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Abstract: Rosacea is the most common inflammatory skin disease. It is characterized by erythema,
inflammatory papules and pustules, visible blood vessels, and telangiectasia. The current treatment
has limitations and unsatisfactory results. Pioglitazone (PGZ) is an agonist of peroxisome
proliferator-activated receptors (PPARs), a nuclear receptor that regulates important cellular functions,
including inflammatory responses. The purpose of this study was to evaluate the permeation of
PGZ with a selection of penetration enhancers and to analyze its effectiveness for treating rosacea.
The high-performance liquid chromatography (HPLC) method was validated for the quantitative
determination of PGZ. Ex vivo permeation experiments were realized in Franz diffusion cells using
human skin, in which PGZ with different penetration enhancers were assayed. The results showed
that the limonene was the most effective penetration enhancer that promotes the permeation of PGZ
through the skin. The cytotoxicity studies and the Draize test detected cell viability and the absence
of skin irritation, respectively. The determination of the skin color using a skin colorimetric probe and
the results of histopathological studies confirmed the ability of PGZ-limonene to reduce erythema
and vasodilation. This study suggests new pharmacological indications of PGZ and its possible
application in the treatment of skin diseases, namely rosacea.
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1. Introduction

Rosacea is a chronic inflammatory disease of the skin [1–3]. The clinical features appear principally
in the central region of the face and include the presence of facial erythema, inflammatory papules and
pustules, telangiectasia, and edema [4–6]. It predominantly affects women and fair-skinned people and
can occur at any age but is more frequent in middle-aged individuals [7,8]. The estimated prevalence
of rosacea among the population of Europe and United States has a wide range from less than 1%
to more than 20%, likely due to differences in the methods used and the populations studied [9,10].
Furthermore, it has been associated with several comorbidities such as depression and anxiety [11,12],
dyslipidemia, hypertension, cardiovascular diseases, and metabolic diseases [13–15].
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The pathogenesis of the disease has not been totally clarified but several factors implicated in
the etiology of the disease have been reported, such as genetic predisposition, alterations of the
neurovascular system, and dysregulation of the innate and adaptive immune system [16,17]. Studies
about the pathophysiological mechanisms of rosacea suggest activation of pattern recognition receptors
(PRRs) that identify components from foreign microorganisms and immunostimulatory products [18,19].
An increase in Toll-like receptors-2 (TLR-2) expression, a family of PRRs, has been observed in
inflammatory skin diseases such as rosacea. When TLR-2 is stimulated by triggering factors, it induces
the release of antimicrobial peptides (cathelicidin LL-37) or proinflammatory cytokines such as IL-8,
IL-1β, and TNF-α [18,20]. In addition, the characterization of inflammatory infiltrate in this disease
has revealed the activation of T lymphocytes, particularly T-helper 1 (Th1) and T-helper 17 (Th17) cells,
as well as the presence of macrophages and mast cells, which mediate the inflammatory reactions and
development of the disease [21,22].

Topical treatments like sodium sulfacetamide, azelaic acid, metronidazole, and the alpha-adrenergic
agonist are recommended when there are few papules and pustules [23,24]. If the skin lesions
are more extensive, systemic medications like tetracyclines are prescribed [25,26]. Despite these
pharmacological options, rosacea remains incurable, and thus its treatment focuses mainly on controlling
the symptoms [27]. These limitations, coupled with unsatisfactory therapeutic results, demonstrate the
need to develop more targeted and efficacious treatments [23,28].

Recent studies have suggested that the peroxisome proliferator-activated receptor-gamma
(PPAR-γ), a nuclear receptor that regulates glucose homeostasis and lipid metabolism, has an important
role in adaptive immunity by regulating genes expression involved in inflammatory processes [29].
Therefore, it has been proposed that PPAR-γ agonists could act as negative regulators in T cell
differentiation and activation to attenuate inflammatory responses of autoimmune diseases [30].
Pioglitazone (PGZ) is a member of the thiazolidinediones, which is useful to treat type 2 diabetes
mellitus (DM) [31,32]. Moreover, previous studies have demonstrated that this drug has the capacity
to inhibit the signaling pathways involved in inflammatory and immunologic processes [33,34],
suggesting that its application could be an effective treatment of inflammatory processes.

