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In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the
framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter
stress-energy fluctuations, can be formally derived from a functional method based on the influence functional
of Feynman and Vernon. In the second part, we derive a number of results for background solutions of
semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal
equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle
creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic
metric fluctuations[S0556-282(199)02318-9

PACS numbd(s): 04.62+v, 05.40—-a

I. INTRODUCTION action for the dynamics of the systefi1-18. This ap-
proach has been extensively used in the literature, not only in
It is generally believed that there must be a regime inthe framework of semiclassical cosmolof2—-14,19-2%
which the gravitational field can be treated as a classical obut also in the context of analogous semiclassical regimes in
“quasiclassical” field, but its interaction with quantum mat- quantum mechanicgl5,17,24 and in quantum field theory
ter fields cannot be neglected. The standard approach to dgt8,27—30Q. It is based on the observation that the semiclas-
scribe such a regime is the semiclassical theory of gravitpical equation can be directly derived from the effective ac-
based on the semiclassical Einstein equation. This is a getion of Feynman and Vernofl12,18,19,22,23,29 When
eralization of the Einstein equation for a classical metriccomputing this effective action perturbatively up to quadratic
when the expectation value of the stress-energy tensor @frder in its variables, one usually finds some imaginary
quantum matter fields is the source of curvature. The semierms which do not contribute to the semiclassical equation.
classical theory of gravity is mathematically consistent andl he key point is then to formally identify the contribution of
fairly well understood, at least for linear matter fie[ds-5). such_terms in the infll_Jence functi_onal with the cha_racteristip
One expects that semiclassical gravity could be derived alunctional of a Gaussian stochastic source. Assuming that, in

an approximation of a fundamental quantum theory of gravIEe semiclassic_albrlegime, thi_s stocpahstic source interacts wgh
ity. However, in the absence of such a fundamental theory"€ System variables, equations of the Langevin type can be

the scope and limits of the semiclassical theory are less Weﬂe_rlved for these vanab'les. .H.OW.GVG“ since this apprpach
relies on a purely formal identification, doubts may be raised

understood1,6]. It has been pointed out, nevertheless, that : . ) -
this semiclassical theory may not be valid when the matter the phy3|ca_;1l significance of the der!ved equations.
An alternative approach has been introduced in a recent

f|1e lgz ha\\//veh |mphqrt§anth quantumh stress-energy fclluctuatl_ongaper[m]. In that work, we proposed a stochastic semiclas-
[1.2,4.2 en this Is the case, the stress-energy fluctuationg;.,, theory of gravity as a perturbative generalization of

may have relevant back-reaction effects on the spacetimgmiciassical gravity to describe the back reaction of the
geometry in the form of induced gravitational fluctuationsoyest order stress-energy fluctuations. The idea is in fact
[7]. A number of examples have been studied, both in cosyyite simple. One starts realizing that, for a given solution of
mological and in flat spacetimes, where, for some states (gemiclassical gravity, the lowest order matter stress-energy
the matter fields, the stress-energy tensor has significant fluguctuations can be associated to a classical stochastic tensor
tuations[8]. It is thus necessary to extend the semiclassicafield. Then, we seek an equation which incorporates in a
theory of gravity to determine the effect of such fluctuations.consistent way this stochastic tensor as the source of linear
To address this problem, different approaches have begperturbations to the semiclassical metric. The resulting equa-
adopted. The aim of the first part of the present paper is toion is the semiclassical Einstein-Langevin equation.
unify two of these approaches. We should emphasize that, even if the metric fluctuations
One of these approaches relies on the idea, first proposed this theory are classicéstochastic fluctuationstheir ori-
by Hu [9] in the context of semiclassical cosmology, of ginis presumably quantum. This is so not only because these
viewing the metric field as the “system” of interest and the metric fluctuations are induced by the fluctuations of a quan-
matter fields as being part of its “environment.” This ap- tum operator, but also because they are supposed to describe
proach leads naturally to the influence functional formalismsome remnants of the quantum gravity fluctuations after
of Feynman and Vernofi0]. In this formalism, the integra- some mechanism for decoherence and classicalization of the
tion of the environment variables in a path integral yields themetric field[32—36. From the formal assumption that such a
influence functional, from which one can define an effectivemechanism is the Gell-Mann and Hartle mechanism of
environment-induced decoherence of suitably coarse-grained
system variable$32,33, one may, in fact, derive the sto-
*Also at Institut de ica d’Altes Energie$IFAE). chastic semiclassical theof7]. Nevertheless, that deriva-
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tion is of course formal, given that, due to the lack of the full nection clarifies the physical meaning of the Langevin-type
quantum theory of gravity, the classicalization mechanismequations previously derived by functional methdd®—

for the gravitational field is not understood. One expects thal4,19-2§, since it shows that the formally introduced sto-
the stochastic semiclassical theory is valid when the charaghastic source is directly related to the matter stress-energy
teristic time and space scales of variation of the metric fieldluctuations. We then use the functional approach to write
are well above its characteristic decoherence scales. In thf§e Einstein-Langevin equation in an explicit form, which is
regime, the theory can be applied to compute correlatiofin0re suitaple for speci_fic calcu]ations. In _Sec. IV, we derive
functions of gravitational perturbations for points separatedhe fluctuation-dissipation relation for stationary and confor-
by scales larger than these decoherence scales. Hence, tfally stationary backgrounds and the results for particle cre-

theory may have a number of interesting applications irftion by stochastic metric perturbations. Finally, in Sec. V,

black hole physics and in cosmology, particularly in view of W& Summarize our main conclusions. ,
the problem of structure formation. Some examples of 1hroughout this paper we use the (- +) sign conven-
simple applications have already been given in Refstions and the abstract index notation of Rigg0], and we

[22,25,31. work with units in whichc=A=1.
The purpose of the second part of the paper is to derive
some general results concerning stochastic semiclassical  Il. STOCHASTIC SEMICLASSICAL GRAVITY

gravity for stationary and conformally stationary background

solutions of semiclassical gravityfor conformal matter theorv of aravity as a perturbative extension of semiclassical
fields in the latter cageWe analyze two issues: the existence ry of gravity perturbative ex ! ! '
gravity to describe the back reaction of quantum stress-

of a fluctuation-dissipation relation and the creation of par- ; o ) .

ticles by stochastic metric perturbations. energy flpctuatlons on the graw_tatlonal field. Let us be_gm
Under very general conditions, a ﬂuc:tuation-dissipationW'th a pnef OVerview of the sgmlclassmal theory of gravity

relation is known to exist in models of quantum mechanics!Nteracting with linear matter fields. LeiM,gap) be a glo-

and also in some models of quantum many-body systems lly hyperbolic four-dimensional spacetime and consider a
quantum fields in the presence of classical fie[@8— inear quantum fieldP on it. For the sake of definiteness, we
44,42 48, This is a relation between quantum fluctuations ofWiII t.ake. ® as a real sca'lar fielq, but all the anglysis of this
a system in a state of thermal equilibrium and the dissipativ<§eCtlon is valid for any kind of linear quantum field or for a

properties of this system caused by classical linear perturba?—et of linear independent quantum fields. Throughout this

tions on it. The idea of a fluctuation-dissipation relation in section we shall work in the Heisenberg picture. The field

the theory of quantum fields in curved spacetimes and in theperator in this picturep, is an operator-valued distribution
semiclassical back-reaction problem was already present igolution of the Klein-Gordon equation,

some early paper46,47,9. A fluctuation-dissipation rela- A

tion has been found in some of the previous derivations of (O-m?—¢R)P=0, (2.1
semiclassical Langevin-type equatiofist,19,23,24 Some

authors believe that such a relation should always be presemtheremis the mass, 1=V V2, with V, being the covariant
and embody the physics of the back reaction of matter fieldgerivative associated to the metdg,, and £ is a dimen-

on the gravitational field14,23,24,48,4P It is also believed sionless parameter coupling the field to the scalar curvature
that noise and dissipation must be related to the creation @ To indicate that the field operator is a functional of the
particles by stochastic metric perturbation9,12— | aiic ap, We will write é)[g](x).

14’21'22’_48’49 _ ) The classical stress-energy tensor is obtained by func-
In stationary and conformally stationary spacetins ona| derivation of the classical action for the field in a back-

conformal fields in the latter cageone can define a state of ; ; ; :
S i ground spacetime1,9,,) With respect to the metric. This

thermgl e?u|_l|br|urfn for .tr;e ”.‘attlef fields. W?en thef IOr‘:“:k'tensor is a functionaTl ,,[g,®] of the metricg,, and of the

ground solution of semiclassical gravity Is of one of these,| ey fieldd. For a real scalar field, it is

types, we can identify a dissipation kernel in the correspond-

ing semiclassical Einstein-Langevin equation which is re- 1 1

lated to the fluctuations of the stochastic source by a Toufg,®]=VaPVp®— 5 gapV PV P — 5 gapm’d?

fluctuation-dissipation relation. We also study the production

of particles by stochastic metric perturbations to such back- + &(gap — VoV p+ Gap) 2, 2.2)

grounds: we relate particle creation to the vacuum stress-

energy fluctuations and we show that the mean value of cr§ynereG,, is the Einstein tensor. The next step is to define a

ated particles is enhanced by the presence of metric - .
fluctuations. Stress-energy tensor operalgy,[ g](x). In a naive way, one

The plan of the paper is the following. In Sec. II, we would replace the classical fieldb in the functional

construct the stochastic semiclassical theory of gravity to delTap[9,P] by its corresponding quantum operatdig].
scribe the back reaction of the stress-energy fluctuations offowever, since the field operator is well-defined only as a
the spacetime. In Sec. Ill, we show that the semiclassicdllistribution on spacetime and this procedure involves taking
Einstein-Langevin equation obtained in Sec. Il can actuallyfne product of two distributions at the same spacetime point,
be formally derived with the functional approach. This con-the formal expression for [ g] is ill-defined and we need a

In this section, we construct the stochastic semiclassical
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regularization procedure. We may formally think of a requ- 1 R

larized “operator” T,,[g](x;(2), depending on some regu- g~ G (Gapl g1+ AGap) — 2(aAapt BBap)[9]=(Tan)[ 9],

lator (), defined by giving a precise prescription for comput- (2.5

ing its matrix elements for physically acceptable states of the

field. These states are assumed to be Hadamard states on mertereﬁR \[g] is the expectation value &R [g] in some
ab abl

Fock space of a H"?‘damard vacuum sfafe The states may Iphysically acceptable state of the quantum field on the space-
have to be regularized also in some way and the procedure

. kel R . . .
may involve some analytic continuation in the values of thelMe (M,gap). The notation(Tz,)[g] is used to indicate that
regulator. Of course, if we remove the regularization in thethiS xpectation value is a functional of the mejig, not
results for these matrix elements, we would obtain infiniteOnly because the stress-energy tensor operator depends on
quantities. the metric, but also because the state of the matter field de-
Once the regularization prescription has been introduced€nds on the spacetini]n general, such a state depends on

a renormalized and regularized stress-energy “operator'the global structure of the spacetime manifold Eq. (2.5),
TR [g](x:Q2) may be defined as G, A, a and B are renormalized coupling constants, respec-
abl '

tively, the Newtonian gravitational constant, the cosmologi-

) R R cal constant and two dimensionless coupling constants.
TRL91(6 Q) =Ta[g]l(x; Q) +FS[g]l(x;Q)I, (2.3  These constants may be seen as the result of “dressing” the
bare coupling constants in a suitably regularized version of

wherel is the identity operator anBS[g] are some sym- the gravitational part of the action,

metric tensor counterterms, which can be written in terms of

. . 1
the regulator) and local functionals of the metrig.4(x).} S Ef d*V=a R—2A
These counterterms can and must be chosen in such a way ol 9] g 167TGB( 8)
that, for any pair of physically acceptable stat¢s and|e),
the matrix element of the renormalized operat§y[ g1, de- + agCapcdC3°+ BgR?|, (2.6)
fined by
~R . ~R where C,p.q is the Weyl tensor and the subind&in the
(YTl @)= lim (T3 @)(Q), (24 coupling constants means “bare.” These renormalized cou-
0= pling constants are supposed to be determined experimen-

_ _ tally (for the specific renormalization scheme that one has
where (), means the “physical value” of the regulator, is chosen and for the characteristic scales of the physics under
finite (well defined as a distributionand satisfies Wald's consideration The tensorsA,, and B, in Eq. (2.5 come
axioms [3,2]. Using the point-splitting or the dimensional from the functional derivatives with respect to the metric of
regularization methods, these counterterms can be extract@fe terms quadratic in the curvature $[g], which are
from the singular part of a Schwinger-DeWitt seriesneeded to ensure the renormalizability of the theory. These
[3,51,53. The choice of these counterterms is not uniquetensors are explicitly given by
each different choice is called a “renormalization scheme,”
and this leads to some ambiguity in the definition of the

renormalized stress-energy tensor operator. But this ambigu-pab= B f d*x\/— gCeqofCle

ity can be absorbed into the renormalized coupling constants \/—_g 69ab

appearing in the equations of motion for the gravitational

field. Thus, the ambiguity is only a mathematical artifact of _ Egabc (cedef_ pRacdegb 4+ 4R3°RP— ERRab
the separation of the action into a gravitational part and a 2 cde cde ¢ 3

matter part, but the physically relevant equations are in fact 5 1
unique(3,53). —20R%+ 2 VaVPR+ ~g?0R, 2.7
The semiclassical Einstein equation for the maftjg can 3 3
then be written as
and

