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In the context of the weak-field approximation to the De Rham wave-vector equation, and applying the
standard Lorentz gauge to both electromagnetism and gravitation, a linearized expression for the De Rham
operator is derived. The derived equation is applied to solve (1) the interaction between plane,
monochromatic, and polarized electromagnetic and gravitational waves and (2) the interaction between a
transverse electric (,T E,) mode, propagating in a rectangular wave guide, and a gravitational wave. The
second result permits us to consider the possibility of a gravitational-wave antenna based on purely
electromagnetic means, because new transverse electric and magnetic modes are generated, whose
characteristics depend on the gravitational wave. Evidently this detector is completely different from that
based on electromagnetic gravitational resonance designed by Braguinski and Manoukine. Also, in the optic
limit of the De Rham equation the known expression for the equivalent index of refraction is obtained and

other laws for the amplitude and polarization are derived.

I. LINEARIZATION OF THE DE RHAM WAVE-VECTOR
OPERATOR

The equation for the vector potential in curved
space-time for a free electromagnetic field is

(AgpA)=—A®i® 4 RE A%=0, 1.1)

where we follow the nomenclature and sign con-
vention of Ref. 1 and assume the Lorentz gauge
A a; «=0. R

Our objective is to obtain an equivalent expres-
sion for (1.1) suited for applying the linearized
theory. After a lengthy calculation we obtain

(gAY =—g*(A* ,, +T" AP
+ ruraAy,v - FTVOtAu.-r)
~g™T* . AS+R" AB=0, (1.2)

Now, linearizing, i.e., making the usual weak-
field approximation

gav=Nav+Ray, !haul<<1 (1.3)

where 7,, is the Minkowski metric of signature
+2 we get

(ARA) == - h*B)A* o+, T* A",
+, T4 LAY = T7 A% )
- (n*8—n*8) I+, ,AY+2,R* A”=0.
(1.4)

In this equation the subscript 1 stands for linear-
ized terms. Using the Hilbert-Lorentz gauge

neeT*  =h* =0, (1.5)

where 7*’=h*¥ — 31**h*,, we finally obtain the de-
sired equation

(AgpAM =-A" *+h™A"

-2,T%, ABY 12 R* AF=0, (1.6)

II. GRAVITATIONAL CORRECTION TO FREE ELECTRO-
MAGNETIC FIELDS

We shall now assume that the vector potential
A¥ can be split into two parts. Although this as-
sumption is different from that of the gauge-in-
variant Hamiltonian perturbation theory by
Moncrief,? we shall follow Bertotti’s point of view.?

A¥ = A 4 A" (2.1)

where ,A" is a solution of the flat-space-time
wave equation and ; A* is the correction to A"
due to the presence of a weak gravitational field.
If (2.1) is introduced into (1.6) and quadratic terms
in the corrections ;A* and 2*® are neglected we
obtain

[lAdR(OA +1A)]u =—gAY % - AY T

@ &

+hOG AL =2 T ABY
+2,R* ;,AP=0. (2.2)

For free fields ,A* ,*=0, and therefore (2.2) re-
duces to

lAu,aa":hnwoAu,av_zlrusquB'”+21RuaoAB- (2.3)

This is a wave equation which gives us the linear
correction to the free electromagnetic field ,A*
due to an external applied gravitational field and/or
the gravitational field generated by ,A".

Formally (2.3) may be written defining an effec-
tive-current vector

Jose E}il} (hwoAu.au— 21Fuw0AB'"+21RueoAﬂ) (2.4)
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as
AR = dmdt 2.5)
But the effective current (2.4) is not conservative:
e, %0 ' (2.6)

and therefore has no direct physical meaning from
an electromagnetic point of view.
The integral solution of Eq. (2.5) is

1A“L=fd’*x’DR(x—x’)Jé‘“(x’), (2.7

where Dy(x —x’) is the known retarded Green’s
function

Dol =) =t Ol = V[ ele = )], (2.8)

The integration of (2.7) is extended all over Min-
kowskian inobservable background space-times.*

III. INTERACTION BETWEEN ELECTROMAGNETIC
AND GRAVITATIONAL WAVES

We shall consider a plane linear polarized
monochromatic electromagnetic wave that inter-
acts obliquely with a plane gravitational wave.

