avalanche field.
(c) Irrotational and (d) solenoidal parts of the field. Note that the
irrotational part of the field strongly correlates with the nucleation
map, identifying the nucleation sites as sinks of activity. The spacial
average of the modulus of the irrotational part is typically a factor 2
larger than the solenoidal part.

a detailed knowledge of all the avalanche statistics. The most
naive procedure would approximate the avalanche field by
some local averaging the connectivity matrix. For instance,
we can associate to each connection Aij a vector rij = rj − ri ,
where ri is the position of neuron i, and then define the vector
field for each neuron by

VA
i =

N∑
j=1

Aij rij =
∑
i∈kout

i

rij , (10)

where the last sum goes over all the kout
i connections. The

vector VA
i describes the average direction neuron i forms

with its output connections, and its modulus is proportional
to the distance and number of connections. The vector is not
normalized, given that neurons with higher output connectivity
must be associated to a higher activity flow.

The avalanche field generated above relies only on the
connectivity, and is independent of the underlying dynamics.
A different field can be generated if we take into account the
information from the averaged background activity. We can
generate a weighted matrix Bij from the information obtained
by the analysis of the background avalanches (BAs) in the
dynamical system. For instance, every time a link participates
in a BA its weight is increased by a fixed amount. The
full weighted matrix is then normalized so it describes the
probability that a given link participates in a BA. Hence, we

connectivity-based 
divergence map

IA-based
divergence map

BA-based
divergence map

nucleation map(a) (b)

(c) (d)

1mm
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FIG. 4. Divergence maps for each of the avalanche field def-
initions. (a) Nucleation PDF of the network for reference. (b)
Divergence map from the IA-based avalanche field (−∇ · V I ).
(c) Divergence map from the BA-based avalanche field (−∇ · V B ).
(d) Divergence map from the connectivity-based avalanche field
(−∇ · V A). The correlation between the IA-based avalanche field
divergence map and the nucleation sites is clear, where the zones
of maximum (negative) divergence indicate the nucleation sites. The
other maps show many regions of maximum divergence that do not
correlate with the nucleation sites.

can define a new avalanche field as

VB
i =

N∑
j=1

Bij rij . (11)

A comparison between the different definitions of the
avalanche field is shown in Fig. 4 by comparing the nucleation
map with the divergence of each of the possible constructions.
Note how the first field we defined, the IA-based one,
correlates much better with the nucleation sites. The IA-based
avalanche field is constructed in such a way that it retains
nonlocal information from the whole region that covers the
basin of attraction of a given nucleation site, which has an
extension defined by the mean axon length. This information
is inaccessible to a connectivity-only construction, or from one
that takes into account all avalanches. By using only the IA
information, which corresponds to large avalanches, and also
by using the information of the nucleation point, i.e., where
the IA activity ends up concentrating, we are providing each
neuron with information that is not available locally.
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FIG. 5. (a) Example of burst sequence for the activity in the
continuum model [Eqs. (1)–(5)]. Initiation centers (symbols) are
shown, with their correspondence in (c). (b) Distribution of interburst
intervals (IBIs) for the continuum model and the equivalent distri-
bution (line) for the microscopic neuronal dynamics simulation with
the same mean IBI. Also, ccont

v = cneuron
v = 0.13, cv being the ratio

between the standard deviation and the mean of the IBI distribution.
(c) Nucleation map generated from the nucleation points in the
continuum model, as well as the location of the burst centers from
(a). (d) Nucleation map obtained from the microscopic neuronal
dynamics. Nucleation maps obtained with mesoscale and microscopic
descriptions for a system with periodic boundary conditions, S =
5 × 5 mm2 and density ρ = 400 neurons/mm2. Simulation was per-
formed with the following parameters: Activity: a = −12.93 ms−1,
b = 19.05 ms−1, c = −7.6 ms−1, d = 1.016 ms−1, κ = 1 ms−1,
D = 0.02 mm2/ms, λ = 0.1 mm/ms, α = 0.7 ms−1, η0 = 2.68e − 5
ms−1, ε = 5e − 10 mm2/ms. Recovery: γ = 0.3 ms−1, g = −0.13,
h = 0.43. Depression: τD = 5000 ms, β = 0.5 ms−1, n = 8.