!In the point-splitting regularization method, for instance, one in-

troduces a poiny i i i B’= — d*x\—gR?
poiny in a normal neighborhood of the poixtso some \/—_g 59ab

non-local dependence on the metric is explicitly introduced in the
regularized stress-energy operator and then also in the counter- 1
terms. Using this regularization technique, the regulator can be = Egasz—ZRRab—k 2V3VPR—2¢%"0R, (2.8
taken as the vectar?(x,y), which is the tangent vector at the point
x to the geodesic joining andy with length equal to the arc length
along this geodesic. In this case, the counterterms can be written here Ry,.4 is the Riemann tensor anll,, is the Ricci
terms of the vectoo®(x,y) and tensors which are local functionals tensor. Note that each of the terms in E2&5) has vanishing
of the metricg,,(x) [3,51]. divergence. Notice also that we could add a classical stress-
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energy tensor to the right hand side of E2.5), if we had a (€an(¥))c=0, (&ap(X)€cd(Y))c=Napcd X,Y),
classical matter source, but, for simplicity, we shall ignore (2.10
such a term.

where(), means statistical average. In general, the two-point

As long as the gravitational field is assumed to be de ; ; ; :
scribed by a classical Lorentzian metgg;,, the semiclassi- correlation funct!on of a stochastic tensor fiefg, must
' be a symmetric,

cal Einstein equation seems to be the only physically plau- in the sense  thaian(X) €ca(y))c
sible dynamicgl equation for this metric. T?]lepreyason ?;Ft)hat,:@‘?d(y)fab(x)%, and positive semi-definite real bi-tensor
in classical general relativity, the metrig,, couples to mat- field. Since the renormalized operad, is self-adjoint, it is
ter through the stress-energy tensor. For a field quantized dffiSy t0 see from the definitid@.9) thatNapc((x,y) satisfies

; ; g all these conditions. Therefore, the relatid@sl0, with the
the spacetime.t,ggp) and for a given state of this field, the Iumulants of higher order taken to be zero, do truly charac-

expectation value of the renormalized stress-energy tenS(?erize a stochastic tensor fiekl,. The simplest equation

operator is the only physically observalilgp to the ambi- hich X . . h
uity mentioned abovec-number stress-energy tensor thaty, en can Incorporate in a consistent way the stress-energy
g fluctuations described by,,.((X,y) as the source of classi-

we can construct. . . . . cal metric fluctuations is
A solution of semiclassical gravity consists of a spacetime

(M,gap), @ quantum field operatoﬁ)[g] satisfying Eq. 1 Tnle n _ n n

(2.1), and a physically acceptable stag@[g] for this field 87G (Gabl 9+ h]+ A(apthap)) —2(@Aap+ BBap)[g+h]

(which can also be a mixed state characterized by a density R

operato), such that Eq(2.5) is satisfied when the expecta- = (Tap[9+h]+2&a, (211

tion value in the statéy)[g] of the renormalized operator which must be understood as a dynamical equatioh fgto

Tho[g] is put on the right hand side. linear order. Equation2.11) is the semiclassical Einstein-
Let us now introduce stress-energy fluctuations. Given aangevin equation, which gives a first order correction to
solution of semiclassical gravity, the stress-energy tensosemiclassical gravity. One could also seek equations describ-
will in general have quantum fluctuations. To lowest order,ing higher order corrections, which would involve higher
such fluctuations are described by the bi-tensor, which shatirder stress-energy fluctuations, but, for simplicity, we shall
be called noise kernel, defined by stick to the lowest order.
In order to check the consistency of E§.11), note that
the termé&,, does not depend dm.q4, since it is completely
8Naped X, Y)= lIm ({tan(X), tea()DI91(Q), (2.9  determined from the solution of semiclassical gravity by the
0-Q, correlators(2.10. Even so, this term must be considered as
of first order in perturbation theory around semiclassical
gravity. As shown in Ref{31], &, is covariantly conserved
where {,! means the anticommutator and,,(x;(}) up to first order in this perturbation theory, in the sense that
=T5(x;Q) —(Ta(X))(Q). Note that we have defined this V@&, behaves deterministically as the zero vector field on
noise kernel in terms of the unrenormalized “operator” M (V? is the covariant derivative associated to the back-
. [gl(x:Q). For a linear quantum field, this can be groqnd me.trlcgab). It is thus consistent to include the term
X . . ab in the right hand side of Eq2.11).
done because the ultraviolet singular behavior of"™\\ a5 also shown in Ref31] that for a conformal field,
(Tab() Tea(¥))(2) is  the same as that of je, a field whose classical action is conformally invariant
(TasO)Y(Q)(Tea(¥))(Q), SONL,cX,Y) is free of ultravio-  (e.9., @ massless conformally coupled scalar fjefd, is
let divergencies. One can trivially see from the substitution'traceless” up to first order in perturbation theory, since

: = ) g%P¢,, behaves deterministically as a vanishing scalar.
of (2.3 |r.1to (2.9 that \ivg can replacé‘ab[g-](x,ﬂ) .by. the Hence, in the case of a conformal matter field, the trace of
renormalized operatoif,[g](x), and omit the limit ()

y ; : ] ; the right hand side of Eq2.11) comes only from the trace
—{)p, in the last expression. The result is obviously inde-gnomaly.

pendent of the renormalization scheme that one chooses t0 Since Eq.(2.11) is a linear stochastic equation for,

define TR, . with an inhomogeneous terf,, a solution can be formally

As a perturbative correction to semiclassical gravity, wewritten as a functionah,[ £]. Such a solution can be char-
want now to introduce an equation in which the stress-energgcterized by the whole family of its correlation functions.
fluctuations described by E¢R.9) are the source of classical From the average of Eq2.11), the average of the metric,
gravitational fluctuations. Thus, we assume that the gravitadab{Nap)c. Must be a solution of the semiclassical Einstein
tional field is described bg.,+h,,, Whereh,, is a linear ~ €quation linearized arourgh,. The fluctuations of the met-
perturbation to the background metdg,, solution of Eq. '€ around this average can be described by the_z moments of
(2.5). The renormalized stress-energy operator and the staffder higher than one of the stochastic fietd,[ £]

: “R =hapl £]—(hap)c-
of the quantum field may be denoted O¥,[g+h] and Iginally, fo?thce solutions of Eq(2.11) we have the gauge

|#)[g+h], respectively, andT5,)[g+h] is the correspond-  freedomh,,— h.o=hapt Valo+ Via, Wherel? is any sto-

ing expectgtion value. . _ chastic vector field ooV which is a functional oft.4, and
Let us introduce a Gaussian stochastic tensor figld  ;.=g,,(°. Note that the tensors which appear in E211)
defined by the following correlators: transform asR,,[g+h']=R,,[g+h]+£,R,[g] (to linear
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order in the perturbationswhere £ is the Lie derivative from the fundamental quantum theory and performing the
with respect taz?. If we substituteh,, by h), in Eq.(2.11),  path integrations in the environment variables. Instead, we
we get Eq(2.11) plus the Lie derivative of a combination of introduce the influence action for an effective quantum field
the tensors which appear in E.5). This last tensorial theory of gravity and mattef57,13, in which such “high-
combination vanishes when E.5) is satisfied. Thus, it is momentum” gravitational modes are assumed to have been

necessary that the SeMigab’&)[g]’|¢>[g]) be a solution already “integrated out.” Adopting the usual procedure of

of semiclassical gravity to ensure that the Einstein—Langevirﬂaﬁc‘?mive field theo_rie$58,5ﬂ, one ha§ o take the effective
equation(2.11) is gauge invariant. action for the metric and the scalar field of the most general

local form compatible with general covarianc&g,®]

IIl. DERIVATION FROM AN INFLUENCE ACTION =S[9]* Sl g, ]+ - -, whereSy[g] is given by Eq(2.6),

The purpose of this section is to derive the semiclassical 1
Einstein-Langevin equatiori2.11) by a method based on Sm[g,(D]E—Ef d*x\/— g[g?°0,@ gy ® + (M?+ ER) D?],
functional techniques. The same method has been in fact 3.1)
used in the literature to derive Langevin-type equations in
the context of semiclassical cosmolofy2-14,19-2band
of analogous semiclassical regimes for systems of quantu
mechanicg15,17,26 and of quantum field theor{18,27—
30]. Using these functional techniques, we also work out th
Einstein-Langevin equation more explicitly, in a form more
suitable for specific calculations. Here, we consider again th
simplest case of a linear real scalar fidd

These functional techniques are based on the closed ti

|%nd the dots stand for terms of order higher than two in the
curvature and in the number of derivatives of the scalar field
gbecause of the Gauss-Bonnet theorem in four spacetime di-
mensions, no further terms of second order in the curvature
gre needed in the gravitational acti¢h6)]. In this paper, we
Shall neglect the higher order terms as well as self-interaction
nﬂ}srms for the scalar field. The second order terms are neces-

path (CTP) functional formalism, due to Schwinger and sary to renormalize one-loop ultraviolet divergencies of the

Keldysh[41,54. This formalism is designed to obtain expec- scalar field stress tensor. Singdd is a globally hyperbolic

tation values of field operators in a direct way and it is suite amfold,fwe ;an\flsha(;e I tt)y S fe}[rr‘:nly dfquontstant Caucr?yf
to derive dynamical equations for expectation values; se ypersurtaces, . Yve denote byx tne coordinates on each o

Refs.[55,56,23 for detailed reviews. In our case, this for- these hypersurfaces, and- t]yandtf some "?i“a' and finall
times, respectively. The integration domain for the action

malism will be useful to obtain an expression for the expec )
. ~ab oo . terms must be understood as a compact regfiohthe mani-
tation value(T?")[g+h] as an expansion in the metric per- fold M, bounded by the hypersurfacBs and3,
! i f

turbation. When the full quantum system consists of a . . . .
distinguished subsystefthe “system” of interesk interact- Assuming the form(3.1) for th_e e_ffect|ve action Wh'(.:h
couples the scalar and the metric fields, we can now intro-

ing with an environmenfthe remaining degrees of freedom L ) o
the CTP functional formalism turmns out to be relatedduce the corresponding influence functional. This is a func-

[12,18,19,23,28,29,370 the influence functional formalism tional of two copies of the metric field that we de”‘?te@ﬂ
of Feynman and Vernofil0]. In this latter formalism, the @ndgap. Let us assume that, in the quantum effective theory,
integration of the environment variables in a CTP path intethe state of the full systerithe scalar and the metric fields
gral yields the influence functional, from which one can de-in the Schrainger picture at the initial time¢=t; can be
fine an effective action for the dynamics of the Sys][am_ described by a factorizable denSity Operator, i.e., a denSity
18]. Applying this influence functional formalism to our Operator which can be written as the tensor product of two
problem, the semiclassical Einstein-Langevin equation willoperators on the Hilbert spaces of the metric and of the scalar
be formally derived in Sec. Il B. field. Let p(t;) be the density operator describing the initial
In our case, we consider the metric fiedg,(x) as the state of the scalar field. If we consider the theory of a scalar
“system” degrees of freedom, and the scalar fidifix) and  field quantized in the classical background spacetime
also some ‘“high-momentum” gravitational modg36] as  (M,g,p) through the actior{3.1), a state in the Heisenberg

the “environment” variables. Unfortunately, since the form picture described by a density operatgg] corresponds to
of a complete quantum theory of gravity interacting with this state. Let{|¢(x))S} be the basis of eigenstates of the
matter Is u”nknovyn, we do not know what these “high- icalar field operatorﬁ)s(x) in the Schradinger picture:
momentum” gravitational modes are. Such a fundamental. s S i Sep s
quantum theory might not even be a field theory, in which®>(X)|®)>=¢(X)|¢)". The matrix elements gi™(t;) in this
case the metric and scalar fields would not be fundamentdiasis will be written ag;[ ¢, ¢]=%¢|p(t))|¢)°. We can
objects[48]. Thus, in this case, we cannot attempt to evalu-now introduce the influence functional as the following path
ate the influence action of Feynman and Vernon startingntegral over two copies of the scalar field:

J’Eup[gﬁg*]ff DLO, ID[O_pi[ D, (1), D _(t)]S[ P, (ty) — D_(t;)]e!(Snld" P41~ Snla™ 2D, 3.2
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The above double path integral can be rewritten as a closed A. The semiclassical Einstein equation in dimensional
time path(CTP) integral, namely, as an integral over a single regularization

copy of field paths with two different time branches, one
going forward in time fromt; to t;, and the other going
backward in time fromt; to t;. From this influence func-

From the action(3.3), we can define the stress-energy
tensor functional in the usual way,

tional, the influence actionS[g*,g~], and the effective 2 6S.0g.P,]
action of Feynman and Vernorge{g*,97], are defined Tabg,®,](x)= S0 (3.5
by Firelg",g 1=€SF9"91 and S.{g".g 1=S9"] V=9(x) OFab

—Sylg 1+Selg" .97 ]

Expression(3.2) is ill-defined; it must be regularized to which yields Eq.(2.2). Working in the Heisenberg picture,
get a meaningful influence functional. We shall assume thajve can now formally introduce the regularized stress-energy
we can use dimensional regularization, that is, that we cagensor operator as
give sense to Eq3.2) by dimensional continuation of all the
guantities that appear in this expression. We should point R
out, nevertheless, that for this regularization method to work ~ T3 g]=T2%g,®[g]], T [gl=pn " 9T3g],
one must be able to perform an analytic continuation to Ri- (3.6)
emmanian signaturgs9]. Thus, we substitute the acti@y,
in Eqg. (3.2 by some generalization to spacetime dimen- .
sions, which may be chosen as where @ ,[g](x) is the field operator, which satisfies the

Klein-Gordon equatiori2.1) in n spacetime dimensions, and
1 where we use a symmetrical orderitdyeyl ordering pre-
Sul9,P,]=— EJ d"x\/= g[g%°9, PP, scription for the operators. Using the Klein-Gordon equation,
the stress-energy operator can be written as
+(m?+ ER) D], (3.3

where we use a notation in which a subindeis attached to fabr o1 L Can bA abr 1 A2
these quantities that have different physical dimensions than Tnlgl= E{V ©olg]. V@ilglt+ D™ gl Prlgl,
the corresponding physical quantities in four dimensions. A (3.7
guantity with the subindex can always be associated to
another without this subindex by means of a mass sgale
thus, for the scalar field,= u("~*/2P.