Let a be the angle between the two waves, and the
direction of propagation of the gravitational wave
defines the z axis. The nonperturbed electromag-
netic wave has the expression

0A* = A(-cosab®  +sinad e % (3.1)

where 6% is the Kronecker 6 and the propagation
vector is

k¥’ =(w,0, wsina, wcosa). (3.2)
Trivally (3.1) satisfies the Lorentz gauge

OAB,B: 0. (3.3)

For the gravitational wave we choose the TT

gauge (transverse-traceless gauge) and + polar-
ization:

HED <A, e

=A, (6%, 6%, — 87, 8% e iK% (3.4)

where the propagation vector is

K°=(W,0,0, W),' (3.5)
Equation (2.3), which now reduces to

1Au,&a=havoAu, av-21ru3quB'V (3.6)

because as we neglect the electromagnetic field
as the source of the gravitational field ,R*,=0,
will give us the correction to the elctromagnetic
wave (3.1) due to the presence of the external
gravitational wave (3.4).

Applying (3.1) and (3.4) to (3.6), we obtain

JAY B2 (A PR AY — A ACREK ™
+AuaoAakBKﬁ+AuBkaKaoA Ot)e-i(Ka‘a—ko‘)xm s

(3.7
which after an easy calculation reduces to
WA° %= —A AW sina cosae K*+:%)xa
1Ax, aa =0 ’

(3.8)

1A% %= -A Aw[wsin®a cosa
+Weosa(l - cos?a)
+Wsin®alet (K%r%)xq ,
VA% % =A Agw(wsin’a - W sina cosa)e™i KW Dxa
Define the vector £* by its components,
£°=-A A wWsina cosa,
& =0,
£ =~A A w[wsina cosa
+Wecosa(l - cosa) + Wsin?a],
£F=A A wsina(wsin®a - Wcosa).
The effective current (2.4) is written
Jeee = ‘Eue—ikuxa ’ (3.9)

where we have defined k=K +%°.
Introducing (3.9) into (2.7) and solving the integ-
ral, we obtain the correction ;A* to ,A*:

1 1 o
B _ gk =ik
JAR = K0+KP(K0_K>e v, (3.10)

‘Here P(1/(k° - «)) is the distribution Cauchy prin-

cipal value of 1/(x° - k). Because (k°+«k)™! is in-
finitely derivable, the product of distributions is
well defined and (3.10) can be written

LAY = g"P(——K}K )e-i*“xa , (3.11)
o
which in components is expressed as

sinazcosa@) _;o
A%= _LA A < -ikO%g
1 2434 OP 1 — cosa ’

1Ax=0’

3.12
A¥=_1a AOP(—Q sin®a coso (8.12)
1 T TEy W 1-cosa

sin?a ;
+COSA + ———— e i%% |
1-cosa

sinacosa w sinfa s
Az_,:_LAA ( - ) “ikTxg |
1 24.4.P 1-cosa W 1-cosa

The vector k” may be interpreted as the propagat-
ing vector of [/A*. Its norm is '
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KK, =~2wW(1 - cosa). (3.13)

k° is the timelike, except for @ =0 (longitudinal
interaction) which is lightlike. The correction
(3.12) propagates inside or on the light cone, which
agrees with the Hadamard’s solution to the wave
equation in a curved space-time.**®

In order to study the case @ -0, we shall make
the gauge transformation defined by

5 :;V A0A+P<Bl-[) exp{i[(w + W)t — way - (w+W)z]},

¥ =

(3.14)

which in the limit o -0 satisfies ¥ =0, and
consequently is compatible with the Lorentz gauge.
Applying it to (3.12) and taking the limit @ -0, the
correction ;A" is

1A“=—5”yA+A0(-“—) 3 w )ei(t-:)(w+W},

Wt oTw (3.15)
which represents a plane electromagnetic wave
propagating along the z axis with the velocity of
light. This agrees with the only privileged direc-
tion of the problem and with the world line of the
photons associated with ;A*, because the Christo-
ffel symbols ,I'*,, for @ =0 are null and the geo-
desic equation is reduced to
dr®
K B"Bra'{

in accord with a result stated in Bertotti’s paper.*
[It must be remarked that (3.15) is a solution of
1A% ,%=0 and therefore there is no contradiction
with £ =0, a=0; then =0 is a spurious singular
case.|

From A" = A" + | A" we can calculate the elec-
tromagnetic field tensor F**=A"* - A*:¥ and the
impulse-energy tensor, whose T,, component gives
us the energy density. A remarkable consequence
is the modulation of this component by the frequen-
cy of the gravitational wave W when it is verified
that w>W.

