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Stochastic semiclassical gravity
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In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the
framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter
stress-energy fluctuations, can be formally derived from a functional method based on the influence functional
of Feynman and Vernon. In the second part, we derive a number of results for background solutions of
semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal
equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle
creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic
metric fluctuations.@S0556-2821~99!02318-8#

PACS number~s!: 04.62.1v, 05.40.2a
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I. INTRODUCTION

It is generally believed that there must be a regime
which the gravitational field can be treated as a classica
‘‘quasiclassical’’ field, but its interaction with quantum ma
ter fields cannot be neglected. The standard approach to
scribe such a regime is the semiclassical theory of gra
based on the semiclassical Einstein equation. This is a
eralization of the Einstein equation for a classical me
when the expectation value of the stress-energy tenso
quantum matter fields is the source of curvature. The se
classical theory of gravity is mathematically consistent a
fairly well understood, at least for linear matter fields@1–5#.

One expects that semiclassical gravity could be derive
an approximation of a fundamental quantum theory of gr
ity. However, in the absence of such a fundamental the
the scope and limits of the semiclassical theory are less
understood@1,6#. It has been pointed out, nevertheless, t
this semiclassical theory may not be valid when the ma
fields have important quantum stress-energy fluctuati
@1,2,4,7#. When this is the case, the stress-energy fluctuat
may have relevant back-reaction effects on the space
geometry in the form of induced gravitational fluctuatio
@7#. A number of examples have been studied, both in c
mological and in flat spacetimes, where, for some state
the matter fields, the stress-energy tensor has significant
tuations@8#. It is thus necessary to extend the semiclass
theory of gravity to determine the effect of such fluctuatio

To address this problem, different approaches have b
adopted. The aim of the first part of the present paper i
unify two of these approaches.

One of these approaches relies on the idea, first propo
by Hu @9# in the context of semiclassical cosmology,
viewing the metric field as the ‘‘system’’ of interest and th
matter fields as being part of its ‘‘environment.’’ This a
proach leads naturally to the influence functional formali
of Feynman and Vernon@10#. In this formalism, the integra
tion of the environment variables in a path integral yields
influence functional, from which one can define an effect

*Also at Institut de Fı´sica d’Altes Energies~IFAE!.
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action for the dynamics of the system@11–18#. This ap-
proach has been extensively used in the literature, not on
the framework of semiclassical cosmology@12–14,19–25#,
but also in the context of analogous semiclassical regime
quantum mechanics@15,17,26# and in quantum field theory
@18,27–30#. It is based on the observation that the semicl
sical equation can be directly derived from the effective
tion of Feynman and Vernon@12,18,19,22,23,29#. When
computing this effective action perturbatively up to quadra
order in its variables, one usually finds some imagina
terms which do not contribute to the semiclassical equat
The key point is then to formally identify the contribution o
such terms in the influence functional with the characteris
functional of a Gaussian stochastic source. Assuming tha
the semiclassical regime, this stochastic source interacts
the system variables, equations of the Langevin type can
derived for these variables. However, since this appro
relies on a purely formal identification, doubts may be rais
on the physical significance of the derived equations.

An alternative approach has been introduced in a rec
paper@31#. In that work, we proposed a stochastic semicl
sical theory of gravity as a perturbative generalization
semiclassical gravity to describe the back reaction of
lowest order stress-energy fluctuations. The idea is in
quite simple. One starts realizing that, for a given solution
semiclassical gravity, the lowest order matter stress-ene
fluctuations can be associated to a classical stochastic te
field. Then, we seek an equation which incorporates in
consistent way this stochastic tensor as the source of lin
perturbations to the semiclassical metric. The resulting eq
tion is the semiclassical Einstein-Langevin equation.

We should emphasize that, even if the metric fluctuatio
in this theory are classical~stochastic fluctuations!, their ori-
gin is presumably quantum. This is so not only because th
metric fluctuations are induced by the fluctuations of a qu
tum operator, but also because they are supposed to des
some remnants of the quantum gravity fluctuations a
some mechanism for decoherence and classicalization o
metric field@32–36#. From the formal assumption that such
mechanism is the Gell-Mann and Hartle mechanism
environment-induced decoherence of suitably coarse-gra
system variables@32,33#, one may, in fact, derive the sto
chastic semiclassical theory@37#. Nevertheless, that deriva
©1999 The American Physical Society08-1
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ROSARIO MARTÍN AND ENRIC VERDAGUER PHYSICAL REVIEW D60 084008
tion is of course formal, given that, due to the lack of the f
quantum theory of gravity, the classicalization mechani
for the gravitational field is not understood. One expects t
the stochastic semiclassical theory is valid when the cha
teristic time and space scales of variation of the metric fi
are well above its characteristic decoherence scales. In
regime, the theory can be applied to compute correla
functions of gravitational perturbations for points separa
by scales larger than these decoherence scales. Hence
theory may have a number of interesting applications
black hole physics and in cosmology, particularly in view
the problem of structure formation. Some examples
simple applications have already been given in Re
@22,25,31#.

The purpose of the second part of the paper is to de
some general results concerning stochastic semiclas
gravity for stationary and conformally stationary backgrou
solutions of semiclassical gravity~for conformal matter
fields in the latter case!. We analyze two issues: the existen
of a fluctuation-dissipation relation and the creation of p
ticles by stochastic metric perturbations.

Under very general conditions, a fluctuation-dissipat
relation is known to exist in models of quantum mechani
and also in some models of quantum many-body system
quantum fields in the presence of classical fields@38–
44,42,45#. This is a relation between quantum fluctuations
a system in a state of thermal equilibrium and the dissipa
properties of this system caused by classical linear pertu
tions on it. The idea of a fluctuation-dissipation relation
the theory of quantum fields in curved spacetimes and in
semiclassical back-reaction problem was already presen
some early papers@46,47,9#. A fluctuation-dissipation rela-
tion has been found in some of the previous derivations
semiclassical Langevin-type equations@14,19,23,24#. Some
authors believe that such a relation should always be pre
and embody the physics of the back reaction of matter fie
on the gravitational field@14,23,24,48,49#. It is also believed
that noise and dissipation must be related to the creatio
particles by stochastic metric perturbations@9,12–
14,21,22,48,49#.

In stationary and conformally stationary spacetimes~for
conformal fields in the latter case!, one can define a state o
thermal equilibrium for the matter fields. When the bac
ground solution of semiclassical gravity is of one of the
types, we can identify a dissipation kernel in the correspo
ing semiclassical Einstein-Langevin equation which is
lated to the fluctuations of the stochastic source by
fluctuation-dissipation relation. We also study the product
of particles by stochastic metric perturbations to such ba
grounds: we relate particle creation to the vacuum stre
energy fluctuations and we show that the mean value of
ated particles is enhanced by the presence of me
fluctuations.

The plan of the paper is the following. In Sec. II, w
construct the stochastic semiclassical theory of gravity to
scribe the back reaction of the stress-energy fluctuations
the spacetime. In Sec. III, we show that the semiclass
Einstein-Langevin equation obtained in Sec. II can actua
be formally derived with the functional approach. This co
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nection clarifies the physical meaning of the Langevin-ty
equations previously derived by functional methods@12–
14,19–25#, since it shows that the formally introduced st
chastic source is directly related to the matter stress-en
fluctuations. We then use the functional approach to w
the Einstein-Langevin equation in an explicit form, which
more suitable for specific calculations. In Sec. IV, we der
the fluctuation-dissipation relation for stationary and conf
mally stationary backgrounds and the results for particle c
ation by stochastic metric perturbations. Finally, in Sec.
we summarize our main conclusions.

Throughout this paper we use the (111) sign conven-
tions and the abstract index notation of Ref.@50#, and we
work with units in whichc5\51.

II. STOCHASTIC SEMICLASSICAL GRAVITY

In this section, we construct the stochastic semiclass
theory of gravity as a perturbative extension of semiclass
gravity to describe the back reaction of quantum stre
energy fluctuations on the gravitational field. Let us beg
with a brief overview of the semiclassical theory of gravi
interacting with linear matter fields. Let (M,gab) be a glo-
bally hyperbolic four-dimensional spacetime and conside
linear quantum fieldF on it. For the sake of definiteness, w
will take F as a real scalar field, but all the analysis of th
section is valid for any kind of linear quantum field or for
set of linear independent quantum fields. Throughout t
section we shall work in the Heisenberg picture. The fie

operator in this picture,F̂, is an operator-valued distributio
solution of the Klein-Gordon equation,

~h2m22jR!F̂50, ~2.1!

wherem is the mass,h[¹a¹a, with ¹a being the covariant
derivative associated to the metricgab , and j is a dimen-
sionless parameter coupling the field to the scalar curva
R. To indicate that the field operator is a functional of t

metric gab , we will write F̂@g#(x).
The classical stress-energy tensor is obtained by fu

tional derivation of the classical action for the field in a bac
ground spacetime (M,gab) with respect to the metric. This
tensor is a functionalTab@g,F# of the metricgab and of the
classical fieldF. For a real scalar field, it is

Tab@g,F#5¹aF¹bF2
1

2
gab¹

cF¹cF2
1

2
gabm

2F2

1j~gabh2¹a¹b1Gab!F
2, ~2.2!

whereGab is the Einstein tensor. The next step is to defin
stress-energy tensor operatorT̂ab@g#(x). In a naive way, one
would replace the classical fieldF in the functional

Tab@g,F# by its corresponding quantum operatorF̂@g#.
However, since the field operator is well-defined only as
distribution on spacetime and this procedure involves tak
the product of two distributions at the same spacetime po
the formal expression forT̂ab@g# is ill-defined and we need a
8-2
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STOCHASTIC SEMICLASSICAL GRAVITY PHYSICAL REVIEW D60 084008
regularization procedure. We may formally think of a reg
larized ‘‘operator’’ T̂ab@g#(x;V), depending on some regu
lator V, defined by giving a precise prescription for compu
ing its matrix elements for physically acceptable states of
field. These states are assumed to be Hadamard states o
Fock space of a Hadamard vacuum state@1#. The states may
have to be regularized also in some way and the proce
may involve some analytic continuation in the values of
regulator. Of course, if we remove the regularization in
results for these matrix elements, we would obtain infin
quantities.

Once the regularization prescription has been introduc
a renormalized and regularized stress-energy ‘‘operat
T̂ab

R @g#(x;V) may be defined as

T̂ab
R @g#~x;V!5T̂ab@g#~x;V!1Fab

C @g#~x;V! Î , ~2.3!

where Î is the identity operator andFab
C @g# are some sym-

metric tensor counterterms, which can be written in terms
the regulatorV and local functionals of the metricgcd(x).1

These counterterms can and must be chosen in such a
that, for any pair of physically acceptable statesuc& anduw&,
the matrix element of the renormalized operatorT̂ab

R @g#, de-
fined by

^cuT̂ab
R uw&[ lim

V→Vp

^cuT̂ab
R uw&~V!, ~2.4!

whereVp means the ‘‘physical value’’ of the regulator,
finite ~well defined as a distribution! and satisfies Wald’s
axioms @3,2#. Using the point-splitting or the dimensiona
regularization methods, these counterterms can be extra
from the singular part of a Schwinger-DeWitt seri
@3,51,52#. The choice of these counterterms is not uniq
each different choice is called a ‘‘renormalization scheme
and this leads to some ambiguity in the definition of t
renormalized stress-energy tensor operator. But this amb
ity can be absorbed into the renormalized coupling const
appearing in the equations of motion for the gravitatio
field. Thus, the ambiguity is only a mathematical artifact
the separation of the action into a gravitational part an
matter part, but the physically relevant equations are in
unique@3,53#.

The semiclassical Einstein equation for the metricgab can
then be written as

1In the point-splitting regularization method, for instance, one
troduces a pointy in a normal neighborhood of the pointx, so some
non-local dependence on the metric is explicitly introduced in
regularized stress-energy operator and then also in the cou
terms. Using this regularization technique, the regulator can
taken as the vectorsa(x,y), which is the tangent vector at the poin
x to the geodesic joiningx andy with length equal to the arc lengt
along this geodesic. In this case, the counterterms can be writte
terms of the vectorsa(x,y) and tensors which are local functiona
of the metricgab(x) @3,51#.
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8pG
~Gab@g#1Lgab!22~aAab1bBab!@g#5^T̂ab

R &@g#,

~2.5!

where^T̂ab
R &@g# is the expectation value ofT̂ab

R @g# in some
physically acceptable state of the quantum field on the sp
time (M,gab). The notation̂ T̂ab

R &@g# is used to indicate tha
this expectation value is a functional of the metricgcd , not
only because the stress-energy tensor operator depend
the metric, but also because the state of the matter field
pends on the spacetime~in general, such a state depends
the global structure of the spacetime manifold!. In Eq. ~2.5!,
G, L, a andb are renormalized coupling constants, resp
tively, the Newtonian gravitational constant, the cosmolo
cal constant and two dimensionless coupling consta
These constants may be seen as the result of ‘‘dressing’’
bare coupling constants in a suitably regularized version
the gravitational part of the action,

Sg@g#[E d4xA2gF 1

16pGB
~R22LB!

