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Hollow sphere as a detector of gravitational radiation
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The most important features of the proposed spherical gravitational wave detectors are closely linked with
their symmetry.Hollow spheres share this property withsolid ones, considered in the literature so far, and
constitute an interesting alternative for the realization of an omnidirectional gravitational wave detector. In this
paper we address the problem of how a hollow elastic sphere interacts with an incoming gravitational wave and
find an analytical solution for its normal mode spectrum and response, as well as for its energy absorption cross
sections. It appears that this shape can be designed having relatively low resonance frequencies (; 200 Hz! yet
keeping a large cross section, so its frequency range overlaps with the projected large interferometers. We also
apply the obtained results to discuss the performance of a hollow sphere as a detector for a variety of
gravitational wave signals.@S0556-2821~97!00522-5#

PACS number~s!: 04.80.Nn, 95.55.Ym
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I. INTRODUCTION

Thirty-five years after the beginning of the experimen
search for cosmic gravitational waves~GW’s!, several
resonant-mass detectors~cryogenic cylindrical bars! are cur-
rently monitoring the strongest potential sources in our G
axy and in the local group@1#. The sensitivity of such detec
tors is h. 6 3 10219 for millisecond GW bursts or, in
spectral units, 10221 Hz21/2 over a bandwidth of a few Hz
around 1 kHz. A further improvement in sensitivity an
bandwidth is expected from the operation at ultralow te
peratures of the two bar detectors NAUTILUS@2# and
AURIGA @3# in Italy, and even better sensitivities and ban
widths will come about as more advanced readout syst
are developed. Projects for spherical resonant-mass GW
tectors have emerged in the last few years in the reson
mass community@4–7#, due to their remarkable advantag
with respect to the operating bars@7#.

In a cylindrical bar only the first longitudinal mode o
vibration interacts strongly with the GW, and consequen
only onewave parameter can be measured: the amplitud
a combination of the two polarization states. On the ot
hand each quadrupole mode of a spherical mass is five
degenerate@its angular dependence is described in terms
the five spherical harmonicsYlm(u,w) with l 52 and
m522, . . . ,2], andpresents anisotropic cross section. The
cross section of the lowest order (n51! mode is the highest
and is larger than that of a cylindrical antenna made of
same material and with the same resonant frequency b
factor of about 0.8 (Rs /Rb)2 @6,7#, whereRs andRb are the
radius of the sphere and of the bar, respectively. This me
570556-2821/98/57~4!/2051~10!/$15.00
l

l-

-

-
s
e-

nt-

y
of
r
ld
f

e
a

ns

a factor of 20 over present bars. Moreover, the sphere’s c
section is also high at its second quadrupole harmonic.

The fivefold degeneracy of the quadrupole modes ena
the determination of the GW amplitudes of two polarizati
states and the two angles of the source direction. T
method, first outlined by Forward@9# and later developed by
Wagoner and Paik@10#, consists in measuring the sphe
vibrations in at least five independent locations on the sph
surface so as to determine the vibration amplitude of eac
the five degenerate modes. The Fourier components of
GW amplitudes at any quadrupole frequencies and the
angles defining the source direction can be obtained as
able combinations of these five outputs@5,6,8,11,12#.

The signal deconvolution is based on the assumption
in the wave frame~that in which thez axis is aligned with
the wave propagation direction! only the l 52 and m562
modes are excited by the GW, as the helicity of a GW is 2
general relativity. One can take advantage of this to dec
volve the wave propagation direction and the GW amp
tudes in the wave frame.

Most of the nice properties of a spherical GW detec
depend on its beingspherically symmetric. A spherical shell,
or hollow sphere, obviously maintains that symmetry, and s
it can be considered an interesting alternative to the us
solid sphere. In order to have a good cross section, a reso
GW detector must be made of a high speed of sound mat
and have a large mass. The actual construction of a mas
spherical body may be technically difficult. In fact, fabrica
ing a large hollow sphere is a different task than fabricat
a solid one. Casting a hollow half sphere is a nearly tw
dimensional cast, at odds with casting a solid sphere, wh
2051 © 1998 The American Physical Society
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2052 57COCCIA, FAFONE, FROSSATI, LOBO, AND ORTEGA
requires rather special moulds. As an example of the fe
bility of large two-dimensional casting we can mention t
fabrication of propellers of more than 10 m in size a
masses of the order of 100 tons@13#. Two hollow hemi-
spheres could then be welded together with electron b
techniques. However, while it is known that these weld
technique preserve most of the properties of the bare m
rial, its effect on the acoustic quality factor~a relevant para-
menter in resonant mass detectors! must be further studied.

We have investigated the properties of a hollow sphere
a potential GW antenna. The purpose of this paper is
present a detailed report of the main results of such an
vestigation and to discuss the real interest of this new de
tor shape.

