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Mode decomposition and renormalization in semiclassical gravity
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We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the
environment. Subtleties related to divergences that appear when summing over all the modes are made explicit
and clarified. Being closely connected with models used in the literature, we show how to completely reconcile
the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with
those obtained by other standard functional techniqu&3556-282(199)08020-0

PACS numbg(s): 04.62:+v, 05.40—a, 98.80.Cq

[. INTRODUCTION ing the back-reaction problem. These drawbacks do not arise
in other treatments based on functional methods typical of

The closed time patHCTP) functional formalism has quantum field theoryQFT) which make no use of mode
been very useful to study the back-reaction effect in the condeécomposition, where renormalization seems to be more eas-

text of semiclassical gravitias well as other aspects of field ity ?ﬁhdlgd[l}Z?hl.a.B iof R . how h i
theory [1-4]. When considering the back-reaction problem & aim of this Brief Report Is to show how to reconcile

in semiclassical gravity, one is usually interested only in thethe results obtained by means of a mode-decomposition ap-

gravitational field dynamics .Whereas the quantum matteﬁiques for renormalization in curved space-tinias]. in
Ilgldsdareh treqte;d ast.an en:n;ﬁnmeﬁﬁt'?]. The trelsglts ob- ec. Il we introduce the notation and the model that we are
ained when integrating out theé environmental degrees o, q 15 work with and evaluate the influence action pertur-
freedom are closely connected with the influence function atively. A concrete example is considered in Sec. IlI, where
[5]_, a statistical field theory method which has proved veryg,m over modes is performed revealing the appearance of
fruitful to reveal the stochastic nature of open quantum SYStivergences, and it is shown how they can be handled. In
tems(for applications to quantum Brownian motion models sec. 1v, the previous results are used to consider models
see Ref[8]). In fact, it has been pointed out that semiclas-treated in the literature which use mode decomposition in the
sical gravity[9,6] and effective theories in general should context of stochastic semiclassical gravity and show how to
exhibit dissipation and noisgt]. To describe the stochastic reconcile these results with those obtained by usual func-
character of the system dynamics due to the noise induced lijonal methods.

the environment, Langevin-type equations are required.

Thus, Einstein-Langevin equations have been used to ad- Il. MODE-DECOMPOSED EXPRESSION
dress the back-reaction problem in the framework of semi- FOR THE INFLUENCE ACTION
classical gravity6,10,7,11. To make the description as simple as possible we follow

When dealing with fields, mode decomposition can be &ef. (6] and consider the whole action for a system described
useful calculational tool since it makes the problem closer Gy the variablex(t) with action Sx(t)] and the environ-

_qL;_ar_lttum tmef:(zjhanlcall deffemﬁe? f'eld.fl ?regtr:eateq as dan ment, described by a free fiel(t,x) in flat space which has
infinite set of decoupled harmonic oscillatbrShe main ad-  |oan, decomposed in a complete set of modes

vantage of this method is that the noise and dissipation ker- - - - .
nels cgan be obtained in a rather direct Wag] and,pin the {uk(x)}j (LX) =Zq(u(x).  The fr§e action
context of semiclassical gravity, it provides a simple connecSL ¢(t,X)] is local and at most quadratic i(t,x), since the

tion with the Bogoliubov coefficientéclosely related to par- field is linear. If that is also the case for the term
ticle creation effects[6,10]. For each mode no renormaliza- S™[x(t), ¢(t,x)] describing the interaction with the system,
tion is required; the need for renormalization arises wherthe action terms for the environment may be written, after
considering an infinite number of degrees of freedom: it isperforming the spatial integrals and using the completeness
precisely when summing over all the modes that one geteelation for the modes, as =, §q.(t)] and
ultraviolet divergences. However, the appearance of distribuz S™[ x(t),q,(t)], respectively, where the action for each
tional functions makes this sum rather subtle; the presence @hode S q,(t)] corresponds to that of a harmonic oscillator.
such divergences is not always manifestly evident and misthe dynamics is therefore equivalent to that of a set of de-
leading results may be obtained. In the semiclassical gravitgoupled harmonic oscillators interacting separately with the
context this is particularly important as one may overlook thesystem:

need for counterterms to renormalize the divergences, which

will imply the appearance of finite extra terms when address- S[x(t),d;(t,i)] —gx(t)]+ zk: Sau(t)]
*Also at Institut de fsica d’Altes EnergiegIFAE), Barcelona, + intro (g t 1
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whereS[x(t), k(1) ]= [ dtQy(ax(t))h(x(t)) with Q, andh

being some specific functions. The expression for the 3S|F[X+,X7]=;

Feynman-Vernon influence functiondd] in the interaction

picture Is where we have define® (t)=h(x,(t))+h(x_(t)) and
A(t)=h(x,(t))—h(x_(t)) and we have introduced