(3.16)

IV. INTERACTION BETWEEN A TE MODE
PROPAGATING INSIDE AN IDEAL RECTANGULAR
WAVEGUIDE AND A GRAVITATIONAL WAVE:
DETECTOR OF GRAVITATIONAL WAVES

At the meeting in Erice (Italy, 1975) it was es-
tablished that the most promising future detectors
of gravitational waves would be Weber-type reson-
ant bars, Michelson interferometers using laser
beams, and Doppler tracking of interplanetary
spacecraft. [See the lecture by Thorne of Ref. 7
which was in principle confirmed at the 8th Inter-
national Conference on General Relativity and
Gravitation, at Waterloo University (Canada,
1977).] The results below dare us to consider the
possibility of a detector based on the perturbations
of a TE mode propagating in a guide. Let us con-

sider a wave guide built up of two superconducting
plates parallel to the X-Y coordinate plane, and
separated a distance d. We suppose that one of the
plates is the X-Y plane. The potential vector cor-
responding to an unperturbed ;TE, mode propagat-
ing inside the guide is®

n

ZZ sin(wt - k,y). (4.1)

Trivially the boundary conditions and the Lorentz
gauge are satisfied.

For a gravitational wave we choose one propagat-
ing along the x axis, plane, monochromatic, and
+ polarization, which in the transverse-traceless
gauge has the components

RIT=A (6%,06%, — 0%,0%,) cosK"x,. 4.2)

oA* =08" A,sin

The components of the propagation vector K¢ are

Ko=W(8%+6%). (4.3)
As in the paragraph above, we neglect the electro-
magnetic ,TE, mode as a source of the gravitation-
al field. Calculating J%, and resolving (2.7) we

obtain after a lengthy but simple computation the
correction ;A* to ;A":

LA°=0,
(A= %AOA+%V Ii—ky2 +<Z;1—T>] (cosk®x, — coskx,),
(4.4)

1 _
A= 1§-A0A+—(;’ k,(cosk’x, — cosk’x,) ,

1 nw ~
Af=3 A, A= — (cosk’x, — coskx,) ,
wd
where «° and ®° are timelike vectors whose com-

ponents are

(O = <w+W, W,ky,’;—">, (4.5)
29 = <w+W, W, ky,_%’l), (4.6)

and both have the same norm:

2
KoKy = KR, = —20W - [wz—ky2—<%lr> ] @.7)
Taking into account the allowed frequencies of ,A*
in the guide,

nm\?
w2=ky2+<7> (4.8)

is reduced to
KKy =RoRo=—2w0W <0. (4.9)

Trivially the correction ;A*, (4.4), verifies the
boundary conditions that in principle allow its
propagation along the guide. In order to interpret
the correction ; A”, we shall calculate the electro-
magnetic field tensor ,F*”, whose components
rearranged in a suitable order are
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2
E*=—3A A, [_ky2+(%7) ]{sin%—;ﬁ cosWx cos[—(w+ W)t +k,y1~ sin

W+w
Ww ’

nmz
d

sinWx sin[ - (w + W)t +kyy]}

1 2
H = _iA+Ao—w—u—,7ﬂ w2 _ ky2+<1‘dl’> ]{cosﬂg—z cosWx sin[ - (w+ W) +2,y]+ sin%z— sinWx cos[-(w + W)t +k3,y]} ,
1 2
1H1=§A+Ao—‘;7vky -WP— k2 <7:i_”> ]{sinﬁgﬁ cosWx cos[—(w+ W)t +k,y] - sinnTﬂz sinWx sin[—(w + W)t +k,y] },
(4.10)
w
B = _iA*Ao——:;—w k., {sinE;—z cosWx cos[-(w+ W)t +k,y] - sinn—gé sinWx sin[—(w + W)t +kyy]},-
W .
1Ez=§A+AO—I:°3 %71 {c sﬁ—;@ cosWx sin[-(w+ W)t +2,v]+ cosn—:;E sinWx cos[-(w + W) +kyy]} , (4.11)
k
H =%A+A0f %T {cos%z cosWx sin[-(w+ W)t +k,y] +coszl-(-;E sinWx cos[-(w + W)t +kyy]} .
r
The above expressions show us that the correction a*k, =0 (5.4)

JF*Y can be split into two modes: a transverse
electric mode ,TE,, defined by (4.10) and a trans-
verse magnetic mode ,TE,, defined by (4.11), both
with frequency w+ W, propagating along the y axis
and with amplitude modulated by the frequency of
the gravitational wave. Also, although the phase
velocity of these modes is different from that of
oTE,, its group velocity calculated from the dis-
persion relation (4.7) is equal to the group velocity
of ,TE,: v,=[1- (nr/dw)?]*/2. These characterist-
ics of ,F"” in principle make its experimental de-
tection possible.