1aBCabcdC
abcd1bBR2G , ~2.6!

whereCabcd is the Weyl tensor and the subindexB in the
coupling constants means ‘‘bare.’’ These renormalized c
pling constants are supposed to be determined experim
tally ~for the specific renormalization scheme that one h
chosen and for the characteristic scales of the physics u
consideration!. The tensorsAab and Bab in Eq. ~2.5! come
from the functional derivatives with respect to the metric
the terms quadratic in the curvature inSg@g#, which are
needed to ensure the renormalizability of the theory. Th
tensors are explicitly given by

Aab[
1

A2g

d

dgab
E d4xA2gCcde fC

cde f

5
1

2
gabCcde fC

cde f22RacdeRb
cde14RacRc

b2
2

3
RRab

22hRab1
2

3
¹a¹bR1

1

3
gabhR, ~2.7!

and

Bab[
1

A2g

d

dgab
E d4xA2gR2

5
1

2
gabR222RRab12¹a¹bR22gabhR, ~2.8!

where Rabcd is the Riemann tensor andRab is the Ricci
tensor. Note that each of the terms in Eq.~2.5! has vanishing
divergence. Notice also that we could add a classical str

-

e
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ROSARIO MARTÍN AND ENRIC VERDAGUER PHYSICAL REVIEW D60 084008
energy tensor to the right hand side of Eq.~2.5!, if we had a
classical matter source, but, for simplicity, we shall igno
such a term.

As long as the gravitational field is assumed to be
scribed by a classical Lorentzian metricgab , the semiclassi-
cal Einstein equation seems to be the only physically pl
sible dynamical equation for this metric. The reason is th
in classical general relativity, the metricgab couples to mat-
ter through the stress-energy tensor. For a field quantize
the spacetime (M,gab) and for a given state of this field, th
expectation value of the renormalized stress-energy te
operator is the only physically observable~up to the ambi-
guity mentioned above! c-number stress-energy tensor th
we can construct.

A solution of semiclassical gravity consists of a spaceti

(M,gab), a quantum field operatorF̂@g# satisfying Eq.
~2.1!, and a physically acceptable stateuc&@g# for this field
~which can also be a mixed state characterized by a den
operator!, such that Eq.~2.5! is satisfied when the expecta
tion value in the stateuc&@g# of the renormalized operato
T̂ab

R @g# is put on the right hand side.
Let us now introduce stress-energy fluctuations. Give

solution of semiclassical gravity, the stress-energy ten
will in general have quantum fluctuations. To lowest ord
such fluctuations are described by the bi-tensor, which s
be called noise kernel, defined by

8Nabcd~x,y![ lim
V→Vp

^$ t̂ ab~x!, t̂ cd~y!%&@g#~V!, ~2.9!

where $,% means the anticommutator andt̂ ab(x;V)
[T̂ab(x;V)2^T̂ab(x)&(V). Note that we have defined thi
noise kernel in terms of the unrenormalized ‘‘operato
T̂ab@g#(x;V). For a linear quantum field, this can b
done because the ultraviolet singular behavior

^T̂ab(x)T̂cd(y)&(V) is the same as that o

^T̂ab(x)&(V)^T̂cd(y)&(V), soNabcd(x,y) is free of ultravio-
let divergencies. One can trivially see from the substitut
of ~2.3! into ~2.9! that we can replaceT̂ab@g#(x;V) by the
renormalized operatorT̂ab

R @g#(x), and omit the limit V
→Vp , in the last expression. The result is obviously ind
pendent of the renormalization scheme that one choose
defineT̂ab

R .
As a perturbative correction to semiclassical gravity,

want now to introduce an equation in which the stress-ene
fluctuations described by Eq.~2.9! are the source of classica
gravitational fluctuations. Thus, we assume that the grav
tional field is described bygab1hab , wherehab is a linear
perturbation to the background metricgab , solution of Eq.
~2.5!. The renormalized stress-energy operator and the s
of the quantum field may be denoted byT̂ab

R @g1h# and

uc&@g1h#, respectively, and̂T̂ab
R &@g1h# is the correspond-

ing expectation value.
Let us introduce a Gaussian stochastic tensor fieldjab

defined by the following correlators:
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^jab~x!&c50, ^jab~x!jcd~y!&c5Nabcd~x,y!,
~2.10!

where^&c means statistical average. In general, the two-po
correlation function of a stochastic tensor fieldjab must
be a symmetric, in the sense that̂jab(x)jcd(y)&c
5^jcd(y)jab(x)&c , and positive semi-definite real bi-tenso
field. Since the renormalized operatorT̂ab

R is self-adjoint, it is
easy to see from the definition~2.9! thatNabcd(x,y) satisfies
all these conditions. Therefore, the relations~2.10!, with the
cumulants of higher order taken to be zero, do truly char
terize a stochastic tensor fieldjab . The simplest equation
which can incorporate in a consistent way the stress-ene
fluctuations described byNabcd(x,y) as the source of classi
cal metric fluctuations is

1

8pG
„Gab@g1h#1L~gab1hab!…22~aAab1bBab!@g1h#

5^T̂ab
R &@g1h#12jab , ~2.11!

which must be understood as a dynamical equation forhab to
linear order. Equation~2.11! is the semiclassical Einstein
Langevin equation, which gives a first order correction
semiclassical gravity. One could also seek equations des
ing higher order corrections, which would involve high
order stress-energy fluctuations, but, for simplicity, we sh
stick to the lowest order.

In order to check the consistency of Eq.~2.11!, note that
the termjab does not depend onhcd , since it is completely
determined from the solution of semiclassical gravity by t
correlators~2.10!. Even so, this term must be considered
of first order in perturbation theory around semiclassi
gravity. As shown in Ref.@31#, jab is covariantly conserved
up to first order in this perturbation theory, in the sense t
¹ajab behaves deterministically as the zero vector field
M (¹a is the covariant derivative associated to the ba
ground metricgab). It is thus consistent to include the term
jab in the right hand side of Eq.~2.11!.

It was also shown in Ref.@31# that for a conformal field,
i.e., a field whose classical action is conformally invaria
~e.g., a massless conformally coupled scalar field!, jab is
‘‘traceless’’ up to first order in perturbation theory, sinc
gabjab behaves deterministically as a vanishing sca
Hence, in the case of a conformal matter field, the trace
the right hand side of Eq.~2.11! comes only from the trace
anomaly.

Since Eq.~2.11! is a linear stochastic equation forhab
with an inhomogeneous termjab , a solution can be formally
written as a functionalhab@j#. Such a solution can be cha
acterized by the whole family of its correlation function
From the average of Eq.~2.11!, the average of the metric
gab1^hab&c , must be a solution of the semiclassical Einste
equation linearized aroundgab . The fluctuations of the met
ric around this average can be described by the momen
order higher than one of the stochastic fieldhab

f @j#
[hab@j#2^hab&c .

Finally, for the solutions of Eq.~2.11! we have the gauge
freedomhab→hab8 [hab1¹azb1¹bza , whereza is any sto-
chastic vector field onM which is a functional ofjcd , and
za[gabz

b. Note that the tensors which appear in Eq.~2.11!
transform asRab@g1h8#5Rab@g1h#1£zRab@g# ~to linear
8-4
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STOCHASTIC SEMICLASSICAL GRAVITY PHYSICAL REVIEW D60 084008
order in the perturbations!, where £z is the Lie derivative
with respect toza. If we substitutehab by hab8 in Eq. ~2.11!,
we get Eq.~2.11! plus the Lie derivative of a combination o
the tensors which appear in Eq.~2.5!. This last tensorial
combination vanishes when Eq.~2.5! is satisfied. Thus, it is

necessary that the set (M,gab ,F̂@g#,uc&@g#) be a solution
of semiclassical gravity to ensure that the Einstein-Lange
equation~2.11! is gauge invariant.

III. DERIVATION FROM AN INFLUENCE ACTION

The purpose of this section is to derive the semiclass
Einstein-Langevin equation~2.11! by a method based o
functional techniques. The same method has been in
used in the literature to derive Langevin-type equations
the context of semiclassical cosmology@12–14,19–25# and
of analogous semiclassical regimes for systems of quan
mechanics@15,17,26# and of quantum field theory@18,27–
30#. Using these functional techniques, we also work out
Einstein-Langevin equation more explicitly, in a form mo
suitable for specific calculations. Here, we consider again
simplest case of a linear real scalar fieldF.

These functional techniques are based on the closed
path ~CTP! functional formalism, due to Schwinger an
Keldysh@41,54#. This formalism is designed to obtain expe
tation values of field operators in a direct way and it is sui
to derive dynamical equations for expectation values;
Refs. @55,56,23# for detailed reviews. In our case, this fo
malism will be useful to obtain an expression for the exp
tation value^T̂ab&@g1h# as an expansion in the metric pe
turbation. When the full quantum system consists of
distinguished subsystem~the ‘‘system’’ of interest! interact-
ing with an environment~the remaining degrees of freedom!,
the CTP functional formalism turns out to be relat
@12,18,19,23,28,29,37# to the influence functional formalism
of Feynman and Vernon@10#. In this latter formalism, the
integration of the environment variables in a CTP path in
gral yields the influence functional, from which one can d
fine an effective action for the dynamics of the system@11–
18#. Applying this influence functional formalism to ou
problem, the semiclassical Einstein-Langevin equation w
be formally derived in Sec. III B.

In our case, we consider the metric fieldgab(x) as the
‘‘system’’ degrees of freedom, and the scalar fieldF(x) and
also some ‘‘high-momentum’’ gravitational modes@36# as
the ‘‘environment’’ variables. Unfortunately, since the for
of a complete quantum theory of gravity interacting w
matter is unknown, we do not know what these ‘‘hig
momentum’’ gravitational modes are. Such a fundamen
quantum theory might not even be a field theory, in wh
case the metric and scalar fields would not be fundame
objects@48#. Thus, in this case, we cannot attempt to eva
ate the influence action of Feynman and Vernon star
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from the fundamental quantum theory and performing
path integrations in the environment variables. Instead,
introduce the influence action for an effective quantum fi
theory of gravity and matter@57,13#, in which such ‘‘high-
momentum’’ gravitational modes are assumed to have b
already ‘‘integrated out.’’ Adopting the usual procedure
effective field theories@58,57#, one has to take the effectiv
action for the metric and the scalar field of the most gene
local form compatible with general covariance:S@g,F#
[Sg@g#1Sm@g,F#1•••, whereSg@g# is given by Eq.~2.6!,

Sm@g,F#[2
1

2E d4xA2g@gab]aF]bF1~m21jR!F2#,

~3.1!

and the dots stand for terms of order higher than two in
curvature and in the number of derivatives of the scalar fi
@because of the Gauss-Bonnet theorem in four spacetime
mensions, no further terms of second order in the curva
are needed in the gravitational action~2.6!#. In this paper, we
shall neglect the higher order terms as well as self-interac
terms for the scalar field. The second order terms are ne
sary to renormalize one-loop ultraviolet divergencies of
scalar field stress tensor. SinceM is a globally hyperbolic
manifold, we can foliate it by a family oft5constant Cauchy
hypersurfacesS t . We denote byx the coordinates on each o
these hypersurfaces, and byt i and t f some initial and final
times, respectively. The integration domain for the act
terms must be understood as a compact regionU of the mani-
fold M, bounded by the hypersurfacesS t i

andS t f
.

Assuming the form~3.1! for the effective action which
couples the scalar and the metric fields, we can now in
duce the corresponding influence functional. This is a fu
tional of two copies of the metric field that we denote bygab

1

andgab
2 . Let us assume that, in the quantum effective theo

the state of the full system~the scalar and the metric fields!
in the Schro¨dinger picture at the initial timet5t i can be
described by a factorizable density operator, i.e., a den
operator which can be written as the tensor product of t
operators on the Hilbert spaces of the metric and of the sc
field. Let r̂S(t i) be the density operator describing the initi
state of the scalar field. If we consider the theory of a sca
field quantized in the classical background spaceti
(M,gab) through the action~3.1!, a state in the Heisenber
picture described by a density operatorr̂@g# corresponds to
this state. Let$uw(x)&S% be the basis of eigenstates of th

scalar field operatorF̂S(x) in the Schro¨dinger picture:

F̂S(x)uw&S5w(x)uw&S. The matrix elements ofr̂S(t i) in this
basis will be written asr i@w,w̃#[S^wur̂S(t i)uw̃&S. We can
now introduce the influence functional as the following pa
integral over two copies of the scalar field:
FIF@g1,g2#[E D@F1#D@F2#r i@F1~ t i !,F2~ t i !#d@F1~ t f !2F2~ t f !#e
i (Sm[g1,F1] 2Sm[g2,F2]) . ~3.2!
8-5
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The above double path integral can be rewritten as a clo
time path~CTP! integral, namely, as an integral over a sing
copy of field paths with two different time branches, o
going forward in time fromt i to t f , and the other going
backward in time fromt f to t i . From this influence func-
tional, the influence action,SIF@g1,g2#, and the effective
action of Feynman and Vernon,Seff@g1,g2#, are defined
by FIF@g1,g2#[eiSIF[g1,g2] and Seff@g1,g2#[Sg@g1#
2Sg@g2#1SIF@g1,g2#.

Expression~3.2! is ill-defined; it must be regularized t
get a meaningful influence functional. We shall assume
we can use dimensional regularization, that is, that we
give sense to Eq.~3.2! by dimensional continuation of all th
quantities that appear in this expression. We should p
out, nevertheless, that for this regularization method to w
one must be able to perform an analytic continuation to
emmanian signature@59#. Thus, we substitute the actionSm
in Eq. ~3.2! by some generalization ton spacetime dimen-
sions, which may be chosen as

Sm@g,Fn#52
1

2E dnxA2g@gab]aFn]bFn

1~m21jR!Fn
2#, ~3.3!

where we use a notation in which a subindexn is attached to
these quantities that have different physical dimensions t
the corresponding physical quantities in four dimensions
quantity with the subindexn can always be associated
another without this subindex by means of a mass scalem;
thus, for the scalar fieldFn5m (n24)/2F.