We also need to substitute the acti@6) by some suit-
able generalization ta spacetime dimensions. We take

whereD?3% g] is the differential operator

Di‘bz(g— %)gab<x>mx+§(Rab(x>—Vi‘VE). (39

1
Sg[g]w”“‘f d”xv—gL&TGB(R—ZAB)
5 From the definitiong3.2), (3.5 and(3.6), one can see that
+ 5 @B(RabcdR?* '~ RapR™) + BeR?|. (3.4

3
. . ~ab 5Se[97,97]
By the Gauss-Bonnet theorem, this action givesferd the (TR (x))lgl= a0 sa00) :
same equations of motion as the acti@®). The form of g(x Gan(X t=g-=
Eq. (3.4) is suggested by the Schwinger-DeWitt analysis of (3.9

the ultraviolet divergencies in the matter stress-energy tensor

using dimensional regularizatidi2]. Using Eqs.(3.3) and  \yhere the expectation value is taken in thelimensional
(3.4), one can write the effective action of Feynman and . o L m
spacetime generalization of the state describedppy].

Vernon, Sef[g*,97], in dimensional regularization. Since : - v . ?-
the action termg3.3) and(3.4) contain second order deriva- Therefo+re,_ d|ff(_arent|at|ng Seff[g+ 9 1=5497] S_g[g +]
Se[97,97 ] with respect tog,,, and then settingg,,

tives of the metric, one should also add some boundary terms ) . . . ab
[50,13. The effect of these terms is to cancel out the bound-=9ab=Jan, We get the semiclassical Einstein equation in
ary terms which appear when taking variations ofdimensional regularization:

Serl 97,97 ] keeping the value ofi;, and g, fixed on the

boundary of4. Alternatively, in order to obtain the equations 4

of motion for the metric in the semiclassical regime, we can W(Gab[g]nLABgab)— §aBDab+ 2BsB%"|[g]
work with the action term$3.3) and(3.4) (without boundary o8

term9 and neglect all boundary terms when taking variations :M—(n—4)<-'i-ﬁb>[g], (3.10

with respect tag,, . From now on, all the functional deriva-
tives with respect to the metric will be understood in this
sense. where
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eliminate the “divergencies” inu~("~*}(T2"[g], and tak-
D= \/— 59 f d"Xy = g(Rege R4~ R 4R ing the limit n—4, we get the physical semiclassical Ein-
ab stein equation(2.5).

_ b def d
= Ega (ReaeR““' =R gR*“+R) B. A formal derivation of the semiclassical
Einstein-Langevin equation

b
— 2RI 4o 2RIV R+ ARTRS In the spirit of the previous section, we now seek a dy-
—300R3+ VayPR, (3.1)  hamical equation for a linear perturbatibpy, to a semiclas-

sical metricg,p, solution of Eq.(3.10 in n spacetime di-
andB?" is defined as in Eq2.8) but for n spacetime dimen- mensions. From the result of the previous subsection, if such
sions, although its explicit expression in terms of the metrican equation were simply a linearized semiclassical Einstein
and curvature tensors is the same. Whend, one has that equation, it could be obtained from an expansion of the ef-

D3P=(3/2)A2, whereA?" is the tensor defined in E¢R.7).  fective actionSe{{g+h*,g+h~]. In particular, since, from

From Eg. (3.10, renormalizing the coupling constants to Eq. (3.9), we have that

T2%x))[g+h : o L 07T o
) ) .
< n( >[g ] —detg+h)(x) 5h;b(X) h+:h*:h,

the expansion of('T'ﬁb>[g+ h] to linear order inh,, can be obtained from an expansion of the influence ac8ghg
+h*,g+h~] up to second order ihy,.

To perform the expansion of the influence action, we have to compute the first and second order functional derivatives of
Se 9,97 ] and then seg;bz 0.=0ap- If we do so using the path integral representatiBr2), we can interpret these
derivatives as expectation values of operators. The relevant second order derivatives are

1 528”:[g+,g_] b ) .
V =—HZ“Tg](x,y) — K" “Tal(x,y) +iNFTgl(x,y),
V=900V=90y) 895,089 | oo Talocy Taloay Taloxy
1 8°Seg*.97] b o
__Ha Cc (X, )_lNg o] (X, ), (313
V=900V=9Y) 8950000 | ooy " Tatoey Taloxy

where

N2*Tg](x,y) E—<{tab(x Ay)hlal,

oo

=

HE T glxy) = ZIm(T* [T TRy) ],

N

(3.19

HA T gl(x,y)=~ —<[Tab<x> Tey)Dlal,

Kabcr{ ](X )_ -1 528m[g q)n] [ ]
n 19 'y_\/—g(x V=9(y) | 99a6(X)89ca(V) |4 _4_ g

with t3P=Ta— (T2 "and using again a Weyl ordering prescription for the operators in the last of these expressions. Here,

[ , ] means the commutator, and we use the symbaloTdenote that, first, we have to time order the field operaiq;and
then apply the derivative operators which appear in each term of the proth{s) T°%(y), whereT?3® is the functional2.2).
For instance,

T* (ViDn () VEDn () VsDn(y) Vydn(y)= lim V3 V2 VE VE T(D(x1) P r(x2) PrlX3) Pr(Xa)), (3.19
X1, Xp—X
X3,X3—=Y
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where T is the usual time ordering. Thi§ Ttime ordering” ence actiorS[g+ h*,g+h~] around a background metric

arises because we have path integrals containing products gf, in terms of the kernel$3.14). Taking into account that
derivatives of the field, which can be expressed as derivathese kernels satisfy the symmetry relations
tives of the path integrals which do not contain such deriva-

tives. Notice, from the definition€3.14), that all the kernels Hg:w(x,y):H%gab(y,X),

which appear in expressioi3.13 are real and thati>*" is - .

also free of ultraviolet divergencies in the linmit—4. HAx.y) = —HZ “Xy.x), (3.16
From Egs.(3.13 and(3.14), it is clear that the imaginary bed dab

part of the influence action, which does not contribute to the K2 x,y) =K;y,x),

semiclassical Einstein equati@B.10 because the expecta-
tion value oﬁ'ﬁb[g] is real, contains information on the fluc-
fcuations of this operator. From Eg8.9) and(3.13), Eakifg Hﬁde(X,y)EHgf‘:d(x,y)JrHiﬁCd(x,y), (3.17
into account that Sg[g,g]=0 and that Sgg ,97]

=—-Si[g",97], we can write the expansion for the influ- this expansion can be finally written as

and introducing a new kernel

1 ,\ 1
Sefg+h".g+h 1= 5 | a/ =000 00 aTha01- 5 | a" ey V=00 = o Thay(0 1 Tal0xy)

+K gl y)Hhea(y)} + '5 f d"™ d"yy = g(x) V= 9(Y)[han(¥) INZ"“Tg](x.y)[hea(y) ]+ 0(h?),
(3.18

where we have used the notation
[hao]=hap= Nz, {hapt=hgp+hgy. (3.19

We are now in the position to carry out the formal derivation of the semiclassical Einstein-Langevin equation. The
procedure is well knowh12-14,19-25,15,17,26,18,27431 consists of deriving a new “improved” effective action using
the the following identity:

o~ (12)fd"™ d"y =g =W hap(IN *Hx,y) [heg(y)] — f DIE]P gn]eifd"x\e“*g(xﬁﬁb(x)[hab(x)], (3.20

where P £,] is the probability distribution functional of a phisms of (M,g,,). The above identity follows from the
Gaussian stochastic tens¢f® characterized by the correla- identification of the right hand side of E¢3.20 with the
tors characteristic functional for the stochastic figftf. In fact,
ab _ ab cd _ njabe by differentiation of this expression with respect[to,], it
(€0700)e=0, (& (X) €3 (¥))e=Np d[g](x,y)i3 21) can be checked that this is the characteristic functional of a
' stochastic field characterized by the correlat@:21). When

N2Pcd(x,y) is strictly positive definite, the probability distri-
: abcd ¢ H H _ n ’ ’
with N;°°" given in EqQ.(3.14), and where the path integra bution functional forgﬁb is explicitly given by

tion measure is assumed to be a scalar under diffeomor-

o~ (U2)7d™ d"y V=GB =G 2 Iy Bped X V) EC(Y)

PLénl= (3.22

f D[, e~ WAId"2 Swi=g@) =g &, (INy orgzW)én (W)

whereN, 2, . [gl(x,y) is the inverse oN2°°Y g](x,y) defined by
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_ 1 d"(x—y)
d"z—g(z)N2*ei(x,2)N; L. (z,y) == (8285+ 8360 ——=. (3.23

Using the identity(3.20, we can write the modulus of the ATh* h~:g;é,]=ReS{g+h*,g+h7]

influence functional in the approximatid8.18 as
+ f d"x = g(x) £2°() [Nap(X)]

— (A TT0E O]y +0(h®), (3.26

|Felg+ht,g+h ]|=e™'m Sielg+h*,g+h7]

(3.24 where Re&S¢ can be read from the expansi¢8.18. Note

where(). means statistical average over the stochastic tensgpat the stochastic term in this action contains the ip_forma—
£2% Thus, the effect of the imaginary part of the influencetion Of the imaginary part 0. Introducing a new “im-
action (3.18 on the corresponding influence functional is Proved” effective action

equivalent to the averaged effect of the stochastic sogffte
coupled linearly to the perturbatio ;fb. The influence o e 1 1 _
functional, in the approximatiofB.18), can be written as a Aerl N0 30601 =Slg+h 7] =Sylg+h]
statistical average ov@ﬁb: +AFFﬁ[h+,h‘;g;§n], (3.27

_ s eff b =L
Fielg+h*,g+h ]=(eArh Nkl (3,25 whereS[g+h*] has to be expanded up to second order in
the perturbation$,,, the equation of motion fon,, can be
with derived as

1 SAef h™,h7;0:€0]

J—detg+h)(x) Shap(X)

=0. (3.28
h*t=h-=h

From Eq.(3.12, taking into account that only the real part of the influence action contributes to the expectation value of the
stress-energy tensor, we get, to linear ordehn jp,

1 4
g-6- (G*Tg+h]+Ag(g*"—h*)—| 5 agD*"+ 2B

827Gy [g+h]=p ("O(TP)g+h]+2. D0, (3.29

whereh®=gghy,  that is,g*'~h*+0() is the in- Lot TR B2 L S ey B and.
verse of the metrig,,+h,,. This last equation is the semi- (; 14; gy fluctuat y H@s2

_clas_sical Einstein-Langeyin equati(_)n in dimensional regu_lar- .Thére is also a connection between the equations obtained
ization. As we have pointed out in Sec. I, the two-point ., s tormal functional method and the equations derived
correlation function of the stochastic source in this equation; 5y, the (in general, also formalassumption that decoher-
[see Eq.(3.2D], given by the noise kernel defined in EQ. gnce and classicalization of suitably coarse-grained system
(3.14), is free of ultraviolet divergencies in the limit—4.  yariaples is achieved through the mechanism proposed by
Therefore, in the Einstein-Langevin equati@?29, one can  Gell-Mann and Hartl¢32] in the consistent histories formu-
perform exactly the same renormalization procedure as fofation of a quantum theory. This last approach allows one to
the semiclassical Einstein equati¢B.10. After this, Eq. evaluate the probability distribution associated to such deco-
(3.29 will yield the physical semiclassical Einstein- herent variables, given by the diagonal elements of a deco-
Langevin equation2.11). The derivation presented in this herence functional, and, under some approximations, to de-
paper clarifies the physical meaning of the stochastic sourcéve effective quasiclassical equations of motion for them.
formally introduced in the effective actio(8.26) by the  These effective equations of motion can be shown to coin-
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cide[37] with the semiclassical equations for the backgroundactually particular cases of the semiclassical Einstein-
and the Langevin-type equations for perturbations obtainetlangevin equatiori2.11). Note, however, that the stochastic
from the above functional method. Taking this connectionequations derived in Reff23,24 do not correspond exactly
into account, we can also conclude that, if one formally asto Eq. (2.11), since the backgroun@Minkowski spacetime
sumes that the Gell-Mann and Hartle mechanism works foend a scalar field in a thermal stats not a solution of
the metric field, one is led to the semiclassical Einstein equasemiclassical gravity. In this case, for the reasons explained
tion and the semiclassical Einstein-Langevin equation for thén Sec. I, the equation for the metric perturbations is not
background metric and for the metric perturbations, respecgauge invariant.
tively [37].

