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We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of
massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor
of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and
Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin
equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the
scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic
cosmology driven by radiation and dust.@S0556-2821~97!04716-4#

PACS number~s!: 04.62.1v, 05.40.1j, 98.80.Cq

I. INTRODUCTION

When a model of the early Universe is developed, it be-
comes necessary to take into account the quantum nature of
matter fields, even if for a wide range of energies, leading up
to Planck’s, the geometry of the Universe itself may be de-
scribed in classical terms. The simplest and most studied
way to couple quantum matter to a classical gravitational
field is through the expectation value of the energy-
momentum tensor of the quantum fields@1,2#; however, the
quantum fields must necessarily undergo fluctuations@3,4#,
and it has been recently shown that these fluctuations are by
no means negligible in many situations of interest@5,6#.

To a certain extent, quantum fluctuations may be intro-
duced in a classical model as uncertainty in the initial con-
ditions. However, fluctuations play a subtler role when the
semiclassical evolution, as is in fact the rule, is dissipative
@7,8#. In this case, the semiclassical gravitational field inter-
acts in a nontrivial way with the environment provided by
the quantum matter degrees of freedom@9#, leading, e.g., to
anisotropy damping and loss of information regarding initial
conditions@10–13#. The environment reacts back on the sys-
tem in a way which is demanded by consistency of the un-
derlying quantum theory. Under equilibrium conditions in
static spacetimes, the relationship between damping and
back reaction becomes rather simple, and it is embodied in
the so-called fluctuation-dissipation theorems@14#. Similarly,
if more complex, connections between damping and back
reaction hold in nonequilibrium situations, then as a rule, the
back reaction acquires a stochastic character@15#.

In the particular case of semiclassical cosmology, we can
be more precise about what is going on. Except in some very
special cases, such as conformally flat universes coupled to
conformal matter, or purely adiabatic evolution, the cosmo-

logical evolution leads to particle creation@16,17#. The phase
relationships between the created particles are quickly lost;
even very weak interactions may accomplish this on very
short time scales@18#. Under these conditions, particle cre-
ation is a dissipative process. The back reaction of the matter
fields will then ~loosely speaking! have a time reversible
component associated to vacuum polarization phenomena
~such as trace anomaly! and a time oriented component re-
lated to particle creation. The crucial point is that there is
also a third, stochastic component, induced by the quantum
fluctuations of the matter fields. To keep the average effect
while disregarding these fluctuations leads, as a rule, to an
inconsistent theory.

In recent years Langevin-type equations have been pro-
posed to describe the fluctuating back reaction of the matter
fields on the classical gravitational field, thus restoring the
consistency of the semiclassical Einstein equations. The new
semiclassical Einstein-Langevin equations predict classical
stochastic fluctuations in the gravitational field@8,15,19,20#.
The derivation of these improved semiclassical equations is
based, usually, in the closed time path~CTP! effective action
method and exploits the close connection that this effective
action has with the influence functional introduced by Feyn-
man and Vernon@21#. We should mention that a similar
approach leading to Langevin type equations has been used
in recent years to study the generation of primordial fluctua-
tions in inflationary cosmologies@22–25# ~Morikawa has in-
dependently arrived to similar conclusions regarding this
subject@26#!, as well as the more general problem of sto-
chasticity in effective field theory@27#.

In this paper we study the stochastic fluctuations arising
from coupling geometry to massless nonconformal fields in
two cases of interest. One of them is the study of the con-
formal fluctuations of flat spacetime. The second case is a
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spatially flat Friedmann-Robertson-Walker~FRW! spacetime
with a classical source made of both radiation and dust. This
model is simple enough that the fluctuations can be studied
in some detail, yet it has significant features of a realistic
cosmology; it was proposed some time ago by Hartle@28#,
within the usual~Rosenfeld’s! approach, to study the back-
reaction effects to the creation of massless nonconformal
particles in isotropic cosmologies. We shall not develop a
full analysis, but rather focus on the new features brought by
the explicit introduction of stochastic terms in the Einstein
equations.

The Hartle model has two perfect fluids, one of them with
the equation of state of radiation and the other representing
baryonic matter with the equation of state of dust. A dimen-
sionless parameterj measuring the relative amounts of bary-
ons and radiation, which is constant in classical periods, is
assumed to be always constant and with a value correspond-
ing to the present universe~which is very small,;10227). A
massless nonconformal quantum field is coupled to this sys-
tem. The presence of the small portion of baryonic matter is
essential to ensure particle creation, since in a radiative FRW
universe the scalar curvature vanishes and the field cannot
couple to the curvature. A perturbative expansion in terms of
the parameterj is then seen to be equivalent to an expansion
in a parameter that measures the deviation from the confor-
mal coupling. Since the two degrees of freedom of the gravi-
ton field in a FRW background behave as massless mini-
mally coupled fields@29# Hartle’s model provides a good
testing ground for the study of the back reaction due to the
creation of gravitons in cosmology.

The model describing the conformal fluctuations of flat
spacetime due to massless nonconformal fields can be easily
obtained as a limit of Hartle’s model. One just needs to im-
pose that there is no classical matter source and that the
cosmological scale factor is a small perturbation of unity.
This model, which is considerably simpler than the cosmo-
logical model, may be of interest in connection with the
semiclassical stability of flat spacetime@30# ~see also Ref.
@31#! under conformal fluctuations.