Penetration enhancers are used with the aim to improve the transdermal drug delivery [35].
Several chemicals such as sulphoxides, azones, pyrrolidones, alcohols, glycols, surfactants, fatty acids,
essential oils, and terpenes have been proposed for their ability to reversibly decrease the barrier
resistance, allowing drug penetration into the skin at a greater rate [36,37]. As a result, penetration
enhancers represent an alternative to improve the permeability and, consequently, the duration of
drug action.

After having taken into consideration the role of PPAR-γ as an important immunomodulator with
anti-inflammatory properties, the aim of this study was to evaluate the efficacy of the PGZ solution
with a selection of penetration enhancers to improve its permeability for treating rosacea using an
in vivo model.

2. Results

2.1. Validation of the Analytical Method

All the analytical method data can be found in Supplementary materials. The linearity of the
method was evaluated by the obtained equation and regression values from the calibration curves
determined by least-squares linear regression analysis of the peak-area ratios of the PGZ standards
solutions versus concentration. Three calibration curves were made in the range of 1.5–110 µg/mL
(Table S1). No single calibration standard point was dropped during the validation and the data
indicate good linearity of the proposed method. The equation obtained from the average calibration
curves and the correlation coefficient value are shown Figure S1. Precision of the method was evaluated
at concentrations of 3, 60, and 110 µg/mL for the linearity range. Obtained results are shown in Table S2.
Data are expressed as percentage of coefficient of variation (CV) and precision of method. The accuracy
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of the method was evaluated in small, medium, and large concentrations of the range of linearity
studied by comparing the tested concentration with the theoretical concentration. Obtained results
are shown in Table S3. Data are expressed as percentage of relative error and accuracy. Robustness
examines the effect that operational parameters have on the results and provides an indication of
its reliability during normal usage. It was determined by evaluating retention time with tolerance
variations in the flow and mobile phase that are shown in Table S4. Specificity was proven by the
analysis of blank control of mobile phase (Figure S2), standard of 30 ppm (Figure S3), blank of the skin
as control (Figure S4), and sample of skin permeated with PGZ-limonene (Figure S5). Chromatogram
did not show interference at the retention time of PGZ. From the lowest concentration standard
(1.5 ppm), the detection limit (LOD) and the limit of quantification (LOQ) were determined based on
signal-to-noise ratios of 3:1 and 10:1, respectively. Hence, the LOD for PGZ was set at 0.12 ± 0.28 ng/mL
and the LOQ at 0.40 ± 0.52 ng/mL.

2.2. Permeation Studies in Human Skin

The permeation profiles of PGZ with and without penetration enhancers were estimated.
The cumulative permeated amount of PGZ (µg) per cm2 of human skin in each time interval is
shown in Figure 1.
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Figure 1. Median cumulative permeated amount of pioglitazone (PGZ) with and without penetration
enhancers through human skin, expressed as µg/cm2.

Furthermore, the permeation and prediction parameters of PGZ with permeation enhancers were
calculated. The flow (Jss) and permeability coefficient (Kp) were determined from the cumulative
amount of the drug permeated through the skin plotted versus time in steady state. Table 1 shows that
the limonene presented the highest values for Jss, kp, Qret, and Css.
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Table 1. Permeation and prediction parameters of PGZ and penetration enhancers.

Permeation and Prediction Parameters Free-PGZ Azona Squaleno Linoleic Acid Menthol Pyrrolidone Limonene Cineol

Jss (µg/(h/cm2)) × 104 8.42 a,c,d,f,g 19.40 b,c,d,e 6.56 f,g 5.38 f,g 3.83 e,f,g 6.89 f,g 21.90 g 18.00
(7.68–9.36) (17.4–23.3) (5.81–7.22) (4.74–6.02) (3.44–4.31) (6.30–7.58) (19.7–25.1) (15.2–20.8)

Kp (cm/h) × 105 4.92 a,c,d,f,g 12.10 b,c,d,e 3.62 f,g 3.21 f,g 2.33 e,f,g 4.21 f,g 13.20 g 2.53
(4.33–5.41) (11.90–14.30) (3.16–3.98) (2.69–3.53) (2.20–2.66) (3.69–4.53) (12.90–16.50) (2.38–2.78)

Qret (µg/g skin/cm2) 42.61 a,c,d,e,f,g

(38.34–46.86)
8.42 b,d,f,g

(7.67–9.36)
53.61 c,d,e,f,g

(47.24–57.97)
14.84 d,f,g

(14.35–16.32)
101.82 e,f

(90.63–112.00)
18.04 f,g

(15.23–20.84)
207.65 g

(186.88–229.41)
94.74

(85.26–105.21)