We also need to substitute the action~2.6! by some suit-
able generalization ton spacetime dimensions. We take

Sg@g#5mn24E dnxA2gF 1

16pGB
~R22LB!

1
2

3
aB~RabcdR

abcd2RabR
ab!1bBR2G . ~3.4!

By the Gauss-Bonnet theorem, this action gives forn54 the
same equations of motion as the action~2.6!. The form of
Eq. ~3.4! is suggested by the Schwinger-DeWitt analysis
the ultraviolet divergencies in the matter stress-energy te
using dimensional regularization@52#. Using Eqs.~3.3! and
~3.4!, one can write the effective action of Feynman a
Vernon, Seff@g1,g2#, in dimensional regularization. Sinc
the action terms~3.3! and~3.4! contain second order deriva
tives of the metric, one should also add some boundary te
@50,13#. The effect of these terms is to cancel out the bou
ary terms which appear when taking variations
Seff@g1,g2# keeping the value ofgab

1 and gab
2 fixed on the

boundary ofU. Alternatively, in order to obtain the equation
of motion for the metric in the semiclassical regime, we c
work with the action terms~3.3! and~3.4! ~without boundary
terms! and neglect all boundary terms when taking variatio
with respect togab

6 . From now on, all the functional deriva
tives with respect to the metric will be understood in th
sense.
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A. The semiclassical Einstein equation in dimensional
regularization

From the action~3.3!, we can define the stress-energ
tensor functional in the usual way,

Tab@g,Fn#~x![
2

A2g~x!

dSm@g,Fn#

dgab~x!
, ~3.5!

which yields Eq.~2.2!. Working in the Heisenberg picture
we can now formally introduce the regularized stress-ene
tensor operator as

T̂n
ab@g#[Tab@g,F̂n@g##, T̂ab@g#[m2(n24)T̂n

ab@g#,
~3.6!

where F̂n@g#(x) is the field operator, which satisfies th
Klein-Gordon equation~2.1! in n spacetime dimensions, an
where we use a symmetrical ordering~Weyl ordering! pre-
scription for the operators. Using the Klein-Gordon equati
the stress-energy operator can be written as

T̂n
ab@g#5

1

2
$¹aF̂n@g#,¹bF̂n@g#%1D ab@g#F̂n

2@g#,

~3.7!

whereD ab@g# is the differential operator

D x
ab[S j2

1

4Dgab~x!hx1j„Rab~x!2¹x
a¹x

b
…. ~3.8!

From the definitions~3.2!, ~3.5! and ~3.6!, one can see that

^T̂n
ab~x!&@g#5

2

A2g~x!

dSIF@g1,g2#

dgab
1 ~x!

U
g15g25g

,

~3.9!

where the expectation value is taken in then-dimensional
spacetime generalization of the state described byr̂@g#.
Therefore, differentiating Seff@g1,g2#5Sg@g1#2Sg@g2#
1SIF@g1,g2# with respect togab

1 , and then settinggab
1

5gab
2 5gab , we get the semiclassical Einstein equation

dimensional regularization:

1

8pGB
~Gab@g#1LBgab!2S 4

3
aBDab12bBBabD @g#

5m2(n24)^T̂n
ab&@g#, ~3.10!

where
8-6
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Dab[
1

A2g

d

dgab
E dnxA2g~Rcde fR

cde f2RcdR
cd!

5
1

2
gab~Rcde fR

cde f2RcdR
cd1hR!

22RacdeRb
cde22RacbdRcd14RacRc

b

23hRab1¹a¹bR, ~3.11!

andBab is defined as in Eq.~2.8! but for n spacetime dimen-
sions, although its explicit expression in terms of the me
and curvature tensors is the same. Whenn54, one has that
Dab5(3/2)Aab, whereAab is the tensor defined in Eq.~2.7!.
From Eq. ~3.10!, renormalizing the coupling constants
08400
c

eliminate the ‘‘divergencies’’ inm2(n24)^T̂n
ab&@g#, and tak-

ing the limit n→4, we get the physical semiclassical Ei
stein equation~2.5!.

B. A formal derivation of the semiclassical
Einstein-Langevin equation

In the spirit of the previous section, we now seek a d
namical equation for a linear perturbationhab to a semiclas-
sical metricgab , solution of Eq.~3.10! in n spacetime di-
mensions. From the result of the previous subsection, if s
an equation were simply a linearized semiclassical Eins
equation, it could be obtained from an expansion of the
fective actionSeff@g1h1,g1h2#. In particular, since, from
Eq. ~3.9!, we have that
tives of

. Here,
^T̂n
ab~x!&@g1h#5

2

A2det~g1h!~x!

dSIF@g1h1,g1h2#

dhab
1 ~x!

U
h15h25h

, ~3.12!

the expansion of̂ T̂n
ab&@g1h# to linear order inhab can be obtained from an expansion of the influence actionSIF@g

1h1,g1h2# up to second order inhab
6 .

To perform the expansion of the influence action, we have to compute the first and second order functional deriva
SIF@g1,g2# and then setgab

1 5gab
2 5gab . If we do so using the path integral representation~3.2!, we can interpret these

derivatives as expectation values of operators. The relevant second order derivatives are

1

A2g~x!A2g~y!

d2SIF@g1,g2#

dgab
1 ~x!dgcd

1 ~y!
U

g15g25g

52HSn

abcd@g#~x,y!2Kn
abcd@g#~x,y!1 iNn

abcd@g#~x,y!,

1

A2g~x!A2g~y!

d2SIF@g1,g2#

dgab
1 ~x!dgcd

2 ~y!
U

g15g25g

52HAn

abcd@g#~x,y!2 iNn
abcd@g#~x,y!, ~3.13!

where

Nn
abcd@g#~x,y![

1

8
^$ t̂ n

ab~x!, t̂ n
cd~y!%&@g#,

HSn

abcd@g#~x,y![
1

4
Im^T* @ T̂n

ab~x!T̂n
cd~y!#&@g#,

~3.14!

HAn

abcd@g#~x,y![2
i

8
^@ T̂n

ab~x!,T̂n
cd~y!#&@g#,

Kn
abcd@g#~x,y![

21

A2g~x!A2g~y! K d2Sm@g,Fn#

dgab~x!dgcd~y!
U

Fn5F̂n
L @g#,

with t̂ n
ab[T̂n

ab2^T̂n
ab&, and using again a Weyl ordering prescription for the operators in the last of these expressions

@ , # means the commutator, and we use the symbol T* to denote that, first, we have to time order the field operatorsF̂n and
then apply the derivative operators which appear in each term of the productTab(x)Tcd(y), whereTab is the functional~2.2!.
For instance,

T* „¹x
aF̂n~x!¹x

bF̂n~x!¹y
cF̂n~y!¹y

dF̂n~y!…5 lim
x1 ,x2→x
x3 ,x4→y

¹x1

a ¹x2

b ¹x3

c ¹x4

d T„F̂n~x1!F̂n~x2!F̂n~x3!F̂n~x4!…, ~3.15!
8-7



ts
iv
va

th
-
-

-

c
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where T is the usual time ordering. This T* ‘‘time ordering’’
arises because we have path integrals containing produc
derivatives of the field, which can be expressed as der
tives of the path integrals which do not contain such deri
tives. Notice, from the definitions~3.14!, that all the kernels
which appear in expressions~3.13! are real and thatHAn

abcd is

also free of ultraviolet divergencies in the limitn→4.
From Eqs.~3.13! and~3.14!, it is clear that the imaginary

part of the influence action, which does not contribute to
semiclassical Einstein equation~3.10! because the expecta
tion value ofT̂n

ab@g# is real, contains information on the fluc
tuations of this operator. From Eqs.~3.9! and ~3.13!, taking
into account that SIF@g,g#50 and that SIF@g2,g1#
52SIF* @g1,g2#, we can write the expansion for the influ
-

-
o

08400
of
a-
-

e

ence actionSIF@g1h1,g1h2# around a background metri
gab in terms of the kernels~3.14!. Taking into account that
these kernels satisfy the symmetry relations

HSn

abcd~x,y!5HSn

cdab~y,x!,

HAn

abcd~x,y!52HAn

cdab~y,x!, ~3.16!

Kn
abcd~x,y!5Kn

cdab~y,x!,

and introducing a new kernel

Hn
abcd~x,y![HSn

abcd~x,y!1HAn

abcd~x,y!, ~3.17!

this expansion can be finally written as
n. The
g

SIF@g1h1,g1h2#5
1

2E dnxA2g~x!^T̂n
ab~x!&@g#@hab~x!#2

1

2E dnx dnyA2g~x!A2g~y!@hab~x!#„Hn
abcd@g#~x,y!

1Kn
abcd@g#~x,y!…$hcd~y!%1

i

2E dnx dnyA2g~x!A2g~y!@hab~x!#Nn
abcd@g#~x,y!@hcd~y!#10~h3!,

~3.18!

where we have used the notation

@hab#[hab
1 2hab

2 , $hab%[hab
1 1hab

2 . ~3.19!

We are now in the position to carry out the formal derivation of the semiclassical Einstein-Langevin equatio
procedure is well known@12–14,19–25,15,17,26,18,27–30#; it consists of deriving a new ‘‘improved’’ effective action usin
the the following identity:

e2(1/2)*dnx dnyA2g(x)A2g(y)[hab(x)]Nn
abcd(x,y)[hcd(y)]5E D@jn#P@jn#ei *dnxA2g(x)jn

ab(x)[hab(x)] , ~3.20!
f a

-

where P@jn# is the probability distribution functional of a
Gaussian stochastic tensorjn

ab characterized by the correla
tors

^jn
ab~x!&c50, ^jn

ab~x!jn
cd~y!&c5Nn

abcd@g#~x,y!,
~3.21!

with Nn
abcd given in Eq.~3.14!, and where the path integra

tion measure is assumed to be a scalar under diffeom
 r-

phisms of (M,gab). The above identity follows from the
identification of the right hand side of Eq.~3.20! with the
characteristic functional for the stochastic fieldjn

ab . In fact,
by differentiation of this expression with respect to@hab#, it
can be checked that this is the characteristic functional o
stochastic field characterized by the correlators~3.21!. When
Nn

abcd(x,y) is strictly positive definite, the probability distri
bution functional forjn

ab is explicitly given by
P@jn#5
e2(1/2)*dnx dnyA2g(x)A2g(y)jn

ab(x)Nn abcd
21 (x,y)jn

cd(y)

E D@ j̄n#e2(1/2)*dnz dnwA2g(z)A2g(w) j̄n
e f(z)Nn e f gh

21 (z,w) j̄n
gh(w)

, ~3.22!

whereNn abcd
21 @g#(x,y) is the inverse ofNn

abcd@g#(x,y) defined by
8-8
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E dnzA2g~z!Nn
abe f~x,z!Nn e f cd

21 ~z,y!5
1

2
~dc

add
b1dd

adc
b!

dn~x2y!

A2g~x!
. ~3.23!
e

ns
ce
is

a-

in
Using the identity~3.20!, we can write the modulus of th
influence functional in the approximation~3.18! as

uFIF@g1h1,g1h2#u5e2Im SIF[g1h1,g1h2]

5^ei *dnxA2g(x)jn
ab(x)[hab(x)]&c

~3.24!

where^&c means statistical average over the stochastic te
jn

ab . Thus, the effect of the imaginary part of the influen
action ~3.18! on the corresponding influence functional
equivalent to the averaged effect of the stochastic sourcejn

ab

coupled linearly to the perturbationshab
6 . The influence

functional, in the approximation~3.18!, can be written as a
statistical average overjn

ab :

FIF@g1h1,g1h2#5^eiA IF
eff[h1,h2;g;jn]&c , ~3.25!

with
i-
la
in
io
q.

f

-
s
ur

08400
or

A IF
eff@h1,h2;g;jn#[ReSIF@g1h1,g1h2#

1E dnxA2g~x!jn
ab~x!@hab~x!#

10~h3!, ~3.26!

where ReSIF can be read from the expansion~3.18!. Note
that the stochastic term in this action contains the inform
tion of the imaginary part ofSIF . Introducing a new ‘‘im-
proved’’ effective action

Aeff@h1,h2;g;jn#[Sg@g1h1#2Sg@g1h2#

1A IF
eff@h1,h2;g;jn#, ~3.27!

whereSg@g1h6# has to be expanded up to second order
the perturbationshab

6 , the equation of motion forhab can be
derived as
of the
1

A2det~g1h!~x!

dAeff@h1,h2;g;jn#

dhab
1 ~x!

U
h15h25h

50. ~3.28!

From Eq.~3.12!, taking into account that only the real part of the influence action contributes to the expectation value
stress-energy tensor, we get, to linear order inhab ,

1

8pGB
„Gab@g1h#1LB~gab2hab!…2S 4

3
aBDab12bBBabD @g1h#5m2(n24)^T̂n

ab&@g1h#12m2(n24)jn
ab , ~3.29!
ined
ed
-
tem
by

-
to

co-
co-
de-
m.
in-
wherehab[gacgbdhcd , that is,gab2hab10(h2) is the in-
verse of the metricgab1hab . This last equation is the sem
classical Einstein-Langevin equation in dimensional regu
ization. As we have pointed out in Sec. II, the two-po
correlation function of the stochastic source in this equat
@see Eq.~3.21!#, given by the noise kernel defined in E
~3.14!, is free of ultraviolet divergencies in the limitn→4.
Therefore, in the Einstein-Langevin equation~3.29!, one can
perform exactly the same renormalization procedure as
the semiclassical Einstein equation~3.10!. After this, Eq.
~3.29! will yield the physical semiclassical Einstein
Langevin equation~2.11!. The derivation presented in thi
paper clarifies the physical meaning of the stochastic so
formally introduced in the effective action~3.26! by the
r-
t
n

or

ce

identification ~3.24!, since it links its two-point correlation
function to the stress-energy fluctuations by Eqs.~3.21! and
~3.14!.

