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We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of
massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor
of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and
Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin
equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the
scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic
cosmology driven by radiation and dup80556-282(97)04716-4

PACS numbd(s): 04.62:+v, 05.40:+j, 98.80.Cq

I. INTRODUCTION logical evolution leads to particle creatiph6,17. The phase
relationships between the created particles are quickly lost;

When a model of the early Universe is developed, it be-even very weak interactions may accomplish this on very
comes necessary to take into account the quantum nature siort time scale§l8]. Under these conditions, particle cre-
matter fields, even if for a wide range of energies, leading ugtion is a dissipative process. The back reaction of the matter
to Planck’s, the geometry of the Universe itself may be defields will then (loosely speaking have a time reversible
scribed in classical terms. The simplest and most studiedomponent associated to vacuum polarization phenomena
way to couple quantum matter to a classical gravitationalsuch as trace anomaland a time oriented component re-
field is through the expectation value of the energy-lated to particle creation. The crucial point is that there is
momentum tensor of the quantum fields2]; however, the also a third, stochastic component, induced by the quantum
qguantum fields must necessarily undergo fluctuatid4d|,  fluctuations of the matter fields. To keep the average effect
and it has been recently shown that these fluctuations are hwhile disregarding these fluctuations leads, as a rule, to an
no means negligible in many situations of intergs6]. inconsistent theory.

To a certain extent, quantum fluctuations may be intro- In recent years Langevin-type equations have been pro-
duced in a classical model as uncertainty in the initial conposed to describe the fluctuating back reaction of the matter
ditions. However, fluctuations play a subtler role when thefields on the classical gravitational field, thus restoring the
semiclassical evolution, as is in fact the rule, is dissipativeconsistency of the semiclassical Einstein equations. The new
[7,8]. In this case, the semiclassical gravitational field inter-semiclassical Einstein-Langevin equations predict classical
acts in a nontrivial way with the environment provided by stochastic fluctuations in the gravitational fi¢&]15,19,20.
the quantum matter degrees of freed@ leading, e.g., to The derivation of these improved semiclassical equations is
anisotropy damping and loss of information regarding initialbased, usually, in the closed time p&@TP) effective action
conditions[10—13. The environment reacts back on the sys-method and exploits the close connection that this effective
tem in a way which is demanded by consistency of the unaction has with the influence functional introduced by Feyn-
derlying quantum theory. Under equilibrium conditions in man and Vernor{21]. We should mention that a similar
static spacetimes, the relationship between damping angpproach leading to Langevin type equations has been used
back reaction becomes rather simple, and it is embodied im recent years to study the generation of primordial fluctua-
the so-called fluctuation-dissipation theordrb4]. Similarly,  tions in inflationary cosmologig22-25 (Morikawa has in-
if more complex, connections between damping and backlependently arrived to similar conclusions regarding this
reaction hold in nonequilibrium situations, then as a rule, thesubject[26]), as well as the more general problem of sto-
back reaction acquires a stochastic chardctst. chasticity in effective field theor{27].

In the particular case of semiclassical cosmology, we can In this paper we study the stochastic fluctuations arising
be more precise about what is going on. Except in some verfrom coupling geometry to massless nonconformal fields in
special cases, such as conformally flat universes coupled tao cases of interest. One of them is the study of the con-
conformal matter, or purely adiabatic evolution, the cosmoformal fluctuations of flat spacetime. The second case is a
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spatially flat Friedmann-Robertson-WalK&RW) spacetime  factor. Different behaviors are also found as a consequence
with a classical source made of both radiation and dust. Thisf the higher than two time derivatives of the scale factor
model is simple enough that the fluctuations can be studiethat appear in the stress-energy tensor, this is a typical back-
in some detail, yet it has significant features of a realistioeaction phenomenon and the origin of runaway solutions. In
Cosmo|ogy; it was proposed some time ago by Hdam, this connection several authors have argMS]] that so-
within the usual(Rosenfeld’s approach, to study the back- lutions to the semiclassical back-reaction equations that de-
reaction effects to the creation of massless nonconformafiate nonperturbatively from the classical solutions should be

particles in isotropic cosmologies. We shall not develop aliscarded.

full analysis, but rather focus on the new features brought by When pharticle creati;)n takels place, tfllle fbacrlf-reactionf
the explicit introduction of stochastic terms in the Einstein€duations have been solved only numerically for the case o
equations. massive conformally coupled fields in FRW cosmologies