IV. COMPARISON WITH SIMULATIONS AND
EXPERIMENTS

Our model reproduces quantitatively all the observed
phenomena in experiments and network-level simulations of
Ref. [12], and the additional simulations here performed.
Figure 5 gives an illustrative example where both statics
(the nucleation map) and dynamics [distribution of interburst
intervals (IBIs)] of the network-level simulation are matched
by the continuum model. We remark that, even though the
preburst activity is highly inhomogeneous and anisotropic,
as dictated by the avalanche field V0, one nucleated, bursts
propagate as a circular front, restoring the isotropy and
homogeneity of the medium. In Fig. 6 we show two illustrative
examples of propagating fronts.

The agreement between the two nucleation maps, except in
regions with poor statistics, is expected given the construction
procedure proposed. The degree of focusing can be tuned

onset time (ms)
298 304 310 316

onset time (ms)
868 874 880 886

(a) (b)

1mm

FIG. 6. Two examples of traveling pulses for a system with
periodic boundary conditions, S = 5 × 5 mm2 and density ρ =
400 neurons/mm2. The onset time is defined as the first time a point
crosses an arbitrary large threshold uth = 0.8. (a) Pulse that originates
in the middle right area. (b) Pulse that originates in the middle
left area. The waves present an average velocity of 〈V 〉 = 120 ± 20
mm/s.

by λ, whereas the mean IBI and its variance are controlled
by τD and ε, respectively. Figure 5 shows a series of bursts
and identifies the respective initiation sites. The IBI statistics
is well reproduced by the coarse-grained model, which also
exhibits the random alternation between the nucleation sites.
The analysis of long series of bursts shows no significant
correlation between the location of successive nucleation
events, provided that the IBI dispersion is large compared
to the burst traveling time between sites.

V. DISCUSSION

Our results suggest that, generically, a coarse-grained
description of the spontaneous activity ψ of a metric network
of units with an integrate-and-fire rule and fixed firing rate,
assuming no additional dynamics of neither nodes nor links,
obeys a balance equation of the form

ψ̇ = α(r)ψ − ∇ · J + η(r,t), (12)

J = −D∇ψ + ψ[V0(r) + ξ (r,t)]. (13)

ψ may designate completely different observables, be it
density of neuron spikes or, for instance, density of events of
rumor propagation in a social network [23]. This dressed noise
ψ̇ will have to be coupled to the appropriate coarse-grained
variables for each case. Our scheme defines the simplest
Markovian approximation, corresponding to a Fokker-Planck
truncation of a functional Kramers-Moyal expansion of the
exact probability P [ψ(r),t] (see Appendix B). The explicit
implementation of this procedure is highly nontrivial in the
case at hand. Alternatively, here we postulate the explicit
form of Eqs. (12) and (13) on the basis of experimental and
simulational data from neuronal cultures. If the characteristic
times of avalanches become comparable to the IBI scale,
then the Markovian approximation may not be justified and
time-correlated noise should be introduced.
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VI. CONCLUSIONS AND OUTLOOK

In summary, we have seen that the noise focusing phe-
nomenon can be captured in a continuum coarse-grained model
of an excitable medium with unconventional properties, that
reflect the presence of an underlying network. The excitable
dynamics amplifies the network quenched fluctuations giving
rise to an explicit symmetry breaking at the mesoscale. The
emerging advective transport tends to concentrate activity
in competition with the diffusive transport, which tends to
homogenize it. Both mechanisms originate at the network
level. Whenever advection dominates, such as in neuronal
cultures, we will have noise focusing. Remarkably, the symme-
try breaking affects essentially the noise-driven mechanisms,
such as nucleation, but not macroscopic aspects such as front
propagation.

As in Anderson localization [24], the phenomenon here
elucidated results from a modification of transport properties
due to disorder, even though the mechanisms are completely
different. As opposed to the wave interference of multiple
scattering competing with diffusive transport, in our case it
is the emergence of ballistic transport that competes with
diffusion. Nonetheless, in both cases the localization is a
collective (nonlocal) effect of disorder in extended regions,
as opposed to eventual trapping in locations with special
properties of the disorder.

The phenomenon of noise focusing is generic in relatively
simple excitable networks, such as in neuronal cultures, but its
relevance to in vivo neuronal tissues remains to be established.
From a fundamental point of view, the direct quantitative
prediction of the symmetry-breaking avalanche field for a
specific network, given a set of dynamical equations, remains
a nontrivial open question.