Css (ng/mL) × 104 3.73 a,c,d,f,g 8.57 b,c,d,e,g 2.90 f,g 2.38 f,g 1.69 e,f,g 3.05 f,g 9.68 9.60
(3.45–4.20) (7.71–9.52) (2.41–3.29) (2.04–2.62) (1.44–1.96) (2.84–3.35) (8.81–10.50) (8.54–11.60)

a = Azona; b = Squaleno; c = Linoleic acid; d = Methol; e = Pyrrolidone; f = Limonene; g = Cineol. No differences found for Free-PGZ. Results are expressed by median and range of three
replicates. One-way Analysis of Variance (ANOVA) with Tukey’s Multiple Comparison Tests were performed to assess the statistical significance between groups at (p < 0.05).
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2.3. Cytotoxicity Studies and Skin Tolerance Studies

The in vitro cytotoxicity assay by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was carried out using HaCaT cells after incubation with PGZ-limonene and limonene.
Six concentrations were selected according to the level of concentration of each formulation studied.
The results showed cell viability greater than 80% in the dilutions assayed from 0.001 to 0.02 mg/mL
(Figure 2).
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Figure 2. Percentage of cellular viability of immortalized human keratinocytes (HaCaT) cell line
exposed to PGZ-limonene and limonene.

The Draize test was performed in order to evaluate the skin irritation potential of PGZ-limonene
and limonene. It had a duration of 72 h using a concentration of 1 mg/mL of PGZ and 5% of limonene.
The resulting primary irritation index value of the tested groups were: Control (0.9% NaCl): 0;
PGZ-limonene: 0.32 and limonene: 0.43, thereby indicating that PGZ-limonene and limonene
are non-irritant.

2.4. Efficacy Studies

2.4.1. Colorimetric Parameters

The pharmacological efficacy of PGZ-limonene was evaluated by skin color differences from
the backs of mice with respect to basal color. The evolution of erythema can be seen in Figure 3
and Figure S6, which displays the reproduction of the color codes as a sequence through different
steps: basal color, induction of inflammation/vasodilation, and treatment after 5, 10, and 20 min.
The results showed significant differences between the relative erythema (%) of the topical treatment
with PGZ-limonene and limonene with respect to positive control. PGZ combined with limonene
reduced the relative erythema below the basal value at 20 min (Figure 4a–c).
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Figure 3. Evolution of erythema shown as skin color sequence on mice’s backs, using PGZ-limonene
and limonene compared with positive control. Colors are reproduced from the average values of three
basic light components, red, green, and blue (RGB) codes using a Multi Probe Adapter (MPA) 5 Multi
Probe adapter from Courage + Khazaka electronic GmbH (Cologne, Germany), equipped with a CL400.
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Figure 4. Colorimetric studies for pharmacological evaluation. (a) Statistical differences of positive
control with respect to basal values (0 min); (b) relative erythema (%) of PGZ-limonene at different
time intervals with respect to the basal stage (0 min); (c) relative erythema (%) of limonene at different
time intervals with respect to the basal stage (0 min). Horizontal bars represent the average value.
Significant statistical differences: * p < 0.05, ** p < 0.01, **** p < 0.0001, ns = non-significant.

2.4.2. Histological Analysis

Histologically, control skin consisted of a relatively thin epidermis with a contiguous stratum
corneum and normal dermal appendages (Figure 5A). A similar pattern of staining was observed in
the PGZ-limonene treated skin (Figure 5D). Loss of the stratum corneum was evident in the m-Xylene
treated mice (*, Figure 5B), along with a prominent leukocyte infiltrate (arrow, Figure 5B) accompanied
by a general loss of dermal appendages, including sebaceous glands and hair follicles. PGZ-limonene
skin was limited to less infiltrating leukocytes compared to the m-Xylene skin and a normal epidermis
with a contiguous stratum corneum (Figure 5C).
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(D) mice’s back skin from affected area (×10 magnification). Hematoxylin stains nuclei blue/black,
and eosin stains keratin and cytoplasm red/orange. Bars = 200 µm. sc = stratum corneum, e = epidermis,
d = dermis, h = subcutaneous layer Arrow = leucocyte infiltrate, * = loss of stratum corneum.