We should stress that one of the main differences between
the cosmological back-reaction problem considered in this
paper and other cosmological back-reaction problems that
have been considered in the literature is that the latter usually
deal with conformal fields in isotropic cosmologies
@16,32,10#, or with conformal fields in cosmologies with
small anisotropies@33,34,17,35,11,12# or in cosmologies
with small inhomogeneities@36,37#. In the two last cases
particle creation takes place because the anisotropies or in-
homogeneities break the conformal invariance of the fields.

Cosmological models where the back-reaction equations
have been solved explicitly involve, usually, conformal fields
in FRW cosmologies@38,39#. In such models there is no
particle creation and all quantum effects are a consequence
of the fact that the vacuum expectation value of the stress-
energy tensor of the quantum field, subject to the trace
anomaly, does not vanish. Generally the stress-energy tensor
is also subject to a two parameter ambiguity connected to the
addition of two conserved terms quadratic in the spacetime
curvature@2,40#. Such ambiguity cannot be resolved within
the semiclassical theory and depending on these parameters
one finds very different behaviors for the cosmological scale

factor. Different behaviors are also found as a consequence
of the higher than two time derivatives of the scale factor
that appear in the stress-energy tensor, this is a typical back-
reaction phenomenon and the origin of runaway solutions. In
this connection several authors have argued@41,31# that so-
lutions to the semiclassical back-reaction equations that de-
viate nonperturbatively from the classical solutions should be
discarded.

When particle creation takes place, the back-reaction
equations have been solved only numerically for the case of
massive conformally coupled fields in FRW cosmologies
@42#. In this case it is the mass that breaks the conformal
symmetry of the problem.

Here we are interested in the quantum effects due to the
creation of massless nonconformal particles. Our dynamical
back-reaction equations for the cosmological scale factor
generalize that of Ref.@28# in that a new stochastic source is
included. Because we start with a CTP functional formalism
our equations are real and causal and thus they admit an
initial value formulation. Thus when our equations are aver-
aged with respect to the stochastic source they should not be
directly compared with the equations in Ref.@28#, which
were obtained using an in-out functional formalism. How-
ever, the analysis carried out by Hartle on the behavior of the
cosmological scale factor at large and very small cosmologi-
cal times is still valid. For this reason we concentrate here
mainly in the stochastic effects which are new.

The plan of the paper is the following. In Sec. II the
actions for the massless nonconformal scalar field, the gravi-
tational field, and the classical matter sources, which define
Hartle’s model, are described. In Sec. III we give the sto-
chastic back-reaction equations for the cosmological scale
factor. The derivation of these equations is based in the CTP
effective action describing the interaction of the classical
scale factor with the quantum field, and the relation of this
effective action with the influence functional of Feynman
and Vernon@21#. In Sec. IV we consider the particular case
of the conformal perturbations of flat spacetime. In Sec. V
we consider the fluctuation in the cosmological scale factor
in Hartle’s model and Sec. VI summarizes our conclusions.

II. HARTLE’S MODEL

In this section we describe a model@28# in which a mass-
less nonconformal quantum scalar field is coupled to a spa-
tially flat FRW cosmology with a classical source made of
radiation and dust. Since we use a dimensional regularization
technique some relevant terms in the classical action are
given in n arbitrary dimensions. The cosmological model is
described by then-dimensional spatially flat FRW metric

ds25a2hmndxmdxn, ~2.1!

wherea(h) is the cosmological scale factor,h is the con-
formal time, andhmn5diag(21,1, . . . ,1). Theclassical ac-
tion for the massless nonconformally coupled scalar field
F(xm) is

Sm@gmn ,F#52
1

2E dnxA2g@gmn]mF]nF

1~jc1n!RF2#,
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whereR is the Ricci curvature scalar,

R52~n21!F ä

a3
1S n24

2 D ȧ2

a4G ,

jc1n is the parameter coupling the scalar field to the space-
time curvature, andjc[(n22)/4(n21) is the coupling pa-
rameter for a conformal field inn dimensions. Since the
metric ~2.1! is conformally flat it is convenient to introduce a
new rescaled matter field f(xm) by f(xm)
[a(n22)/2(h)F(xm), and the scalar field action simplifies as

Sm@a,f#5
1

2E dnxf~xm!@h2na2R#f~xm!, ~2.2!

where nowh[hmn]m]n is the flat d’Alambertian operator.
It is clear from this equation that ifnÞ0 the conformally flat
symmetry is broken by the coupling of the scalar field.

The action for the gravitational field, the Einstein-Hilbert
actionSg

EH, needs to be corrected with a counterterm to can-
cel the divergencies that will come from the effective action.
In our case it suffices to add a term quadratic in the Ricci
scalar. Note that terms quadratic inRmn or the Weyl tensor
could also be added but since these terms are not necessary
for the renormalization we simply assume that their coeffi-
cients vanish. The divergent~in n54) counterterm is

Sg
div@a;mc#5

n2mc
n24

32p2~n24!
E dnxA2gR2, ~2.3!

wheremc is an arbitrary mass scale needed to give the cor-
rect dimensions to this action term.