We end this subsection with some comments on the rela- C- Explicit linear form of the Einstein-Langevin equation
tion between the semiclassical Einstein-Langevin equation e can write Eq(3.29 in a more explicit form by work-
(2.11 anq the Langevin—type eq_uations_ for stochastic metriqng| out the expansion qﬁ-ﬁb>[g+h] up to linear order in
perturbations recently derived in the literatyfe2—14,19— the perturbatiorh,,. From Eq.(3.12, we see that this ex-

25]. In these previous derivations, one starts with the influ- : : : :
ence functional3.2), with the state of the scalar field as- Ezn?éo&)cat?]gte easily obtained from &818. Noting, from

sumed to be an “in” vacuum or an “in” thermal state, and

computes explicitly the expansion for the corresponding in-

fluence action around a specific metric background. One then K,‘;‘bc‘]{g](x,y)
applies the above formal method to derive a Langevin equa-

tion for the perturbations to this background. However, most 1

of these derivations start with a “mini-superspace” model =— ~(T3x))[g]
and, thus, the metric perturbations are assumed from the be- 4

ginning to have a restrictive form. In those cases, the derived

0 x-y)
V—a(y)

Langevin equations do not correspond exactly to our equa- 1 1 ST g,®,,](x) o]
tion, Eq.(2.11), but to a “reduced” version of this equation, BT 5 )9l
in which only some components of the noise kernel in Eq. g(y) Gea(¥) D=2

(2.10 (or some particular combinations of thgmmfluence

the dynamics of the metric perturbations. Only those equa- (3.30
tions which have been derived starting from a completely

general form for the metric perturbatioh$9,20,23,24 are  we get

(T2P(x))[g+h]=(T2(x))[g]+ (T g;h](x))[ 9] -2 J d"y\—g(y)HE*Ygl(x,y)hea(y) +0(h?),  (3.3D)

where the operatof'gl)ab is defined from the term of first tors in the last definition. Note that the third term on the rlght

order in the expansion af2’[g+h,®,] as hand side of Eq(3.3)) is a consequence of the dependence
on hgq of the field operatorti)n[ngh] and of the density
TG+, @] =T*g,®p]+ T g, @y sh]+0(h?), operatorp[ g+ h].
. . (3.32 Substituting Eq.(3.31) into Eq. (3.29, and taking into
T2 g;h]=TM g, [g];h], account thay,, satisfies the semiclassical Einstein equation

. . - 3.10), we can write the Einstein-Langevin equati@?29 as
using, as always, a Weyl ordering prescription for the operag 9 g quati@29

1 4
E(G(l)ab[g;h](X) — Agh®(x)) — 3 agD W g; h](x) —28BV* g;h](x)

— pu~(=HTHat g R (x))[ 9]+ 2 f d"y = g(y)u ™ "THHE gl(x,y)he(y) =20~ (" DE0(x). (3.33
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In the last equation we have used the superindgxo de- and expression3.7) and (3.8 for the stress-energy opera-
note the terms of first order in the expansionhiy, of the  tor, we have

tensorsG2°[g+h], D2 g+h] and B8 g+h]. Thus, for
instance, G*[g+h]=Ga[g]+G®2[g:h]+0(h?). The
explicit expressions for the tensd@$>2[g;h], D2 g:h]
andB™39 g:h] can be found in the Appendix of Rgf37],
and TM3g d,:h] is given in Appendix A. From + Fag;h]d2[g], (3.39)
TM3ab g d :h], we can write an explicit expression for the

operator T3P In fact, using the Klein-Gordon equation, where 72%[g;h] is the differential operator

A 1 A
T g;h]=| 59" heq— 0ha— ¢hG | Tol ]

3

O+5

1 1
Fab= ( &- Z) ( h— 5 g°h¢ [VEV2h2+ VeVPha— OhaP— VaVPhi—gabveyih,,

+g2P0hS+ (V2hP+VPha— v haP— 2g20V 9h 4+ 93PV .h9) Ve — g?Ph 4V eV 9. (3.35

It is understood that indices are raised with the background inverse ngdftiand that all the covariant derivatives are
associated to the metrgg,;,. Substituting expressiof8.34) into Eq.(3.33, and using the semiclassical equati@nL0 to get

an expression fop‘(“‘4)(?ﬁb>[g], we can finally write the semiclassical Einstein-Langevin equation in dimensional regu-
larization as

1
87TGB

1
[G(l)ab_ggabGthcd"' Gachkc)+ Gb°h§+AB (x)

1
hab_ Egabhg)

4 1 1
_ §aB( p(Lab_ EgabDthcd"' Dach2+ Dbchg) (X)— 2ﬁB< B(l)ab_zgabBcdhcd+ Bach2+ Bbchg (X)

- T AF D) 9]+ Zf d"yy=g(y) e " PHP TGl Y heo(y) =20 VERR(x), (3:39

where the tensor&2, D2 andB2" are computed from the Will yield the physical semiclassical Einstein-Langevin equa-
. . . . i d

semiclassical metrig,,, and where we have omitted the tion. Note that, due to the presence of the keHiifi*/(x,y),

functional dependence og,, and h,, in GMab p(hab  this equation will be usually non-local in the metric pertur-

B(Mab and 72P to simplify the notation. Notice that, in Eq. bation.

(3.36, all the ultraviolet divergencies in the limit—4,

which must be removed by renormalization of the coupling

52 ; abcd

constants, are if®y(x)) and the symmetric paHiSn (x.y) We conclude this section by considering the case in which
of the kemelH;"*{(x,y), whereas the kernel;*(x,y)  the expectation values that appear in the Einstein-Langevin
and Hi:"d(x,y) are free of ultraviolet divergencies. These equation(3.36) [see Eqs(3.14] are taken in a vacuum state
two last kernels can be written in terms Bf°°{g](x,y)  |0) [for a field quantized on {1,g,p) in the Heisenberg
E<Eab(x)’t‘cd(y)>[g] as picture], such as, for instance, an “in” vacuum. In th|s_ case

n n we can go further and write these expectation values in terms

1 of the Wightman and Feynman functions, defined as

N Tal(x.y)=ZzReF " {g](x.y).

D. The kernels for a vacuum state

G, (%,y)=(0|®,(x)Pn(y)|0)g],
(3.37 y)=(0| y)[0)[g] 558

HE ] g](x.y) = Im F22 g x,y) b x0d
An LOIDGY) =T LGITEY ), iGr (%) =(0| T(®,(x)4(y))|0)g]-

where  we  have used that (B00TYY))  These expressions for the kernels in the Einstein-Langevin
= ({13°(x),t%y) 1) + ([ 13°(x),tS%y) 1), and the fact that the equation will be very useful for explicit calculations. To sim-
first term on the right hand side of this identity is real, plify the notation, we omit the functional dependence on the
whereas the second one is pure imaginary. Once we perforgemiclassical metrig,,, which will be understood in all the
the renormalization procedure in E(B.36), settingn=4 expressions below.
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From Eq.(3.37), we see that the kerneN;ﬁde(x,y) and H;‘_‘\ﬁc"(x,y) are the real and imaginary parts, respectively, of
Faoedx,y) = (0l TR0 T(y) [0) = (0] T3°x) [ 0)(0| Ti(y)] 0).

Since, from Eq(3.7), we can write the operat(i’rﬁb as a sum of terms of the for{nélXCf)n(x) ,BXCiDn(x)}, whereA, andB, are
some differential operators, we can expré4 °d(x,y) in terms of the Wightman function using

{AD (%), B () HC, P o(y), Dy ®i(y)}) = ({AD(X), B (X)) UCy P (), Dy®(y)})
=4 A,C,G; (%,Y)BD,G, (x,y) +4 AD,G, (X,y) BC,Grt (X,Y), (3.39

whereC, and D, are also some differential operators and where the expectation values are taken in the \@culins

identity can be easily proved using Wick’s theorem or by writing the operﬁmx) in terms of the creation and annihilation
operators of the Fock representation corresponding to the vafjuttdsing a Schwinger-DeWitt expansion for the Wightman
function G, (x,y), one can actually see that the two terms on the right hand side of the last expression are free of ultraviolet
divergencies in the limih—4. Finally, we find

Fa2x,y) = VEVSG, (X,Y) VRV G, (X,Y) + VaVIG, (X,y)VRVEG, (X,Y)
+2D(VEG, (X,Y)VIG, (x,¥)+2 DSUVIG (X,Y)VEG, (x,y)+2 D DUG, A(x,y)),  (3.40

whereDgb is the differential operato(3.8). From this expression and the relatidi3s37), we get expressions for the kernels
N2Pqx,y) and H""Aﬁc"(x,y) in terms of the Wightman functio& (x,y).

The kerneIHaS:]’Cd(x,y), defined in Eq(3.14), can be written in terms of the Feynman function noting that, from Wick’s
theorem,

IM(T* (AP (%), B@ () HC,@n(Y), Dy@r(y)D) = =4 IM[ AC,Gr (X,Y)BDyGr (X,Y) + AD,Gr (X,Y)BC,Ge (X.Y)],
(3.41

where, againA,, By, C, and D, are real differential operators and the expectation value is in the vaf@urthe kernel
Hg:w(x,y) is then obtained by adding up the contribution of all the differential operators which appear in the product

TaP(x) T¢Y(y), whereT?® is the functional(2.2). After a long calculation, we get
abcd 1 ayC byd ayd by c
HSn (Xry) == Zlm VxVyGFn(Xiy)VxVyGFn(Xiy) +VxVyGFn(Xiy)vayGFn(ny)
— g% () V5ViGr (X,Y)VEVGE (X,Y) —g°UY)ViVsGe (X,Y)VIVIGE (X.y)
1
+ 590G VIV Gr (X.Y) VEVIGE (x.Y)+K°(2ViGe (X.Y) VyGE (X.Y)

—g°Uy)ViGe (%) VIGE (x,¥)+ KU 2VEGE (X,Y) VLGE (X,y)

—g*°()V5Ge, (X,Y) VG, (YD) +2 KZPKJUGE (x,y) |, (3.42

whereC 2 is the differential operator SN(x—y)

(Ox—m? = ER(X))GE, (X,y)= NErTh (3.44

1
K 3P=¢(g°(x) 0y — V3AVE+ G28(x)) — §m2gab(x).

(343 and using that in dimensional regularizatipa"(x—y)]?

An alternative expression foH‘;:Cd(x,y), which is more =0. Finally, note that, in the vacuufB), the term(db>2(x))

similar to expressiori3.40, can be obtained taking into ac- in Eq. (3.3 can also be written a$<i)§(x))=iGFn(x,x)
count thatGg (x,y) is a Green function of the Klein-Gordon =G (x,x).

equation inn spacetime dimensions, which satisfies It is worth noting that, when the poinisandy are space-
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like separated,d,(x) and ®,(y) commute and, thus, ':_Te cri?tion and t{:mnihilattiobn op%ratotrs (cj)n the Fock stpace:
+ . 2 2 . ere, the summation must be understood as representing ei-
Gy (X'y):'GFn(X’y):(1/2)<0|{‘I’n(x)-‘bn(}_’)}|0>, which ther a sum over a set of discrete indices or an integral with
is real. Hence, from the above expressions, we have thalyme suitable measuter a combination of these two pos-
HR, “(x,y) =Hg*(x,y)=0. This fact is not surprising sibilities). The time-evolution operator corresponding to this
since, from the causality of the expectation value of theHamiltonian operator is then given byi{[g](t,t’)
stress-energy operator, we know that the non-local depenéexp(—iﬂ[g](t—t’)).
dence on the metric perturbation in the Einstein-Langevin

, In this section, even if we sometimes writeor t;, we
equation must be causal.

shall always consider these initial and final times in the limit

ti— —o andt;— +o (we assume that such limits can be
IV. FLUCTUATIONS IN STATIONARY AND taken.

CONFORMALLY STATIONARY BACKGROUNDS

A. The fluctuation-dissipation relation in a stationary

In this section, we derive a number of results concerning hack g
ackgroun

the stochastic semiclassical theory of gravity for two classes
of background solutions of semiclassical gravity. The first For a real scalar field quantized on the stationary space-
class consists of a stationary spacetime and a scalar field time (M,g,p), we can define a state of thermal equilibrium
thermal equilibrium or in its vacuum state. In the secondat temperaturdl. This state is described in the Heisenberg
class, the spacetime is conformally stationary, the scalar fielgicture by the density operator of the grand canonical en-
is massless and conformally coupled, and its state is the cosemble:

formal vacuum or a thermal state built on the conformal

vacuum. In Secs. IV A and IV B, we identify a kernel in the - St
corresponding Einstein-Langevin equations which is related rlgl= m, 4.9

to the noise kernel by a fluctuation-dissipation relation. In

Sec._ IV C, we s_tudy the creation of particles by StOChaStiQ/vhereﬂEl/kBT andkg is Boltzmann's constantthere are
metric perturbations and see that this phenomenon can B&, -hemical potential terms because we deal with a real sca-
related to the vacuum noise kernel. We show that the mea(ir field). This kind of thermal state for fields in stationary
Qirved backgrounds was first considered in Rg6d.,62.
&Since the density operatdd.l) commutes with the time-

“perturbed” semiclassical spacetime\{,g.,+ (hap)c)- . - , R )
Let us assume that the semiclassical spacetimedy) eyolutlon operatot/ g](t,t’"), the corresponding initial den

is stationary, i.e., that it possesses a global timelike KillingSity operator in the Schdinger picture is simplyp(t;)
vector fieldZ?, £,9,,=0, where £ is the Lie derivative with = p[g].

respect taz®. Writing the Killing vector ast®= (d/4t)?, this Given any pair of operators in the Heisenberg picture,
spacetime can be foliated by a family of Cauchy hypersurp[g](x) and OQ[g](x), the expectation value

facgsEt, labeled by the KiIIing. timet, SO we can give co- (ﬁ(x)@(x’))T[g] depends ort andt’ only through the dif-
ordinates {,x) to each spacetime point, whereare the  forencet—t’ since

space coordinates on each of these hypersurfaces. Using this

foliation, we can construct a Hamiltonian operattirg] in (POOQ(X ) r=TrpP(x)Q(x")]
the way described in Appendix B. This is a time indepen- fag )
dent, i.e., independent of the Cauchy hypersurfage =T pPA(x)e

Hamiltonian operator, so it represents the Hamiltonian op-
erator in both the Heisenberg and the Sclmger pictures.
In this case, there is a natural Fock representation basedona . S As . .
. , 2 . whereP>(x) andQ>(x) are the operators in the Schlinger
decomposition of the field operatdr,[g] in a complete set ) A N )
of modes of positive frequencies, with respect to;?, and ~ Picture corresponding t@(x) and Q(x), respectively, and
their complex conjugatesThis defines a natural Fock space, We.use<>T to denote an expectation value in thefétate de-
the many-particle states of which are eigenstates of th&cribed by Eq.(4.1). In particular, with the choicgt;)
HamiltonianA[ g]. Thus, the notion of particles is physically =p[g], the kernelsNZ**Tg](x,x’), Hg:Cdfg](X-X’) and
well defined in this spacetind,60,9. The Hamiltonian op-  H3**{g](x,x’) depend on the time coordinates as a function
erato.r n .th|s. Fock ArepresentatLoTrl, renormaAtI;zed kfy normabf t—t’. Therefore, we can introduce Fourier transforms in
Orderlng, IS given by'l[g] =Ekwkakak, Whereak andak are the time coordinate as

XQS(X,)eiﬁ(t—t’)], 4.2

*» do . .
K(x,x’):f —e K (w;x,x"), 4.3
2In some cases, additional restrictions may be necessary to avoid —w 2T
infrared divergencies, such as that the scalar field is massive,
#0, or that the norm of the Killing vector is not arbitrarily small whereK(x,x") is any function which depends on time only

[1,60Q. throught—t’.