3. Discussion

Rosacea is an inflammatory skin disease which remains incurable because the current treatment
has limitations and a significant number of patients are unresponsive to it or have unsatisfactory
results [28]. Mounting evidence suggests that PPAR-γ activation is a promising target to regulate
pro-inflammatory cytokines expression [38]. Therefore, PPAR-γ agonists such as PGZ could promote
an anti-inflammatory effect to treat several diseases [39]. In the present study, the possible application
of PGZ in rosacea treatment was evaluated. Validation of the analytical method was carried out
in accordance with international conference on harmonization (ICH) guidelines, for which the
following criteria were analyzed: linearity, precision, accuracy, robustness, specificity, limits of
detection, and quantification. The objective of validating an analytical method is to confirm that
the analytical procedure employed for a specific test is suitable for its intended use [40,41]. Spectra
showed maximum absorbance at a wavelength of 269 nm and the calibration curve was found to be
linear in the concentration range of 1.5–110 µg/mL, with a correlation coefficient (r2) value of 0.0998
(Figure S1). The obtained values for accuracy did not exceed ±5% (Table S3), and precision was
maintained below ±3% (Table S2), thus proving that the analytical method is accurate and precise
within the determined concentration range.

Furthermore, the human skin was analyzed as a possible route for PGZ delivery, because topical
treatment offers important advantages that include reduced side effects and ease of product use over
the target areas [42]. However, poor permeation of the drug through the skin is the primary challenge
in the development of topical formulations [43]. The use of penetration enhancers is a common strategy
to increase drug flux through the stratum corneum, which is the upper layer of the skin and the major
barrier for drug permeation [44,45]. In this study, ex vivo permeation experiments through human skin
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using PGZ with different penetration enhancers evidenced that terpenes (menthol, cineole, and mainly
limonene) were the most effective.

Ex vivo permeation experiments through human skin using PGZ with different penetration
enhancers (Figure 1) evidenced that the permeation flow of PGZ without enhancers was relatively
low: 0.84 ng/(h/cm2). The addition of azone, squalene, linoleic acid, menthol, pyrrolidone, limonene,
and cineole changed the permeation flow to 1.94, 0.66, 0.54, 0.38, 0.69, 2.19, and 1.8 ng/(h/cm2),
respectively. Therefore, limonene was the most effective penetration enhancer that promoted the
permeation of PGZ through human skin. As shown in Table 1, limonene presents the highest values
for Jss, kp, Qret, and Css [44]. Some studies suggest that hydrocarbon terpenes like limonene (log p value
of 4.53) are more effective to enhance skin penetration of lipophilic drugs like PGZ (log p value
of 2.3) [45,46]. Terpenes consist of isoprene units that enhance the permeation of hydrophilic and
lipophilic drugs [47]. The mechanism of action of limonene as a penetration enhancer is based
on changing the structure of lipids between the stratum corneum, with a consequent increase of
intercellular diffusivity and improvement of drug partitioning into the tissue [48]. Researchers have
found that limonene has anti-inflammatory properties in a murine dermal model, as well as healing
effects on the epidermal barrier [49]. However, some researchers have suggested limonene could
be toxic for human skin [50,51], whereas others do not consider the research significant enough to
invalidate its use [52–54]. In addition, topical treatment of normal mouse skin with PPAR does not
affect basal transepidermal water loss. In other words, permeability barrier function is not altered [55].
Furthermore, the high retention of PGZ in the human skin (207.65 µg/g of tissue) indicates that
limonene promotes the retention of drug in the skin, which could prolong the duration of drug action
and increase efficacy in the treatment of rosacea, thus favoring the likelihood of a reduction of the
dosing frequency in clinical practice.

The in vitro cytotoxicity studies were made using HaCaT cells after 24 h of incubation with
different dilutions of PGZ-limonene and limonene. Figure 2 shows similar results in both cases with
cell viability greater than 80% in five of the six dilutions tested. Therefore, PGZ-limonene did not affect
cell viability, which suggests the absence of apparent toxicity and suitability for topical use [56,57].

The irritancy test was performed in male albino rabbits. The possibility of causing skin damage
is of vital importance in the development of topical treatments [58]. The result after 24 and 72 h of
exposure to the formulation at a concentration of 1 mg/mL of PGZ and 5% of limonene was obtained
in accordance with previous studies [59,60], showing a primary irritation index below 0.5 in all cases,
which indicates that PGZ-limonene and limonene are non-irritant.