ACKNOWLEDGMENTS

We thank MINECO for its financial support under project
FIS2013-41144-P and Generalitat de Catalunya under project
2014-SGR-878.

APPENDIX A: MICROSCOPIC DYNAMICS AND
NETWORK MODEL

1. Neuron model

The microscopic neuronal model used to determine the
exact structure of the avalanche field for a given network was
previously introduced in Ref. [12] and can be summarized
as follows. Based on Refs. [18,20,25] we model the neuron
dynamics by a quadratic integrate and fire model with
adaptation. It consists on a set of two coupled nonlinear
ordinary differential equations for each neuron:

Cv̇ = k(v − vr )(v − vt ) − u + I + η, (A1)

τau̇ = b(v − vr ) − u, (A2)

if v � vp, then v ← vc, u ← u + d. (A3)

Equation (A1) describes the dynamics of the soma membrane
potential v(t). vr and vt are the resting and threshold potentials,
respectively. C is the normalized leaky membrane capacitance,

TABLE I. Parameters used to simulate the microscopic neuronal
dynamics.

Dynamics parameters Value

Soma parameters
Resting membrane potential vr = −60 mV
Threshold membrane potential vt = −45 mV
Peak membrane potential vp = 35 mV
Reset membrane potential vc = −50 mV
Normalized membrane capacitance C = 50 ms

k = 0.5 mV−1

τa = 50 ms
b = 0.5
d = 50 mV

Synapse parameters
Depression recovery time τD = 5 × 102–2 × 104 ms
Depression decay β = 0.8
Current strength g = 10–50 mV
Current decay time τ = 10 ms
Noise parameters
White noise strength gs = 3 × 102 mV2 ms
White noise autocorrelation 〈η(t)η(t ′)〉 = 2gsδ(t − t ′)
Shot noise frequency λ = 0.01–0.05 ms−1

Shot noise strength (minis) gm = 10–50 mV
Shot noise decay time τm = τ

and u is an inhibitory current that accounts for the internal slow
currents generated by the activation of ion channels. I contains
the synaptic inputs from other neurons and η is a noise term.
Equation (A2) represents effectively the combined effect of
the slow currents. τa , k, b, and d are parameters that control
the adaptation and recovery of the neurons.

The membrane potential v changes from its resting value
vr as it receives inputs from other neurons or noise. Above
vt , the potential grows very rapidly up to a peak value vp

that is associated to the generation of a spike. The potential
is then manually reset to vc < vt and the inhibitory current u

increased. The last term of Eq. (A1) accounts for the noise
present in the system. The intrinsic noise accounts for the
spontaneous release of neurotransmitters in the presynaptic
terminals [26] and is modeled as a shot noise. This spontaneous
release generates small currents (minis) in the postsynaptic
terminal that travel down the dendritic tree to the neuron body,
in the same way as evoked currents from other firings. In the
model, the only difference between spontaneous and evoked
currents is their amplitude. A small Gaussian white noise is
also added to the system to account for intrinsic membrane
potential fluctuations. The list of parameters used to describe
the dynamic behavior of the spiking neurons are listed in
Table I.

2. Synapse model

In this model, neurons connect to each other through
chemical synapses with short-term depression (STD). Every
time a neuron i fires, it generates a depolarizing current on its
output neighbors of the form

Ei(t,tm) = gDi(tm) exp

(
− t − tm

τ

)
θ (t − tm), (A4)
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FIG. 7. Depression response of the microscopic dynamics to a
Poisson spike train. Steady-state value of the depression of a synapse
w = 1 − D, where D(t) is governed by Eq. (A5) in (a) linear and (b)
semilogarithmic scale.

where tm is the spiking time, g the strength of the synapse
(associated to the receptor density at the postsynaptic terminal)
and τ the characteristic decay time of the postsynaptic current.
D(t) accounts for STD, i.e., the temporal weakening of
the synapses due to repeated stimulation [27]. Its temporal
evolution can be expressed as [18,28,29]

Ḋ = 1

τD

(1 − D) − (1 − β)Dδ(t − tm), (A5)

where τD is the characteristic recovery time associated to
the recycling of synaptic vesicles [30,31]. The release of
neurotransmitters at the synapse as a consequence of firing
results in a reduction of D to βD, with β < 1. Subsequent
firings will induce additional currents but with a reduced
amplitude if the synapse has not had enough time to recover.