The Hartle model has two perfect fluids, one of them With[42]' In this case it is the mass that breaks the conformal
the equation of state of radiation and the other representinﬁyﬂmetry of the_ problemd i th f d h
baryonic matter with the equation of state of dust. A dimen- €€ W€ are Interested In the quantum effects due to the
sionless parametgrmeasuring the relative amounts of bary- creation of_ massless_ nonconformal partlcles. Our dynamical
ons and radiation, which is constant in classical periods, i?ack-re_actlon equations _for the cosmologlcal_scale fac_:tor
assumed to be always constant and with a value correspongf“ner"’lllze that of Ref28] in thgt anew StOCh?St'C source IS
ing to the present univerghich is very small~10"2%). A included. Because we start with a CTP functional formalism
massless nonconformal quantum field is coupled to this sysqqr. equations are rgal and causal and thus'they admit an
tem. The presence of the small portion of baryonic matter ién't'al vglue formulation. Thus whgn our equations are aver-
essential to ensure particle creation, since in a radiative FR _gedtlthh respec(tjto "{thhe ts;ochastli:_ source éheﬂysshmrj]l_d hnot be
universe the scalar curvature vanishes and the field cann8{'€¢ ybizo_mp(;ire L Wi ne e?ufa 'O?S ml f ¢ ]l’. w ICH
couple to the curvature. A perturbative expansion in terms of/ére obtained using an in-out functional formaiism. How-

the paramete is then seen to be equivalent to an expansionever’ the analysis carried out by Hartle on the behavior of the

in a parameter that measures the deviation from the com‘oﬁosmOloglcal scale factor at large and very small cosmologi-

mal coupling. Since the two degrees of freedom of the gravi-cal times is still valid. For this reason we concentrate here

ton field in a FRW background behave as massless minir_nainly in the stochastic eﬁ.eCtS which are New.
The plan of the paper is the following. In Sec. Il the

mally coupled field§[29] Hartle’s model provides a good . , .
testing ground for the study of the back reaction due to th ctions for the massless nonconformal scalar field, the gravi-
ational field, and the classical matter sources, which define

reation of gravitons in mology. ) .
creation of gravitons in cosmology Hartle’'s model, are described. In Sec. Il we give the sto-

The model describing the conformal fluctuations of flat astic back-reaction equations for the cosmological scale
spacetime due to massless nonconformal fields can be eas 3'? O : : -
b ? ctor. The derivation of these equations is based in the CTP

obtained as a limit of Hartle’s model. One just needs to im-

pose that there is no classical matter source and that th%ﬁ‘ective action describing the interaction of the classical
cosmological scale factor is a small perturbation of unity_scale factor with the quantum field, and the relation of this

This model, which is considerably simpler than the Cosmo_effective action with the influence functional of Feynman

logical model, may be of interest in connection with theand Vernon21]. In Sec. IV we consider the particular case

semiclassical stability of flat spacetinj@0] (see also Ref. of the cq(r;fortmhal fre?ur?atlo_nstﬁf flat spallcefumle. InIS?c. tV
[31]) under conformal fluctuations. we consider the fluctuation in the cosmological scale factor

We should stress that one of the main differences betweel Hartle’s model and Sec. VI summarizes our conclusions.

the cosmological back-reaction problem considered in this ,
paper and other cosmological back-reaction problems that Il. HARTLE'S MODEL
have been considered in the literature is that the latter usually |, this section we describe a modés] in which a mass-

deal with conformal fields in isotropic cosmologies |gg5 nonconformal quantum scalar field is coupled to a spa-
[16,32,1Q, or with conformal fields in cosmologies with a1y flat FRW cosmology with a classical source made of

small anisotropies33,34,17,35,11,12or in cosmologies agiation and dust. Since we use a dimensional regularization
with small inhomogeneitie$36,37. In the two last cases (ochnique some relevant terms in the classical action are

particle creation takes place because the anisotropies or i en inn arbitrary dimensions. The cosmological model is
homogeneities break the conformal invariance of the fields.jascribed by the-dimensional spatially flat FRW metric
Cosmological models where the back-reaction equations

have been solved explicitly involve, usually, conformal fields ds?=a%y,,dx*dx", (2.0
in FRW cosmologied38,39. In such models there is no

particle creation and all quantum effects are a consequenggherea( ) is the cosmological scale factos, is the con-
of the fact that the vacuum expectation value of the stressormal time, andp,,=diag(- 1,1, . ..,1). Theclassical ac-
energy tensor of the quantum field, subject to the traceion for the massless nonconformally coupled scalar field
anomaly, does not vanish. Generally the stress-energy tensgi(x+) is

is also subject to a two parameter ambiguity connected to the

addition of two conserved terms quadratic in the spacetime 1

curvature[2,40]. Such ambiguity cannot be resolved within Sml 90, P1=— EJ d"xvV-g[g*9,P 3,

the semiclassical theory and depending on these parameters

one finds very different behaviors for the cosmological scale +(&.+ v)RD?],
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whereR is the Ricci curvature scalar, wherepy, is a constant parameter related to the baryon en-

- ergy density. It is connected to a similar parametefor the

a (n-4\a energy density of the radiation, through
R=2(n-1)| S +|——|=/|. 9y y Y
a 2 )a* o~
. /PPy
. . . &= ~3/4 ? 27
é.+ v is the parameter coupling the scalar field to the space- Pr

time curvature, and.=(n—2)/4(n—1) is the coupling pa-
rameter for a conformal field im dimensions. Since the
metric (2.1) is conformally flat it is convenient to introduce a pa
new rescaled matter field ¢(x*) by é(x*)