Moreover, the relative erythema (%) was determined in order to confirm the ability of
PGZ-limonene to reduce erythema and vasodilation, which are the main clinical features of rosacea.
Recent studies using animal models of inflammatory skin diseases have confirmed that topical
administration of PPAR-γ ligands like PGZ decreases epidermal hyperplasia, enhances permeability
barrier function, and reduces the inflammation mediated by T lymphocytes [61]. In this study, a skin
colorimetric assay was performed in order to measure the skin color of the mice’s backs after inducing
inflammation and treating it with PGZ-limonene and limonene. Topical application of m-Xylene
immediately leads to vasodilation and erythema. The positive control showed significant differences
(p < 0.0001) with respect to basal values during the 20 min of assay, though without significant
changes over time (Figure 4a). Treatment with PGZ-limonene and limonene (Figure 4b,c) decreased
the level of vasodilatation, but not at the same proportion. PGZ associate with limonene significantly
reduced the relative erythema in all the time intervals tested (p < 0.0001), and at 20 min the differences
intensified, decreasing below the basal value with notably reduced erythema, thus resulting in a
lighter color. (Figures 3 and 4b). This is likely attributed to limonene because of its drug-enhancing
effect [62]. Finally, the application of limonene also significantly decreased redness, reaching a relative
erythema of about 40% at 20 min without reaching the basal state, revealing that the benefits of
limonene go far beyond its use as a penetration enhancer, because it also has an anti-inflammatory
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effect. Consequently, its combined use with PGZ constitutes a strategy to increase the pharmacological
efficacy of rosacea treatment.

The back skin from mice was used to obtain sections 6 µm in thickness that were stained with
hematoxylin and eosin in order to evaluate leukocyte infiltration, as well as histopathological changes
after treatment. Control skin exhibited normal morphology (Figure 5A). Dermal papillae created a
clearly demarcated border between the epidermis and dermis. The topical application of m-Xylene
(Figure 5B) caused a loss of the stratum corneum, an absence of epidermal ridges, and dermal papillae,
thus resulting in a diminished definition of the border between the epidermis and dermis. Additionally,
general loss of dermal appendages such as sweat glands, sebaceous glands, and hair follicles was
observed. Moreover, the presence of prominent leukocyte infiltration was evidently manifested as a
result of the inflammatory process. In accordance with other studies, the treatment with PGZ-limonene
after inducing inflammation notably improved the structural characteristics of the mice skin where
a contiguous stratum corneum was observed [63,64]. This treatment significantly attenuated the
inflammatory response, which was evident with less leukocyte infiltration compared to the m-Xylene
skin (Figure 5C). A similar structure to the control was observed in the skin treated with limonene
(Figure 5D), which showed normal skin layers and an absence of pathological changes. Therefore,
the results of histological and colorimetric studies suggested that PGZ-limonene may be used as a
promising therapeutic treatment for rosacea. In summary, the experimental assays carried out in this
study indicated the efficacy and the capability of PGZ-limonene to regulate the signaling pathways
involved in inflammatory processes.

4. Materials and Methods

4.1. Materials

The PGZ was purchased from Capot Chemical (Hangzhou, China), and the penetration enhancers
and m-Xylene were obtained from Sigma-Aldrich (Madrid, Spain). Transcutol was supplied from
Gattefossé (Barcelona, Spain). Reagents for histological procedures were purchased from Sigma and
Thermo Fisher Scientific (Barcelona, Spain). Reagents for cell culture were obtained from Gibco
(Carcavelos, Portugal). The HaCat was acquired from Cell Lines Service (CLS, Eppelheim, Germany)
and MTT used for cell viability was obtained from Invitrogen Alfagene® (Carcavelos, Portugal). Water
Millipore MilliQ system (Millipore Corporation, Bedford, MA, USA) was used for all the experiments,
and all reagents used were of analytical grade.