Since the only dynamical variable of the gravitational
field is the cosmological scale factora(h) the gravitational
action reduces in our case, when expanded in (n24), to

Sg
EH@a#5

6V
l P

2E dhaä, ~2.4!

Sg
div@a;mc#5

n2V
32p2F 36

n24E dhS ä

a
D 2

136lnmcE dhS ä

a
D 2

112E dhH 3S ä

a
D 2

lna1S ä

a
D F3S ȧ

a
D 2

12S ä

a
D G J G1O~n24!, ~2.5!

wherel P
2 516pGN (GN is the Newtonian gravitational con-

stant! andV is the volume integralV[*d3x.
To the above scalar and gravitational actions we need to

add the action for the classical matter sourcesSm
cl , which are

a radiative and dust perfect fluids. This action is given by

Sm
cl@a#52VE dh r̃ ba, ~2.6!

where r̃ b is a constant parameter related to the baryon en-
ergy density. It is connected to a similar parameterr̃ r for the
energy density of the radiation, through

j5
l P r̃ b

r̃ r
3/4

, ~2.7!

which is of orderj;10227 for the present universe. This
parameterj measures the baryon to photon ratio.

The action~2.6! is justified because when it is varied with
respect to the scale factora(h) it reproduces the trace of the
stress-energy tensor for a radiative perfect fluid with equa-
tion of statepr5r r /3 (pr is the pressure andr r is the energy
density of the radiation!, and of a dustlike baryon fluid of
pressurepb50 and energy densityrb . When the dynamics
of the scale factor is driven by the classical source only one
finds that rb5 r̃ ba23 and r r5 r̃ ra

24, then the relative
amounts of baryons and radiation as defined byl prb /r r

3/4

becomes constant and given by Eq.~2.7!. In fact, when the
classical action~2.6! is considered as the only dynamical
source of gravity from the Einstein-Hilbert action~2.4! one
gets 6ä5(l P

2 /2) r̃ b or equivalentlyR52(l P
2 /2)Tcl, where

Tcl52rb is the trace of the stress-energy tensor of a perfect
fluid of dust ~baryons! plus radiation.

We note that when baryons are not present, i.e., when
j50, the scalar curvature vanishes (R50), and from the
action~2.2! for the scalar fieldf(xm) it is clear that this field
behaves as a free field in flat spacetime. Therefore with the
usual Minkowskian definition of a vacuum state@which cor-
responds to the conformal vacuum forF(xm)# no particles
can be created by the expansion of the Universe. Back-
reaction effects are still possible due to the vacuum expecta-
tion value of the stress-energy tensor of the scalar field,
which in this case depends on the two free parameters men-
tioned in the Introduction. One of the parameters is associ-
ated to an action proportional toR2 and the other to an action
proportional toRmnRmn. The quadratic terms of the first pa-
rameter vanish whenR50 , but the quadratic terms of the
second parameter are generally different from zero even
when the scalar curvature vanishes. Thus all quantum effects
in this case depend crucially on the second parameter being
different from zero. We assume that such parameter is zero,
thusR50 is a consistent solution to the semiclassical back-
reaction problem. Since our interest is in the back reaction
due to particle creation we will takej as a small nonzero
parameter, and we will consider thena2R term in Eq.~2.2!
as a perturbative term which gives a measure of the deviation
from the radiative caseR50. In practice we will compute
the quantum corrections as perturbations in powers of the
parametern, and this should be consistent with an expansion
in j.

III. STOCHASTIC BACK-REACTION EQUATIONS

In this section we compute the stochastic back-reaction
equations for the cosmological scale factora(h) from the
CTP effective action to one-loop order for the quantum field
F(xm) in the FRW spacetime~2.1!. This action is evaluated
using a perturbative expansion in powers of the parametern.
The CTP effective action was introduced by Schwinger
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@43–45#; for its application in a curved background see Refs.
@12,7,46,37#. The idea is to start with a generating functional
from which one obtains expectation values, instead of the
matrix elements one obtains using the generating functional
of the ordinary in-out effective action@47#. The CTP effec-
tive action is the Legendre transform of such a generating
functional. The price one pays for this is that one needs to
double the number of fields: the (1) and (2) fields below.
For the details of this paper we follow closely Ref.@37#; see
also Ref.@48#.