084008-13



ROSARIO MARTIN AND ENRIC VERDAGUER

As it is shown in Appendix B, Wick’'s theorem can be
generalized for thermall-point functions, defined as expec-
tation values of products of the field operator in the stat
described by Eq(4.1). It is then easy to see that the expres-
sions found in Sec. IlID also hold for the kernels

NR*°Tgl(x,x), HE Tgl(x,x") andHR**Tgl(x,x") at fi-

nite T if we replace the Wightman and Feynman functions

(3.38 by the analogous thermal expectation values.

In this case, a simple relationshifin the form of a
fluctuation-dissipation relationexists between the kernels
N2b4 g7(x,x’) and HaAﬁC"[g](x,x’). In fact, from Eg.

(3.37), we can write these kernels as

8 Nﬁde(X,X,) — Fﬁde(X,X,)"‘ ngab(xf ,X),

(4.4
8i Hiﬁ“’(x,x’)z Fﬁde(x,x’)— Fﬁdab(x’ ,X),

where we omit the functional dependencegyy. In terms
of the Fourier transform#&4.3), these relations are

8NP ;% X" ) =F 3¢ o;x,x") + FC930 — ;X' ,X),

(4.9

8i Fl;iﬁc"(w;x,x’)=I~:§b°d(w;x,x’)—'|5ﬁdab(— ;X' ,X).

By analytically continuing t to complex values in
Fﬁbc"(x,x’), one can derive a symmetry relation for this bi-
tensor which involves different values of this complex time.

Taking into account that the time evolution of the operator

t3° is given in this stationary case by3°(t+At,x)
=eMA%a0(t x)e ™At and using the cyclic property of the
trace, we getFa*°Yt,x;t’,x")=FS%t’ x";t+ipB,x), or,
equivalently, in terms of its Fourier transform,
Fabed ;x,x") =ePeFCIab — i x’ ).

(4.6

This relation is known as the Kubo-Martin-Schwinger rela-
tion [39,44. From this last expression and E@.5), we

obtain the following simple relation betweeN3"° and
“|_‘|abcd.
A,

po

H,?\E’]Cd(w;x,x’)=—itan!‘( > )Nﬁb“’(w;x,x’), 4.7

which can also be written as

©

dt"Kep(t—t"),NR**t" ;7 X,
(4.9

Hi‘\ﬁCd(t,x;t’,X’)=f

with

Kep(t)=— j:d%)sin( wt)tanl‘( '870))
= —kgT Plcsch mkgTt)], (4.9

where P denotes a Cauchy principal value distribution.

PHYSICAL REVIEW D60 084008

Since, as we have pointed out above, the kerhgls*
andN2°°d are free of ultraviolet divergencies in the linmit

€ .4, we can define

szCd(X,X’)E ||m M—Z(n—‘l)HiﬁCd(X,X/)’
n—4
(4.10
Nabcd()(,xr)E IimM72(n74)N2de(X,Xr),
n—4

which are the kernels that appear in the physical semiclassi-
cal Einstein-Langevin equation, E(.11), after performing
the renormalization procedure in E@®.36. These physical
kernels will also satisfy the relatiot.8) or, equivalently,
their Fourier transforms will satisfy Eq4.7). These results
are independent of the regularization method used.

The relation(4.7) can be written in an alternative way.
Introducing a new kerndthis is actually a family of kernejs

defined by H;‘fn’cd(w;x,x’)z—iw}ﬁbcd(w;x,x’), that is,
Hing(X,X’)=r7‘yﬁde(X,X’)/r7t, Eq. (4.7) yields

~ W\~
N2PY :x, X' )= w cot)—( '87) YA wix,x"), (4.10)

or, equivalently,

o

dt”\]FD(t _ tl!) ’yﬁde(tH,X;t, ,XI )’
(4.12

Nﬁb‘:d(t,x;t’,x’)zf

where

Jep(t)= foocd?wcos{ ot)w cot!‘( '87(0) (4.13

This integral gives a distribution which is singular tat 0
and fort+0 reduces tdgp(t) = — 7 kg T cosechfrkgTt)]%.

The relationg4.7) or (4.8) [or the equivalent form&t.11)
or (4.12] have the same form as the fluctuation-dissipation
relations which appear in quite general models of quantum
mechanic§38—43. The derivation of these relations is usu-
ally done in the framework of linear response theory, in
which one considers the response of a quantum system,
which is initially at thermal equilibrium, when an external
classical time-dependent linear perturbation is “switched
on.” When evaluating the change in the expectation value of
the relevant operatdthe operator which couples to the per-
turbation induced by the presence of the perturbation, a dis-
sipative term can be identified as the term which changes the
sign under a time reversal transformation in the perturbation.
This term is characterized by a kernel called the dissipation
kernel. It can be shown that the dissipation kernel is related
to the fluctuations in equilibriuntin the absence of the per-
turbation of the relevant operator by a relation which is
exactly the same as Ed4.8) or Eq. (4.7). This is the
fluctuation-dissipation relation. Using this linear response
theory approach, the same fluctuation-dissipation relation has
also been derived for some models of quantum many-body
systemg 44,43 or quantum field$42,45 coupled to exter-
nal classical fields.
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This fluctuation-dissipation relation appears also in the 1. Zero temperature limit

context of quantum Brownian motiofor “semiclassical” A state of the scalar field which is of special interest is
Brownian maotion, in which one is interested in the dynam- that described b)bs(ti)=;>[9]=|0>(0|, where |0) is the

ics of a macroscopic particle in interaction with a heat batr\/acuum state. This vacuum state can be obtained as the zero

environment, .usually modelized by an infinite set of ,quantum[emperature limitT—0, of the previous thermal state. The
harmonic oscillators. In these models, when the variable rePﬂuctuation-dissipation relation for this state is easily ob-

rgferéting rt]he center of g‘aS?f po;iti?né)f thgbmgcroscoglz)ic Pafained by settingr=0 in expressior(4.7) or (4.8). We find

ticle decoheres, it can be effectively described as a classic&{abcd, .o oy jabed .y o ; i

stochastic variable. The equation o)f/ motion for this stochas: An "% )=l S_gan” (wix,x7), or, equivalently, it

tic variable is a linear Langevin equation with a Gaussiar'@S the form(4.8), with

stochastic source. The classical variable introduced in linear

response theory can be envisaged as the position of the KFD(t)=—iJ

Brownian particle, but now this variable becomes a dynami- ‘°°

cal stochastic variable. The dissipative term in this Langevinys i ctuation-dissipation relation in the alternative form

equation is responsible for the irreversible dynamics of the ~abcds ... o ~abedr :

Brownian particle. This term contains a dissipation kernel(4'1D readsNy (w’.X’X )= @signoy, (wxx7), or, it
. ! has the form(4.12), with

which is related to the correlator of the stochastic source by

the relations (4.8) or (4.7) [15,16. This is again the *dw 1 1

fluctuation-dissipation relation. There are also some models Jro(t) = fo 7005(“’”“’: - ;Pf(t—? (419

in which a purely quantum description of the Brownian par-

ticle is considered63,64. The dynamics of this particle is wherePf(1/4?) denotes a Hadamard finite part distribution,

then described by a quantum operator in the Heisenberg piwvhich is related to P(1) by Pf(1/t?)= —(d/dt)P(1t) (the

ture. By elimination of all the environment degrees of free-definitions of these distributions can be found in Rg&&]).

dom in the equation of motion for this operator, one finds a

guantum Langevin equation with quantum fluctuating and 2. High temperature limit

dissipative terms. These terms are again related by a Letus now consider the high temperature limit. This limit

fluctuation-dissipation relation of the for(d.8) or (4.7). can only be performed when there exists a cutoff frequency
These analogies allow us to identify the equivalent rela1) sych thatN2*Yw;x,x’) vanishes forw>Q [by (4.7),

tions (4.8) and (4.7), and the analogous relations for the ’Hi:cd(w;xix/) will also vanish for these values of]. Such

hysical kernel$¢4.10), as the fluctuation-dissipation relation . -
phy $4.10 P 2 cutoff frequency is usually related to a characteristic cutoff

in_our context. Because of this relation, the keme frequency of the environment degrees of freedom. The high
HaPedx,x") shall be called the dissipation kernel. The same, g y 9 : g

. S : . temperature limit corresponds to the limit in whidzT
fluctuation-dissipation relation was derived by Mottol] - ) | this limit (keeping only the leading order contribu-
in the context of quantum field theory in curved spacetim

: : , &ions), we expect that thermal fluctuations dominate over
using the linear response theory approach. This author COuantum fluctuations. To study this limit, it is convenient to

sidered the case in which the background spacetime is statigastore the dependencefinin the previous results. For this,
but his result is easily generalized to a stationary backyne has to multiply the constants; and Bg by # and the
ground. In this paper, we have derived the same relation iggrnel Hﬁde by 1# in the Einstein-Langevin equation

the context of a Langevin equation for stochastic metric Per(3.36, and change the combinatigw by % Bw in the pre-
turbations, which would presumably describe the effectivejous expressions. In this limit, we can approximate
dynamics of gravitational fluctuations after a process of detanh¢;gw/2)=#Bw/2, and the fluctuation-dissipation relation
coherence. For the particular case of a massless scalar figldduces to
in a Minkowski background, this fluctuation-dissipation re-
lation was derived in Ref§23,24 from an explicit evalua- 1eiea ) R ,
tion of the kernels. 7Ha, (@ X)=—i5 Ny (wix,x"), (419

It is clear that the kerneNa°°Yx,x’) describes fluctua- ®
tions in exactly the same sense as the quantum-mechaniaal, equivalently, since in this case
models described above. In fact, as it was pointed out by
Mottola [47] from the point of view of linear response
theory, it gives the fluctuations in equilibrium of the stress-

)

0
ik (4.19

dw it B 1P
Ee Sgnw = ;

Kep(t)=(A/2kgT)(d/d1) 8(1),

energy operator. Alternatively, as we have shown in the pre- lHab‘:d(t xit! x')= 1 iNade(t x:t' x')
vious sections, it gives the two-point correlation function of Ao An T ke T gt " e
the Gaussian stochastic source in the semiclassical Einstein- (4.1

Langevin equation. However, the term containing the “dis- abed - _
sipation” kernelH3°Y(x,x’) in the Einstein-Langevin equa- Note that (12)Hj ™ is the kernel that appears in the
tion does not generally change sign under a time-reversdtinstein-Langevin equatio(B8.36) when one writes the de-
transformation in the metric perturbations. pendence irfi explicitly. This relation has the same form as
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the classical Green-Kubo fluctuation-dissipation relationHence, in this sense, we can write the field operator as
which appears either in a classical theory of linear respons@n[a]:e—(n—z)w/z(i,n[g]’ where&)n[g] is the field operator
[66,_3@ or in a classical theofy of'Bro.wnian motic§64,6ﬂ_. .. In the stationary spacetimeM(,g,p). Assuming that no in-
Notice, frpm Eq.(4.la7b)(,:dthat ,|n this high teg‘g@fra“{re limit frared divergencies are present, so that this quantum field
we can simply takey, ™ (x,x") = (h/2kg T)N, (X, X"). theory construction is well defined, the conformal vacuum
|0) is defined as the vacuum state of the Fock space corre-

B. The fluctuation-dissipation relation for conformal sponding to this representation.df anday are the creation
fields in a conformally stationary background and annihilation operators on this Fock space, this state sat-

In the case of a massless conformally coupled scalar fiellffi€s &l0)=0. As shown in Appendix B, in this case we
(m=0 andé=1/6) and a conformally stationary solution of C&n construct a conserved energy operator which can be
semiclassical gravity[for instance, a Robertson-Walker identified with the Hamiltonian of a field quantized on
(RW) spacetimé the fluctuation-dissipation relation derived (M,gap): E[g]=H[g]=Swata,. This energy operator,
in the previous subsection can be generalized when the stalt@wever, is not a time-evolution generator for the field op-

of the field in the background solution is the conformal grqiqrd [g]: it generates the time-evolution of the confor-
vacuum or a thermal state built on the conformal vacuum. In ~

this case, the actiof8.1) for the scalar field is conformally Mally related operato,[g]. The many-particle states of
invariant. It is convenient to preserve this conformal invari-the Fock space built on the conformal vacuum are eigen-
ance when working in dimensional regularization. This canstates of this energy operator.

be done by changing, in all the previous expressions which From this energy operator, a state of thermal equilibrium
involve dimensional regularization, the paramegeby the  for a conformal scalar field quantized o1, g,,) can be
function é(n)=(n—2)/[4(n—1)] and, of course, takingh  defined using the density operatdr1). Thermal equilibrium
=0. In this way, the dimensional regularized stress-tensostates defined in this way were first proposed by Gibbons and
operator(3.6) is traceless. Let{1,9,,) be an dimensional  Perry[62]. These authors were inspired in a result by Israel
conformally stationary spacetime, that is, a spacetime with 8] in the framework of relativistic kinetic theory, who
global timelike conformal Killing vector field:?: E@Ab found that thermal equilibrium distribution functions can be

=(2/n)V© gcgab' whereV,, is the covariant derivative asso- defineq for massless particle; ip conformally stationary

ciated toa This means that the metrEa is conformally spacetimes. A number of applications have been developed

related toat; stationary metrig.,- 5 (x)b— e200g_ (%) in the literature to study finite-temperature effects of quan-
ab- ab - ab )

i ; ) b\ tum conformal fields in RW universel69] and in two-
wherew(x) is a scalar function. As previously, writingf dimensional spacetimég0.