=a"22(n)d(x*), and the scalar field action simplifies as

which is of orderé~10 27 for the present universe. This
ramete measures the baryon to photon ratio.
The action(2.6) is justified because when it is varied with
respect to the scale factaf ) it reproduces the trace of the
stress-energy tensor for a radiative perfect fluid with equa-
1 tion qf stateprzpr/;?» (.pr is the pressure 'arwi, is the energy
s, [a,¢]= _J d'xp(xM) [0 —va?R]¢p(x#), (2.2  density of the radiation and of a dustlike baryon fluid of
2 pressurep,=0 and energy density, . When the dynamics
of the scale factor is driven by the classical source only one
where nowl]=7*"d,,d, is the flat d’Alambertian operator. finds that p,=ppa 3 and p,=p,a %, then the relative

symmetry is broken by the coupling of the scalar field. becomes constant and given by E2.7). In fact, when Eche

The action for the gravitational field, the Einstein-Hilbert ¢|assical action(2.6) is considered as the only dynamical
actionng, needs to be corrected with a counterterm to cansgyrce of gravity from the Einstein-Hilbert acti@®.4) one

cel the divergencies that will come from the effective action. ¢ @=(/2/2)p, or equivalentlyR=— (/2/2)T%, where

In our case it suffices to add a term quadratic in the Riccie_ —pyis tphe trace of the stress-energy fensor,of a perfect
scalar. Note that terms quadraticR),, or the Weyl tensor fluid of gust(baryons plus radiation

could also be added but since these terms are not necessary. ’

for the renormalization we simply assume that their coeffi- We note that when baryons are not present, i.e., when
X . ) simply . £=0, the scalar curvature vanisheR=0), and from the
cients vanish. The divergefin n=4) counterterm is

action(2.2) for the scalar fieldp(x*) it is clear that this field
A behaves: as a frge field_ i.n. flat spacetime. Therefpre with the
Ve f d"x V" gR? 2.3 usual Minkowskian definition of a vacuum statehich cor-
327%(n—4) gr, ' responds to the conformal vacuum fdr(x*) ] no particles
can be created by the expansion of the Universe. Back-
where u is an arbitrary mass scale needed to give the cor[.e action effects are sill possible due to the vacuum expt_acta—
rect dimcensions to this action term tion va_llue _of the stress-energy tensor of the scalar field,
: . o o which in this case depends on the two free parameters men-
Since the only dynamical variable of the gravitational

field is the cosmoloaical scale facta the aravitational tioned in the Introduction. One of the parameters is associ-
iela 1 nologt () gravitat ated to an action proportional R? and the other to an action
action reduces in our case, when expandechiri 4), to

proportional toR,,R*". The quadratic terms of the first pa-
rameter vanish wheR=0 , but the quadratic terms of the
e, OV . second parameter are generally different from zero even
Sy 1a]= ﬁf dnaa, (24 Wwhen the scalar curvature vanishes. Thus all quantum effects
P in this case depend crucially on the second parameter being
different from zero. We assume that such parameter is zero,
thusR=0 is a consistent solution to the semiclassical back-
reaction problem. Since our interest is in the back reaction
due to particle creation we will také as a small nonzero

SiMla; ucl=

“\ 2

. 2V | 36 a
[\Y/ . _ -

é 2
+36|n,ucf d"/](a

3\2 a\? parameter, and we will consider th@?R term in Eq.(2.2)

+ 12f dn) 3 2 Ina+{—/|3 2 as a perturbative term which gives a measure of the deviation
from the radiative cas®=0. In practice we will compute
the quantum corrections as perturbations in powers of the

+2| = +0(n—4), (2.9 parameterw, and this should be consistent with an expansion
in &.

WhEYE/%Z 167TGN (GN is the Newtonian gravitational con- lIl. STOCHASTIC BACK-REACTION EQUATIONS

stan} andV is the volume integral= [d3x.
To the above scalar and gravitational actions we need 10 | this section we compute the stochastic back-reaction
add the action for the classical matter sourSgs which are equations for the cosmological scale facedry) from the
a radiative and dust perfect fluids. This action is given by cTp effective action to one-loop order for the quantum field
®(x*) in the FRW spacetimé.1). This action is evaluated
~ using a perturbative expansion in powers of the parameter
SC"L[a]: 4 f d77psa, (2.6 ThegCTFI)3 effective ath)ion was iFr)nroduced bypSchwinger
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[43-49; for its application in a curved background see Refs. L vid® Po+ie 2
[12,7,46,37. The idea is to start with a generating functional H(z—7';u)=— > 2—e*'p =7 )| — | = ,
from which one obtains expectation values, instead of the m M

matrix elements one obtains using the generating functional

of the ordinary in-out effective actiof#7]. The CTP effec- %

tive action is the Legendre transform of such a generating N(7—7")= E‘s(??_ 7). 3.9

functional. The price one pays for this is that one needs to

double the number of fields: thet() and (—) fields below.