In our case we have two fieldsa(h) and f(xm) whose
free actions are given bySg@a;mc#1Sm

cl@a# from Eqs.~2.4!–

~2.6!, and bySm
free@f#5 1

2 *dnxfhf from Eq. ~2.2!, and an
interaction action given bySint@a,f#52(n/2)*dnxa2Rf2.
The field a is classical, thus we only need to go up to one
loop order for the fieldf, which corresponds to the first-
order expansion of the generating functional in powers of
\. We have

GCTP@a6,f̄6#.Sg@a1;mc#2Sg@a2;mc#1Sm
cl@a1#

2Sm
cl@a2#1Sm@a1,f̄1#2Sm@a2,f̄2#

2
i

2
Tr~ lnG!, ~3.1!

where the fieldsf̄6 correspond to the expectation values of
f6 , andG, which is a matrix operator with 232 compo-
nents, is the inverse of the classical kinetic operator
A5diag$h2n(a1)2R1,2@h2n(a2)2R2#%, obtained
from Eq. ~2.2!, with CTP boundary conditions~see @12#!.
Since we are only interested in the effective action for the
scale factora(h), we setf̄650 and expand the functional
determinant in powers of the coupling constant; finally@48#,
the renormalized CTP effective action reads

GCTP@a6#.Sg,m
R @a1#2Sg,m

R @a2#1SIF
R @a6#, ~3.2!

where

Sg,m
R @a#5VE dhF2

6

l p
2
ȧ21

9n2

8p2S ä

a
D 2

lna2 r̃ baG
~3.3!

and

SIF
R @a6#5

9n2

8p2E dhdh8DS ä

a
D ~h!H~h2h8;m̄ !H S ä

a
D ~h8!J

136n2i E
2`

`

dhE
2`

h
dh8DS ä

a
D

3~h!N~h2h8!DS ä

a
D ~h8!, ~3.4!

where we use the notationD f (h)[ f 1(h)2 f 2(h),
$ f (h)%[ f 1(h)1 f 2(h), for an arbitrary functionf (h). The
kernels H(h2h8;m̄) and N(h2h8) are

H~h2h8;m̄ !52
V
2E dp0

2p
e2 ip0~h2h8!lnF2S po1 i«

m̄
D 2G ,

N~h2h8!5
V

32p
d~h2h8!. ~3.5!

Note that the parametermc has been absorved into the new
parameterm̄.

The subscript IF inSIF
R @a6# is used to indicate that this

part of the CTP effective action is the influence functional
action as defined by Feynman and Vernon@21#. That is, it
gives the effect of theenvironment, the quantum field, on the
system,the cosmological scale factor, which is the field of
interest here. The identification between a part of the CTP
effective action and the influence functional was suggested
in Ref. @8#.

A. Improved effective action

The connection between the CTP effective action in the
semiclassical context and the influence functional action in-
troduced by Feynman and Vernon to describe the interaction
between asystemand anenvironmentjust mentioned gives
an interesting new light on the semiclassical back-reaction
problem.

Let us now turn to the dynamical equations for the scalar
field a(h). In principle these equations can be derived from
the CTP effective action asdGCTP/da1ua65a50. A problem
might arise from the fact that such effective action has an
imaginary part, sinceSIF

R is complex, see Eq.~3.4!. It should
be clear, however, that the imaginary part ofSIF

R will not
contribute to the field equation derived in that form because
Im(SIF

R @a6#) is quadratic in the difference of the (1) and
(2) fields and one finally takesa15a25a.

However, from the point of view of thesystem environ-
ment, relation familiar in quantum statistical mechanics, the
imaginary part of the influence action is related to the noise
suffered by the system from the environment fluctuations
@21#. This suggests an improvement to the semiclassical
back-reaction equations that takes into account such fluctua-
tions. This may be achieved if we define the influence func-
tional @21#

FIF@a6#5eiSIF
R [a6] , ~3.6!

and note that it may be written formally as

FIF@a6#5E DjP@ j #expH i FRe~SIF
R @a6# !

16nE dh j ~h!DS ä

a
D ~h!G J , ~3.7!

with

P@ j #5
e2~1/2!*dhdh8 j ~h![N~h2h8!] 21 j ~h8!

E Dje2~1/2!*dhdh8 j ~h![N~h2h8!] 21 j ~h8!

. ~3.8!
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That is, performing the path integral in Eq.~3.7! with P@ j #
defined in Eq.~3.8! leads directly to Eq.~3.6!. If we interpret
P@ j # as a Gaussian probability distribution, the action in Eq.
~3.7! may be seen formally as the action for a fielda(h)
which is coupled to an external stochastic sourcej (h).

Thus, the influence functional~3.6! can be seen as the
mean value with respect to the stochastic fieldj (h) of an
influence functional for an improved effective actionSeff de-
fined by

Seff@a6; j #5Sg,m
R @a1#2Sg,m

R @a2#1Re~SIF
R @a6# !

16nE dh j ~h!DS ä

a
D ~h!. ~3.9!

This comes from Eq.~3.7! and the addition of the gravita-
tional and classical matter terms~3.3!. Now the field j (h)
will act as a stochastic source in the improved semiclassical
equation when the functional derivation with respect to
a1(h) is taken. This stochastic field is not dynamical, it is
completely determined by the following relations, which
may be derived from the characteristic functional, i.e., the
functional Fourier transform ofP@ j #:

^ j ~h!&50,

^ j ~h! j ~h8!&5N~h2h8!. ~3.10!

Since the probability distribution is Gaussian the noise ker-
nel is the two point correlation function of the stochastic
field. In our case as one can see from Eq.~3.5! the noise is
white.

It is convenient for comparison with previous work
@28,39#, to write the effective action~3.9! in terms of dimen-
sionless quantities such asx, b(x), andz(x) for the confor-
mal time h, cosmological scale factora(h), and stochastic
sourcej (h), respectively. These are defined by

x5
r̃ r

1/4

61/2
h, b5

a

l P r̃ r
1/4

, z5
r̃ r

1/4

61/2
j . ~3.11!