=(dlat)%, the semiclassical spacetime can be foliated by | gt s begin with a solution of the semiclassical Einstein
Cauchy hypersurfacek; and coordinatest(x) can be as-  gquation(3.10 consisting of a quantum conformal scalar

signed to the spacetime points. . . . — .
There is a “natural” Fock representation based on a de]cleld in a conformally stationary spacetimé{,gp), in the

.  the fiel JO . thermal statg4.1). Taking into account that the actid8.3)
composition of he fied operalb,[g) in M 0f 3 COM iy 11— ang ¢=g(n) satisies S,10.y 1= Srl3.Py .
plete set of modeguy (x)}, solution of the Klein-Gordon P =e ("7 | it is easy to see thai2’[g]

_ =e ("*2)@Ta g1 Therefore, the kernels evaluated in the
u (x), where{uy (x)} is a complete set of thermal state at a temperatuFecan be related to the corre-
mode solutions of the Klein-Gordon equation itM(gzp) sponding kernels for the stationary backgroun®,Q,p)-
which are of positive frequencies, with respect toZ?. For the noise kernel, we have

equation with metric g,,, of the form u (X)
:e—(n—Z)w(x)IZ

Nﬁbccta(x'xl)z e*(n+2)m(x)ef(n+2)m(x’)Ngbcctg](x,xr), (418)

and the same relation holds for the kerridf°“andH3°°’.  conformal vacuum state, which correspondsTte 0, the

Since the kerneldl2°°4 g] andH3*°q g] satisfy the relation fluctuation-dissipation relation follows directly from the re-
n

(4.9 [or, equivalently,(4.7)], this leads to a fluctuation- sult of Sec. IV A 1. In the particular case of a spatially flat
di;sipati(,)n relation t,)et\./vee,n the kerneN®™4g] and RW solution of semiclassical gravity, this conformal vacuum
n

oo — . _ fluctuation-dissipation relation was obtained before in Ref.
Ha, Tg]. The same relation holds for the physical kermels[19] after an explicit calculation of the corresponding ker-
obtained by taking the limih—4 as in Eq.(4.10. For the  nels. The same relation was derived in REf4] in the
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framework of a “reduced” version of the Einstein-Langevin =|0){0|, where|0) is the vacuum of the natural Fock space
equation inspired in a Bianchi-I type “mini-superspace” for the field quantized on.¥,g,,), and we consider the
model. limit t;— — o, we havep[g+h]=0,in)(0,in|, where|0,in)
represents the family of “in” vacua for the field quantized
on (M,g.p,thgp). Treatinghy, as a classical “external”
Let us now return to the case in whictM(,g,;,) is sta-  perturbation, one could construct a Hamiltonian operator
tionary, the scalar field has arbitrary massand arbitrary ~ H[g+h](t) in the Heisenberg picture for whidh,in) would
coupling parameteg, and consider the stochastic perturba-pe the ground state in the “remote past epoch.” However, at
tion h,p. Note that (M,gap+hap) can be viewed as repre- |ater times, due to the presence of the perturbalign this
senting an ensemble of spacetimes distributed according g yacuum state will generally not be the ground state of
some probability distribution functional. We are in fact con- tne Hamiltonian. One then says that “particles” are created
sidering a scalar field quantized on each of these spacetimgs, ine “in” vacuum.
described by the operatdr[g+h], and the family of states Physically meaningful many particle “out” states, in par-
of the field, described by[g+h]. ticular, an “out” vacuum|0,ou for the scalar field in each
Let hy[ €] be a solution to the semiclassical Einstein-of the spacetimesX(,g,,+ h,p), can be defined if there is
Langevin equation, Eq(2.11), whose moments vanish for also a “far future epoch” for whichh,, vanishes(in the
timest<t, or, at least, they vanish “asymptotically” in the same statistical sense as abgwther in an exact way for
remote pastt(— —=). This means that there is a “remote t>t. or “asymptotically” for t— +oc. When this is the case,
past epoch” {<t, or t— —0) in which h,y, behaves deter- the vacuum persistence amplitudé0,out0,in)[g+h]
ministically as a zero tensor. In that case, if we takét;)  =eI9*N is given by the following path integral:

C. Particle creation

eWioh = f D[®,](0,0ufPp(t),t)[ g+ h(Py(t1),1:]0,in)[ g+ h]eSrlo™hCal, (4.19

where|¢,,t1) and|¢,,t,) denote, respectively, eigenstatesthe probabilityP is well defined by this expression.

of the field operator [g+h](t,x) at some arbitrary times As we have done in the previous_section fo_r the influence
t=t, andt=t,, wheret,>t,, with eigenvaluee,(x), and action, we can now expand the actié¥] g+ h] in the per-

: - - c turbation h,,. In order to do so, one has to evaluate the
where the integration domain for the action is betwbeand : ab: T ? .
t,. The wave functionalse,,t,[0,in) and (e, t,|0,0ub functional derivatives ofW[g-+h] in the background metric

. ) : . Using Eg.(4.19, these derivatives can be related to
have in general a dependence on the metric, which we ha\%‘a‘ b = ; ;
indicated in Eq.(4.19. In the limit t,— —c andty— 42, n-out” matrix elements of operators in the background.

: . Since g, is stationary, the “in” and “out” vacua in the
these wave functionals do not depend on the perturbatloBaCkgrgund must be identified with the natural vacu@n

hap. The total probability of particle creation is given by therefore, these background “in-out” matrix elements be-
[71] come expectation values in the stf@g. It is then easy to see
that the expansion & g+ h] in the metric perturbatioh,

is equal to that ofSg[g+h*,g+h~] with hj,=h,, and
h.,=0, and taking the expectation values|@). In particu-
One can show that W is free of ultraviolet divergencies in lar, from the imaginary part of this expansidsee Eq.
the limit n—4, and that it is always positive or zero, so that(3.18], we get

P[h;g]=2limImW[g+h]. (4.20

n—4

PLhig1= [ d* dy (=00 =G Mas N g1y ely) O, 420

where N2°¢d js the zero temperature physical noise kernelEq. (4.21) would contain higher order vacuum stress-energy
defined in Eq(4.10. This physical noise kernel is related to fluctuations. Equatio4.21) is a generalization of an expres-
the lowest order quantum stress-energy fluctuations ision derived by Sexl and Urbantk&2] for the total prob-
vacuum by(2.9). Note that the higher order corrections in ability of particle creation by metric perturbations around
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Minkowski spacetime. N[ h;g]/2 to lowest order in the metric perturbation coincides
Equation (4.21) gives also the expectation value of the with that for P[h;g] in Eq. (4.21).
number operator for “out” particles in the “in” vacuum, The energy of the created particles, definedEab;g]

computed to lowest order in the metric perturbation. In OrderE(O,in|EkwkNCk’“'1O,in>=<O|§TH§|0>, where N2 is the
to show this, let us expand the scalar field action as theout” number operator in thek mode and:|=2kwkélék is

action in the stationary background plus interaction term§he Hamiltonian ooerator in the backaround. is similarl
(the terms containing the metric perturbaliohe interac- given by P 9 ' y

tion term to lowest order i,y is

1 .
s<1>=fd“xc§,1>[cbn,h;g], Efh;g]=3 (0t 0p)|(1y, 1, SP[0)|2+O(h3).

k.p
(4.29
with
Comparison of Eq(4.24) with Egs.(4.23 and (4.21), sug-
1= [ qTab
L57=U2\V=gT™g, Pnlhap. gests that it may be possible in some cases to write this last

In order to construct th&matrix operator, we need the in- expressior(in the limit n.ﬂ4) in terms of the Fourier frans-
form of the vacuum noise kernel.

teraction Hamiltonian density operator in the interaction pic- As an example, let us consider the case whéf, ) is

ture. Note that the field and canonical momentum operatorg,imply Minkowski spacetime %, 7.:) [31,73, which is the

in the interaction picture can be identified with the operatorsmvial solution of semiclassical gravity. Working in a global

@,[g] andII,[g], respectively. Following Appendix B, we inertial coordinate systerfx“}, in this case the kernels de-
can obtain the canonical Hamiltonian density for the mellichend only on the difference xEy)* and, thus,

dapthap @and work out the interaction term to first order in \ve can define their Fourier transforms &&(x—y)
the metr_lc perturpatlon. Although in this case the mterac_tlonE(277),4fd4peip.(x,y)R(p), wherep-x= 7, p“x’. Intro-
Lagrangian density depends on the derivatives of the ﬂeldducin the Fourier transform 6,,(x) in asirﬁilar way[note
we find that, to first order ih,,, the interaction Hamiltonian 9 ab

density operator in the interaction picture is given by thathan(—p)=hz,(p)], Eq.(4.2]) can be written as
—£W[d[g],h;g]. Hence, to first order in the metric per-

. . o - o d*p - ~ ~
turbation, the Smatrix operator is given byS=1+SW® Prh: :J’ Nabed pyh*, (p)heg(p)+O(h3).
+0(h?), where 7] (2m)* P/ el P edl P

(4.25
apy .
S(l)_ﬁf d™x V=g T g]hay. (422 On the other hand, the energy of the created particles is given
by [74]

The expectation value of the “out” particle number opera-
tor, N°“C in the “in” vacuum (in the Heisenberg pictuygs _ AP e e
given byN[h;g]=(0,in|N°"|0,in)=(0|S'NS|0), whereN is E[h,n]—ZJ 2m)*P O(PINTZARINap(P)hed(P)
the particle number operator in the backgrourd +0(hd). (4.26

=3,ala,. To lowest order, we have

The vacuum noise and dissipation kernels for a Minkowski

N[h;g]=> [(1,,1,|5V]0)|2+O(h%), (4.23  background can be written in terms of two pairs of scalar
K.p kernels,N,(x—y) and D,(x—y), respectively, withr=1,2
[73] (see also Ref{31] for a particular case in whicN,

where [1,,1;) is the two-particle statél,,1,)=alaj|0). =p,=0). Each pair of kermels N,,D,) satisfies the
Clearly, sinceS%") is quadratic in the field operator, at this fluctuation-dissipation relation found in Sec. IV A 1. One
orderN can also be written as finds[71,74 that
N/2=2% (0|5 n)(n|SM)]0) N=eed p)hzy(P)hea(p) = Clhed )T 24 p)Ny ()
n
+[RO(p)|*Na(p), (429

—(0|S™"0)(0]S™[0) +O(h®)

where{|n)} represents the complete orthonormal basis of thevhere C{i.{(p), R™(p) and N,(p) are, respectively, the
Fock space. Using Eq4.22, this last expression can be Fourier transforms of the linearized Weyl tensor, the scalar
written in terms of the vacuum noise kerrmﬂbc"[g](x,y) curvature and the kernels, (x—y), r=1,2; N,(p) depend
[see Eq(3.14)]. Taking the limitn—4, we see that the ex- only on p?= 7,,P*p”. It is then easy to see, using the
pression for one half of the number of created particledluctuation-dissipation relation, that
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d* ~ ~ ~ ~ ~
E[h;7]=i J (2;4p0[cgt>cd(p)c“)*a“%p)Dl<p>+|R<1><p>|2D2<p>]+O<h3>. (4.28

Hence, in the case of a Minkowski background, the energy of the created particles can be expressed in terms of the dissipation
kernelsD; andD, for the Minkowskian vacuum. It is not clear, however, that, for other stationary backgrounds, the energy
of the created particles can be related to dissipation in vacuum in a similar way.

The probability of particle creatiofd.2l) is a fluctuating quantity, due to the functional dependence on the stochastic
perturbationh,,. We may compute its averaged val(le[h;g])., which [neglecting the higher order corrections in Eq.
(4.21)] is given by

(P[h;gl)c=P[(h)c;g]+ f d*x d*y V= g(x) V= g(y)N2**f g](x,y) (i (x)hE4(¥))e, (4.29

where hf,=h,p—(hap)c. The first term in the right hand method[12-14,19-2§ since it links the source of stochastic
side of Eq.(4.29 is the probability of particle creatiofor  fluctuations to quantum matter stress-energy fluctuations,
one half of the number of created partiglélsat one would and allows us to formulate the theory in a general way. At
obtain in the spacetimeM!(,g.,+ (hap)c). The second term the same time, we have also developed a method to compute
will be greater than zero when stress-energy fluctuations amhe semiclassical Einstein-Langevin equation using dimen-
presert since, from the Einstein-Langevin equation, this im- sional regularization. This provides an alternative and more
plies (hf,(x)hLy(y))c#0. Note that, when this is the case, direct way of computing the equation with respect to the
from the fluctuation-dissipation relation of Sec. IV A 1, the previous calculations, based on a specific evaluation of the
vacuum dissipation kernel will be also non-vanishing.effective action of Feynman and Verngh2—14,19—25% In
Hence, metric fluctuations induced by matter stress-energy subsequent papEf3], we shall apply this method to solve
fluctuations generally increase the mean value of the numbgpe Einstein-Langevin equation around some simple solu-
of created particl_es Wifth respect _to the same quantity in thgons of semiclassical gravity.
“perturbed” semiclassical spacetime\,gap+(Nap)c)- The second part of the paper was devoted to the existence
_The above result for the total probability of particle cre- ¢ oty ation-dissipation relations and to particle creation in
ation and number of created particles can be easily gener he context of stochastic semiclassical gravity. When the

'.ZEd to the case of a mas;less confqrmally coupled SCaIEf)rackground solution of semiclassical gravity consists of a
field and a conformally stationary semiclassical background,

When this background is a spatially flat RW univef48], Stationary spacetime and a scalar field in a thermal equilib-

performing conformal transformations in the metric pertur—r".Jm ;tate, we _have |d(_ant|f|eq a_d|SS|pat|on kernel_ in the
bations and in the kernels as in d.18, one gets expres- Einstein-Langevin equation which is related to the noise ker-

sions analogous to Eq$4.25), (4.27 and (4.28 with N, nel by a fluctuation-dissipation relation. The same relation

o . was previously derived by Mottolfd7] using a linear re-
D2=0 (see Refs[56,19,3] for more details sponse theory approach. We have also generalized this result

to the case of a conformal scalar field in a conformally sta-
V. CONCLUSIONS tionary background solution of semiclassical gravity.
i . Our analysis seems to indicate that for a fluctuation-