For the details of this paper we follow closely RE37]; see —

also Ref[48]. parameteq. R e o _
In our case we have two fields(7) and $(x*) whose The subscript IF inSg[a™] is used to indicate that this

free actions are given b§,[a; u 1+ S°[a] from Egs.(2.4)— part of the CTP effective action is the influence functional
gL Mc m &

¢ . action as defined by Feynman and Verri@i]. That is, it
(2.6), and byS*{ ¢]=3/d"x¢0 ¢ from Eq.(2.2, and an ;e the effect of thenvironmentthe quantum field, on the

H H : H — 2 2 . . . .
interaction action given by a,$]=—(v/2)[d"xa’R¢".  systemthe cosmological scale factor, which is the field of
The fielda is classical, thus we only need to go up to Onejnterest here. The identification between a part of the CTP

loop order for the field$, which corresponds to the first- effective action and the influence functional was suggested
order expansion of the generating functional in powers ofn Ref, [8].

f. We have

Note that the parametgr, has been absorved into the new

A. Improved effective action

L D +. _ -. Ir o+
Ferda,¢=1=5la%u]-Sla et Spla’] The connection between the CTP effective action in the
—Sﬂ[a’]JrSm[a*,E]—Sm[a*,E] semiclassical context and the influence functional action in-
troduced by Feynman and Vernon to describe the interaction
between asystemand anenvironmentust mentioned gives
an interesting new light on the semiclassical back-reaction
problem.
Let us now turn to the dynamical equations for the scalar

i
— ETr(InG), (3.1

where the fieldsp. correspond to the expectation values of ¢ oid i brinciple th ; be derived 1
¢- , andG, which is a matrix operator with 22 compo- ¢ a(7). In principle these equations can be derived from

; ; + —
nents, is the inverse of the classical kinetic operat0|1hfa CTP_effectlve action a8l ‘crp/ 6a |ai:a_.0' A p.roblem
A=diag0— v(a*)?R*,—[O—v(a ) 2R}, obtained Might arise from the fact that such effective action has an

from Eq. (2.2, with CTP boundary conditionésee[12)). imaginary part, sinc& is complex, see Eq3.4). It should

Since we are only interested in the effective action for thede clear, however, that the imaginary part S will not
scale factor(7), we setp. =0 and expand the functional contribute to the field equation derived in that form because

R + . . . .
determinant in powers of the coupling constant; finadg], 'M(SFla”]) is quadratic in the difference of thet( and

; : t_a——
the renormalized CTP effective action reads (—) fields and one finally takea™=a" =a. _
However, from the point of view of theystem environ-

r +1_cR +7_ R -1+ SRra* P _ment_ relation familiar _in quantum stati_stical mechanics, the
crda ]=Sgmla ]Syl 1+ Sela”]. (32 imaginary part of the influence action is related to the noise
suffered by the system from the environment fluctuations

where [21]. This suggests an improvement to the semiclassical
) back-reaction equations that takes into account such fluctua-
R 212y [ g 6., 9% a A tions. This may be achieved if we define the influence func-
Sgmlal=V| d7 _ﬁa +7 7] Na—ppa tional [21]
“p
3.3 . R+
°3 Fela*]=eSHa ), (3.6
and

and note that it may be written formally as
—|(7 - - .
a Fela*1= | D]P[]]exp{l

_ a
+6VJ dnl(n)A(g

R + 9V2 ' a 1N
Srla ]=ng dndn'A a (mMH(n—n" u)

= 7 a
+361/2if dnf dn'A(a

X ()N(7— n')A(Z)(v'» 34 with

Re(Sfa*])

()

L e

_ 1 _ -1 !
where we use the notationAf(7)=f.(7)—f (1), g~ (/A dydyJ(mINCz= 57 i(n')

{f(m)}=F.(n)+f_(s), for an arbitrary functiorf(»). The A=
kernels H@p— '; 1) and N(p— ') are

(3.8
J' Dje~ V2 dndy j(nIN(7=7")] )



56 STOCHASTIC SEMICLASSICAL COSMOLOGICAL MODELS 2167
That is, performing the path integral in E@.7) with P[j] _
defined in Eq(3.8) leads directly to Eq(3.6). If we interpret Seil b™;{]=V6Y2p 3 f dy{ —A(b?+&b)(x)
Pj] as a Gaussian probability distribution, the action in Eqg.
(3.7 may be seen formally as the action for a fiel(z) 2 b2
|b VoA b
Xl Ty E0Al 50 -
(3.13

which is coupled to an external stochastic source). + v
Thus, the influence functiondB.6) can be seen as the 327

The stochastic sourc& x) is defined, after Eq(3.10, by

(£(x))=0 and

A b
(x) o
mean value with respect to the stochastic figld)) of an

influence functional for an improved effective actiSg; de- %
fined by (X«

Sel@a”;j1=Sf @’ 1-Sy[a 1+ Re(Sf[a*])

