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Mode decomposition and renormalization in semiclassical gravity
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We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the
environment. Subtleties related to divergences that appear when summing over all the modes are made explicit
and clarified. Being closely connected with models used in the literature, we show how to completely reconcile
the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with
those obtained by other standard functional techniques.@S0556-2821~99!08020-0#

PACS number~s!: 04.62.1v, 05.40.2a, 98.80.Cq
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I. INTRODUCTION

The closed time path~CTP! functional formalism has
been very useful to study the back-reaction effect in the c
text of semiclassical gravity~as well as other aspects of fie
theory! @1–4#. When considering the back-reaction proble
in semiclassical gravity, one is usually interested only in
gravitational field dynamics whereas the quantum ma
fields are treated as an environment@6,7#. The results ob-
tained when integrating out the environmental degrees
freedom are closely connected with the influence functio
@5#, a statistical field theory method which has proved ve
fruitful to reveal the stochastic nature of open quantum s
tems~for applications to quantum Brownian motion mode
see Ref.@8#!. In fact, it has been pointed out that semicla
sical gravity @9,6# and effective theories in general shou
exhibit dissipation and noise@4#. To describe the stochasti
character of the system dynamics due to the noise induce
the environment, Langevin-type equations are requir
Thus, Einstein-Langevin equations have been used to
dress the back-reaction problem in the framework of se
classical gravity@6,10,7,11#.

When dealing with fields, mode decomposition can b
useful calculational tool since it makes the problem close
quantum mechanical systems~free fields are treated as a
infinite set of decoupled harmonic oscillators!. The main ad-
vantage of this method is that the noise and dissipation
nels can be obtained in a rather direct way@12# and, in the
context of semiclassical gravity, it provides a simple conn
tion with the Bogoliubov coefficients~closely related to par-
ticle creation effects! @6,10#. For each mode no renormaliza
tion is required; the need for renormalization arises wh
considering an infinite number of degrees of freedom: i
precisely when summing over all the modes that one g
ultraviolet divergences. However, the appearance of distr
tional functions makes this sum rather subtle; the presenc
such divergences is not always manifestly evident and m
leading results may be obtained. In the semiclassical gra
context this is particularly important as one may overlook
need for counterterms to renormalize the divergences, w
will imply the appearance of finite extra terms when addre
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ing the back-reaction problem. These drawbacks do not a
in other treatments based on functional methods typica
quantum field theory~QFT! which make no use of mode
decomposition, where renormalization seems to be more
ily handled@1,7,13#.

The aim of this Brief Report is to show how to reconci
the results obtained by means of a mode-decomposition
proach with the results based on standard field theory te
niques for renormalization in curved space-times@13#. In
Sec. II we introduce the notation and the model that we
going to work with and evaluate the influence action pert
batively. A concrete example is considered in Sec. III, wh
sum over modes is performed revealing the appearanc
divergences, and it is shown how they can be handled
Sec. IV, the previous results are used to consider mo
treated in the literature which use mode decomposition in
context of stochastic semiclassical gravity and show how
reconcile these results with those obtained by usual fu
tional methods.

II. MODE-DECOMPOSED EXPRESSION
FOR THE INFLUENCE ACTION

To make the description as simple as possible we foll
Ref. @6# and consider the whole action for a system describ
by the variablex(t) with action S@x(t)# and the environ-
ment, described by a free fieldf(t,xW ) in flat space which has
been decomposed in a complete set of mo

$uk(xW )%: f(t,xW )5(kqk(t)uk(xW ). The free action
S@f(t,xW )# is local and at most quadratic inf(t,xW ), since the
field is linear. If that is also the case for the ter
Sint@x(t),f(t,xW )# describing the interaction with the system
the action terms for the environment may be written, af
performing the spatial integrals and using the completen
relation for the modes, as (kS@qk(t)# and
(kSk

int@x(t),qk(t)#, respectively, where the action for eac
modeS@qk(t)# corresponds to that of a harmonic oscillato
The dynamics is therefore equivalent to that of a set of
coupled harmonic oscillators interacting separately with
system:

S@x~ t !,f~ t,xW !#5S@x~ t !#1(
k

S@qk~ t !#

1(
k

Sk
int@x~ t !,qk~ t !#, ~1!
©1999 The American Physical Society03-1
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whereSk
int@x(t),qk(t)#5*dtQk„qk(t)…h„x(t)… with Qk andh

being some specific functions. The expression for
Feynman-Vernon influence functional@5# in the interaction
picture is

F@x1 ,x2#5eiSIF [x1 ,x2]5 I^0 inu)
k

T2~e2 iSk
int[x2(t)] !

3T1~eiSk
int[x2(t)] !u0 in& I , ~2!

whereT1 andT2 correspond to the time ordering and an
time ordering prescriptions, respectively. To obtain the infl
ence actionSIF , we will treat the interaction termSk

int@x(t)#
perturbatively. Taking the logarithm of Eq.~2! and expand-
ing up to second order inSk

int , we get

SIF@x1 ,x2#.E dt@G1~ t !x1~ t !1G2~ t !x2~ t !#

1
1

2E dtdt8@G11~ t,t8!x1~ t !x1~ t8!