_ In the first part of this paper, we have shown how a conyjssipation relation to be present in stochastic semiclassical
sistent stochastic semiclassical theory of gravity can be forgravity, the semiclassical background solution must satisfy
mulat_ed. This .theory. isa pertu_rbative generalizatio_n of seMizertain conditions. In this paper we have just analyzed the
classical gravity which describes the back reaction of thejmplest cases for which such a relation exists. Further work
lowest order stress-energy fluctuations of quantum mattef,yst e done to investigate whether a similar relation is
fields on the gravitational field through the semiclassicalyesent in other situations of physical interest, such as black
Einstein-Langevin equation. We have shown that this equayg|e backgroundg48,49,24, or non-conformal fields in RW

tion can be formally derived with a method based on theyackgrounds in the instantaneous vacua or the thermal states
influence functional of Feynman and Vernon, where on€jefined in Ref[75].

considers the metric field as the “system” of interest and the  \y/e have also studied particle creation by stochastic met-
matter fields as part of its “environmen{9]. Our approach ic perturbations in stationary and conformally stationdioy
clarifies the physical meaning of the semiclassical Langevinggniormal matter fields in this latter cadeackground solu-
type equations previously derived with the same functionalions of semiclassical gravity. We have expressed the total
probability of particle creation and the number of created
particles(the expectation value of the number operator for
3Except in some rare cases, for whibfi*°{x,y) is not stricty ~ “out” particles in the “in” vacuum) in terms of the vacuum
positive definite andh.,(x)hf4(y)). is such that it “hits” the zero  noise kernel. We have shown that the averaged value of
eigenvalue. those quantities is enhanced by the presence of stochastic
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metric fluctuations. In the particular cases of a Minkowskisupported by the CICYT Research Project number AEN98-
background and a conformal field in a spatially flat RW 0431, and the European Project number CI1-CT94-0004.
background, the energy of the created particles can be ex-
pressed in terms of the vacuum dissipation kernels. APPENDIX A: EXPANSION OF THE STRESS-ENERGY

It should be stressed that the concept of particle creation TENSOR AROUND A BACKGROUND METRIC
is only well defined when the solutions of the Einstein-
Langevin equation vanish in the “remote past” and in the The expansion of the stress-energy tensor functional
“far future” (at least, “asymptotically’). However, there 1
can be physically meaningful solutions of the Einstein- —ap _va bg, _ - ~abyc
Langevin equation that do not satisfy these rather strong con-T [9,®n]= VIR, VD, 29 ViPnVey
ditions. In this case, vacuum noise and dissipation in stochas-
tic semiclassical gravity can include effects that are not _EgabmchﬁJrg(gabD_VaVb+Gab)q)ﬁ,
associated to particle creation. 2
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1 1
T(l)ab[gaq)n ;h] = _Tac[qu)n]hkc)_-rbc[g:q)n]hg_ E(VC(DnVc(Dn"' quDﬁ)hab_,_ Egabch)nvdq)nhcd

+ g[— RPP+ g2PRC%n 4+ VOV2h2+ VEVPha — VaVPhe— [OhaP+ g?(OhS— VeV oh,g)

+(V2h2+ VPh3—V h3P—2g2Vh 4+ g2PV h) V o+ 2h30 — 2¢7°h 4V EV D2,

where the covariant derivatives and curvature tensors are0) vector field normal to each hypersurfaBg. The in-
those of the metrig,,, and indices are raised with inverse duced metric on eack; by the spacetime metric ig,p

background metrig?®. =(g,p+Nany, [50]; thenqy is a projector orthogonal ta?.
We can decompose the Killing vector into its normal and
APPENDIX B: HAMILTONIAN OPERATOR IN A tangential parts to eacl;: (*=Nn?+N? where N=
STATIONARY SPACETIME AND THERMAL —%n, and N3=q2¢" are, respectively, the lapse function
WICK’'S THEOREM and the shift vector. In the basis associated to the coordinate

i , o system{x*}, the componentg,,, of the metric are indepen-
In this appendix, we construct the Hamiltonian or energygent oft and can be written agy= —N2+N;N', g, =N,
operator for a quantum scalar field in a stationary spacetime, _ ., \vith N-=qa..Ni. One can also write — =N :
For a more rigorous mathematical treatment, see F&&f ?vlhercel;a;det(q--l) i 9=N\a,
. . : = i)
and, for the particular case of a static spacetime, sed®ef. 1" consiruct the classical Hamiltonian, we write the La-
We also show how this construction can be generalized for Grangian density as
conformal scalar field in a conformally stationary spacetime.
Using this Hamiltonian to define a thermal density operator,

we shall see how thermal four-point functions can be ex- 1 . ) )
pressed in terms of thermal two-point functiofi$hermal £n=§@N[(n“&,L<I>n) —0"9,®,0;P,— (M+ER) D],
Wick’s theorem”). (B1)

Let (M,ga,) be an dimensional stationary spacetime,
that is, a spacetime with a global timelike Killing vector field . i i i ,
[3=(aldt)?, and consider a linear real scalar figg, on it. Whelen =1/N, n'=—N'/N andq" is the inverse ofg; ,
Assuming that the spacetime is globally hyperbolic, we carflikd'= 8. The momentum canonical conjugate da, is
foliate it by a family of Cauchy hypersurfac®s, labeled by ~ 11,=an*d,®, and the Hamiltonian density is constructed
the Killing time t (hypersurfaces of constamj, and give as usual,®,=II,3®,~L,, from which the Hamiltonian
coordinates to each point of the spacetirffe= (t,x), where ~ functional on the hypersurfac&, is given by H(t)
x=(x') are local coordinates on each of these hypersurfaces: J's,d"~xH,(x). Integrating by parts and dropping surface
Let n? be the future directed uniti.e., n,n?=—1 andn'  terms, we get
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4

(B2)

o, I, .
—]+ —=ND;®,+N

va/ Vg

H(t)= %L d""Ix\g{ =@ [(D'N)D;+N(A—m2—¢R)]P,—P,(D;N' +N'D;)

whereD; is the covariant derivative on thre- 1 dimensional In this case, there exists a natural Fock representation

Riemannifi;m spacesi(,q;;) (associated to the metri;),  pased on a decomposition of the field operabgrin terms
and A=D'D; is the associated Laplace-Beltrami operator.of 3 complete set of modefsi, (x)}, solution of the Klein-

Egmlzg?;l”eanudagzr:goépi:‘(t)l:irgnc?m;%agqiﬁgﬂ?g}'?g;hfon_Gordon equation, which have positive frequency with re-
q ’ spect to the Kiling vector [2=(d/dt)?: Uy (X)

served quantity, i.e., it is independenttof i ,

The analogous quantity in the Lagrangian formalism is= I @kUk, (X), With w,>0. The labek of each mode must
the canonical energy functional, which is defined in terms ofin general be understood as representing a set of discrete or
the canonical stress-energy tensor functional, continuous indices, and, thus, the summations é&veapre-

sent either a discrete sum or an integral with some suitable
e measure(or a combination of these two possibilitiedVe
anl 9, P ]=V 2 V&, — 59a0V PV, assume that these modes have the same physical dimensions
as the fieldd, (this is the reason why we put a subindgx
1 ) 5 These modes have to be orthonormal with respect to the
2 Ga(MH ER)PG, B3 inner product (b1,;)=—1[3dEN(b1da% — b5 dahr),
which is independent of the Cauchy hypersurfacethen ¢,
asE,=/[+d3n?" TS g,d,], wheres is a Cauchy hyper- and ¢, are solutions of the Klein-Gordon equatiph,76],
surface,n? is the future directed unit vector field normal to 1-€., (Ux ,uj )=k and @y ,u")=0.
3., anddX is the invariant volume element & constructed The field operator can then be written as
with the metric induced bg,,. By Noether’s theorem50],
this energy functional is conserved, i.e., it is independent of A - .t
the choice of Cauchy hypersurfaBe when®, satisfies the Pn(x)= ; [uk, )@+ u ()], (BS)
Klein-Gordon equation. Choosiny; as the Cauchy hyper-
surface, we can obtain an expression EQy, after the sub-
stitution of I1,, by \/an”“aﬂdbn in the Hamiltonian(B2). Note
that we can also introduce an energy functional
=[+d3n3;°T,[g,®,], whereT,, is the stress-energy ten-
sor functional(2.2) [50]. For a field® , satisfying the Klein-
Gordon equation, this is also a conserved quantity. Howeve
choosing a Cauchy hypersurfadg, one can show that
n2°(Tap—TSh) is a divergence on the spack,(q;;) and,
thus, dropping surface terms, we hawe E_,,.

We can now formally construct the Hamiltonian “opera-
tor” in the Heisenberg picture simply by replacinly, and
I1,, by their corresponding operatods, andIl, in Eq. (B2) R o
and using, as always, a Weyl ordering prescription for the HR=E wkalak. (B6)
operators. This operator is a conserved quantity, that is, it is k
independent of the time therefore, it is equal to the Hamil- .
tonian operator in the Schdmger picture and we simply Note thatHg is given by an expression similar to E@4),
denote it byFl. Since the momentum operator in the Heisen-Put adding a normal ordering prescription for the operators

berg picture satisfieﬁ[nz \fqn"alﬁ)n, this Hamiltonian op-

wherea/ anda, are creation and annihilation operators on
the Fock space associated to this mode decomposition, which
satisfy the usual commutation relatiop%,76]. Using these
commutation relations and the orthonormality conditions for
the modes evaluated an,, substituting Eq(B5) into Eq.
r(B4), one finds the Fock space representation of the formal
Hamiltonian “operator’H =3 w,(a}a,+ ). We can make
this last expression well defined by subtraction of the “di-
vergent” constant c-numbeX, (w,/2), that is, we can intro-
duce a renormalized Hamiltonian operator as

a, and a), or, equivalently (dropping surface terms
erator can also be obtained from the canonical energy fundy Hr=/3xd2n%¢":T, [g]:=/dZn"T{*g]:, where
tional [hence, H represents also a conserved energy?nab[g] is defined in Eq(3.6), 'T'ﬁzz[g] is analogously de-

operatof. Taking into account that the field operatby, sat-  fined after Eq(B3), and : : means normal orderif@6,5].
isfies the Klein-Gordon equation, we find The vacuum and the many-particle states of the Fock space
are eigenstates of this Hamiltonian operator with zero and

.1 1 - - N positive eigenvalues, respectivelgiven by the sum of the
_ -1
H= ZLtdn x\q NP, (9 Pr—N'GP )} w’s corresponding to the particle contents of the State
R . N From Eq.(B5) andIl,,= \/an“&M<I>n, using the positive
—{ P, (0P —N'g; D)} (B4)  frequency condition and
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[Hg.a]=—w@, [HAr.all=wa], (B7) Droppmg surface terms, we gétz[g]=3wyaja,, Where
ak andak are creation and annihilation operators on the Fock
we get&t —|[HR n] and at —|[HR n]. These are space associated to these conformal modes.

the Heisenberg equations of motion, which are equivalent to  pjtematively, one can perform the transformatidn,
the Klein-Gordon equation for the operatdr,. From these =g~ ("~ 2)=2®p  in the scalar field action, which is then

equations, we see that the operator(exp—l r(t—t")) gen- tran_sformed td_Sm[g,CDn], and congtruct th_e H_amil_tonian as-
erates the time evolution of operators in the Heisenberg picsociated to this transformed action, which is given by the

ture. above expressions for the stationary case. This is equivalent
to making a canonical transformation in the Hamiltonian for-
1. Conformal field in a conformally stationary spacetime mulation of the theory. One then introduces an operator

Let us now consider a massless conformally coupled rea(P”[g] el 2002 n[9], which can be identified as the field
operator in the Heisenberg picture in the stationary space-
scalar f'eldq)” inan dlmenspnal spacetmej\(l,gab), aS-  time (M,g,p). The associated Hamiltonian operator can be
sumed to be (Eniormally stationary and globally hyperbollc.identified with the operatoFiq[g] constructed abovéand,
Th_e actlonSm_[g@n]_for the field is given by Eq(3.3) With obviously, it coincides WitréR[g]). Note that this Hamil-
m=0 and £=¢£(n)=(n—2)/[4(n—1)]. In this case, the .., 0 energy operator generates the time evolution of the
spacetime has a global timelike conformal Killing vector

field {a—(a/at)a which satisfies _a§b+Vb§a operatord)n[g] rather than that of the “physical” field

—(2/n)V {:Gaps whereVa is the covariant derivative asso- n[g] A generalization of this last approach has been used
q h h ; I in Ref.[75] for scalar fields with arbitrary mass and arbitrary
ciated to the metrig,,. The metricg,, is conformally re- coupling to the curvature in a RW spacetime to construct a

lated to a stationary metrigs,:gan(x) =€*"g,p(x). The  time-dependent Hamiltonian operator whose ground state at
foliation of the spacetime by Cauchy hypersurfadgsand  each fixed instant of time is a Hadamard state. A similar
the coordinates*= (t,x) are introduced as above. construction starting with the above energy functional is
Given a Cauchy hypersurfad, with unit normaln® (as  given in Ref.[5]. In the massless conformally coupled case,
above, we taken>0), we can introduce the energy func- these time-dependent Hamiltonian constructions reduce to

tional asE=[+ds nangab[qu)n]v whereds is the invari- the construction sketched in this appendix.
ant volume element constructed with the metric bnin-
duced by the metrlgab Given that the stress-energy tensor
ab[g n] is traceless when the flerﬁ satisfies the Klein-
Gordon equation, it is easy to see from the equation for th

- > . : .
coromal i vl i crrgy cioa s 1 spyers o T, 46 vl s o
: , ganyp how Wick's theorem can be generalized for the associated

this energy, and introducin@nze(“‘z)ﬁ’lzd_)n, itis easy to  thermalN-point functions. First, note that, from E(B7),
see[77] that