+6u [ dni(ma 2| n). @9

\%
(VLX) = 7920~ X). (314

This comes from Eq(3.7) and the addition of the gravita- The nonlocal operatok is defined by its action on a test
tional and classical matter terni8.3). Now the fieldj(7) function f(x) by

will act as a stochastic source in the improved semiclassical

equation when the functional derivation with respect to »do

a'(n) is taken. This stochastic field is not dynamical, it is K[X;f(X)]EJ’_er h(w)f(w),  (3.19
completely determined by the following relations, which

may be derived from the characteristic functional, i.e., theyhere f(w) is the Fourier transform of the test function,

functional Fourier transform of[j]: defined byf(w)= [~ dye®Xf(y), and
1 w+ie)?
(i(m)=0, h(w)= 3| - . (3.16

This kernel is real and causal, as can be seen from its ana-
Gmi(n"))=N(n—7"). (3.10 lytical structure. Note that this is in fact the main difference
between the CTP approach and Hartle's approach.

Since the probability distribution is Gaussian the noise ker- B. Stochastic back-reaction equations
nel is the two point correlation function of the stochastic
field. In our case as one can see from EBj5 the noise is
white.

It is convenient for comparison with previous work g _ i 7

[28,39, to write the effective actiof3.9) in terms of dimen- O ) (Serl b 'J.])lb*:b_o' After functional derivation and

) " the identification of the ) and () fields, the equation
sionless quantities such gsb(x), and{(x) for the confor-

mal time 7, cosmological scale facta(7), and stochastic &cquire an interesting form if we multiply it bly:

The dynamical equations for the cosmological scale factor
in its dimensionless formh(x), may be obtained by func-
tional derivation of the effective actior3.13 as (5/

sourcej(n), respectively. These are defined by AY: d 2 [
—i b?—¢b— =| Inb+b—— —Inb
dx[ ZWZ(b) dx| 1672| b?
~1/4 ~14
x=0rm b= [=o. (31D 1 [ B]] v
12 ' , 14 121" : B Bt B PR A YA S
6 7rpi 6 b Xb|| TV o ]
. . . . b d V2 b, »
We also introduce dimensionless frequencigsrenor- bl 29X, +vg(x) . (3.1
malization parametes, and volumeV instead ofp®, «, and Xl 16w

v, respectively, as The effects of the quantum field are those proportional to

the coupling parameter. The terms with lb come from the

612 ~a/a renormalization of the stress-energy tensor of the quantum
;) p field, see Eq(2.5), and there are nonlocal contributions in
w==5p° wu=6""pu, V= ;,ZV- (3.12 9( 9, ¢ )
or 6 the terms with«[ y;b/b]. The effects due to the creation of

quantum particles, in particular the dissipation of the field
b(x) are included in the nonlocal term.
Then the improved effective actidi8.9) for the dimension- A point of interest is the role played by the parameter
less scale field(y) becomes in Eq. (3.17.This parameter is related to the local part of
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«[ x:f(x)]1, thus a change in this parameter is equivalent to éAy=By=0 as our background spacetime or, alternatively,
change in the coefficients in some local terms in the stresdefine a new perturbation of the scale factor
energy momentum tensor of the quantum field. This param&(x)=g(x) —Agx — Bo, whose equation is

eter in fact is related to the two parameter ambiguity in the

definition of such stress-energy tensor already mentioned. In V2
our case one of the parameters has been fixed by our renor- G(x)— S
malization procedure and the ambiguity remains in the other 32m

parameter, see Rdf31] for more details. . _
i.e.. when we takeThe classical solution corresponds now@¢y) =0 (no per-

When quantum effects are ignored, .
—0 the back i tion b B =0, This | turbation. The quantum effects here reduce to the two terms
v=0, the back-reaction equation becomés-Z=0. This is which depend orv in Eq. (4.3. The first, of orden?, is a

the classical equation when only the two classical fluids are S L )
present; it admits the solution nonlocal term which is linear iG (), and the second is the

external stochastic sour¢€y). The first includes the effects
of particle creation, and the second drives the classical sto-
b=x+ foz, (3.18 chastic fluctuations of the conformal factor. To solve this

equation we may take its Fourier transform,

with appropriate initial conditions. When baryonic matter is

not present, i.e.£{=0, the classical solution is=y. If av- v {(w)

eraged with respect t&(x), Eqg. (3.17) also admitsb=y as G(w)=- 2v 1+ (1213202 0?h(w) |’ (4.4

a solution, which is in agreement with Hartle’s solution. As visam @@

remarked in _the Intro_duction this is expected as in such here he) is given in Eq.(3.16. From Eq.(3.14 we know

case no particle creation takes place. Had we introduced Io[h at

cal terms in the action of the tyge, ,R*", this would not be

necessarily the case. vV

({w)i()=ggdlw+a),

dxi6l+5t0=0. (43

IV. CONFORMAL FLUCTUATIONS IN FLAT SPACETIME

. . . , and so
The semiclassical back-reaction equati@l?7 was de-

rived for a nonconformal quantum field in a universe filled 2

with classical radiation and baryonic matter, using perturba- (G(w)G(w'))=

tion theory around a conformal vacuum state. The classical 38
contributions are in the first two terms of the equation, i.e.,

bz—gb. These two terms are obtained from the cIassicaiNhICh leads to the real time correlation
stress-energy tensor and different classical sources will lead 2
to different terms. Thus by changing these first two terms in o Y
. hes o (G(x)G(x"))