The total input from its neighbors a given neuron j

receives is

Ij (t) =
kin
j∑

i=1

∑
tm<t

Ei(t,tm), (A6)

where the first summation comprises all input connections kin
j

on neuron j , and the second one all spikes previously generated
by neuron i. Note that the subset tm is in general different from
neuron to neuron.

3. Synaptic depression response

In the microscopic model, synaptic depression is governed
by Eq. (A5), and the response of this equation to an input of
varying frequency (and Poisson statistics) is shown in Fig. 7,
where w accounts for the level of depression of the synapses.
This kind of dynamic response is the reason behind Eq. (3).

4. Metric construction of the network

To construct the neuronal network we model neurons as
circular cell bodies with fixed diameter φs = 15 μm. Neurons
are then randomly placed on a bidimensional area described by
the coordinates (x,y) without any overlap. The total number
N of neurons is given by the desired density ρ.

From each neuron on the substrate an axon grows in a
random direction following a quasistraight path, as described
below, with a total length that is given by a Rayleigh

TABLE II. Parameters used to generate the neuronal networks.

Network parameters Value

System-wide parameters
System size L × L L = 5–20 mm
Density ρ = 102–103 neu/mm2

Morphological parameters
Soma size (fixed) ra = 7.5 μm
Dendritic tree (Gaussian pdf) μ = 150 μm,σ = 20 μm
Axonal length (Rayleigh pdf) σ = 800 μm
Axonal segment length (fixed) ls = 10 μm
Axonal segment angle (G. pdf) μ = 0,σ = 0.1 rad

distribution of the form

p(�) = �

σ 2
�

exp

(−�2

2σ 2
�

)
, (A7)

where σ 2
� = 900 μm2 is the variance of the distribution and its

value is chosen so that the average axonal length matches the
value 〈�〉 ∼ 1.1 mm measured in experiments.

To mimic axon growth we initially divide the total length
� into small segments 
� = 10 μm long. The first segment
is placed at the end of the neuron cell body with a random
orientation. The ith segment is then placed at the end of the
previous one, and oriented following a Gaussian distribution
around the previous segment given by

p(θi) = 1√
2πσ 2

θ

exp

[
− (θi − θi−1)2

2σ 2
θ

]
, (A8)

where θi−1 is the angle between the segment i − 1 and the
origin. σθ is chosen to obtain the desired persistence length
(typically σθ ∼ 15◦) of a few hundred microns. The growing
process is then repeated until all segments are laid down.

We model the dendritic tree of each neuron as a disk,
centered at the cell body, with diameter φd drawn from a
Gaussian distribution with mean μd = 300 μm and standard
deviation of σ 2

d = 40 μm.
Connections are formed purely by geometric considera-

tions. A connection can be established only when the axon of
a given neuron intersects the dendritic tree of any other neuron.
The neurons that fulfill this geometric condition will connect
with probability α. From this connectivity rule we obtain the
adjacency matrix of the network A, where Aij = 1 identifies a
connection. The typical range of parameters used to generate
the networks are presented in Table II.

APPENDIX B: FOKKER-PLANCK APPROXIMATION OF
THE MESOSCALE MODEL

In the derivation of stochastic equations at the mesoscale
description of systems with many degrees of freedom, in it
customary to search for a Markovian models with the idea
the time scales associated to internal degrees of freedom that
show up in the form of noise terms are negligible against the
slow variables that are kept in the effective description. In
our system, the spatio-temporal structure of the microscopic
activity is complex and includes many time scales and power
laws. However, for simplicity, we may also assume that there
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is a sufficient separation of time scales so that a Markovian
approximation is valid. This is what is implicitly assumed in
the equation

ψ̇ = α(r)ψ − ∇ · J + η(r,t), (B1)

J = −D∇ψ + ψ[V0(r) + ξ (r,t)], (B2)

where ψ designate the relevant field and the noise terms η and ξ

are Gaussian white noises. Formally, the most general equation
for the probability functional P[ψ,t] of a Markovian field
variable ψ(r) takes the form of a functional Kramers-Moyal
expansion

∂

∂t
P[ψ ; t] = −

∫
dr

δ

δψ(r)
F1[ψ(r)]P[ψ ; t]