1 , e
EJ dtdt A(DN(LE)A) |, (B)

Hk(t,t,)zAk(t,t,)_Dk(t,t,)z _2Dk(t,t’)9(t_t,),
(6)
which has been expressed in two alternative and equivalent

ways for further use. Here the kernélg, D\, andN, are
defined as follows:

FIx, x_]=e'SFxe 1= (0 in|1_k[ T (e 1S -]

X T+ (S - O1)|0 iny, , )

whereT* and T~ correspond to the time ordering and anti-
time ordering prescriptions, respectively. To obtain the influ-
ence actiorS;- , we will treat the interaction terr,"[x(t)]
perturbatively. Taking the logarithm of E¢R) and expand- Di(t,t") = (—1/2){[Q(aw(1)), Q(ax(t"))])
ing up to second order I8, we get

is the dissipation kernel and
SiE[X. ,x,]zf dt[ G, (1)x. (1) +G_(H)X_(1)] Ni(t,t") =3 ({ Qu(ak(1)), Qu(ak(t")}) — (Qi(a(1)))
X{Qx(ax(t")))

is the noise kernel. The dissipation and noise kernels, which
are related by the fluctuation-dissipation theorem, are anti-
symmetric and symmetric, respectively, under interchange of

1 ) , ,
+§f dtdt’[G o (t,t")x, ()X (")

+G, _(4L,t)x (Hx_(t")

+G_ L (L)X (DX, (L) t andt’. On the other hand, t.he kernAl((t',t’)=(i/2)sgn(['
—t"){[Q(ak(t)), Qu(ax(t"))]) is symmetric and, as we will
+G__(t,t")x_(t)x_(t")], €) see, it is the part that gives rise to divergences.
where I1l. SUM OVER ALL THE MODES AND NEED
FOR RENORMALIZATION
G, ()=-G_()=Z(Qu(a())), For concreteness, let us now consider the @g@,(t))

=(9/2)qx(t)? (g is a perturbative coupling constanthere
G (1,t) =i (T Qu(Ok(1)Qu(@k(t"))) — (Qu(y(1))) ¢(t,x) is a massless real scalar field satisfying the Klein-
) Gordon equation in Minkowski space-time. We can use the

X(Qu(ax(t)))], following conventiongnote that the label for each mode,

q corresponds in fact to a three-dimensional vector
an

qu(t)=acf (t)+al f* (1),
G (1) =G, (1) = 5~ I[{ QA1) QW) WO =Adi(t)+ 2z =l

—(Qu(a()){Qulax(t)))]. GE(t.t’)E@k(t)ﬁ-k(t’» =f (D) F* (1),

All the expectation values are considered with respect to thg,q

asymptotidn vacuum|0 in), in the interaction picture. Note

that we have integrated out the environment degrees of free- A

dom andS,- depends only on the system variables. Gt t)=(Ta(t)g_k(t"))y=0(t—t") F (1) F* (t")

It is important to separate the real and imaginary parts of , ew

the influence action because, as is well knol@o], the O — DT ()T (D),

imaginary part is related to the noise that the environment t - ) o

induces on the system, whereas the real part gives the avayherea, anday are the cIeat|on and annihilation 9perators

aged dynamics of the system. These are for each of the modes,(x) in which the field¢(t,x) has
been decomposed. When properly normalizef](t)
=(2m) " ¥?(2w,) " Yexp(—iwd) with o= (k?)2. Taking

RSe[ X ,x_]zzk [f dt(Q(ar(H)))YA(t) all this into account, we will have

+%f dtdt’S () H(t,t)At) |, (4) Dk(t,t’)=—%[Gk*(t,t’)z—Gk*(t’,t)z], (7)
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i . y 5 g x]. In other QFT contextge.g., two interacting scalar
At t) =7sgrit—t)[G (t,t)"= Gy (1", 1)°], (8)  fields) [2,4] the finite contribution from the counterterms can
be reabsorbed in the renormalized parameters. However, as
we will see, in semiclassical gravity some logarithmic finite
1 , terms which cannot be reabsorbed arise in the counterterms.
N(t,t') = Z[G (Lt)+ G (', 1)2]. 9

IV. STOCHASTIC SEMICLASSICAL GRAVITY
To perform the sum over all the modes, we note that we may . .
write Ag+iN = (i/2)GE2 and Dy+iNy=(i/2)G; 2. Using As an example we consider the back reaction due to the
the integral representations fGJI(Z andG; | effect of-a small mass or a nonconformal coupling of the
scalar field ¢(x) on a flat Robertson-Walker model
[6,10,13. We have to make the following substitutions:
Gi(t,t)=—(2m) 1" dwe ) (w2—Kk2+ig) "L,