1G12~ t,t8!x1~ t !x2~ t8!

1G21~ t,t8!x2~ t !x1~ t8!

1G22~ t,t8!x2~ t !x2~ t8!#, ~3!

where

G1~ t !52G2~ t !5(k^Qk„qk~ t !…&,

G66~ t,t8!5(ki @^T
6Qk„qk~ t !…Qk„qk~ t8!…&2^Qk„qk~ t !…&

3^Qk„qk~ t8!…&#,

and

G12~ t,t8!5G21~ t8,t !5(k2 i @^Qk„qk~ t !…Qk„qk~ t8!…&

2^Qk„qk~ t !…&^Qk„qk~ t8!…&#.

All the expectation values are considered with respect to
asymptoticin vacuumu0 in& I in the interaction picture. Note
that we have integrated out the environment degrees of f
dom andSIF depends only on the system variables.

It is important to separate the real and imaginary parts
the influence action because, as is well known@5,6#, the
imaginary part is related to the noise that the environm
induces on the system, whereas the real part gives the a
aged dynamics of the system. These are

R SIF@x1 ,x2#5(
k

F E dt^Qk„qk~ t !…&D~ t !

1
1

2E dtdt8S~ t !Hk~ t,t8!D~ t8!G , ~4!
10750
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k

F1

2E dtdt8D~ t !Nk~ t,t8!D~ t8!G , ~5!

where we have definedS(t)[h„x1(t)…1h„x2(t)… and
D(t)[h„x1(t)…2h„x2(t)… and we have introduced

Hk~ t,t8!5Ak~ t,t8!2Dk~ t,t8!522Dk~ t,t8!u~ t2t8!,
~6!

which has been expressed in two alternative and equiva
ways for further use. Here the kernelsAk , Dk , andNk are
defined as follows:

Dk~ t,t8!5~2 i /2!^@Qk„qk~ t !…,Qk„qk~ t8!…#&

is the dissipation kernel and

Nk~ t,t8!5 1
2 ^$Qk„qk~ t !…,Qk„qk~ t8!…%&2^Qk„qk~ t !…&

3^Qk„qk~ t8!…&

is the noise kernel. The dissipation and noise kernels, wh
are related by the fluctuation-dissipation theorem, are a
symmetric and symmetric, respectively, under interchang
t and t8. On the other hand, the kernelAk(t,t8)5( i /2)sgn(t
2t8)^@Qk„qk(t)…,Qk„qk(t8)…#& is symmetric and, as we wil
see, it is the part that gives rise to divergences.

III. SUM OVER ALL THE MODES AND NEED
FOR RENORMALIZATION

For concreteness, let us now consider the caseQk„qk(t)…
5(g/2)qk(t)

2 (g is a perturbative coupling constant! where
f(t,xW ) is a massless real scalar field satisfying the Kle
Gordon equation in Minkowski space-time. We can use
following conventions~note that the label for each mode,k,
corresponds in fact to a three-dimensional vector!:

q̂k~ t !5âkf k~ t !1â2k
† f 2k* ~ t !,

Gk
1~ t,t8![^q̂k~ t !q̂2k~ t8!&5 f k~ t ! f 2k* ~ t8!,

and

Gk
F~ t,t8![^Tq̂k~ t !q̂2k~ t8!&5u~ t2t8! f k~ t ! f 2k* ~ t8!

1u~ t82t ! f 2k~ t8! f k* ~ t !,

whereâk
† and âk are the creation and annihilation operato

for each of the modesuk(xW ) in which the fieldf(t,xW ) has
been decomposed. When properly normalized,f k(t)
5(2p)23/2(2vk)

21/2exp(2ivkt) with vk5(kW2)1/2. Taking
all this into account, we will have

Dk~ t,t8!52
i

4
@Gk

1~ t,t8!22Gk
1~ t8,t !2#, ~7!
3-2
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Ak~ t,t8!5
i

4
sgn~ t2t8!@Gk

1~ t,t8!22Gk
1~ t8,t !2#, ~8!

Nk~ t,t8!5
1

4
@Gk

1~ t,t8!21Gk
1~ t8,t !2#. ~9!

To perform the sum over all the modes, we note that we m
write Ak1 iNk5( i /2)Gk

F2 and Dk1 iNk5( i /2)Gk
12. Using

the integral representations forGk
F andGk

1 ,

Gk
F~ t,t8!52~2p i !21*2`

` dve2 iv(t2t8)~v22kW21 i«!21,

Gk
1~ t,t8!5*2`

` dve2 iv(t2t8)d~v22kW2!u~v!,

we obtain

Gk
F~ t,t8!252

1

~2p!2E2`

`

dk0e2 ik0(t2t8)

3E
2`

` dv

@v22kW21 i«#@~v2k0!22kW21 i«#
,

~10!

Gk
1~ t,t8!25E

2`

`

dk0e2 ik0(t2t8)E
2`

`

dvd~v22kW2!