4.2. Validated Analytical Method

To validate the new analytical method, high-performance liquid chromatography (HPLC) was
performed. The HPLC system is composed of a Waters 1525 pump and a 2487 UV-Visible detector
(Waters, Milford, CT, USA). Data were collected and processed using Empower Pro software (Waters,
Milford, CT, USA). The analysis was carried out by a chromatographic column 100 C18 (250 mm ×
4.6 mm × 5 µm). The composition of the mobile phase was acetonitrile: ammonium acetate: glacial
acetic acid (75:25:2 (v/v)). The mobile phase was filtered using a membrane filter PVDF of 0.45 µm
(Millipore Corp., Madrid, Spain). The mobile phase was pumped through the chromatography column
with a flow rate of 0.7 mL/min and 10 µL of injection volume. Detection was performed by UV
spectrophotometry at λ of 269 nm.

Conditions Analyzed

The standard PGZ stock solution (200 µg/mL) was prepared daily in methanol. The calibration
curve was prepared by dilutions in mobile phase in a range of concentration from 1.5 to 110 µg/mL.
The method was validated in terms of linearity, precision, accuracy, robustness, sensitivity,
and specificity. The validation was carried out according to the ICH Q2A and ICH Q2B.
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• Linearity

The calibration curve was prepared from nine different concentrations of PGZ (1.5 to 110 µg/mL).
Three calibration curves were prepared, evaluating the linearity according to the determination
coefficient (r2) of each curve, the y-intercept, the slope of the regression line, and the residual and
sum of the squares.

• Precision

Instrument precision was determined by intermediate precision (inter-day). It was expressed
according to the standard deviation (SD) and the % coefficient of variation (CV). The precision
was evaluated to analyze sets of three standard samples of 3, 60, and 110 µg/mL within
three intercalated days (inter-day). The selected concentrations correspond to the lowest,
the intermediate, and the highest concentrations of the calibration curve.

• Accuracy

The accuracy was determined by measuring the degree of approach between the real value and the
experimental data. Accuracy was assessed for concentrations of PGZ (3, 30, 60, and 110 µg/mL)
and analyzed in triplicate. The margin of error was calculated for each concentration between the
theoretical value (χa) and the experimental value (χr) by Equation (1):

χd =
χa − χr

χa
·100 (1)

• Robustness

Robustness was determined by changing experimental flow conditions and the composition of the
mobile phase. The flow was varied at ±0.1 mL/min, and the concentration of the mobile phase
was varied at ±3% acetonitrile and ±3% ammonium acetate. The effects of these variations on the
experimental conditions were tested for retention time. Standard deviation (SD) was calculated.

• Specificity

The specificity of the method was evaluated by analyzing the possible interferences due to the
components of the skin that are released during the passing of the drug with the penetration
enhancer. Four different samples were evaluated: blank of mobile phase, standard of 30 ppm,
blank of skin as a control, and sample of skin permeated with PGZ-limonene. A volume of
10 µL of each sample was injected, and then the chromatogram profiles (wavelength 269 nm)
were analyzed.

• Sensitivity

Sensitivity was analyzed by the limit of detection (LOD) and the limit of quantification (LOQ).
LOD is the lowest concentration of analyte that can be determined, and LOQ is the lowest
concentration that can be quantified with adequate accuracy and precision. The signal-to-noise
ratio was found by comparing signals from samples of known low concentrations of drug with
the signals of blank samples and then establishing the lowest concentration of drug that can be
reliably detected, in addition to being reliably quantified. A signal-to-noise ratio of 3:1 for LOD
and 10:1 for LOQ were ultimately determined.

4.3. Permeation Studies in Human Skin

A healthy 38-year old woman donated a skin sample from her abdominal region and, with written
informed consent, facilitated the use of this sample for permeation studies. The consent was obtained in
accordance with the Ethical Committee of the Hospital of Barcelona and was assigned the number 001,
(dated 20 January 2016). Free-PGZ solution (1 mg/mL), diluted with transcutol/water 4:5.5 (v/v) and
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mixed with 5% of different penetration enhancers, were assayed. The penetration enhancers studied
were: linoleic acid, squalene, menthol, pyrrolidine, azone, limonene, and cineole (n = 3). The study was
performed in Franz diffusion cells with diffusion area of 2.54 cm2. The experiment was carried out in
triplicate using the sample of skin from the same donor to reduce variability due to biological factors.
Skin was assessed by measuring transepidermal water loss (TEWL) (TEWL-meter TM210 Courage &
Khazaka, Koln, Germany), exhibiting values below 10 g/m2·h. Dermatomed skin slices of 0.4 mm
thickness were placed between the receptor and donor compartments. Samples of 0.3 mL were placed
in the donor compartment and the same volume of samples were extracted from receptor compartment
at established time intervals for 31 h and replaced with fresh receptor medium (transcutol/water, 60:40)
at 32 ± 0.5 ◦C under continuous stirring to simulate sink conditions. The quantitative determination
of permeated PGZ was analyzed in triplicate by HPLC. Kinetic parameters were estimated using
GraphPad Prism® 6.0 (GraphPad Software Inc., San Diego, CA, USA).