There is also a connection between the equations obta
by this formal functional method and the equations deriv
from the ~in general, also formal! assumption that decoher
ence and classicalization of suitably coarse-grained sys
variables is achieved through the mechanism proposed
Gell-Mann and Hartle@32# in the consistent histories formu
lation of a quantum theory. This last approach allows one
evaluate the probability distribution associated to such de
herent variables, given by the diagonal elements of a de
herence functional, and, under some approximations, to
rive effective quasiclassical equations of motion for the
These effective equations of motion can be shown to co
8-9
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cide@37# with the semiclassical equations for the backgrou
and the Langevin-type equations for perturbations obtai
from the above functional method. Taking this connect
into account, we can also conclude that, if one formally
sumes that the Gell-Mann and Hartle mechanism works
the metric field, one is led to the semiclassical Einstein eq
tion and the semiclassical Einstein-Langevin equation for
background metric and for the metric perturbations, resp
tively @37#.

We end this subsection with some comments on the r
tion between the semiclassical Einstein-Langevin equa
~2.11! and the Langevin-type equations for stochastic me
perturbations recently derived in the literature@12–14,19–
25#. In these previous derivations, one starts with the in
ence functional~3.2!, with the state of the scalar field as
sumed to be an ‘‘in’’ vacuum or an ‘‘in’’ thermal state, an
computes explicitly the expansion for the corresponding
fluence action around a specific metric background. One t
applies the above formal method to derive a Langevin eq
tion for the perturbations to this background. However, m
of these derivations start with a ‘‘mini-superspace’’ mod
and, thus, the metric perturbations are assumed from the
ginning to have a restrictive form. In those cases, the deri
Langevin equations do not correspond exactly to our eq
tion, Eq.~2.11!, but to a ‘‘reduced’’ version of this equation
in which only some components of the noise kernel in E
~2.10! ~or some particular combinations of them! influence
the dynamics of the metric perturbations. Only those eq
tions which have been derived starting from a complet
general form for the metric perturbations@19,20,23,24# are
t

ra
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actually particular cases of the semiclassical Einste
Langevin equation~2.11!. Note, however, that the stochast
equations derived in Refs.@23,24# do not correspond exactly
to Eq. ~2.11!, since the background~Minkowski spacetime
and a scalar field in a thermal state! is not a solution of
semiclassical gravity. In this case, for the reasons explai
in Sec. II, the equation for the metric perturbations is n
gauge invariant.

C. Explicit linear form of the Einstein-Langevin equation

We can write Eq.~3.29! in a more explicit form by work-
ing out the expansion of̂T̂n

ab&@g1h# up to linear order in
the perturbationhab . From Eq.~3.12!, we see that this ex-
pansion can be easily obtained from Eq.~3.18!. Noting, from
Eq. ~3.14!, that

Kn
abcd@g#~x,y!

52
1

4
^T̂n

ab~x!&@g#
gcd~x!

A2g~y!
dn~x2y!

2
1

2

1

A2g~y! K dTab@g,Fn#~x!

dgcd~y!
U

Fn5F̂n
L @g#,

~3.30!

we get
^T̂n
ab~x!&@g1h#5^T̂n

ab~x!&@g#1^T̂n
(1)ab@g;h#~x!&@g#22E dnyA2g~y!Hn

abcd@g#~x,y!hcd~y!10~h2!, ~3.31!
ht
ce

ion
where the operatorT̂n
(1)ab is defined from the term of firs

order in the expansion ofTab@g1h,Fn# as

Tab@g1h,Fn#5Tab@g,Fn#1T(1)ab@g,Fn ;h#10~h2!,
~3.32!

T̂n
(1)ab@g;h#[T(1)ab@g,F̂n@g#;h#,

using, as always, a Weyl ordering prescription for the ope
 -

tors in the last definition. Note that the third term on the rig
hand side of Eq.~3.31! is a consequence of the dependen

on hcd of the field operatorF̂n@g1h# and of the density

operatorr̂@g1h#.

Substituting Eq.~3.31! into Eq. ~3.29!, and taking into
account thatgab satisfies the semiclassical Einstein equat
~3.10!, we can write the Einstein-Langevin equation~3.29! as
1

8pGB
„G(1)ab@g;h#~x!2LBhab~x!…2

4

3
aBD (1)ab@g;h#~x!22bBB(1)ab@g;h#~x!

2m2(n24)^T̂n
(1)ab@g;h#~x!&@g#12E dnyA2g~y!m2(n24)Hn

abcd@g#~x,y!hcd~y!52m2(n24)jn
ab~x!. ~3.33!
8-10
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In the last equation we have used the superindex~1! to de-
note the terms of first order in the expansion inhab of the
tensorsGab@g1h#, Dab@g1h# and Bab@g1h#. Thus, for
instance, Gab@g1h#5Gab@g#1G(1)ab@g;h#10(h2). The
explicit expressions for the tensorsG(1)ab@g;h#, D (1)ab@g;h#
andB(1)ab@g;h# can be found in the Appendix of Ref.@37#,
and T(1)ab@g,Fn ;h# is given in Appendix A. From
T(1)ab@g,Fn ;h#, we can write an explicit expression for th
operatorT̂n

(1)ab . In fact, using the Klein-Gordon equation
e

.

ing

e

l,
fo

08400
and expressions~3.7! and ~3.8! for the stress-energy opera
tor, we have

T̂n
(1)ab@g;h#5S 1

2
gabhcd2dc

ahd
b2dc

bhd
aD T̂n

cd@g#

1F ab@g;h#F̂n
2@g#, ~3.34!

whereF ab@g;h# is the differential operator
re

egu-
F ab[S j2
1

4D S hab2
1

2
gabhc

cDh1
j

2
@¹c¹ahc

b1¹c¹bhc
a2hhab2¹a¹bhc

c2gab¹c¹dhcd

1gabhhc
c1~¹ahc

b1¹bhc
a2¹ch

ab22gab¹dhcd1gab¹chd
d!¹c2gabhcd¹

c¹d#. ~3.35!

It is understood that indices are raised with the background inverse metricgab and that all the covariant derivatives a
associated to the metricgab . Substituting expression~3.34! into Eq. ~3.33!, and using the semiclassical equation~3.10! to get
an expression form2(n24)^T̂n

ab&@g#, we can finally write the semiclassical Einstein-Langevin equation in dimensional r
larization as

1

8pGB
FG(1)ab2

1

2
gabGcdhcd1Gachc

b1Gbchc
a1LBS hab2

1

2
gabhc

cD G~x!

2
4

3
aBS D (1)ab2

1

2
gabDcdhcd1Dachc

b1Dbchc
aD ~x!22bBS B(1)ab2

1

2
gabBcdhcd1Bachc

b1Bbchc
aD ~x!

2m2(n24)F x
ab^F̂n

2~x!&@g#12E dnyA2g~y!m2(n24)Hn
abcd@g#~x,y!hcd~y!52m2(n24)jn

ab~x!, ~3.36!
a-

r-

ich
vin

e

se
rms

vin
-

the
where the tensorsGab, Dab andBab are computed from the
semiclassical metricgab , and where we have omitted th
functional dependence ongab and hab in G(1)ab, D (1)ab,
B(1)ab andF ab to simplify the notation. Notice that, in Eq
~3.36!, all the ultraviolet divergencies in the limitn→4,
which must be removed by renormalization of the coupl

constants, are in̂F̂n
2(x)& and the symmetric partHSn

abcd(x,y)

of the kernelHn
abcd(x,y), whereas the kernelsNn

abcd(x,y)
and HAn

abcd(x,y) are free of ultraviolet divergencies. Thes

two last kernels can be written in terms ofFn
abcd@g#(x,y)

[^ t̂ n
ab(x) t̂ n

cd(y)&@g# as

Nn
abcd@g#~x,y!5

1

4
ReFn

abcd@g#~x,y!,

~3.37!

HAn

abcd@g#~x,y!5
1

4
Im Fn

abcd@g#~x,y!,

where we have used that 2^ t̂ n
ab(x) t̂ n

cd(y)&
5^$ t̂ n

ab(x), t̂ n
cd(y)%&1^@ t̂ n

ab(x), t̂ n
cd(y)#&, and the fact that the

first term on the right hand side of this identity is rea
whereas the second one is pure imaginary. Once we per
the renormalization procedure in Eq.~3.36!, setting n54
rm

will yield the physical semiclassical Einstein-Langevin equ
tion. Note that, due to the presence of the kernelHn

abcd(x,y),
this equation will be usually non-local in the metric pertu
bation.

D. The kernels for a vacuum state

We conclude this section by considering the case in wh
the expectation values that appear in the Einstein-Lange
equation~3.36! @see Eqs.~3.14!# are taken in a vacuum stat
u0& @for a field quantized on (M,gab) in the Heisenberg
picture#, such as, for instance, an ‘‘in’’ vacuum. In this ca
we can go further and write these expectation values in te
of the Wightman and Feynman functions, defined as

Gn
1~x,y![^0uF̂n~x!F̂n~y!u0&@g#,

~3.38!

iGFn
~x,y![^0uT„F̂n~x!F̂n~y!…u0&@g#.

These expressions for the kernels in the Einstein-Lange
equation will be very useful for explicit calculations. To sim
plify the notation, we omit the functional dependence on
semiclassical metricgab , which will be understood in all the
expressions below.
8-11
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From Eq.~3.37!, we see that the kernelsNn
abcd(x,y) andHAn

abcd(x,y) are the real and imaginary parts, respectively, of

Fn
abcd~x,y!5^0uT̂n

ab~x!T̂n
cd~y!u0&2^0uT̂n

ab~x!u0&^0uT̂n
cd~y!u0&.

Since, from Eq.~3.7!, we can write the operatorT̂n
ab as a sum of terms of the form$AxF̂n(x),BxF̂n(x)%, whereAx andBx are

some differential operators, we can expressFn
abcd(x,y) in terms of the Wightman function using

^$AxF̂n~x!,BxF̂n~x!%$CyF̂n~y!,DyF̂n~y!%&2^$AxF̂n~x!,BxF̂n~x!%&^$CyF̂n~y!,DyF̂n~y!%&

54 AxCyGn
1~x,y!BxDyGn

1~x,y!14 AxDyGn
1~x,y!BxCyGn

1~x,y!, ~3.39!

whereCx and Dx are also some differential operators and where the expectation values are taken in the vacuumu0&. This

identity can be easily proved using Wick’s theorem or by writing the operatorF̂n(x) in terms of the creation and annihilatio
operators of the Fock representation corresponding to the vacuumu0&. Using a Schwinger-DeWitt expansion for the Wightm
function Gn

1(x,y), one can actually see that the two terms on the right hand side of the last expression are free of ult
divergencies in the limitn→4. Finally, we find

Fn
abcd~x,y!5¹x

a¹y
cGn

1~x,y!¹x
b¹y

dGn
1~x,y!1¹x

a¹y
dGn

1~x,y!¹x
b¹y

cGn
1~x,y!

12 D x
ab
„¹y

cGn
1~x,y!¹y

dGn
1~x,y!…12 D y

cd
„¹x

aGn
1~x,y!¹x

bGn
1~x,y!…12 D x

abD y
cd
„Gn

12~x,y!…, ~3.40!

whereD x
ab is the differential operator~3.8!. From this expression and the relations~3.37!, we get expressions for the kerne

Nn
abcd(x,y) andHAn

abcd(x,y) in terms of the Wightman functionGn
1(x,y).

The kernelHSn

abcd(x,y), defined in Eq.~3.14!, can be written in terms of the Feynman function noting that, from Wic

theorem,

Im^T* „$AxF̂n~x!,BxF̂n~x!%$CyF̂n~y!,DyF̂n~y!%…&524 Im@AxCyGFn
~x,y!BxDyGFn

~x,y!1AxDyGFn
~x,y!BxCyGFn

~x,y!#,
~3.41!

where, again,Ax , Bx , Cx andDx are real differential operators and the expectation value is in the vacuumu0&. The kernel
HSn

abcd(x,y) is then obtained by adding up the contribution of all the differential operators which appear in the p

Tab(x)Tcd(y), whereTab is the functional~2.2!. After a long calculation, we get

HSn

abcd~x,y!52
1

4
ImF¹x

a¹y
cGFn

~x,y!¹x
b¹y

dGFn
~x,y!1¹x

a¹y
dGFn

~x,y!¹x
b¹y

cGFn
~x,y!

2gab~x!¹x
e¹y

cGFn
~x,y!¹e

x¹y
dGFn

~x,y!2gcd~y!¹x
a¹y

eGFn
~x,y!¹x

b¹e
yGFn

~x,y!

1
1

2
gab~x!gcd~y!¹x

e¹y
f GFn

~x,y!¹e
x¹ f

yGFn
~x,y!1K x

ab
„2¹y

cGFn
~x,y!¹y

dGFn
~x,y!

2gcd~y!¹y
eGFn

~x,y!¹e
yGFn

~x,y!…1K y
cd
„2¹x

aGFn
~x,y!¹x

bGFn
~x,y!