It must be remarked that the case studied above
corresponds to orthogonal interaction between the
confined electromagnetic field and the gravitational
wave. In the case of parallel interaction only a
.TM, transverse magnetic mode is generated with
the same characteristics; then the proposed an-
tenna has directional properties.

V. OPTIC LIMIT

Finally we shall now apply the optic limit to the
linearized DeRham equation (1.6). The vector po-
tential in this case adopts the expansion

Au.=(ﬁ(au+€bm+€zcu+"')e"ku"u/e (5.1)

(see Ref. 1, p. 572). If we introduce (5.1) into (1.6)
. we obtain for the order €2 and €~! the following
equations:

a* (ko k™ —h* k) =0, O(e?) (5.2)
at '+ T, 0% +3k° Ja* - 5h®k, a* - a* ™
=0, O(eh). (5.3)

Applying the Lorentz gauge ,V,A* =0 we obtain

and therefore the amplitude is perpendiéular to the
wave vector. The meaning of Egs. (5.2) and (5.3) is
that (5.2) can be written

(n“B—h“B)kakfgaBkakB:Ov (5.5)

which for the one-body problem of mass-energy
M and metric

ds?=— (1 —%/1>dt2+<1 +ETM>(dx2+dy2+dz‘2) (5.6)

trivially gives the equivalent refractive index

n(r):—lg—]=1+3¥, 6.7)

which implies the deflection of light and radar
time delay. (5.3) after reordering terms and ap-
plying the linearized equation k, ,=3h", .k, of the
ray’s trajectories, reduces to

(a* %+ T, k%P +%(ka, o+ 7% ok%a,
=h*k,a" ,+3(h*R,) 40", (5.8)

which gives the propagation equation that governs
the evolution of the amplitude. If we write (5.8)
in the equivalent form

\V.a* +3,V - ka* =h*k,a" , +§(h°“’kv), 2", (5.87)

it can be compared with the corresponding equation
in curved space-time:

Va* +3V-ka*=0. (5.9)

The incomplete correspondence is due to the fact
that the wave vector inlinearized theory is timelike
and not lightlike as in curved space-time.

Defining a* = af where a,@" =a® and f,f* =1 (the
bar means complex conjugation) and introducing
this definition into (5.8), we obtain separate equa-
tions for amplitude a and polarization f:



(™ =h*)a, k,+3k% 2= 0, (5.10)
(™ =) F, (f*, Ry + T o5 ) =0. (5.11)

Evidently the method outlined in this paper is
suited for calculating first corrections to classical
electromagnetism, induced by weak gravitational
fields. If the gravitational field generated by a
“nonperturbed” electromagnetic field has to be
taken into account, the linearized Einstein- Max-
well equation would have to be resolved with the
impulse-energy tensor associated with the “non-
perturbed” electromagnetic field, in order to ob-
tain the #,,.

APPENDIX

In order to apply Green’s theorem, we shall de-
termine the adjoint of the DeRham operator. In
operator form (1.6) is expressed as

(lAdR)uB= (_ auaa +huuaoau)nu8
+(—21Fusuau+21RuB) (1.6")

and its adjoint is
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(lAdR)*uB= (8,8 +98,8,17" )" 5

+@8%, T, +2,R"). (1.67)

‘Let ¢ and A® be arbitrary differentiable vector

fields; then the Green’s theorem reads
¢a(lAdR)uBAB_AB(1AdR)*uB¢a='-8|7‘£°au ’
where

£, =n,,[(p*8°AP - AP3°A %)

- (p*n°vo, AP - APD 7P *)]+20% T, JAS,
' \
This will be useful after integration and application
of the Gauss theorem to the second member for
studying the Cauchy problem of the linearized De
Rham equation.
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