We also introduce dimensionless frequenciesv, renor-
malization parameterm, and volumeV instead ofp0, m̄, and
V , respectively, as

v5
61/2

r̃ r
1/4

p0, m561/2l Pm̄, V5
r̃ r

3/4

61/2
V. ~3.12!

Then the improved effective action~3.9! for the dimension-
less scale fieldb(x) becomes

Seff@b6;z#[V61/2r̃ r
3/4E dxH 2D~ ḃ21jb!~x!

1
n2

32p2FDS S b̈

b
D 2

lnbD ~x!2DS b̈

b
D

3~x!kFx;H b̈

bJ G G1
n

V
z~x!DS b̈

b
D ~x!J .

~3.13!

The stochastic sourcez(x) is defined, after Eq.~3.10!, by
^z(x)&50 and

^z~x!z~x8!&5
V

192p
d~x2x8!. ~3.14!

The nonlocal operatork is defined by its action on a test
function f (x) by

k@x; f ~x!#[E
2`

` dv

2p
e2 ivxh~v! f ~v!, ~3.15!

where f (v) is the Fourier transform of the test function,
defined byf (v)5*2`

` dxeivx f (x), and

h~v![
1

2
lnF2S v1 i«

m D 2G . ~3.16!

This kernel is real and causal, as can be seen from its ana-
lytical structure. Note that this is in fact the main difference
between the CTP approach and Hartle’s approach.

B. Stochastic back-reaction equations

The dynamical equations for the cosmological scale factor
in its dimensionless form,b(x), may be obtained by func-
tional derivation of the effective action~3.13! as (d/
db1)(Seff@b6; j #)ub65b[0. After functional derivation and
the identification of the (1) and (2) fields, the equation
acquire an interesting form if we multiply it byḃ:

d

dxH ḃ22jb2
n2

32p2S b̈

b
D 2

lnb1ḃ
d

dxF n2

16p2F b̈

b2
lnb

2
1

b
kFx;

b̈

b
G G1

n

V

z~x!

b G J
5

b̈

b

d

dxF2
n2

16p2
kFx;

b̈

b
G1

n

V
z~x!G . ~3.17!

The effects of the quantum field are those proportional to
the coupling parametern. The terms with lnb come from the
renormalization of the stress-energy tensor of the quantum
field, see Eq.~2.5!, and there are nonlocal contributions in
the terms withk@x;b̈/b#. The effects due to the creation of
quantum particles, in particular the dissipation of the field
b(x) are included in the nonlocal term.

A point of interest is the role played by the parameterm
in Eq. ~3.17!.This parameter is related to the local part of
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k@x; f (x)#, thus a change in this parameter is equivalent to a
change in the coefficients in some local terms in the stress-
energy momentum tensor of the quantum field. This param-
eter in fact is related to the two parameter ambiguity in the
definition of such stress-energy tensor already mentioned. In
our case one of the parameters has been fixed by our renor-
malization procedure and the ambiguity remains in the other
parameter, see Ref.@31# for more details.

When quantum effects are ignored, i.e., when we take
n50, the back-reaction equation becomes 2b2 j̈50. This is
the classical equation when only the two classical fluids are
present; it admits the solution

b5x1
1

4
jx2, ~3.18!

with appropriate initial conditions. When baryonic matter is
not present, i.e.,j50, the classical solution isb5x. If av-
eraged with respect toz(x), Eq. ~3.17! also admitsb5x as
a solution, which is in agreement with Hartle’s solution. As
remarked in the Introduction this is expected as in such a
case no particle creation takes place. Had we introduced lo-
cal terms in the action of the typeRmnRmn, this would not be
necessarily the case.

IV. CONFORMAL FLUCTUATIONS IN FLAT SPACETIME

The semiclassical back-reaction equation~3.17! was de-
rived for a nonconformal quantum field in a universe filled
with classical radiation and baryonic matter, using perturba-
tion theory around a conformal vacuum state. The classical
contributions are in the first two terms of the equation, i.e.,
ḃ22jb. These two terms are obtained from the classical
stress-energy tensor and different classical sources will lead
to different terms. Thus by changing these first two terms in
Eq. ~3.17!, the equation may be used in different situations of
interest. Besides the case of cosmological interest described
in the previous section, a case of obvious interest is that of
the conformal fluctuations of flat spacetime.

To obtain the equations for the fluctuations around flat
spacetime, one simple takesj50 ~no baryons! and notes that
b51 ~or a51) is the conformal factor for flat spacetime.
Thus if we take

b~x!511g~x! ~4.1!

in Eq. ~3.17! with j50 and consider the linear order ing(x)
we find an equation for the conformal fluctuations of flat
spacetime, interacting with a massless nonconformally
coupled scalar field. Equation~3.17! in this linear approxi-
mation simplifies considerably, it can be integrated twice and
becomes

g2
n2

32p2
k@x;g̈#1

n

2V
z~x!5A0x1B0 , ~4.2!

whereA0 and B0 are integration constants,B0 gives just a
global rescaling of the conformal factor, andA0 gives a lin-
ear expansion of the scale factor. This linear term is pure
gauge, it represents an infinitesimal coordinate change of
t→t1(A0/2)t2, wheret is the Minkowski time. We can take

A05B050 as our background spacetime or, alternatively,
define a new perturbation of the scale factor
G(x)[g(x)2A0x2B0, whose equation is

G~x!2
n2

32p2
k@x;G̈#1

n

2V
z~x!50. ~4.3!