Eq.(3.17), the equation may be used in different situations of 768wV
interest. Besides the case of cosmological interest described
in the previous section, a case of obvious interest is that of
the conformal fluctuations of flat spacetime. As v—0, the conformal stochastic fluctuations become

To obtain the equations for the fluctuations around flatwhite noise, as it could be expected. Indeed, we could Taylor
spacetime, one simple takés 0 (no baryongand notes that expand inside the integration sign to develop the correlation
b=1 (or a=1) is the conformal factor for flat spacetime. function as a formal power series in An important prob-
Thus if we take lem, however, of this approximation is that the fluctuation

_ effect[in Z(x)] and the dissipation effecin «[x;G]) are
b(x)=1+9(x) (4.1 treated at different orders of approximation and this means

in Eq. (3.17) with £¢=0 and consider the linear orderggy) that the fluctuation-dissipation relation cannot be fully appre-

we find an equation for the conformal fluctuations of flatc'ated' In fact, one would expect that as in the Brownian

spacetime, interacting with a massless nonconformall){mouon the scale factor driven by the stochastic term will

coupled scalar field. Equatiof8.17) in this linear approxi- oose energy by dissipation due to particle creation and that

mation simplifies considerably, it can be integrated twice andiNally @ sort of equilibrium between the two effects will be
reached. Here the stochastic effect dominates the behavior of

261)2
1+ —32W2h(w)

-2
S(w+w'),

f de e iolx—x")
271+ (vPw?32r)h(w)|?
(4.

becomes
b(x)-
2 ) v We may estimate the correlation time at finiteby re-
g— k[ x;:9]+ 55 {(x) =Aox+Bo, (4.2  scalingw=(8w/v)s; we find
3272 2V

) . . . v » ds e*iS')TV_lS(X*X’)
whereA, and B, are integration constant8, gives just a (G(X)G(x'))= _f

global rescaling of the conformal factor, aAg gives a lin- 96V J -
ear expansion of the scale factor. This linear term is pure

gauge, it represents an infinitesimal coordinate change ofhe integral is controlled by the smalrange. Recalling that
t—t+ (A/2)t?, wheret is the Minkowski time. We can take the functionxIn(x/e) has a minimum ax=1, we expand

=27 [1+52n(8 sl wv)?]2+ m2s*
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2 nated universe and comes from the second term in Eg.
) (3.17). The terms withy are of quantum origin. Equation
(5.2 is the dynamical equation for the perturbatigfy) of
where\=e(87/ur)?, and we have used thatis a large the scale factor around a radiative classical solution.
number. In this approximation This equation can now be directly compared with Eq.
(3.9 in Ref.[28]. In our case we have the external stochastic
sourcel which accounts for the fluctuations of the quantum
stress-energy tensor and was not considered previously, but
if we take the mean value with respect of the resulting
~[N+7?]s* - 287+ 1. equation is similar to Hartle’s equation. The main difference
here, as we pointed out earlier, is that the equation is real and
causal. But the basic structure of the equation is similar and
the conclusions that Hartle's draws in his analysis apply also

1
X__

~ +_ —_—
X 1 X

2 A

2 A 1
1+xIn

)\x) 1 A
14 =
e

212

+ st ~1+A\

2
+ r2s?

1
2_
ST

s
1+szln(—
787

The denominator has poles at

f= T [+ WT AP I+1], here. |
N+ In our case, however, we want to concentrate in the sto-
_ chastic termgwhich are newand the dissipative terms, and
which converge towards how they contribute to the dynamics gfy). It is conve-
- nient to consider separately the beha_vior qf fluctL_Jations far
s~[N+ 772]_1’4exp(1+2k)z away from and close to the cosmological singularity.

(k=0,1,2,3) as\—o. Choosing the contour of integration, A. Fluctuations far from the singularity

we find To study the behavior of the solutions to the Einstein-
Langevin equation, we first decompageénto the determin-

2 T istic partgy and the stochastic componemnt. The behavior
Olx—x'|- 7

v (C)
<G(X)G(X,)>~mﬁco of the deterministic part follows Hartle’s original analysis
[28], leading togy~ x%/4+ 0(Inx/x?) for large x.
xexg—0|x—x'l1, (4.6 As for the stochastic part, it is convenient to adopt as
dynamical variableéf =g/, rather thargs itself. The vari-

where ablef satisfies

4\/577 X
- VA 2] f dx'xx' (x=x")f(x")
We see that at finiter the correlation decays exponentially 2 e v
with a correlation time® ~1~ \/v. + 32W2{flnx— <D flr=- 2VES (5.3
V. FLUCTUATIONS IN A UNIVERSE Instead of solving directly fof, it is convenient to look at
WITH MATTER AND RADIATION the propagator
We turn now to our main problem, which is the analysis 5t(x)
) . ; , X
of the fluctuations of the cosmological scale factor in Har- G(x.x")= —
tle’s model, as described by E(3.17). ol(x")