3u~v!d~~v2k0!22kW2!u~k02v!. ~11!

When carrying out the sum over modes@(k

[V/(2p)n21*dn21k# we note that theGF
2 term will di-

verge. Thus, we use dimensional regularization to perfo
the integrations and then expand in powers of (n24), where
n is the space-time dimension. The usual procedure give

A~ t2t8!1 iN~ t2t8!52
V

32p2E2`

`

dk0e2 ik0(t2t8)

3F 1

n24
1

1

2
lnS ~k0!21 i«

m2 D G ,

~12!

D~ t2t8!1 iN~ t2t8!5
iV

32p2E2`

`

dk0e2 ik0(t2t8)u~k0!,

~13!

whereA5(kAk , D5(kDk , andN5(kNk . The second in-
tegral is finite, and thus we finally have the finite par
Aren(t2t8)52(V/32p2)*2`

` dk0e2 ik0(t2t8)ln(k0/m)2, D(t

2t8)5 i (V/32p2)*2`
` dk0e2 ik0(t2t8)sgn(k0), and N(t2t8)

5(V/32p)d(t2t8). The divergent part Adiv(t2t8)5
2@V/16p(n24)#d(t2t8) has been separated in such a w
that the divergences may be absorbed by counterterm
10750
y

:

in

S@x#. In other QFT contexts~e.g., two interacting scala
fields! @2,4# the finite contribution from the counterterms ca
be reabsorbed in the renormalized parameters. Howeve
we will see, in semiclassical gravity some logarithmic fin
terms which cannot be reabsorbed arise in the counterte

IV. STOCHASTIC SEMICLASSICAL GRAVITY

As an example we consider the back reaction due to
effect of a small mass or a nonconformal coupling of t
scalar field f(x) on a flat Robertson-Walker mode
@6,10,13#. We have to make the following substitutions:

x~ t !→a~h!,

Qk„qk~ t !…h„x~ t !…→ 1

2
fk~h!2Dv2

„a~h!…

5
1

2
fk~h!2@m21~j2jc!

3R„a~h!…#a~h!2, ~14!

where h is the conformal time,a(h) the scale factor,
R„a(h)… the scalar curvature,m the scalar field mass, andj
a dimensionless constant. In those previous works wh
Einstein-Langevin equations were derived using mode
composition, divergences were not dealt with@6,10#.

Let us now see how special care is needed with the sum
modes. Take for instance the second definition forHk in
Eq. ~6! and note that, using the real part of Eq.~13!,
D(h2h8)5(kDk(h2h8) may be written as
(V/16p2)PV„1/(h2h8)…. In this case, one would be in
clined to write H5(kHk5D(h,h8)u(h2h8)
5(V/16p2)PV„1/(h2h8)…u(h2h8), but this is an ill-
defined product of distributions which may give rise to d
vergences. A possible way to deal with this is by usin
instead, the first definition in Eq.~6! and considerA andD
separately:

H5(
k

Hk5(
k

Ak2(
k

Dk , ~15!

where the first term in the last member will be ultraviol
divergent whereas the last term is finite. Now the diverge
can be clearly identified and one may use the proper co
terterm in dimensional regularization to cancel it:

Sg
div@a~h!#5

~j2jc!
2mn24

32p2~n24!
E dnxA2gR2

5
~j2jc!

2

32p2~n24!
VE dn23xH 36

n24
S ä

a
D 2

136S ä

a
D

3F ln~am!S ä

a
D 1

2

3
S ȧ

a
D 1S ȧ

a
D 2G J . ~16!

The second term in this integral, which is finite, will cau
the appearance of extra terms when deriving the Einst
3-3
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BRIEF REPORTS PHYSICAL REVIEW D 60 107503
Langevin equation. Using now the results of the previo
section, we get total agreement with those results reache
functional methods which do not use mode separation@13#.

A very interesting connection between dissipation a
fluctuations in the metric and particle creation has been
vealed by Calzetta and Hu@6#. They computed the energ
dissipated by the gravitational field per unit volume asrd
5*dhdh8@]H(h,h8)/]h#Dv2(h)Dv2(h8) ~for simplicity
we have considered that the asymptotic values of the s
factor areain5aout51), and showed that it was equal to th
energy density of the created particles,r created

particles
5(2p)23*4pn2Vnubnu2dn, where bn is the Bogoliubov
coefficient for the modes with frequencyn. However, formal
use of divergent expressions was made in such a deriva
Our treatment shows clearly that the divergent partA(h,h8)
of the kernelH(h,h8) decomposed according to Eq.~15!
gives no contribution since it is symmetric under interchan
of h andh8 and hence the derivative will be antisymmetr
r,

m

10750
s
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rd5E dhdh8
]H~h,h8!

]h
Dv2~h!Dv2~h8!

52E dhdh8
]D~h,h8!

]h
Dv2~h!Dv2~h8!. ~17!

This integral is, therefore, manifestly finite and can be co
puted using the dissipation kernel obtained from Eq.~13!,
thus leading to the same result of Ref.@6# without the need to
deal with divergent expressions.
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