2gab~x!¹x
eGFn

~x,y!¹e
xGFn

~x,y!…12 K x
abK y

cd
„GFn

2 ~x,y!…G , ~3.42!
-
n

whereK x
ab is the differential operator

K x
ab[j„gab~x!hx2¹x

a¹x
b1Gab~x!…2

1

2
m2gab~x!.

~3.43!

An alternative expression forHSn

abcd(x,y), which is more

similar to expression~3.40!, can be obtained taking into ac
count thatGFn

(x,y) is a Green function of the Klein-Gordo
equation inn spacetime dimensions, which satisfies
08400
„hx2m22jR~x!…GFn
~x,y!5

dn~x2y!

A2g~x!
, ~3.44!

and using that in dimensional regularization@dn(x2y)#2

50. Finally, note that, in the vacuumu0&, the term^F̂n
2(x)&

in Eq. ~3.36! can also be written aŝF̂n
2(x)&5 iGFn

(x,x)

5Gn
1(x,x).

It is worth noting that, when the pointsx andy are space-
8-12
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STOCHASTIC SEMICLASSICAL GRAVITY PHYSICAL REVIEW D60 084008
like separated,F̂n(x) and F̂n(y) commute and, thus

Gn
1(x,y)5 iGFn

(x,y)5(1/2)^0u$F̂n(x),F̂n(y)%u0&, which
is real. Hence, from the above expressions, we have
HAn

abcd(x,y)5HSn

abcd(x,y)50. This fact is not surprising

since, from the causality of the expectation value of
stress-energy operator, we know that the non-local dep
dence on the metric perturbation in the Einstein-Lange
equation must be causal.

IV. FLUCTUATIONS IN STATIONARY AND
CONFORMALLY STATIONARY BACKGROUNDS

In this section, we derive a number of results concern
the stochastic semiclassical theory of gravity for two clas
of background solutions of semiclassical gravity. The fi
class consists of a stationary spacetime and a scalar fie
thermal equilibrium or in its vacuum state. In the seco
class, the spacetime is conformally stationary, the scalar
is massless and conformally coupled, and its state is the
formal vacuum or a thermal state built on the conform
vacuum. In Secs. IV A and IV B, we identify a kernel in th
corresponding Einstein-Langevin equations which is rela
to the noise kernel by a fluctuation-dissipation relation.
Sec. IV C, we study the creation of particles by stocha
metric perturbations and see that this phenomenon ca
related to the vacuum noise kernel. We show that the m
value of created particles is enhanced by the presenc
metric fluctuations with respect to the same quantity in
‘‘perturbed’’ semiclassical spacetime (M,gab1^hab&c).

Let us assume that the semiclassical spacetime (M,gab)
is stationary, i.e., that it possesses a global timelike Kill
vector fieldza, £zgab50, where £z is the Lie derivative with
respect toza. Writing the Killing vector asza5(]/]t)a, this
spacetime can be foliated by a family of Cauchy hypers
facesS t , labeled by the Killing timet, so we can give co-
ordinates (t,x) to each spacetime point, wherex are the
space coordinates on each of these hypersurfaces. Using
foliation, we can construct a Hamiltonian operatorĤ@g# in
the way described in Appendix B. This is a time indepe
dent, i.e., independent of the Cauchy hypersurfaceS t ,
Hamiltonian operator, so it represents the Hamiltonian
erator in both the Heisenberg and the Schro¨dinger pictures.
In this case, there is a natural Fock representation based

decomposition of the field operatorF̂n@g# in a complete set
of modes of positive frequenciesvk with respect toza, and
their complex conjugates.2 This defines a natural Fock spac
the many-particle states of which are eigenstates of
HamiltonianĤ@g#. Thus, the notion of particles is physical
well defined in this spacetime@1,60,5#. The Hamiltonian op-
erator in this Fock representation, renormalized by norm
ordering, is given byĤ@g#5(kvkâk

†âk , whereâk
† andâk are

2In some cases, additional restrictions may be necessary to a
infrared divergencies, such as that the scalar field is massivem2

Þ0, or that the norm of the Killing vector is not arbitrarily sma
@1,60#.
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the creation and annihilation operators on the Fock spa
Here, the summation must be understood as representin
ther a sum over a set of discrete indices or an integral w
some suitable measure~or a combination of these two pos
sibilities!. The time-evolution operator corresponding to th
Hamiltonian operator is then given byÛ@g#(t,t8)
[exp„2 iĤ @g#(t2t8)….

In this section, even if we sometimes writet i or t f , we
shall always consider these initial and final times in the lim
t i→2` and t f→1` ~we assume that such limits can b
taken!.

A. The fluctuation-dissipation relation in a stationary
background

For a real scalar field quantized on the stationary spa
time (M,gab), we can define a state of thermal equilibriu
at temperatureT. This state is described in the Heisenbe
picture by the density operator of the grand canonical
semble:

r̂@g#5
e2bĤ[g]

Tr~e2bĤ[g] !
, ~4.1!

whereb[1/kBT and kB is Boltzmann’s constant~there are
no chemical potential terms because we deal with a real
lar field!. This kind of thermal state for fields in stationar
curved backgrounds was first considered in Refs.@61,62#.
Since the density operator~4.1! commutes with the time-
evolution operatorÛ@g#(t,t8), the corresponding initial den
sity operator in the Schro¨dinger picture is simplyr̂S(t i)
5 r̂@g#.

Given any pair of operators in the Heisenberg pictu
P̂@g#(x) and Q̂@g#(x), the expectation value

^P̂(x)Q̂(x8)&T@g# depends ont and t8 only through the dif-
ferencet2t8, since

^P̂~x!Q̂~x8!&T5Tr@ r̂ P̂~x!Q̂~x8!#

5Tr@ r̂ P̂S~x!e2 iĤ (t2t8)

3Q̂S~x8!eiĤ (t2t8)#, ~4.2!

whereP̂S(x) andQ̂S(x) are the operators in the Schro¨dinger
picture corresponding toP̂(x) and Q̂(x), respectively, and
we use^&T to denote an expectation value in the state
scribed by Eq.~4.1!. In particular, with the choicer̂S(t i)
5 r̂@g#, the kernelsNn

abcd@g#(x,x8), HSn

abcd@g#(x,x8) and

HAn

abcd@g#(x,x8) depend on the time coordinates as a funct

of t2t8. Therefore, we can introduce Fourier transforms
the time coordinate as

K~x,x8!5E
2`

` dv

2p
e2 iv(t2t8)K̃~v;x,x8!, ~4.3!

whereK(x,x8) is any function which depends on time on
throught2t8.

id
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As it is shown in Appendix B, Wick’s theorem can b
generalized for thermalN-point functions, defined as expec
tation values of products of the field operator in the st
described by Eq.~4.1!. It is then easy to see that the expre
sions found in Sec. III D also hold for the kerne
Nn

abcd@g#(x,x8), HSn

abcd@g#(x,x8) and HAn

abcd@g#(x,x8) at fi-

nite T if we replace the Wightman and Feynman functio
~3.38! by the analogous thermal expectation values.

In this case, a simple relationship~in the form of a
fluctuation-dissipation relation! exists between the kerne
Nn

abcd@g#(x,x8) and HAn

abcd@g#(x,x8). In fact, from Eq.

~3.37!, we can write these kernels as

8 Nn
abcd~x,x8!5Fn

abcd~x,x8!1Fn
cdab~x8,x!,

~4.4!
8i H An

abcd~x,x8!5Fn
abcd~x,x8!2Fn

cdab~x8,x!,

where we omit the functional dependence ongab . In terms
of the Fourier transforms~4.3!, these relations are

8 Ñn
abcd~v;x,x8!5F̃n

abcd~v;x,x8!1F̃n
cdab~2v;x8,x!,

~4.5!
8i H̃ An

abcd~v;x,x8!5F̃n
abcd~v;x,x8!2F̃n

cdab~2v;x8,x!.

By analytically continuing t to complex values in
Fn

abcd(x,x8), one can derive a symmetry relation for this b
tensor which involves different values of this complex tim
Taking into account that the time evolution of the opera
t̂ n
ab is given in this stationary case byt̂ n

ab(t1Dt,x)

5eiĤDt t̂ n
ab(t,x)e2 iĤDt, and using the cyclic property of th

trace, we getFn
abcd(t,x;t8,x8)5Fn

cdab(t8,x8;t1 ib,x), or,
equivalently, in terms of its Fourier transform,

F̃n
abcd~v;x,x8!5ebvF̃n

cdab~2v;x8,x!. ~4.6!

This relation is known as the Kubo-Martin-Schwinger re
tion @39,44#. From this last expression and Eq.~4.5!, we
obtain the following simple relation betweenÑn

abcd and

H̃An

abcd:

H̃An

abcd~v;x,x8!52 i tanhS bv

2 D Ñn
abcd~v;x,x8!, ~4.7!

which can also be written as

HAn

abcd~ t,x;t8,x8!5E
2`

`

dt9KFD~ t2t9!,Nn
abcd~ t9,x;t8,x8!,

~4.8!

with

KFD~ t ![2E
0

`dv

p
sin~vt !tanhS bv

2 D
52kBT P@csch~pkBTt!#, ~4.9!

where P denotes a Cauchy principal value distribution.
08400
e
-

.
r
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Since, as we have pointed out above, the kernelsHAn

abcd

andNn
abcd are free of ultraviolet divergencies in the limitn

→4, we can define

HA
abcd~x,x8![ lim

n→4
m22(n24)HAn

abcd~x,x8!,

~4.10!
Nabcd~x,x8![ lim

n→4
m22(n24)Nn

abcd~x,x8!,

which are the kernels that appear in the physical semicla
cal Einstein-Langevin equation, Eq.~2.11!, after performing
the renormalization procedure in Eq.~3.36!. These physical
kernels will also satisfy the relation~4.8! or, equivalently,
their Fourier transforms will satisfy Eq.~4.7!. These results
are independent of the regularization method used.

The relation~4.7! can be written in an alternative way
Introducing a new kernel~this is actually a family of kernels!
defined by H̃An

abcd(v;x,x8)[2 ivg̃n
abcd(v;x,x8), that is,

HAn

abcd(x,x8)5]gn
abcd(x,x8)/]t, Eq. ~4.7! yields

Ñn
abcd~v;x,x8!5v cothS bv

2 D g̃n
abcd~v;x,x8!, ~4.11!

or, equivalently,

Nn
abcd~ t,x;t8,x8!5E

2`

`

dt9JFD~ t2t9!gn
abcd~ t9,x;t8,x8!,

~4.12!

where

JFD~ t ![E
0

`dv

p
cos~vt !v cothS bv

2 D . ~4.13!

This integral gives a distribution which is singular att50
and fortÞ0 reduces toJFD(t)52p@kBT cosech(pkBTt)#2.

The relations~4.7! or ~4.8! @or the equivalent forms~4.11!
or ~4.12!# have the same form as the fluctuation-dissipat
relations which appear in quite general models of quant
mechanics@38–43#. The derivation of these relations is us
ally done in the framework of linear response theory,
which one considers the response of a quantum sys
which is initially at thermal equilibrium, when an extern
classical time-dependent linear perturbation is ‘‘switch
on.’’ When evaluating the change in the expectation value
the relevant operator~the operator which couples to the pe
turbation! induced by the presence of the perturbation, a d
sipative term can be identified as the term which changes
sign under a time reversal transformation in the perturbat
This term is characterized by a kernel called the dissipa
kernel. It can be shown that the dissipation kernel is rela
to the fluctuations in equilibrium~in the absence of the per
turbation! of the relevant operator by a relation which
exactly the same as Eq.~4.8! or Eq. ~4.7!. This is the
fluctuation-dissipation relation. Using this linear respon
theory approach, the same fluctuation-dissipation relation
also been derived for some models of quantum many-b
systems@44,43# or quantum fields@42,45# coupled to exter-
nal classical fields.
8-14
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STOCHASTIC SEMICLASSICAL GRAVITY PHYSICAL REVIEW D60 084008
This fluctuation-dissipation relation appears also in
context of quantum Brownian motion~or ‘‘semiclassical’’
Brownian motion!, in which one is interested in the dynam
ics of a macroscopic particle in interaction with a heat b
environment, usually modelized by an infinite set of quant
harmonic oscillators. In these models, when the variable
resenting the center of mass position of the macroscopic
ticle decoheres, it can be effectively described as a class
stochastic variable. The equation of motion for this stoch
tic variable is a linear Langevin equation with a Gauss
stochastic source. The classical variable introduced in lin
response theory can be envisaged as the position of
Brownian particle, but now this variable becomes a dyna
cal stochastic variable. The dissipative term in this Lange
equation is responsible for the irreversible dynamics of
Brownian particle. This term contains a dissipation ker
which is related to the correlator of the stochastic source
the relations ~4.8! or ~4.7! @15,16#. This is again the
fluctuation-dissipation relation. There are also some mod
in which a purely quantum description of the Brownian p
ticle is considered@63,64#. The dynamics of this particle is
then described by a quantum operator in the Heisenberg
ture. By elimination of all the environment degrees of fre
dom in the equation of motion for this operator, one find
quantum Langevin equation with quantum fluctuating a
dissipative terms. These terms are again related b
fluctuation-dissipation relation of the form~4.8! or ~4.7!.

These analogies allow us to identify the equivalent re
tions ~4.8! and ~4.7!, and the analogous relations for th
physical kernels~4.10!, as the fluctuation-dissipation relatio
in our context. Because of this relation, the kern
HA

abcd(x,x8) shall be called the dissipation kernel. The sa
fluctuation-dissipation relation was derived by Mottola@47#
in the context of quantum field theory in curved spaceti
using the linear response theory approach. This author
sidered the case in which the background spacetime is st
but his result is easily generalized to a stationary ba
ground. In this paper, we have derived the same relatio
the context of a Langevin equation for stochastic metric p
turbations, which would presumably describe the effect
dynamics of gravitational fluctuations after a process of
coherence. For the particular case of a massless scalar
in a Minkowski background, this fluctuation-dissipation r
lation was derived in Refs.@23,24# from an explicit evalua-
tion of the kernels.