The analytic solution of the stochastic integrodifferential
equation(3.17) is not possible, but sincé, the parameter
that gives the baryon to photon ratio, is assumed to be very » )2
small, it makes sense to find solutions linearized around a f dy" xx"(x—x")G(x", x")+ (INxG(x,x")
radiative universe. Thus we follow Hart|@8] and look for XXXTXTX XX 3272 XXX
solutions of the type

which obeys the equation

14
b(x)=x+£g(x). (5.1) —k[x;G(x, x )]}——Wg5(X—X ). (5.9
Substituting this into Eq(3.17), taking only terms linear in  The main formal difference between this case and the
&, the equation can be integrated twice and becomes conformal fluctuations of flat space time lies in that this
. equation is not time translation invariant. However, as in the
n v? 9| _ 9 N 4 é_ X—2+A 4B previous case we expect the propagator to decay exponen-
97 Som XXy TavE T a T RoX TR tially on the differencai= y— x', with a weaker dependence

(5.20  Onsome “center-of-mass” variable, which we take for sim-
plicity to be X=(x+ x’)/2. Our problem is then to disen-
where A, and B, are integration constants which may be tangle the fast variable from the slow oneX [49,50. Now
taken asAy,=By=0, without loss of generality. The term observe that, since we expeGi(X,u) to be exponentially
X214 gives the expansion corresponding to a matter domismall unlessu<X, we may approximate
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INxYG(x,x")~INXG(X,u). where®.=X0. As a result, the correlation conformal time
0. ! scales as/v/X. Of course, the approximations we have
On the other hand, let us write made assume that this correlation conformal time is small

compared toX itself (X=»¥4. In the region of validity, we

/ " ” n oy see that the effect of expansion is to shorten the correlation
k[ x;G(x, x )]EJ dx"h(x—x")G(x".x"), P

time.
" __ !
and sefy”=x'+v to get B. Fluctuations near the singularity
, v—u To obtain the form of the solutions valid at early times,
k[x;G(x,x )]Ef doh(u=v)G| X+ ——v we reason as follows. When is small, the Fourier integral

defining the nonlocal part of the Einstein-Langevin equation
Assuming thaiG depends weakly o, we obtain is dominated by large frequencies~ y . But sinceh(w)
depends only logarithmically on the frequency, we can then
seth(w)=const=h(y 1), to obtain
KX T~ [ duh(u-0)G(Xo)
«Lx; OO0 T~ = In[ax]f(x).

Handling the classical term in the same way, . . . .
g y The Einstein-Langevin equation then becomes

X u
fdX”XX”(x—X”)G(X",X’)~X2f dv(u—v)G(X,v), ¥ x v X
( 5 9+2—V,§§=Z, (5.7

20+ In
X9 1672 \X

we obtain the translation invariant equation
) where yo= 1~ Y2 Writing x = xoe'"’2, we find
14

INXG(X,u)
2772{

Xzfudv(u—v)G(X,v)-i—

3 v? | d? 1+t d e
) 32n2ae |t )dt|97 X9
—k[u;G(X,W)]}=— 5z 6(u),
2Vé VXS 3t2/2 _Xg 3t?
Tove® T
whereX plays the role of a parameter. The solution reads 3
v do . Defining a new variable by g=tet2’4v, we get
— AT iwu
G(Xvu) zvgj 27Te G(X,(l)), - 2t2
1 327 x e 1 t?
rr+ _ r+ -
where vy 2 2 al’
2 2 21 ! 2.6 2.3
G(X,0)= X—+V—In _[erle , _SmXo Xoelnz"‘——l% Xoe‘r"z"‘(g
(w+ie)? 64m? uX V2t vV§ t)

(5.9
o i Again we decompose into a deterministic and a stochas-
remarkably similar to its flat space counterpart. The selfy;c part, vy andvy, respectively. The deterministic part ad-

correlation is given in terms of the propagator as mits a regular solution as—0:
(FOOf(x"))= LJ dx"GOx.x")G(x" x") 4m’xg
1927 ’ A vg= tint+O(t3).

V2

which, with the same degree of accuracy, becomes o _
In the same approximation, we find

7687V¢2) 2 S

12 do .
00T N= - | 5e 0 le(Xw)2 87x3 td,[ t'ZK’:)

We can repeat for this self-correlation the same analysis than
in the previous section, provided we replaeéX) for v and  (more ont, later). Recalling that
uX for w, to get
\Vj —t212
, 1/2 @c , T <§(t)§(t,)>:@5()(_)(,):@ Yot 5(t_t,):
(9s(X)9s(x )>NWECO{®C|X_X |—Z} 5.9

xXexd —0dx—x'l1, (5.6)  we get, always in the same approximation, that
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2 We see that, providet} is small enough, the fluctuations