2. Wick’s theorem for thermal states

From the Hamiltonian operatdB6) (here, we drop the
subindexR), we can define a state of thermal equilibrium for
he scalar field as in Ed4.1). Following partially the proof

a(e Bl =g aburg B (B9)
E= dn—l a bT ’q) , BS
Lt XA Tarl g, @] B8 herea= +,—, al"'=a, anda{ ’=a] . Using this and the

_ . cyclic property of the trace, we get
wheren® andq;; are constructed with the metrig,,. Thus,

E is equal to the energy functional for the fiedd, in the ()2 () 1 ~(a) 29

stationary spacetimeMd,gap). (a"ay )T:—l_e,aﬁwk[ak a7, (B10)
Using the “natural” Fock representation, based on the

decomposition of the field operatdr,[g] in terms of modes  where we have used the commutdtaf® ,a{”] to represent

uy (x)=e~(""AT2y, (x), we can construct the renormal- either 8, — d or O (such commutator does not represent

ized energy operator in the Heisenberg plCtlEt‘ﬁ[,g], asso- &N operator in the last equatjonWriting the field operator

ciated to the above energy functiongl Here, as above, ®,(x) in terms of the operatora(®), the associated four-
{Uk (x)} is a complete set of modes, solution of the Klein- Point thermal functions can be expressed in terms of

Gordon equation in the stationary spacetimé1,gap), (aaf”a{”a”);. Taking into account that the commuta-
which are of positive frequency with respectie=(a/dt)®.  tor[a{® ,a{”] is a c-number, one has the following identity:

aaPaPa"=[a(" a("1al%al" +[a(® ,al?1a{Yal? +[al® ,al?1a{Vald + aMalPa(Va(® . (B11)
On the other hand, from E@B9) and the cyclic property of the trace, we have
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(aalPal"al)=e"FoalaMal?al)y . (B12)
Using the last two equations, we get
(afa{Ma{”al") = ey {[a a(")(a?al”)++[al al?(aPal”)r+[al? a7 )(a{al)},  (B13)
which, from Eq.(B10), yields
(afPafal?al")r=(a"a{”)r(al?a{”)1+(a"al”)(a{"al”)r+ (afPal”)r(alVal?)y, (B14)
and, hence, we have
<(i)n(Xl)‘i)n(xz)(i)n(x3)(i)n(x4)>T:<ci)n(Xl)Ci)n(xz)>T<ci)n(X3)<i>n(X4)>T+<Ci)n(xl)(i)n(xa)>T<ci)n(X2)(i)n(X4)>T
+(D (%) Pp(Xa) )r{ P (Xz) Dy(X3) )7 - (B15)

A similar expression holds for the four-point function of time-ordered prodigaissidert;>t,>t;>t, in the last equation
These results can be easily generalized to therrapgint functions N € N). On the other hand, from E¢B9), we can see

that (a{®)+=0 and, following similar steps, we can show that the thermal{2)-point functions vanish.

[1] R. M. Wald, Quantum Field Theory in Curved Spacetime and [21] A. Campos and E. Verdaguer, Int. J. Theor. PI8&. 2525

Black Hole Thermodynamic$¢The University of Chicago
Press, Chicago, 1994
[2] R. M. Wald, Commun. Math. Phy$&4, 1 (1977).

(1997.
[22] E. Calzetta, A. Campos, and E. Verdaguer, Phys. Re%6D
2163(1997.

[3] S. A. Fulling, Aspects of Quantum Field Theory in Curved [23] A. Campos and B.-L. Hu, Phys. Rev. &8, 125021(1998.
Space-tim¢Cambridge University Press, Cambridge, England,[24] A. Campos and B.-L. Hu, gr-qc/9819234.

1989.
[4] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved

[25] E. Calzetta and E. Verdaguer, Phys. Rev.59, 083513
(1999.

Space (Cambridge University Press, Cambridge, England,[26] B.-L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev.4D 1576

1982.

(1993.

[5] A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, [27] A. Matacz, Phys. Rev. [35, 1860(1997.

Vacuum Quantum Effects in Strong Fieldsiedmann Labo-
ratory Publishing, St. Petersburg, 1994

[6] E. E. Flanagan and R. M. Wald, Phys. Rev5B, 6233(1996;
M. Visser, Phys. Lett. B}15 8 (1997); gr-qc/9710020.

[7] L. H. Ford, Ann. Phys(N.Y.) 144, 238(1982.

[8] C.-I. Kuo and L. H. Ford, Phys. Rev. &7, 4510(1993; N. G.
Phillips and B.-L. Hui,ibid. 55, 6123(1997.

[9] B.-L. Hu, Physica A158 399(1989.

[10] R. P. Feynman and F. L. Vernon, Ann. Phys.Y.) 24, 118
(1963.

[11] R. P. Feynman and A. R. Hibbfuantum Mechanics and
Path Integrals(McGraw-Hill, New York, 1963.

[12] E. Calzetta and B.-L. Hu, Phys. Rev.49, 6636(1994.

[13] B.-L. Hu and A. Matacz, Phys. Rev. b1, 1577(1995.

[14] B.-L. Hu and S. Sinha, Phys. Rev. 1, 1587(1995.

[15] A. O. Caldeira and A. J. Legget, Physical®1, 587 (1983.

[16] B.-L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev.4b, 2843
(1992.

[17] B.-L. Hu and A. Matacz, Phys. Rev. B9, 6612(1994.

[18] C. Greiner and B. Miler, Phys. Rev. D65, 1026(1997).

[19] A. Campos and E. Verdaguer, Phys. Rev5®) 1927 (1996.

[20] F. C. Lombardo and F. D. Mazzitelli, Phys. Rev.55, 3889
(1999.

[28] M. Morikawa, Phys. Rev. 33, 3607(1986; D.-S. Lee and D.
Boyanovsky, Nucl. PhysB406, 631 (1993.

[29] R. Zh. Shaisultanov, hep-th/9509154; hep-th/9512144.

[30] M. Gleiser and R. O. Ramos, Phys. Revb0) 2441(1994; D.
Boyanovsky, H. J. de Vega, R. Holman, D. S. Lee, and A.
Singh, ibid. 51, 4419(1995; E. Calzetta and B.-L. Huibid.
55, 3536 (1997); M. Yamaguchi and J. Yokoyamahid. 56,
4544(1997; S. A. Ramsey, B.-L. Hu, and A. M. Stylianopo-
ulos, ibid. 57, 6003(1998.

[31] R. Martin and E. Verdaguer, gr-qc/9811070.

[32] M. Gell-Mann and J. B. Hartle, Phys. Rev.47, 3345(1993.

[33] J. B. Hartle, inGravitation and QuantizationsProceedings of
the1992 Les Houches Summer School, edited by B. Julia and
J.  Zinn-Justin  (North-Holland, = Amsterdam, 1995
gr-qc/9304006, and references therein.

[34] H. F. Dowker and J. J. Halliwell, Phys. Rev. B6, 1580
(1992.

[35] J. J. Halliwell, Phys. Rev. @8, 4785(1993; 57, 2337(1998.

[36] J. T. Whelan, Phys. Rev. B7, 768(1998; gr-qc/9702003.

[37] R. Martin and E. Verdaguer, gr-qc/9812063.

[38] H. B. Callen and T. A. Welton, Phys. Re83, 34 (1951); W.
Bernard and H. B. Callen, Rev. Mod. Phyl, 1017(1959;

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskiourse of

084008-23



ROSARIO MARTIN AND ENRIC VERDAGUER

Theoretical Physigsvol. 5, 3rd ed.:Statistical PhysicsPart 1
(Pergamon, London, 1980G. Parisi,Statistical Field Theory

(Frontiers in Physics Series, Addison-Wesley, Reading, MA,

1988.
[39] R. Kubo, J. Phys. Soc. Jpi2, 570 (195%; in Lectures in

Theoretical PhysigsVol. |, Proceedings of the 1958 Summer

PHYSICAL REVIEW D60 084008

vanced School on Effective Theorieslited by F. Cornet and
M. J. Herrero (World Scientific, Singapore, 1996
gr-qc/9512024; gr-qc/9712070.

[58] S. Weinberg,The Quantum Theory of Field¥ols. | and Il
(Cambridge University Press, Cambridge, England, 1995 and
1996.

Institute for Theoretical Physics, University of Colorado, [59] R. M. Wald, Commun. Math. Phys70, 221 (1979; T. S.

Boulder, Colorado, edited by W. E. Brittin and L. G. Dunham

(Interscience, New York, 1939 Rep. Prog. Phys29, 255
(1966.

[40] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. RE@S
115(1988.

[41] J. Schwinger, J. Math. Phyg, 407 (1961).

[42] J. Weber, Phys. Rew.01, 1620(1956.

[43] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics Il
(Springer-Verlag, Berlin, 1985

[44] P. C. Martin and J. Schwinger, Phys. R&Ww5 1342(1959;
L. P. Kadanoff and P. C. Martin, Ann. Phy&\.Y.) 24, 419
(1963; M. Plischke and B. Bergerse&quilibrium Statistical
Physics 2nd ed.(World Scientific, Singapore, 1994

[45] R. Jackiw and V. P. Nair, Phys. Rev. 48, 4991(1993.

[46] P. Candelas and D. W. Sciama, Phys. Rev. L88. 1372

(1977; D. W. Sciama, P. Candelas, and D. Deutsch, Adv.

Phys.30, 327(1981); D. W. Sciama, irQuantum Gravity 2: A

Bunch, Ann. Phys(N.Y.) 131, 118(1981); M. Luscher,ibid.
142, 359 (1982.

[60] B. S. Kay, Commun. Math. Phy$§2, 55 (1978.

[61] J. S. Dowker and R. Critchley, Phys. Rev.1B, 1484(1977);
J. S. Dowker and G. Kennedy, J. Phys.1A 895(1979; G.
Kennedy, R. Critchley, and J. S. Dowker, Ann. Phys.Y.)
125, 346 (1980.

[62] G. Gibbons and M. J. Perry, Proc. R. Soc. Lond®58, 467
(1978.

[63] I. R. Senitzky, Phys. Rev119 670 (1960; P. Ullersma,
Physica(Amsterdam 32, 27 (1966); ibid. 32, 90 (1966; K.
Lindenberg and B. J. West, Phys. Rev.38, 568(1984).

[64] G. W. Ford, M. Kac, and P. Mazur, J. Math. Phy.504
(1969; H. Mori, Prog. Theor. Phys33, 423 (1969; H. Dek-
ker, Phys. Rep80, 1 (198)); K. Lindenberg and B. J. West,
The Nonequilibrium Statistical Mechanics of Open and Closed
SystemgVCH Publishers, New York, 1990

Second Oxford Symposiyedited by C. J. Isham, R. Penrose, [65] L. Schwartz, Theorie des distributions Tomes | et Il (Her-

and D. W. SciamdClarendon Press, Oxford, 1981

[47] E. Mottola, Phys. Rev. [33, 2136(1986.

[48] B.-L. Hu, gr-qc/9902064.

[49] B.-L. Hu, A. Raval, and S. Sinha, iBlack Holes, Gravita-
tional Radiation and the Universedited by B. R. lyer and B.
Bhawal (Kluwer Academic Publishers, Dordrecht, 1999

[50] R. M. Wald, General Relativity(The University of Chicago
Press, Chicago, 1984

[51] S. M. Christensen, Phys. Rev. D4, 2490 (1976; 17, 946
(1978.

[52] T. S. Bunch, J. Phys. A2, 517 (1979.

[53] S. A. Fulling and L. Parker, Ann. Phy&\.Y.) 87, 176 (1974).

[54] J. Schwinger, Phys. Rel28 2425(1962; P. M. Bakshi and
K. T. Mahanthappa, J. Math. Phy4. 1 (1963, 4, 12 (1963,
L. V. Keldysh, Zh. Esp. Teor. Fiz.47, 1515 (1964 [Sov.
Phys. JETR0, 1018(1965]; J. SchwingerParticles, Sources,
and Fields(Addison-Wesley, Reading, MA, 1970

[55] K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. R4A8 1
(1985; N. P. Landsman and Ch. G. van Weslid. 145, 141
(1987; E. Calzetta and B.-L. Hu, Phys. Rev.33, 495(1987.

[56] A. Campos and E. Verdaguer, Phys. Rev4® 1861 (1994).

[57] J. F. Donoghue, Phys. Rev. Lef2, 2996(1994); Phys. Rev.
D 50, 3874 (1994); Helv. Phys. Actaf9, 269 (1996; in Ad-

mann, Paris, 1957 and 1959. H. Zemanian,Distribution
Theory and Transform Analysi®over, New York, 198Y.

[66] H. Nyquist, Phys. Rev32, 110(1928; M. S. Green, J. Chem.
Phys.19, 1036(195)); H. B. Callen and R. F. Greene, Phys.
Rev. 86, 702 (1952.

[67] R. Zwanzig, J. Stat. Phy9, 215(1973.

[68] W. Israel, in General Relativity papers in honor of J. L.
Synge, edited by L. O’Raifeartaigi©xford University Press,
London, 1972

[69] J. H. Cooke, Am. J. Physi5, 1168 (1977; G. Kennedy, J.
Phys. A 11, L77 (1978; B.-L. Hu, Phys. Lett.108B, 19
(1982; P. Amsterdamski, Phys. Rev. 85, 1209(1987; J. P.
Paz,ibid. 41, 1054(1990.

[70] C. R. Cramer and B. S. Kay, Phys. Rev.53, 1052(1998.

[71] J. Cespedes and E. Verdaguer, Phys. Revi1)1022(1990.

[72] R. U. Sexl and H. K. Urbantke, Phys. Re\M/9, 1247(1969.

[73] R. Marfin and E. Verdaguer, in preparation.

[74] J. A. Frieman, Phys. Rev. B9, 389(1989.

[75] N. Weiss, Phys. Rev. 34, 1768(1986.

[76] B. S. DeWitt, Phys. Rep., Phys. Left9C, 297 (1975.

[77] L. H. Ford, Phys. Rev. 11, 3370(1975.

[78] M. Le Bellac, Thermal Field Theory(Cambridge University
Press, Cambridge, England, 1996

084008-24