It is clear that the kernelNabcd(x,x8) describes fluctua-
tions in exactly the same sense as the quantum-mecha
models described above. In fact, as it was pointed out
Mottola @47# from the point of view of linear respons
theory, it gives the fluctuations in equilibrium of the stres
energy operator. Alternatively, as we have shown in the p
vious sections, it gives the two-point correlation function
the Gaussian stochastic source in the semiclassical Eins
Langevin equation. However, the term containing the ‘‘d
sipation’’ kernelHA

abcd(x,x8) in the Einstein-Langevin equa
tion does not generally change sign under a time-reve
transformation in the metric perturbations.
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1. Zero temperature limit

A state of the scalar field which is of special interest
that described byr̂S(t i)5 r̂@g#5u0&^0u, where u0& is the
vacuum state. This vacuum state can be obtained as the
temperature limit,T→0, of the previous thermal state. Th
fluctuation-dissipation relation for this state is easily o
tained by settingT50 in expression~4.7! or ~4.8!. We find
H̃An

abcd(v;x,x8)52 i sgnvÑn
abcd(v;x,x8), or, equivalently, it

has the form~4.8!, with

KFD~ t !52 i E
2`

` dv

2p
e2 ivtsgnv52

1

p
PS 1

t D . ~4.14!

This fluctuation-dissipation relation in the alternative for
~4.11! readsÑn

abcd(v;x,x8)5v signvg̃n
abcd(v;x,x8), or, it

has the form~4.12!, with

JFD~ t !5E
0

`dv

p
cos~vt !v52

1

p
Pf S 1

t2D , ~4.15!

wherePf (1/t2) denotes a Hadamard finite part distributio
which is related to P(1/t) by Pf (1/t2)52(d/dt)P(1/t) ~the
definitions of these distributions can be found in Refs.@65#!.

2. High temperature limit

Let us now consider the high temperature limit. This lim
can only be performed when there exists a cutoff freque
V, such thatÑn

abcd(v;x,x8) vanishes forv.V @by ~4.7!,

H̃An

abcd(v;x,x8) will also vanish for these values ofv#. Such

a cutoff frequency is usually related to a characteristic cu
frequency of the environment degrees of freedom. The h
temperature limit corresponds to the limit in whichkBT
@\V. In this limit ~keeping only the leading order contribu
tions!, we expect that thermal fluctuations dominate ov
quantum fluctuations. To study this limit, it is convenient
restore the dependence in\ in the previous results. For this
one has to multiply the constantsaB and bB by \ and the
kernel Hn

abcd by 1/\ in the Einstein-Langevin equatio
~3.36!, and change the combinationbv by \bv in the pre-
vious expressions. In this limit, we can approxima
tanh(\bv/2).\bv/2, and the fluctuation-dissipation relatio
reduces to

1

\
H̃An

abcd~v;x,x8!52 i
v

2kBT
Ñn

abcd~v;x,x8!, ~4.16!

or, equivalently, since in this case

KFD~ t !.~\/2kBT!~d/dt!d~ t !,

1

\
HAn

abcd~ t,x;t8,x8!5
1

2kBT

]

]t
Nn

abcd~ t,x;t8,x8!.

~4.17!

Note that (1/\)HAn

abcd is the kernel that appears in th

Einstein-Langevin equation~3.36! when one writes the de
pendence in\ explicitly. This relation has the same form a
8-15
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the classical Green-Kubo fluctuation-dissipation relat
which appears either in a classical theory of linear respo
@66,39# or in a classical theory of Brownian motion@64,67#.
Notice, from Eq.~4.17!, that in this high temperature limi
we can simply takegn

abcd(x,x8)5(\/2kBT)Nn
abcd(x,x8).

B. The fluctuation-dissipation relation for conformal
fields in a conformally stationary background

In the case of a massless conformally coupled scalar fi
(m50 andj51/6) and a conformally stationary solution o
semiclassical gravity@for instance, a Robertson-Walke
~RW! spacetime#, the fluctuation-dissipation relation derive
in the previous subsection can be generalized when the
of the field in the background solution is the conform
vacuum or a thermal state built on the conformal vacuum
this case, the action~3.1! for the scalar field is conformally
invariant. It is convenient to preserve this conformal inva
ance when working in dimensional regularization. This c
be done by changing, in all the previous expressions wh
involve dimensional regularization, the parameterj by the
function j(n)[(n22)/@4(n21)# and, of course, takingm
50. In this way, the dimensional regularized stress-ten
operator~3.6! is traceless. Let (M,ḡab) be an dimensional
conformally stationary spacetime, that is, a spacetime wi
global timelike conformal Killing vector fieldza: £zḡab

5(2/n)¹czcḡab , where¹a is the covariant derivative asso
ciated toḡab . This means that the metricḡab is conformally
related to a stationary metricgab : ḡab(x)5e2Ã(x)gab(x),
whereÃ(x) is a scalar function. As previously, writingza

5(]/]t)a, the semiclassical spacetime can be foliated
Cauchy hypersurfacesS t and coordinates (t,x) can be as-
signed to the spacetime points.

There is a ‘‘natural’’ Fock representation based on a

composition of the field operatorF̂n@ ḡ# in terms of a com-
plete set of modes$ūkn

(x)%, solution of the Klein-Gordon

equation with metric ḡab , of the form ūkn
(x)

5e2(n22)Ã(x)/2ukn
(x), where$ukn

(x)% is a complete set o

mode solutions of the Klein-Gordon equation in (M,gab)
which are of positive frequenciesvk with respect toza.
-

el
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Hence, in this sense, we can write the field operator

F̂n@ ḡ#5e2(n22)Ã/2F̂n@g#, whereF̂n@g# is the field operator
in the stationary spacetime (M,gab). Assuming that no in-
frared divergencies are present, so that this quantum fi
theory construction is well defined, the conformal vacuu
u0& is defined as the vacuum state of the Fock space co

sponding to this representation. Ifâk
† and âk are the creation

and annihilation operators on this Fock space, this state

isfies âku0&50. As shown in Appendix B, in this case w
can construct a conserved energy operator which can
identified with the Hamiltonian of a field quantized o

(M,gab): Ê@ ḡ#5Ĥ@g#5(kvkâk
†âk . This energy operator

however, is not a time-evolution generator for the field o

eratorF̂n@ ḡ#; it generates the time-evolution of the confo

mally related operatorF̂n@g#. The many-particle states o
the Fock space built on the conformal vacuum are eig
states of this energy operator.

From this energy operator, a state of thermal equilibriu

for a conformal scalar field quantized on (M,ḡab) can be
defined using the density operator~4.1!. Thermal equilibrium
states defined in this way were first proposed by Gibbons
Perry @62#. These authors were inspired in a result by Isr
@68# in the framework of relativistic kinetic theory, who
found that thermal equilibrium distribution functions can
defined for massless particles in conformally station
spacetimes. A number of applications have been develo
in the literature to study finite-temperature effects of qua
tum conformal fields in RW universes@69# and in two-
dimensional spacetimes@70#.

Let us begin with a solution of the semiclassical Einste
equation ~3.10! consisting of a quantum conformal scal
field in a conformally stationary spacetime (M,ḡab), in the
thermal state~4.1!. Taking into account that the action~3.3!

with m50 and j5j(n) satisfies Sm@ ḡ,F̄n#5Sm@g,Fn#,

where F̄n[e2(n22)Ã/2Fn , it is easy to see thatT̂n
ab@ ḡ#

5e2(n12)ÃT̂n
ab@g#. Therefore, the kernels evaluated in th

thermal state at a temperatureT can be related to the corre
sponding kernels for the stationary background (M,gab).
For the noise kernel, we have
Nn
abcd@ ḡ#~x,x8!5e2(n12)Ã(x)e2(n12)Ã(x8)Nn

abcd@g#~x,x8!, ~4.18!
-
at
m
ef.
r-
and the same relation holds for the kernelsHSn

abcd andHAn

abcd.

Since the kernelsNn
abcd@g# andHAn

abcd@g# satisfy the relation

~4.8! @or, equivalently,~4.7!#, this leads to a fluctuation
dissipation relation between the kernelsNn

abcd@ ḡ# and

HAn

abcd@ ḡ#. The same relation holds for the physical kern

obtained by taking the limitn→4 as in Eq.~4.10!. For the
s

conformal vacuum state, which corresponds toT50, the
fluctuation-dissipation relation follows directly from the re
sult of Sec. IV A 1. In the particular case of a spatially fl
RW solution of semiclassical gravity, this conformal vacuu
fluctuation-dissipation relation was obtained before in R
@19# after an explicit calculation of the corresponding ke
nels. The same relation was derived in Ref.@14# in the
8-16
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framework of a ‘‘reduced’’ version of the Einstein-Langev
equation inspired in a Bianchi-I type ‘‘mini-superspace
model.

C. Particle creation

Let us now return to the case in which (M,gab) is sta-
tionary, the scalar field has arbitrary massm and arbitrary
coupling parameterj, and consider the stochastic perturb
tion hab . Note that (M,gab1hab) can be viewed as repre
senting an ensemble of spacetimes distributed accordin
some probability distribution functional. We are in fact co
sidering a scalar field quantized on each of these spaceti

described by the operatorF̂@g1h#, and the family of states
of the field, described byr̂@g1h#.

Let hab@j# be a solution to the semiclassical Einste
Langevin equation, Eq.~2.11!, whose moments vanish fo
times t,t I or, at least, they vanish ‘‘asymptotically’’ in th
remote past (t→2`). This means that there is a ‘‘remot
past epoch’’ (t,t I or t→2`) in which hab behaves deter
ministically as a zero tensor. In that case, if we taker̂S(t i)
es

a

tio
y

a

ne
to

in

08400
-

to

es,

5u0&^0u, whereu0& is the vacuum of the natural Fock spa
for the field quantized on (M,gab), and we consider the

limit t i→2`, we haver̂@g1h#5u0,in&^0,inu, whereu0,in&
represents the family of ‘‘in’’ vacua for the field quantize
on (M,gab1hab). Treating hab as a classical ‘‘external’’
perturbation, one could construct a Hamiltonian opera

Ĥ@g1h#(t) in the Heisenberg picture for whichu0,in& would
be the ground state in the ‘‘remote past epoch.’’ However
later times, due to the presence of the perturbationhab , this
‘‘in’’ vacuum state will generally not be the ground state
the Hamiltonian. One then says that ‘‘particles’’ are crea
in the ‘‘in’’ vacuum.

Physically meaningful many particle ‘‘out’’ states, in pa
ticular, an ‘‘out’’ vacuumu0,out& for the scalar field in each
of the spacetimes (M,gab1hab), can be defined if there is
also a ‘‘far future epoch’’ for whichhab vanishes~in the
same statistical sense as above!, either in an exact way for
t.tF or ‘‘asymptotically’’ for t→1`. When this is the case
the vacuum persistence amplitudê0,outu0,in&@g1h#
[eiW[g1h] is given by the following path integral:
eiW[g1h]5E D@Fn#^0,outuFn~ t2!,t2&@g1h#^Fn~ t1!,t1u0,in&@g1h#eiSm[g1h,Fn] , ~4.19!
ce

he

to
d.

e-
where uwn ,t1& and uwn ,t2& denote, respectively, eigenstat

of the field operatorF̂n@g1h#(t,x) at some arbitrary times
t5t1 and t5t2, where t2.t1, with eigenvaluewn(x), and
where the integration domain for the action is betweent1 and
t2. The wave functionalŝ wn ,t1u0,in& and ^wn ,t2u0,out&
have in general a dependence on the metric, which we h
indicated in Eq.~4.19!. In the limit t1→2` and t2→1`,
these wave functionals do not depend on the perturba
hab . The total probability of particle creation is given b
@71#

P@h;g#52 lim
n→4

Im W@g1h#. ~4.20!

One can show that ImW is free of ultraviolet divergencies in
the limit n→4, and that it is always positive or zero, so th
ve

n

t

the probabilityP is well defined by this expression.
As we have done in the previous section for the influen

action, we can now expand the actionW@g1h# in the per-
turbation hab . In order to do so, one has to evaluate t
functional derivatives ofW@g1h# in the background metric
gab . Using Eq. ~4.19!, these derivatives can be related
‘‘in-out’’ matrix elements of operators in the backgroun
Since gab is stationary, the ‘‘in’’ and ‘‘out’’ vacua in the
background must be identified with the natural vacuumu0&.
Therefore, these background ‘‘in-out’’ matrix elements b
come expectation values in the stateu0&. It is then easy to see
that the expansion ofW@g1h# in the metric perturbationhab
is equal to that ofSIF@g1h1,g1h2# with hab

1 5hab and
hab

2 50, and taking the expectation values inu0&. In particu-
lar, from the imaginary part of this expansion@see Eq.
~3.18!#, we get
P@h;g#5E d4x d4yA2g~x!A2g~y!hab~x!Nabcd@g#~x,y!hcd~y!10~h3!, ~4.21!
rgy
-

nd
where Nabcd is the zero temperature physical noise ker
defined in Eq.~4.10!. This physical noise kernel is related
the lowest order quantum stress-energy fluctuations
vacuum by~2.9!. Note that the higher order corrections
l

in

Eq. ~4.21! would contain higher order vacuum stress-ene
fluctuations. Equation~4.21! is a generalization of an expres
sion derived by Sexl and Urbantke@72# for the total prob-
ability of particle creation by metric perturbations arou
8-17
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Minkowski spacetime.
Equation ~4.21! gives also the expectation value of th

number operator for ‘‘out’’ particles in the ‘‘in’’ vacuum
computed to lowest order in the metric perturbation. In or
to show this, let us expand the scalar field action as
action in the stationary background plus interaction ter
~the terms containing the metric perturbation!. The interac-
tion term to lowest order inhab is

S(1)5E dnxL n
(1)@Fn ,h;g#,

with

L n
(1)5~1/2!A2gTab@g,Fn#hab .