8mx3\? Vv td s S
(vs(t)vg(t'))= VE | T02y°),. @ t— T ==l may have an strong effect on the Hubble parameter.
t; S
wheret_=min(t,t"). Note that if we assume that the stochas- VI. CONCLUSIONS
tic source acts all the way frorbt=0, we get an infinite . . , .
amount of fluctuations. In this paper we have considered the stochastic, classical

As a matter of fact, we do not expect our equations tometr_ic fluc_tuations induced _by guantum fluctuations of mat-
hold up to the smallest times. First of all, our semiclassicaf€ fi€lds in two cases of interest, namely, the conformal
universe presumably arises out of a fully quantum one at thfluctuations of flat spacetime and a simple cosmological
quantum to classical transition. The semiclassical equatiof'©d€!, the former being mostly of interest as preparation for
thus describes the model up to this time, but not earliert€ latter. The quantum quctuatlons acton geomet.ry' through
Besides, we do not expect the fof8) of the noise corre- 1€ €Nergy momentum tensor, which has a deterministic part,
lation function to be true up to this time. The actual noise@SSociated to vacuum polarization and particle creation, and
self-correlation, which ought to be derived from quantumalso afluctuatlng part, r_elated to.the unpredictable aspects of
gravity, presumably has a finite correlation tifué the order quantum behavior; the mtrpductmn of the latter Iead; to .the
of Planck’9 and is not translation invariant, but depends Onformula.tlon of the theory in terms of a so-called Einstein-
the distance from its arguments to the “absolute zero of-2N9€Vin equation. _ . . .
time” (to borrrow Misner's phrasé51]). Equation(5.8) is While the physical rationale for including such terms is
thus an approximation to be trusted only when the characte€/€ar (@nd earlier estimates point to their quantitative rel-
istic times are much larger than Planck’s. The lower cutpff e_vance[5_,6]) an_d the_ techmc_al means to introduce them_con-
can be thought of as the earliest time when the model b sistently into Em_st(_am equations are by now _vvell'establlshed
comes meaningful. 8,22',1'5,19,2])t.h|s is, to our knowlgdge, the flrst tlme_actual

While we cannot make a definite prediction fgr we can nontrivial solutions to the Einstein-Langevin equation are
still observe that if it is small enough, then fluctuations build©P@ined. The reason why the solution to particular models
up fast enough that they may actually dominate the determir"-a.gge‘j.SO much behlnd . form_ulat|on of the baS|_c prin-
istic part over an stretch of time, namely, when Ciples I'?S of course in the staggering _complexny of Elpstgln

theory, involving issues of gauge invariance, renormalization

1 and nonlinear dynamics. The model proposed by Hartle in
) Ref.[28] is an ideal testing ground because it retains most of
Ve 4evi2y I, the physical features of a realistic cosmological model, while
being simple enough to be tractable.
It is interesting to look at the behavior of a quantity of  Since in this last analysis massless nonconformal fields in
direct physical significance, such as the Hubble parametdfRW backgrounds are of interest mostly as a toy model for
H=ala?, rather than the metric itself. In terms of dimen- gravitons[29] (for the application of similar ideas to infla-

14

[Int|<

sionless quantitiefcf. Eq. (3.10] H=H/\6/p, where tionary cosmology, sef26,22—-29), the effects we have dis-
cussed here are at bottom quantum gravitational, and they
1 db are most relevant in the earliest stages of cosmic evolution.
= S This adds a degree of uncertainty in the theory, associated to
b= dx the present lack of understanding of the details of the quan-

. _ _ tum to classical transition; the best we can do is to localize
Expandingb(x) = x+ &g(x) we can writeH in terms oft  our ignorance in a few undetermined parameters, such as the

(X=X0et2’2) andv as time at which the initial conditions for semiclassical evolu-
tion are set and the value of the several renormalized param-

1 £ o dv 2_3¢t2 eters i_n the _modeQin particular, we have applied Occam’s
H=—11+—e at v razor in setting to zero any parameter not specifically de-

manded by renormalization
Given these limitations, the main conclusions of our effort
are that the Einstein-Langevin equation may indeed be
solved, that a consistent picture of semiclassical evolution
emerges and, most important, that this picture is significa-
’ tively different from what earliefnonstochasticsemiclassi-
cal models have led us to believensider, for example, the
) ratio of the fluctuating to the deterministic parts of the

Now, decomposing as abow¢=H,+H,, we obtain

1
Hd"" ;

16’77'2)(2 t
HsN_ 20f dt’ £
vWys Juy t’

4m%Ex3
V2

1+ (2Int+1)

Hubble parameter, as discussed in the last sect@learly
more work shall be needed before questions of direct cosmo-
logical impact(such as whether stochastic fluctuations may
which leads to be instrumental in creating the homogeneous patches where

inflation becomes a possibility, or rather work against the
1 1] stability of those patch¢smay be addressed. We continue

2\ 2
1672 x§
vVyx?

\Y

2\ _
(Hs)= 38477)(0

our research on this, in our opinion, most relevant issue of
preinflation cosmology.

2 2]
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