X(t)—a(n),
G, (t,t")=J" dwe ") §(w2—k?) O(w), .
we obtain Qk(QK(t))h(X(t))—’Ed’k( 7)?Aw?@(n))
1 (= =E¢( )2Im2+ (- &)
Gitt)2=——— [ ake w-t) > i :
(2m)°) =
" X R@(7)]a(7)?, (14

><J' PR do T where 7 is the conformal time,a(#n) the scale factor,
[ =kFie][(0—k) =k +ie] R(a(7)) the scalar curvaturen the scalar field mass, arid
(10 @ dimensionless constant. In those previous works where
Einstein-Langevin equations were derived using mode de-
~ B composition, divergences were not dealt wih10].
it 42 0,—ikO(t—t") 2_ 12 Let us now see how special care is needed with the sum of
G (Lt ﬁwdk © fﬁxdwé(w K modes. Take for instance the second definition Ky in
. Eqg. (6) and note that, using the real part of E@J3),
X0(w)d((0=K%)?=k?)6(k®~w). (1) D(np—75')==Di(n—7%') may be written as

. (VI1672)PV(1/(5—7")). In this case, one would be in-
When carrying out the sum over modegX, clined to write H=3H.=D(7.7')0(7— 7'

EV/(ZW)nilfdnflk] W_e notg that theGﬁ_term will di- =(V/16772)PV(1/(77— 7’))0(n—17'), but this is an ill-
verge. Thus, we use dimensional regularization to performyjefined product of distributions which may give rise to di-
the integrations and then expand in powersrof @), where  yergences. A possible way to deal with this is by using,
nis the space-time dimension. The usual procedure gives jnstead, the first definition in Eq6) and conside® and D

separately:
A(t—t")+iN(t—t")=— ! fw dk%e K-t
3272 ) H=2k Hk=2k Ak—; Dy, (15)
0V\2 4
X L+ lm (K)7Hie where the first term in the last member will be ultraviolet
n-4 2 w? divergent whereas the last term is finite. Now the divergence
(12) can be clearly identified and one may use the proper coun-
terterm in dimensional regularization to cancel it:
, V(= KO-t : (6= &)p""
D(t—t")+iN(t—t")= f dkPe K (=) g(KO), sdivig :C—f d"x/—aR2
32772 L% (s} [ (7])] 32772(n_4) g
(13 s )
. (—&0)? .| 36 [a a
whereA=3, Ay, D=2,Dy, andN=23,N,. The second in- =2—Vf d" 3x ~—7la +36| —
tegral is finite, and thus we finally have the finite parts: 32m°(n—4) n—a\a a
Aren(t—t") = — (VI322) [*  dKPe <INy )2, D(t 2\ afal (a2
—t')=i(V/32m2) [~ dKoe K’ (t-tIsgnk?), and N(t—t') X|Infaw)\ 21+ 313/ 13 ] (16)
=(VI32m)6(t—t"). The divergent part Ay, (t—t")=

—[V/16m(n—4)]5(t—t") has been separated in such a wayThe second term in this integral, which is finite, will cause
that the divergences may be absorbed by counterterms ihe appearance of extra terms when deriving the Einstein-
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Langevin equation. Using now the results of the previous dH(n,n")
section, we get total agreement with those results reached by Pd:f dnd n'&—sz(ﬂ)sz(W’)
functional methods which do not use mode separdti@. K

A very interesting connection between dissipation and ,D(n,7") .
fluctuations in the metric and particle creation has been re- :—f dndn TAw (mAw(n’). (17)
vealed by Calzetta and H]. They computed the energy
dissipated by the gravitational field per unit volume @s
=[dndy'[dH(7,7")dn]Aw?(n)Aw?(n') (for simplicity
we have considered that the asymptotic values of the sca
factor area;,=a,,;=1), and showed that it was equal to the

energy density of the created particIeSppC;ﬁ?ctleeds

=(2m) *[47v?Vv|B,|?dv, where B, is the Bogoliubov
coefficient for the modes with frequeney However, formal
use of divergent expressions was made in such a derivation. It is a pleasure to thank Esteban Calzetta and Rosario
Our treatment shows clearly that the divergent pery, ') Martin for useful comments and stimulating discussions.

of the kernelH(#,7’) decomposed according to E(L5)  This work has been partially supported by the CICYT Re-

gives no contribution since it is symmetric under interchangesearch Project No. AEN98-0431. A.R. also acknowledges
of » and »’ and hence the derivative will be antisymmetric: support of a grant from the Generalitat de Catalunya.

This integral is, therefore, manifestly finite and can be com-
uted using the dissipation kernel obtained from Ep),
us leading to the same result of R without the need to
deal with divergent expressions.
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