+
∫∫

drdr′ δ

δψ(r)

δ

δψ(r′)
F2[ψ ; r,r′]P[ψ ; t]

+ · · · . (B3)

The only consistent truncation of this expansion is to second
order, which yields the Fokker-Planck approximation, and

ensures continuity of the fields. This procedure defines
formally the terms that we should put in the Langevin equation
(B1) and (B2). What we do in our model is to postulate an
explicit form for the functionals F1 and F2. Using the Ito
interpretation of the multiplicative noise, this means that we
postulate

F1[ψ] = α(r)ψ + D
ψ − ∇ · [ψV0(r)]. (B4)

In the case of the Stratonovich interpretation of the multi-
plicative noise, the Fokker-Planck equation must be rewritten
to account for the so-called noise-induced drift. In our case,
we do assume this interpretation, because this corresponds
to the case where the internal noise has a finite correlation
time that is taken in the limit of being vanishingly small. In
our case, we assume that finite but small correlations of the
noise are present due to the avalanche structure, that contains
indeed a large range of time scales. Consistently, if we take the
Stratonovich interpretation, our the definition of the drift terms
in Eqs. (B1) and (B2) is the same as in the right-hand side of
Eq. (B4), which corresponds to F1 once the noise-induced drift
is removed, since this is effectively incorporated in the noise
terms.

[1] E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).
[2] A. G. Blankenship and M. B. Feller, Nat. Rev. Neurosci. 11, 18

(2010).
[3] I. Breskin, J. Soriano, E. Moses, and T. Tlusty, Phys. Rev. Lett.

97, 188102 (2006).
[4] J.-P. Eckmann, O. Feinerman, L. Gruendlinger, E. Moses, J.

Soriano, and T. Tlusty, Phys. Rep. 449, 54 (2007).
[5] J. Soriano, M. Rodríguez Martínez, T. Tlusty, and E. Moses,

Proc. Natl. Acad. Sci. USA 105, 13758 (2008).
[6] O. Feinerman, A. Rotem, and E. Moses, Nat. Phys. 4, 967 (2008).
[7] E. Maeda, H. P. Robinson, and A. Kawana, J. Neurosci. 15, 6834

(1995).
[8] R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski,

E. Kapon, Y. Shapira, and E. Ben-Jacob, Phys. Rev. Lett. 88,
118102 (2002).

[9] J. Van Pelt, M. A. Corner, P. S. Wolters, W. L. C. Rutten, and G.
J. A. Ramakers, Neurosci. Lett. 361, 86 (2004).

[10] D. Eytan and S. Marom, J. Neurosci. 26, 8465 (2006).
[11] D. A. Wagenaar, J. Pine, and S. M. Potter, BMC Neurosci. 7, 11

(2006).
[12] J. G. Orlandi, J. Soriano, E. Alvarez-Lacalle, S. Teller, and J.

Casademunt, Nat. Phys. 9, 582 (2013).
[13] B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-

Geier, Phys. Rep. 392, 321 (2004).
[14] F. Sagués, J. M. Sancho, and J. García-Ojalvo, Rev. Mod. Phys.

79, 829 (2007).
[15] S. Boccaletti, V. Latora, Y. Moreno, and M. Chavez, Phys. Rep.

424, 175 (2006).
[16] The existence of finite-time correlations in the avalanche

statistics is captured by the Stratonovich interpretation of the
multiplicative noise [32].

[17] O. Feinerman, M. Segal, and E. Moses, J. Neurophysiol. 94,
3406 (2005).

[18] E. Alvarez-Lacalle and E. Moses, J. Comput. Neurosci. 26, 475
(2009).

[19] In general one could consider inhomogenous diffusion, D(
r) or
even anisotropic diffusion with a tensorial diffusion coefficient.
These effects would introduce additional complexity but cannot
account for the ballistic transport described by 
V .

[20] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT
Press, Cambridge, MA, 2007).

[21] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.95.052304 for an explicit implementation of
the construction of an avalanche field.

[22] The effect of the neglected avalanches could be incorporated as
an additional noise term in α.

[23] W. G. Moons, D. M. Mackie, and T. Garcia-Marques, J. Pers.
Soc. Psychol. 96, 32 (2009).