In order to construct theS-matrix operator, we need the in
teraction Hamiltonian density operator in the interaction p
ture. Note that the field and canonical momentum opera
in the interaction picture can be identified with the operat

F̂n@g# andP̂n@g#, respectively. Following Appendix B, we
can obtain the canonical Hamiltonian density for the me
gab1hab and work out the interaction term to first order
the metric perturbation. Although in this case the interact
Lagrangian density depends on the derivatives of the fi
we find that, to first order inhab , the interaction Hamiltonian
density operator in the interaction picture is given b

2L n
(1)@F̂n@g#,h;g#. Hence, to first order in the metric pe

turbation, theS-matrix operator is given byŜ511Ŝ(1)

1O(h2), where

Ŝ(1)5
i

2E dnxA2gT̂n
ab@g#hab . ~4.22!

The expectation value of the ‘‘out’’ particle number oper
tor, N̂out, in the ‘‘in’’ vacuum ~in the Heisenberg picture! is
given byN@h;g#[^0,inuN̂outu0,in&5^0uŜ†N̂Ŝu0&, whereN̂ is
the particle number operator in the backgroundN̂
[(kâk

†âk . To lowest order, we have

N@h;g#5(
k,p

u^1k ,1puŜ(1)u0&u21O~h3!, ~4.23!

where u1k ,1p& is the two-particle stateu1k ,1p&[âk
†âp

†u0&.
Clearly, sinceŜ(1) is quadratic in the field operator, at th
orderN can also be written as

N/25(
n

^0uŜ(1)†un&^nuŜ(1)u0&

2^0uŜ(1)†u0&^0uŜ(1)u0&1O~h3!

where$un&% represents the complete orthonormal basis of
Fock space. Using Eq.~4.22!, this last expression can b
written in terms of the vacuum noise kernelNn

abcd@g#(x,y)
@see Eq.~3.14!#. Taking the limitn→4, we see that the ex
pression for one half of the number of created partic
08400
r
e
s

-
rs
s

c

n
d,

e

s

N@h;g#/2 to lowest order in the metric perturbation coincid
with that for P@h;g# in Eq. ~4.21!.

The energy of the created particles, defined asE@h;g#

[^0,inu(kvkN̂k
outu0,in&5^0uŜ†ĤŜu0&, where N̂k

out is the

‘‘out’’ number operator in thek mode andĤ5(kvkâk
†âk is

the Hamiltonian operator in the background, is simila
given by

E@h;g#5
1

2 (
k,p

~vk1vp!u^1k ,1puŜ(1)u0&u21O~h3!.

~4.24!

Comparison of Eq.~4.24! with Eqs. ~4.23! and ~4.21!, sug-
gests that it may be possible in some cases to write this
expression~in the limit n→4) in terms of the Fourier trans
form of the vacuum noise kernel.

As an example, let us consider the case when (M,gab) is
simply Minkowski spacetime, (R4,hab) @31,73#, which is the
trivial solution of semiclassical gravity. Working in a globa
inertial coordinate system$xm%, in this case the kernels de
pend only on the difference (x2y)m and, thus,
we can define their Fourier transforms asK(x2y)
[(2p)24*d4peip•(x2y)K̃(p), wherep•x[hmnpmxn. Intro-
ducing the Fourier transform ofhab(x) in a similar way@note
that h̃ab(2p)5h̃ab* (p)#, Eq. ~4.21! can be written as

P@h;h#5E d4p

~2p!4Ñabcd~p!h̃ab* ~p!h̃cd~p!1O~h3!.

~4.25!

On the other hand, the energy of the created particles is g
by @74#

E@h;h#52E d4p

~2p!4p0u~p0!Ñabcd~p!h̃ab* ~p!h̃cd~p!

1O~h3!. ~4.26!

The vacuum noise and dissipation kernels for a Minkow
background can be written in terms of two pairs of sca
kernels,Nr(x2y) and Dr(x2y), respectively, withr 51,2
@73# ~see also Ref.@31# for a particular case in whichN2
5D250). Each pair of kernels (Nr ,Dr) satisfies the
fluctuation-dissipation relation found in Sec. IV A 1. On
finds @71,74# that

Ñabcd~p!h̃ab* ~p!h̃cd~p!5C̃abcd
(1) ~p!C̃(1)* abcd~p!Ñ1~p!

1uR̃(1)~p!u2Ñ2~p!, ~4.27!

where C̃abcd
(1) (p), R̃(1)(p) and Ñr(p) are, respectively, the

Fourier transforms of the linearized Weyl tensor, the sca
curvature and the kernelsNr(x2y), r 51,2; Ñr(p) depend
only on p2[hmnpmpn. It is then easy to see, using th
fluctuation-dissipation relation, that
8-18
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E@h;h#5 i E d4p

~2p!4p0@C̃abcd
(1) ~p!C̃(1)* abcd~p!D̃1~p!1uR̃(1)~p!u2D̃2~p!#1O~h3!. ~4.28!

Hence, in the case of a Minkowski background, the energy of the created particles can be expressed in terms of the d
kernelsD1 andD2 for the Minkowskian vacuum. It is not clear, however, that, for other stationary backgrounds, the e
of the created particles can be related to dissipation in vacuum in a similar way.

The probability of particle creation~4.21! is a fluctuating quantity, due to the functional dependence on the stoch
perturbationhab . We may compute its averaged value^P@h;g#&c , which @neglecting the higher order corrections in E
~4.21!# is given by

^P@h;g#&c5P@^h&c ;g#1E d4x d4yA2g~x!A2g~y!Nabcd@g#~x,y!^hab
f ~x!hcd

f ~y!&c , ~4.29!
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where hab
f [hab2^hab&c . The first term in the right hand

side of Eq.~4.29! is the probability of particle creation~or
one half of the number of created particles! that one would
obtain in the spacetime (M,gab1^hab&c). The second term
will be greater than zero when stress-energy fluctuations
present3 since, from the Einstein-Langevin equation, this im
plies ^hab

f (x)hcd
f (y)&cÞ0. Note that, when this is the cas

from the fluctuation-dissipation relation of Sec. IV A 1, th
vacuum dissipation kernel will be also non-vanishin
Hence, metric fluctuations induced by matter stress-ene
fluctuations generally increase the mean value of the num
of created particles with respect to the same quantity in
‘‘perturbed’’ semiclassical spacetime (M,gab1^hab&c).

The above result for the total probability of particle cr
ation and number of created particles can be easily gen
ized to the case of a massless conformally coupled sc
field and a conformally stationary semiclassical backgrou
When this background is a spatially flat RW universe@19#,
performing conformal transformations in the metric pert
bations and in the kernels as in Eq.~4.18!, one gets expres
sions analogous to Eqs.~4.25!, ~4.27! and ~4.28! with N2
5D250 ~see Refs.@56,19,31# for more details!.

V. CONCLUSIONS

In the first part of this paper, we have shown how a co
sistent stochastic semiclassical theory of gravity can be
mulated. This theory is a perturbative generalization of se
classical gravity which describes the back reaction of
lowest order stress-energy fluctuations of quantum ma
fields on the gravitational field through the semiclassi
Einstein-Langevin equation. We have shown that this eq
tion can be formally derived with a method based on
influence functional of Feynman and Vernon, where o
considers the metric field as the ‘‘system’’ of interest and
matter fields as part of its ‘‘environment’’@9#. Our approach
clarifies the physical meaning of the semiclassical Lange
type equations previously derived with the same functio

3Except in some rare cases, for whichNabcd(x,y) is not strictly
positive definite and̂hab

f (x)hcd
f (y)&c is such that it ‘‘hits’’ the zero

eigenvalue.
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method@12–14,19–25#, since it links the source of stochast
fluctuations to quantum matter stress-energy fluctuatio
and allows us to formulate the theory in a general way.
the same time, we have also developed a method to com
the semiclassical Einstein-Langevin equation using dim
sional regularization. This provides an alternative and m
direct way of computing the equation with respect to t
previous calculations, based on a specific evaluation of
effective action of Feynman and Vernon@12–14,19–25#. In
a subsequent paper@73#, we shall apply this method to solv
the Einstein-Langevin equation around some simple so
tions of semiclassical gravity.

The second part of the paper was devoted to the existe
of fluctuation-dissipation relations and to particle creation
the context of stochastic semiclassical gravity. When
background solution of semiclassical gravity consists o
stationary spacetime and a scalar field in a thermal equ
rium state, we have identified a dissipation kernel in t
Einstein-Langevin equation which is related to the noise k
nel by a fluctuation-dissipation relation. The same relat
was previously derived by Mottola@47# using a linear re-
sponse theory approach. We have also generalized this r
to the case of a conformal scalar field in a conformally s
tionary background solution of semiclassical gravity.

Our analysis seems to indicate that for a fluctuatio
dissipation relation to be present in stochastic semiclass
gravity, the semiclassical background solution must sat
certain conditions. In this paper we have just analyzed
simplest cases for which such a relation exists. Further w
must be done to investigate whether a similar relation
present in other situations of physical interest, such as b
hole backgrounds@48,49,24#, or non-conformal fields in RW
backgrounds in the instantaneous vacua or the thermal s
defined in Ref.@75#.

We have also studied particle creation by stochastic m
ric perturbations in stationary and conformally stationary~for
conformal matter fields in this latter case! background solu-
tions of semiclassical gravity. We have expressed the t
probability of particle creation and the number of creat
particles~the expectation value of the number operator
‘‘out’’ particles in the ‘‘in’’ vacuum! in terms of the vacuum
noise kernel. We have shown that the averaged value
those quantities is enhanced by the presence of stoch
8-19
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metric fluctuations. In the particular cases of a Minkows
background and a conformal field in a spatially flat R
background, the energy of the created particles can be
pressed in terms of the vacuum dissipation kernels.

It should be stressed that the concept of particle crea
is only well defined when the solutions of the Einste
Langevin equation vanish in the ‘‘remote past’’ and in t
‘‘far future’’ ~at least, ‘‘asymptotically’’!. However, there
can be physically meaningful solutions of the Einste
Langevin equation that do not satisfy these rather strong c
ditions. In this case, vacuum noise and dissipation in stoc
tic semiclassical gravity can include effects that are
associated to particle creation.
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APPENDIX A: EXPANSION OF THE STRESS-ENERGY
TENSOR AROUND A BACKGROUND METRIC

The expansion of the stress-energy tensor functional

Tab@g,Fn#[¹aFn¹bFn2
1

2
gab¹cFn¹cFn

2
1

2
gabm2Fn

21j~gabh2¹a¹b1Gab!Fn
2 ,

around a background metricgab is given by

Tab@g1h,Fn#5Tab@g,Fn#1T(1)ab@g,Fn ;h#10~h2!,

with
T(1)ab@g,Fn ;h#52Tac@g,Fn#hc
b2Tbc@g,Fn#hc

a2
1

2
~¹cFn¹cFn1m2Fn

2!hab1
1

2
gab¹cFn¹dFnhcd

1
j

2
@2Rhab1gabRcdhcd1¹c¹ahc

b1¹c¹bhc
a2¹a¹bhc

c2hhab1gab~hhc
c2¹c¹dhcd!

1~¹ahc
b1¹bhc

a2¹ch
ab22gab¹dhcd1gab¹chd

d!¹c12habh22gabhcd¹
c¹d#Fn

2 ,
nd

n
nate
-

a-

d

e

where the covariant derivatives and curvature tensors
those of the metricgab , and indices are raised with invers
background metricgab.

APPENDIX B: HAMILTONIAN OPERATOR IN A
STATIONARY SPACETIME AND THERMAL

WICK’S THEOREM

In this appendix, we construct the Hamiltonian or ener
operator for a quantum scalar field in a stationary spaceti
For a more rigorous mathematical treatment, see Ref.@60#
and, for the particular case of a static spacetime, see Ref@3#.
We also show how this construction can be generalized f
conformal scalar field in a conformally stationary spacetim
Using this Hamiltonian to define a thermal density opera
we shall see how thermal four-point functions can be
pressed in terms of thermal two-point functions~‘‘thermal
Wick’s theorem’’!.

Let (M,gab) be a n dimensional stationary spacetim
that is, a spacetime with a global timelike Killing vector fie
za[(]/]t)a, and consider a linear real scalar fieldFn on it.
Assuming that the spacetime is globally hyperbolic, we c
foliate it by a family of Cauchy hypersurfacesS t , labeled by
the Killing time t ~hypersurfaces of constantt!, and give
coordinates to each point of the spacetimexm5(t,x), where
x[(xi) are local coordinates on each of these hypersurfa
Let na be the future directed unit~i.e., nana521 and nt
re

y
e.

a
.

r,
-

n

s.

.0) vector field normal to each hypersurfaceS t . The in-
duced metric on eachS t by the spacetime metric isqab

[gab1nanb @50#; then qb
a is a projector orthogonal tona.