The classical solution corresponds now toG(x)50 ~no per-
turbation!. The quantum effects here reduce to the two terms
which depend onn in Eq. ~4.3!. The first, of ordern2, is a
nonlocal term which is linear inG̈(x), and the second is the
external stochastic sourcez(x). The first includes the effects
of particle creation, and the second drives the classical sto-
chastic fluctuations of the conformal factor. To solve this
equation we may take its Fourier transform,

G~v!52
n

2VF z~v!

11~n2/32p2!v2h~v!
G , ~4.4!

where h(v) is given in Eq.~3.16!. From Eq.~3.14! we know
that

^z~v!z~v8!&5
V

96
d~v1v8!,

and so

^G~v!G~v8!&5
n2

384VU11
n2v2

32p2h~v!U22

d~v1v8!,

which leads to the real time correlation

^G~x!G~x8!&5
n2

768pVE dv

2p

e2 iv~x2x8!

u11~n2v2/32p2!h~v!u2
.

~4.5!

As n→0, the conformal stochastic fluctuations become
white noise, as it could be expected. Indeed, we could Taylor
expand inside the integration sign to develop the correlation
function as a formal power series inn. An important prob-
lem, however, of this approximation is that the fluctuation
effect @in z(x)# and the dissipation effect~in k@x;G̈#) are
treated at different orders of approximation and this means
that the fluctuation-dissipation relation cannot be fully appre-
ciated. In fact, one would expect that as in the Brownian
motion the scale factor driven by the stochastic term will
loose energy by dissipation due to particle creation and that
finally a sort of equilibrium between the two effects will be
reached. Here the stochastic effect dominates the behavior of
b(x).

We may estimate the correlation time at finiten by re-
scalingv5(8p/n)s; we find

^G~x!G~x8!&5
n

96VE2`

` ds

2p

e2 i8pn21s~x2x8!

@11s2ln~8ps/mn!2#21p2s4
.

The integral is controlled by the smalls range. Recalling that
the functionxln(x/e) has a minimum atx51, we expand
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11xlnS lx

e D;12
1

l
1

l

2S x2
1

l D 2

;11
l

2S x2
1

l D 2

,

wherel5e(8p/mn)2, and we have used thatl is a large
number. In this approximation

F11s2lnS 8ps

mn D 2G2

1p2s4;11lS s22
1

l D 2

1p2s4

;@l1p2#s422s211.

The denominator has poles at

s25
1

l1p2
@6 iAl1p22111#,

which converge towards

s;@l1p2#21/4exp~112k!
ip

4

(k50,1,2,3) asl→`. Choosing the contour of integration,
we find

^G~x!G~x8!&;
n2

768pV

Q

A2
cosFQux2x8u2

p

4 G
3exp@2Qux2x8u#, ~4.6!

where

Q5
4A2p

n@l1p2#1/4
.

We see that at finiten the correlation decays exponentially
with a correlation timeQ21;An.

V. FLUCTUATIONS IN A UNIVERSE
WITH MATTER AND RADIATION

We turn now to our main problem, which is the analysis
of the fluctuations of the cosmological scale factor in Har-
tle’s model, as described by Eq.~3.17!.

The analytic solution of the stochastic integrodifferential
equation~3.17! is not possible, but sincej, the parameter
that gives the baryon to photon ratio, is assumed to be very
small, it makes sense to find solutions linearized around a
radiative universe. Thus we follow Hartle@28# and look for
solutions of the type

b~x!5x1jg~x!. ~5.1!

Substituting this into Eq.~3.17!, taking only terms linear in
j, the equation can be integrated twice and becomes

g1
n2

32p2x
S g̈

x
lnx2kFx;

g̈

x
G D 1

n

2Vj

z

x
5

x2

4
1A0x1B0 ,

~5.2!

where A0 and B0 are integration constants which may be
taken asA05B050, without loss of generality. The term
x2/4 gives the expansion corresponding to a matter domi-

nated universe and comes from the second term in Eq.
~3.17!. The terms withn are of quantum origin. Equation
~5.2! is the dynamical equation for the perturbationg(x) of
the scale factor around a radiative classical solution.

This equation can now be directly compared with Eq.
~3.9! in Ref. @28#. In our case we have the external stochastic
sourcez which accounts for the fluctuations of the quantum
stress-energy tensor and was not considered previously, but
if we take the mean value with respect ofz, the resulting
equation is similar to Hartle’s equation. The main difference
here, as we pointed out earlier, is that the equation is real and
causal. But the basic structure of the equation is similar and
the conclusions that Hartle’s draws in his analysis apply also
here.

In our case, however, we want to concentrate in the sto-
chastic terms~which are new! and the dissipative terms, and
how they contribute to the dynamics ofg(x). It is conve-
nient to consider separately the behavior of fluctuations far
away from and close to the cosmological singularity.