[24] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[25] E. M. Izhikevich, IEEE Trans. Neural Netw. 14, 1569 (2003).
[26] D. Cohen and M. Segal, J. Neurophysiol. 101, 2077 (2009).
[27] D. Golomb and Y. Amitai, J. Neurophysiol. 78, 1199 (1997).
[28] M. V. Tsodyks and H. Markram, Proc. Natl. Acad. Sci. USA 94,

719 (1997).
[29] M. Tsodyks, A. Uziel, and H. Markram, J. Neurosci. 20, RC50

(2000).
[30] E. Garcia-Perez, D. C. Lo, and J. F. Wesseling, J. Neurophysiol.

100, 781 (2008).
[31] D. Cohen and M. Segal, J. Neurophysiol. 106, 2314 (2011).
[32] J. García-Ojalvo and J. M. Sancho, Noise in Spatially Extended

Systems, Institute for Nonlinear Science (Springer, New York,
1999).

052304-8

https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2759
https://doi.org/10.1038/nrn2759
https://doi.org/10.1038/nrn2759
https://doi.org/10.1038/nrn2759
https://doi.org/10.1103/PhysRevLett.97.188102
https://doi.org/10.1103/PhysRevLett.97.188102
https://doi.org/10.1103/PhysRevLett.97.188102
https://doi.org/10.1103/PhysRevLett.97.188102
https://doi.org/10.1016/j.physrep.2007.02.014
https://doi.org/10.1016/j.physrep.2007.02.014
https://doi.org/10.1016/j.physrep.2007.02.014
https://doi.org/10.1016/j.physrep.2007.02.014
https://doi.org/10.1073/pnas.0707492105
https://doi.org/10.1073/pnas.0707492105
https://doi.org/10.1073/pnas.0707492105
https://doi.org/10.1073/pnas.0707492105
https://doi.org/10.1038/nphys1099
https://doi.org/10.1038/nphys1099
https://doi.org/10.1038/nphys1099
https://doi.org/10.1038/nphys1099
http://www.jneurosci.org/content/15/10/6834.long
https://doi.org/10.1103/PhysRevLett.88.118102
https://doi.org/10.1103/PhysRevLett.88.118102
https://doi.org/10.1103/PhysRevLett.88.118102
https://doi.org/10.1103/PhysRevLett.88.118102
https://doi.org/10.1016/j.neulet.2003.12.062
https://doi.org/10.1016/j.neulet.2003.12.062
https://doi.org/10.1016/j.neulet.2003.12.062
https://doi.org/10.1016/j.neulet.2003.12.062
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1186/1471-2202-7-11
https://doi.org/10.1186/1471-2202-7-11
https://doi.org/10.1186/1471-2202-7-11
https://doi.org/10.1186/1471-2202-7-11
https://doi.org/10.1038/nphys2686
https://doi.org/10.1038/nphys2686
https://doi.org/10.1038/nphys2686
https://doi.org/10.1038/nphys2686
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1152/jn.00264.2005
https://doi.org/10.1152/jn.00264.2005
https://doi.org/10.1152/jn.00264.2005
https://doi.org/10.1152/jn.00264.2005
https://doi.org/10.1007/s10827-008-0123-5
https://doi.org/10.1007/s10827-008-0123-5
https://doi.org/10.1007/s10827-008-0123-5
https://doi.org/10.1007/s10827-008-0123-5
http://link.aps.org/supplemental/10.1103/PhysRevE.95.052304
https://doi.org/10.1037/a0013461
https://doi.org/10.1037/a0013461
https://doi.org/10.1037/a0013461
https://doi.org/10.1037/a0013461
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1152/jn.91085.2008
https://doi.org/10.1152/jn.91085.2008
https://doi.org/10.1152/jn.91085.2008
https://doi.org/10.1152/jn.91085.2008
http://jn.physiology.org/content/78/3/1199
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
http://www.jneurosci.org/content/20/1/RC50.long
https://doi.org/10.1152/jn.90429.2008
https://doi.org/10.1152/jn.90429.2008
https://doi.org/10.1152/jn.90429.2008
https://doi.org/10.1152/jn.90429.2008
https://doi.org/10.1152/jn.00969.2010
https://doi.org/10.1152/jn.00969.2010
https://doi.org/10.1152/jn.00969.2010
https://doi.org/10.1152/jn.00969.2010