4.4. Permeation Parameters

The accumulated amounts of PGZ (µg) that were penetrated per cm2 of skin were analyzed for
the collected samples and plotted against time (h). Permeation profiles were analyzed based on a
diffusion model for an infinite dose condition. PGZ flow (Jss, µg/(h/cm2)) through the skin was
calculated by plotting the cumulative amount of drug permeating the skin versus time, determining
the slope of the linear portion of the curve by analysis of linear regression using GraphPad Prism® 6.0
(GraphPad Software Inc.) and dividing by the diffusion area. The permeability coefficients (Kp, cm/h)
were obtained by dividing Jss (by the initial concentration of drug (Co) in the donor compartment. The
steady-state plasma concentration (Css) of drug, which would penetrate the dermal barrier after topical
application, was obtained using the following Equation (2):

Css =
Jss × A

Clp
(2)

where Css is the steady-state plasma concentration, Jss is the flow, A is the area of application, and Clp
is the plasma clearance. The calculations are based on a maximum area of application of 1 cm2 and
human Clp value of 2.26 L/h ± 1.22 [65], in order to ensure the local action of the formulation.

When the permeation study finished, the skin was removed from the Franz cells, cleaned with
distilled water, and dried with filter paper. These samples of skin were used to determine the amount
of PGZ retained.

The permeated area of the skin was cut and weighed. The PGZ retained in these skin fragments
was extracted with 2 mL of methanol after 20 min in an ultrasonic processor. The resulting solutions
were analyzed by HPLC, determining the amount of PGZ retained in the skin Qret (µg/g skin/cm2).

4.5. Toxicity in HaCat Cell Line and Skin Tolerance

The effect of PGZ on cell viability was evaluated using the MTT cytotoxicity assay (reduction of
tetrazolium salt carried out by intracellular dehydrogenases of viable living cells). To develop this
assay, immortalized human keratinocytes (HaCaT) cell line (2 × 105 cells/mL) were plated in 96-wells
plates (Corning) and cultured in a humidified incubator at 37 ◦C in a 5% CO2 atmosphere for 24 h to
allow adhesion. Experiments were performed at 80–90% of confluence (passes between n = 85–95).
Cells were grown in high-glucose Dubelcco’s Modified Eagle’s medium (DMEM) supplemented with
25 mM hepes, 1% non-essential amino acids, 100 U/mL penicillin, 100 µg/mL streptomycin, and 10%
heat inactivated foetal calf serum (FCS). HaCaT were treated with different concentrations from 0.5
to 0.01 mg/mL of PGZ-limonene and limonene for 24 h and then incubated with fresh medium in
presence of 10% MTT (5 mg/mL in phosphate buffered saline) for 2 h at 37 ◦C. After this, the medium
was removed carefully and 100 µL of DMSO 99% purity was added to lysate the cells and the purple
insoluble crystals of MTT were dissolved. The cell lysate was transferred to a 96-well new plate and
then the absorbance was read using a Microplate Autoreader at excitation/emission of 540/630 nm
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(Modulus Microplate Multicode Reader-Turner Biosystems, Sunnyvale, CA, USA). In parallel, a negative
control (cells without any stimulation or treatment) was processed for comparison. Absorbance values
were considered directly proportional to cell viability, and the percentage cell viability was calculated
by Equation (3).