A. Fluctuations far from the singularity

To study the behavior of the solutions to the Einstein-
Langevin equation, we first decomposeg into the determin-
istic partgd and the stochastic componentgs . The behavior
of the deterministic part follows Hartle’s original analysis
@28#, leading togd;x2/410(lnx/x2) for largex.

As for the stochastic part, it is convenient to adopt as
dynamical variablef 5g̈s /x, rather thangs itself. The vari-
able f satisfies

Ex

dx8xx8~x2x8! f ~x8!

1
n2

32p2
$ f lnx2k@x; f #%52

n

2Vj
z. ~5.3!

Instead of solving directly forf , it is convenient to look at
the propagator

G~x,x8!5
d f ~x!

dz~x8!
,

which obeys the equation

Ex

dx9xx9~x2x9!G~x9,x8!1
n2

32p2
$ lnxG~x,x8!

2k@x;G~x,x8!#%52
n

2Vj
d~x2x8!. ~5.4!

The main formal difference between this case and the
conformal fluctuations of flat space time lies in that this
equation is not time translation invariant. However, as in the
previous case we expect the propagator to decay exponen-
tially on the differenceu5x2x8, with a weaker dependence
on some ‘‘center-of-mass’’ variable, which we take for sim-
plicity to be X5(x1x8)/2. Our problem is then to disen-
tangle the fast variableu from the slow oneX @49,50#. Now
observe that, since we expectG(X,u) to be exponentially
small unlessu<X, we may approximate
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lnxG~x,x8!; lnXG~X,u!.

On the other hand, let us write

k@x;G~x,x8!#[E dx9h~x2x9!G~x9,x8!,

and setx95x81v to get

k@x;G~x,x8!#[E dvh~u2v !GS X1
v2u

2
,v D .

Assuming thatG depends weakly onX, we obtain

k@x;G~x,x8!#;E dvh~u2v !G~X,v !.

Handling the classical term in the same way,

Ex

dx9xx9~x2x9!G~x9,x8!;X2Eu

dv~u2v !G~X,v !,

we obtain the translation invariant equation

X2Eu

dv~u2v !G~X,v !1
n2

32p2
$ lnXG~X,u!

2k@u;G~X,u!#%52
n

2Vj
d~u!,

whereX plays the role of a parameter. The solution reads

G~X,u!5
n

2VjE dv

2p
e2 ivuG~X,v!,

where

G~X,v!5H X2

~v1 i«!2
1

n2

64p2
lnF2S v1 i«

mX D 2G J 21

,

~5.5!

remarkably similar to its flat space counterpart. The self-
correlation is given in terms of the propagator as

^ f ~x! f ~x8!&5
V

192pE dx9G~x,x9!G~x8,x9!,

which, with the same degree of accuracy, becomes

^ f ~x! f ~x8!&5
n2

768pVj2E dv

2p
e2 iv~x2x8!uG~X,v!u2.

We can repeat for this self-correlation the same analysis than
in the previous section, provided we replace (n/X) for n and
mX for m, to get

^gs~x!gs~x8!&;
n2

768pVj2X2

Qc

A2
cosFQcux2x8u2

p

4 G
3exp@2Qcux2x8u#, ~5.6!

whereQc5XQ. As a result, the correlation conformal time
Qc

21 scales asAn/X. Of course, the approximations we have
made assume that this correlation conformal time is small
compared toX itself (X>n1/4). In the region of validity, we
see that the effect of expansion is to shorten the correlation
time.

B. Fluctuations near the singularity

To obtain the form of the solutions valid at early times,
we reason as follows. Whenx is small, the Fourier integral
defining the nonlocal part of the Einstein-Langevin equation
is dominated by large frequenciesv;x21. But sinceh(v)
depends only logarithmically on the frequency, we can then
seth(v)5const5h(x21), to obtain

k@x; f ~x!#;2 ln@mx# f ~x!.

The Einstein-Langevin equation then becomes

x2g1
n2

16p2
lnS x

x0
D g̈1

nx

2Vj
z5

x4

4
, ~5.7!

wherex05m21/2. Writing x5x0et2/2, we find

n2

32p2F d2

dt2
2S 11t2

t D d

dtGg1x0
4e2t2g

1
nx0

3

2Vj
e3t2/2z5

x0
6

4
e3t2.

Defining a new variablev by g5tet2/4v, we get

v91
1

t
v81F32p2x0

4e2t2

n2
2

1

t2
2

t2

4 Gv

5
8p2x0

6

n2t
e11t2/42

16p2x0
3

nVj
e5t2/4S z

t D .

Again we decomposev into a deterministic and a stochas-
tic part, vd and vs , respectively. The deterministic part ad-
mits a regular solution ast→0:

vd5
4p2x0

6

n2
t lnt1O~ t3!.