We can decompose the Killing vector into its normal a
tangential parts to eachS t : za5Nna1Na, where N[
2zana and Na[qb

azb are, respectively, the lapse functio
and the shift vector. In the basis associated to the coordi
system$xm%, the componentsgmn of the metric are indepen
dent of t and can be written asgtt52N21NiN

i , gti5Ni ,
gi j 5qi j , with Ni5qi j N

j . One can also writeA2g5NAq,
whereq[det(qi j ).

To construct the classical Hamiltonian, we write the L
grangian density as

Ln5
1

2
AqN@~nm]mFn!22qi j ] iFn] jFn2~m21jR!Fn

2#,

~B1!

where nt51/N, ni52Ni /N and qi j is the inverse ofqi j ,
qikqk j5d i

j . The momentum canonical conjugate toFn is
Pn5Aqnm]mFn and the Hamiltonian density is constructe
as usual,Hn5Pn] tFn2Ln , from which the Hamiltonian
functional on the hypersurfaceS t is given by H(t)
5*S t

dn21xHn(x). Integrating by parts and dropping surfac
terms, we get
8-20
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whereDi is the covariant derivative on then21 dimensional
Riemannian spaces (S t ,qi j ) ~associated to the metricqi j ),
and D[DiDi is the associated Laplace-Beltrami operat
For a fieldFn and its momentum conjugatePn satisfying the
Hamiltonian equations of motion, this Hamiltonian is a co
served quantity, i.e., it is independent oft.

The analogous quantity in the Lagrangian formalism
the canonical energy functional, which is defined in terms
the canonical stress-energy tensor functional,

Tab
can@g,Fn#[¹aFn¹bFn2

1

2
gab¹

cFn¹cFn

2
1

2
gab~m21jR!Fn

2 , ~B3!

asEcan[*SdSnazbTab
can@g,Fn#, whereS is a Cauchy hyper-

surface,na is the future directed unit vector field normal
S, anddS is the invariant volume element onS constructed
with the metric induced bygab . By Noether’s theorem@50#,
this energy functional is conserved, i.e., it is independen
the choice of Cauchy hypersurfaceS, whenFn satisfies the
Klein-Gordon equation. ChoosingS t as the Cauchy hyper
surface, we can obtain an expression forEcan after the sub-
stitution ofPn by Aqnm]mFn in the Hamiltonian~B2!. Note
that we can also introduce an energy functionalE
[*SdSnazbTab@g,Fn#, whereTab is the stress-energy ten
sor functional~2.2! @50#. For a fieldFn satisfying the Klein-
Gordon equation, this is also a conserved quantity. Howe
choosing a Cauchy hypersurfaceS t , one can show tha
nazb(Tab2Tab

can) is a divergence on the space (S t ,qi j ) and,
thus, dropping surface terms, we haveE5Ecan.

We can now formally construct the Hamiltonian ‘‘oper
tor’’ in the Heisenberg picture simply by replacingFn and

Pn by their corresponding operatorsF̂n andP̂n in Eq. ~B2!
and using, as always, a Weyl ordering prescription for
operators. This operator is a conserved quantity, that is,
independent of the timet; therefore, it is equal to the Hamil
tonian operator in the Schro¨dinger picture and we simply
denote it byĤ. Since the momentum operator in the Heise

berg picture satisfiesP̂n5Aqnm]mF̂n , this Hamiltonian op-
erator can also be obtained from the canonical energy fu
tional @hence, Ĥ represents also a conserved ene

operator#. Taking into account that the field operatorF̂n sat-
isfies the Klein-Gordon equation, we find

Ĥ5
1

4ES t

dn21xAq
1

N
@$] tF̂n ,~] tF̂n2Ni] iF̂n!%

2$F̂n ,] t~] tF̂n2Ni] iF̂n!%#. ~B4!
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In this case, there exists a natural Fock representa

based on a decomposition of the field operatorF̂n in terms
of a complete set of modes$ukn

(x)%, solution of the Klein-
Gordon equation, which have positive frequency with
spect to the Killing vector za[(]/]t)a: ] tukn

(x)

52 ivkukn
(x), with vk.0. The labelk of each mode mus

in general be understood as representing a set of discre
continuous indices, and, thus, the summations overk repre-
sent either a discrete sum or an integral with some suita
measure~or a combination of these two possibilities!. We
assume that these modes have the same physical dimen
as the fieldFn ~this is the reason why we put a subindexn).
These modes have to be orthonormal with respect to
inner product (f1 ,f2)[2 i *SdSna(f1]af2* 2f2* ]af1),
which is independent of the Cauchy hypersurfaceS whenf1
and f2 are solutions of the Klein-Gordon equation@4,76#,
i.e., (ukn

,ul n
)5dkl and (ukn

,ul n
* )50.

The field operator can then be written as

F̂n~x!5(
k

@ukn
~x!âk1ukn

* ~x!âk
†#, ~B5!

where âk
† and âk are creation and annihilation operators

the Fock space associated to this mode decomposition, w
satisfy the usual commutation relations@4,76#. Using these
commutation relations and the orthonormality conditions
the modes evaluated onS t , substituting Eq.~B5! into Eq.
~B4!, one finds the Fock space representation of the for
Hamiltonian ‘‘operator’’Ĥ5(kvk(âk

†âk1 1
2 ). We can make

this last expression well defined by subtraction of the ‘‘d
vergent’’ constant c-number(k(vk/2), that is, we can intro-
duce a renormalized Hamiltonian operator as

ĤR5(
k

vkâk
†âk . ~B6!

Note thatĤR is given by an expression similar to Eq.~B4!,
but adding a normal ordering prescription for the operat
âk and âk

† , or, equivalently ~dropping surface terms!,

by ĤR5*SdSnazb:T̂nab
@g#:5*SdSnazb:T̂nab

can@g#:, where

T̂nab
@g# is defined in Eq.~3.6!, T̂nab

can@g# is analogously de-

fined after Eq.~B3!, and : : means normal ordering@76,5#.
The vacuum and the many-particle states of the Fock sp
are eigenstates of this Hamiltonian operator with zero a
positive eigenvalues, respectively~given by the sum of the
vk’s corresponding to the particle contents of the state!.

From Eq.~B5! and P̂n5Aqnm]mF̂n , using the positive
frequency condition and
8-21
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@ĤR ,âk#52vkâk , @ĤR ,âk
†#5vkâk

† , ~B7!

we get ] tF̂n5 i @ĤR ,F̂n# and ] tP̂n5 i @ĤR ,P̂n#. These are
the Heisenberg equations of motion, which are equivalen

the Klein-Gordon equation for the operatorF̂n . From these
equations, we see that the operator exp„2 iĤ R(t2t8)… gen-
erates the time evolution of operators in the Heisenberg
ture.

1. Conformal field in a conformally stationary spacetime

Let us now consider a massless conformally coupled

scalar fieldF̄n in a n dimensional spacetime (M,ḡab), as-
sumed to be conformally stationary and globally hyperbo

The actionSm@ ḡ,F̄n# for the field is given by Eq.~3.3! with
m50 and j5j(n)[(n22)/@4(n21)#. In this case, the
spacetime has a global timelike conformal Killing vect
field za[(]/]t)a, which satisfies ¹̄azb1¹̄bza

5(2/n)¹̄czcḡab , where¹̄a is the covariant derivative asso
ciated to the metricḡab . The metricḡab is conformally re-
lated to a stationary metricgab :ḡab(x)5e2Ã(x)gab(x). The
foliation of the spacetime by Cauchy hypersurfacesS t and
the coordinatesxm5(t,x) are introduced as above.

Given a Cauchy hypersurfaceS, with unit normaln̄a ~as
above, we taken̄t.0), we can introduce the energy fun

tional asE[*SdS n̄azbTab@ ḡ,F̄n#, wheredS is the invari-
ant volume element constructed with the metric onS in-
duced by the metricḡab . Given that the stress-energy tens

Tab@ ḡ,F̄n# is traceless when the fieldF̄n satisfies the Klein-
Gordon equation, it is easy to see from the equation for
conformal Killing vector za that this energy functional is
conserved. In fact, choosing a hypersurfaceS t to evaluate

this energy, and introducingFn[e(n22)Ã/2F̄n , it is easy to
see@77# that

E5E
S t

dn21xAqnazbTab@g,Fn#, ~B8!

wherena andqi j are constructed with the metricgab . Thus,
E is equal to the energy functional for the fieldFn in the
stationary spacetime (M,gab).

Using the ‘‘natural’’ Fock representation, based on t

decomposition of the field operatorF̂n@ ḡ# in terms of modes
ūkn

(x)5e2(n22)Ã(x)/2ukn
(x), we can construct the renorma

ized energy operator in the Heisenberg picture,ÊR@ ḡ#, asso-
ciated to the above energy functionalE. Here, as above
$ukn

(x)% is a complete set of modes, solution of the Klei

Gordon equation in the stationary spacetime (M,gab),
which are of positive frequency with respect toza[(]/]t)a.
08400
to

c-

al

.

r

e

Dropping surface terms, we getÊR@ ḡ#5(kvkâk
†âk , where

âk
† andâk are creation and annihilation operators on the Fo

space associated to these conformal modes.

Alternatively, one can perform the transformationF̄n
[e2(n22)Ã/2Fn in the scalar field action, which is the
transformed toSm@g,Fn#, and construct the Hamiltonian as
sociated to this transformed action, which is given by t
above expressions for the stationary case. This is equiva
to making a canonical transformation in the Hamiltonian fo
mulation of the theory. One then introduces an opera

F̂n@g#[e(n22)Ã/2F̂n@ ḡ#, which can be identified as the fiel
operator in the Heisenberg picture in the stationary spa
time (M,gab). The associated Hamiltonian operator can
identified with the operatorĤR@g# constructed above~and,
obviously, it coincides withÊR@ ḡ#). Note that this Hamil-
tonian or energy operator generates the time evolution of

operator F̂n@g# rather than that of the ‘‘physical’’ field

F̂n@ ḡ#. A generalization of this last approach has been u
in Ref. @75# for scalar fields with arbitrary mass and arbitra
coupling to the curvature in a RW spacetime to construc
time-dependent Hamiltonian operator whose ground stat
each fixed instant of time is a Hadamard state. A sim
construction starting with the above energy functional
given in Ref.@5#. In the massless conformally coupled cas
these time-dependent Hamiltonian constructions reduce
the construction sketched in this appendix.

2. Wick’s theorem for thermal states

From the Hamiltonian operator~B6! ~here, we drop the
subindexR), we can define a state of thermal equilibrium f
the scalar field as in Eq.~4.1!. Following partially the proof
presented in the appendix of Ref.@78#, we shall next show
how Wick’s theorem can be generalized for the associa
thermalN-point functions. First, note that, from Eq.~B7!,

âk
(a)e2bĤ5e2abvke2bĤâk

(a) , ~B9!

wherea51,2, âk
(1)[âk andâk

(2)[âk
† . Using this and the

cyclic property of the trace, we get

^âk
(a)âl

(g)&T5
1

12e2abvk
@ âk

(a) ,âl
(g)#, ~B10!

where we have used the commutator@ âk
(a) ,âl

(g)# to represent
either dkl , 2dkl or 0 ~such commutator does not represe
an operator in the last equation!. Writing the field operator

F̂n(x) in terms of the operatorsâk
(a) , the associated four

point thermal functions can be expressed in terms

^âk
(a)âl

(g)âr
(d)âs

(s)&T . Taking into account that the commuta

tor @ âk
(a) ,âl

(g)# is a c-number, one has the following identit
âk
(a)âl

(g)âr
(d)âs

(s)5@ âk
(a) ,âl

(g)#âr
(d)âs

(s)1@ âk
(a) ,âr

(d)#âl
(g)âs

(s)1@ âk
(a) ,âs

(s)#âl
(g)âr

(d)1âl
(g)âr

(d)âs
(s)âk

(a) . ~B11!

On the other hand, from Eq.~B9! and the cyclic property of the trace, we have
8-22
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^âl
(g)âr

(d)âs
(s)âk

(a)&T5e2abvk^âk
(a)âl

(g)âr
(d)âs

(s)&T . ~B12!

Using the last two equations, we get

^âk
(a)âl

(g)âr
(d)âs

(s)&T5
1

~12e2abvk!
$@ âk

(a) ,âl
(g)#^âr

(d)âs
(s)&T1@ âk

(a) ,âr
(d)#^âl

(g)âs
(s)&T1@ âk

(a) ,âs
(s)#^âl

(g)âr
(d)&T%, ~B13!

which, from Eq.~B10!, yields

^âk
(a)âl

(g)âr
(d)âs

(s)&T5^âk
(a)âl

(g)&T^âr
(d)âs

(s)&T1^âk
(a)âr

(d)&T^âl
(g)âs

(s)&T1^âk
(a)âs

(s)&T^âl
(g)âr

(d)&T , ~B14!

and, hence, we have

^F̂n~x1!F̂n~x2!F̂n~x3!F̂n~x4!&T5^F̂n~x1!F̂n~x2!&T^F̂n~x3!F̂n~x4!&T1^F̂n~x1!F̂n~x3!&T^F̂n~x2!F̂n~x4!&T

1^F̂n~x1!F̂n~x4!&T^F̂n~x2!F̂n~x3!&T . ~B15!

A similar expression holds for the four-point function of time-ordered products~considert1.t2.t3.t4 in the last equation!.
These results can be easily generalized to thermal 2N-point functions (NPN). On the other hand, from Eq.~B9!, we can see
that ^âk

(a)&T50 and, following similar steps, we can show that the thermal (2N21)-point functions vanish.
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