Cell viability =

[
A sample
A control

]
× 100 (3)

The potential of skin irritation by PGZ-limonene was assessed by the Draize skin irritation test on
New Zealand albino male rabbits (2 kg), which were purchased from San Bernardo farm (Navarra).
This test was performed according to the Ethical Committee for Animal Experimentation of University
of Barcelona (UB) and followed the respective guidelines [66]. The rabbits were acclimatized for 7 days
before the study, after the dorsal area of the trunk was shaved with clippers 24 h before the beginning
of the assay. Three groups of animals were analyzed (n = 3/group): Group 1:0.9% (w/v) NaCl solution
(Control); Group 2: PGZ-limonene; Group 3: limonene. Two squares were drawn on each side of
the back of each rabbit, and a volume of 0.5 mL of each solution was applied on the hair-free skin
on each square. This area was covered with gauze and polyethylene film (parafilm®) and secured
with hypoallergenic sticking plaster. The formation of edema and erythema were analyzed after 24 h
and 72 h of exposure. The edema and erythema scores were established according to the degree of
severity (graded 0–4). The primary irritation index value was calculated, and the mean value was
registered. The treatment was classified according the reported specifications: “non-irritant” (<0.5),
“irritant” (2–5), or “highly irritant” (5–8) [66]. The Draize test allowed us to estimate the skin irritation
potential but it is not a predictor for skin sensitization potential.

4.6. Efficacy Studies

An in vivo model was performed in order to evaluate the efficacy of PGZ for rosacea treatment
using the BALB/c backs of mice (four months old). The study protocol was approved by the Animal
Experimentation Ethics Committee of the UB with date 28/01/2016 (CEEA/UB ref. 4/16 and
Generalitat ref. 8756). Three groups of mice (n = 5), including the control group, were assayed.
The groups were: positive control (m-Xylene), PGZ-limonene, and limonene. The skin color of the
backs of the mice was determined using a MPA 5 Multi Probe adapter from Courage + Khazaka
electronic GmbH, equipped with a CL400, (Cologne, Germany) The device emits a white LED light
that illuminates a circular part of the skin homogeneously. The light scattered by the skin is detected
by the colorimeter probe and is expressed as the intensity of light in terms of the three basic light
components, R, G, and B (red, green, and blue), on a scale of 0 to 255 each. The skin colorimeter was
measured before and after induced vasodilation and erythema by applying m-Xylene on the backs
of the mice with the help of a sterile gauze. Next, 400 µL of each formulation was promptly applied
and PGZ was used at drug concentration of 1 mg/mL and limonene at 5%. Skin color determinations
were performed after 5, 10, and 20 min of treatment. Colors were reproduced using Microsoft Excel®

software (Version 2016, Microsoft Corporation, Redmond, WA, USA) from the RGB codes and plotted
as a sequence and evaluated in accordance with previously mentioned equations [67].

The difference values were calculated between each measurement and the average of basal values.
The corrected difference obtained between the basal color and the one after inducing vasodilation
(vasodilation difference) was considered 100% erythema. Relative erythema (%) values were calculated
by dividing each corrected difference by the vasodilation difference and were plotted as a sequence of
the different stages in order to see the evolution of erythema. One-way Analysis of Variance (ANOVA),
along with Tukey’s Multiple Comparison Tests, were performed for assessing the statistical significance
of both the evolution of erythema and the comparison between treatment and basal values. Statistical
analysis was performed using GraphPad Prism® software version 6.0.
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4.7. Histological Analysis

For histological observation of skin structure, the animals were sacrificed immediately after
colorimeter assay by cervical dislocation, and then the skin of the backs of the mice was carefully
collected and set overnight in 4% buffered formaldehyde at room temperature. Their back skin was
then embedded in paraffin, cut into 6 µm sections, stained with hematoxylin and eosin, and then
viewed under a microscope for the evaluation of skin structure and possible inflammatory responses.

4.8. Statistics

All the values are expressed as mean ± standard deviation. Statistical analysis was performed
using GraphPad Prism® software version 6.0 (GraphPad Software Inc.).

5. Conclusions

In summary, our study suggest that PGZ-limonene could be used as a therapeutic treatment for
rosacea by improving the underlying inflammatory processes. However, further studies are needed
to determine the underlying mechanisms for the anti-inflammatory effect of the drug in addition to
providing greater assurance of its safety prior to use in clinical practice.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/12/2548/s1.
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PGZ Pioglitazone
PPARs Peroxisome proliferator-activated receptors
HPLC Liquid chromatography of high resolution
TLR Toll-like receptors
IL-8 Interleukin 8
IL-1β Interleukin 1 β

TNF-α Tumor necrosis factor α
LOD Detection limit
LOQ limit of quantification
Jss Permeability flow
kp Permeability coefficient
Qret Retained drug
Css Steady-state plasma concentration
GRAS Generally regarded as safe
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