In the same approximation, we find

vs52
8p2x0

3

nVj E
t1

t

dt8F t2
t82

t G S z

t8
D

~more ont1 later!. Recalling that

^z~ t !z~ t8!&5
V

192p
d~x2x8!5

V

192p

e2t2/2

x0t
d~ t2t8!,

~5.8!

we get, always in the same approximation, that
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^vs~ t !vs~ t8!&5S 8p2x0
3

nVj D 2 V

192px0E
t1

t,ds

s3F t2
s2

t GF t82
s2

t8
G ,

wheret,5min(t,t8). Note that if we assume that the stochas-
tic source acts all the way fromt50, we get an infinite
amount of fluctuations.

As a matter of fact, we do not expect our equations to
hold up to the smallest times. First of all, our semiclassical
universe presumably arises out of a fully quantum one at the
quantum to classical transition. The semiclassical equation
thus describes the model up to this time, but not earlier.
Besides, we do not expect the form~5.8! of the noise corre-
lation function to be true up to this time. The actual noise
self-correlation, which ought to be derived from quantum
gravity, presumably has a finite correlation time~of the order
of Planck’s! and is not translation invariant, but depends on
the distance from its arguments to the ‘‘absolute zero of
time’’ ~to borrrow Misner’s phrase@51#!. Equation~5.8! is
thus an approximation to be trusted only when the character-
istic times are much larger than Planck’s. The lower cutofft1
can be thought of as the earliest time when the model be-
comes meaningful.

While we cannot make a definite prediction fort1, we can
still observe that if it is small enough, then fluctuations build
up fast enough that they may actually dominate the determin-
istic part over an stretch of time, namely, when

u lntu<
1

A6p

n

4jV1/2x0
7/2t1

.

It is interesting to look at the behavior of a quantity of
direct physical significance, such as the Hubble parameter
H5ȧ/a2, rather than the metric itself. In terms of dimen-
sionless quantities@cf. Eq. ~3.11!# H5H/A6l P , where

H5
1

b2

db

dx
.

Expandingb(x)5x1jg(x) we can writeH in terms of t
(x5x0et2/2) andv as

H5
1

x2H 11
j

x0
e2t2/4Fdv

dt
1S 223t2

2t D vG J .

Now, decomposing as aboveH5Hd1Hs , we obtain

Hd;
1

x2F11
4p2jx0

5

n2
~2lnt11!G ,

Hs;2
16p2x0

2

nVx2 E
t1

t

dt8S z

t8
D ,

which leads to

^Hs
2&5S 16p2x0

2

nVx2 D 2
V

384px0F 1

t1
2

2
1

t2G .

We see that, providedt1 is small enough, the fluctuations
may have an strong effect on the Hubble parameter.

VI. CONCLUSIONS

In this paper we have considered the stochastic, classical
metric fluctuations induced by quantum fluctuations of mat-
ter fields in two cases of interest; namely, the conformal
fluctuations of flat spacetime and a simple cosmological
model, the former being mostly of interest as preparation for
the latter. The quantum fluctuations act on geometry through
the energy momentum tensor, which has a deterministic part,
associated to vacuum polarization and particle creation, and
also a fluctuating part, related to the unpredictable aspects of
quantum behavior; the introduction of the latter leads to the
formulation of the theory in terms of a so-called Einstein-
Langevin equation.

While the physical rationale for including such terms is
clear ~and earlier estimates point to their quantitative rel-
evance@5,6#! and the technical means to introduce them con-
sistently into Einstein equations are by now well established
@8,22,15,19,20# this is, to our knowledge, the first time actual
nontrivial solutions to the Einstein-Langevin equation are
obtained. The reason why the solution to particular models
lagged so much behind the formulation of the basic prin-
ciples lies of course in the staggering complexity of Einstein
theory, involving issues of gauge invariance, renormalization
and nonlinear dynamics. The model proposed by Hartle in
Ref. @28# is an ideal testing ground because it retains most of
the physical features of a realistic cosmological model, while
being simple enough to be tractable.

Since in this last analysis massless nonconformal fields in
FRW backgrounds are of interest mostly as a toy model for
gravitons@29# ~for the application of similar ideas to infla-
tionary cosmology, see@26,22–25#!, the effects we have dis-
cussed here are at bottom quantum gravitational, and they
are most relevant in the earliest stages of cosmic evolution.
This adds a degree of uncertainty in the theory, associated to
the present lack of understanding of the details of the quan-
tum to classical transition; the best we can do is to localize
our ignorance in a few undetermined parameters, such as the
time at which the initial conditions for semiclassical evolu-
tion are set and the value of the several renormalized param-
eters in the model~in particular, we have applied Occam’s
razor in setting to zero any parameter not specifically de-
manded by renormalization!.

Given these limitations, the main conclusions of our effort
are that the Einstein-Langevin equation may indeed be
solved, that a consistent picture of semiclassical evolution
emerges and, most important, that this picture is significa-
tively different from what earlier~nonstochastic! semiclassi-
cal models have led us to believe~consider, for example, the
ratio of the fluctuating to the deterministic parts of the
Hubble parameter, as discussed in the last section!. Clearly
more work shall be needed before questions of direct cosmo-
logical impact~such as whether stochastic fluctuations may
be instrumental in creating the homogeneous patches where
inflation becomes a possibility, or rather work against the
stability of those patches! may be addressed. We continue
our research on this, in our opinion, most relevant issue of
preinflation cosmology.
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