In Sec. II we present the complete analytical solution
the eigenmode problem for a hollow sphere of arbitra
thickness, including the full frequency and amplitude sp
trum. Section III is devoted to the cross section analy
while in Sec. IV we take up the study of the system sen
tivity to various GW signal classes. Finally, we present
outlook and summary of conclusions in Sec. V.

II. NORMAL MODES OF VIBRATION AND
EIGENFREQUENCIES OF A HOLLOW SPHERE

In this section we consider the problem of a hollow elas
sphere in order to obtain its normal modes and freque
spectrum. This is a classical problem in elasticity theo
which was posed and partly addressed already in the
century; see, e.g.,@14# and references therein.

Let R and a be the outer and inner radii of the spher
respectively. The elastic properties of the sphere, provide
is homogenous and isotropic, will be described by its La`
coefficientsl and m and its densityr. As is well known
~see, e.g.,@8#!, the normal modes are obtained as the so
tions to the eigenvalue equation

¹2u1~11l/m!¹~¹•u!52k2u ~k2[v2r/m!,
~2.1!

subject to the boundary conditions that the solid’s surface
free of any tensions and/or tractions; these are expresse
the equations

s i j nj50 at r 5R and at r 5A ~R>a>0!,
~2.2!
b1~qa! 2s22b3~ka!
i-

m

te-

s
to
n-
c-

f
y
-
,

i-
n

c
y

y
st

,
it
e

-

e
by

where the sphere’s surfaceS has outward normaln. The
possibility of a spherical shell (a5R) and that of a solid
sphere (a50) are allowed. The stress tensors i j is given by
@8#

s i j 5l uk,k d i j 1 2 m u~ i , j ! . ~2.3!

The general solution to Eq.~2.1! can be cast in the form

u~x!5C0 ¹f~x!1 iC1Lc~x!1 iC2¹3Lc~x!1D0¹f̃~x!

1 iD 1L c̃~x!1 iD 2¹3L c̃~x!, ~2.4!

whereCi andDi are constants,L[ 2 ix3¹, and the scalar
functionsf, c, f̃, andc̃ are given by

f~x!5 j l~qr !Ylm~u,w!, c~x!5 j l~kr !Ylm~u,w!,
~2.5!

f̃~x!5yl~qr !Ylm~u,w!, c̃~x!5yl~kr ! Ylm~u,w!,
~2.6!

where q[kAm/(l1m) and Ylm denotes a spherical har
monic. Finally,j l andyl are the standard Bessel functions
the first and second kinds, respectively~see, e.g.,@15#!. The
latter ~which are singular at the origin! must be included in
our case, asr 50 lies outside the boundaryS. The boundary
conditions~2.2! become, after rather lengthy calculations,
system of linear equations which splits up into a 434 linear
system for (C0 ,C2 ,D0 ,D2) and a 232 system for
(C1 ,D1). That is, we have a linear system of the form

S AP 0

0 AT
D S CP

CT
D 50, ~2.7!

with

CP[~C0 ,C2 ,D0 ,D2! t, CT[~C1 ,D1! t, ~2.8!

where the superscriptt denotes transposition, and the corr
sponding matrices are
AP5S b4~qR! 2 l ~ l 11!s22b1~kR! b̃4~qR! 2 l ~ l 11!s22b̃1~kR!

b1~qR! 2s22b3~kR! b̃1~qR! 2s2b̃3~kR!

b4~qa! 2 l ~ l 11!s22b1~ka! b̃4~qa! 2 l ~ l 11!s22b̃1~ka! D ~2.9!
b̃1~qa! 2s22b̃3~ka!
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57 2053HOLLOW SPHERE AS A DETECTOR OF . . .
and

AT5S b1~kR! b̃1~kR!

b1~ka! b̃1~ka!
D . ~2.10!

Heres[q/k, and we have introduced the set of functions

b0~z![ j l~z!z22, b1~z![~ j l~z!z21!8, b2~z![ j l8~z!,
~2.11!

b3~z![
1

2
b2~z!2H 12

l ~ l 11!

2 J b0~z!,

b4~z![b2~z!2
l

2m
z2b0~z!, ~2.12!

while the tilded ones are their singular counterparts, withyl

instead ofj l @i.e., b̃0(z)[yl(z) z22, and so on#. The matri-
cesAP and AT are functions ofkR, and depend on the pa
rametera/R, and, in the case ofAP, also on1 s. Thediscrete
set ofkR values that make compatible the system~2.7! con-
stitutes thespectrumof the elastic sphere. We can distin
guish two families of normal modes.

~i! Toroidal modes. These are characterized by

detAT50, CP50. ~2.13!

Hence they are purely tangential, and their frequencies
pend only on the ratioa/R. Their amplitudes are

unlm
T ~x!5Tnl~r ! iLYlm~u,f!, ~2.14!

with

1This parameter is a function of the Poisson ratios; for the usual
value s51/3, s50.5 andl/m52. These values are assumed, u
less otherwise stated.

FIG. 1. Functional dependence of the first few toroidal eig
values of a hollow sphere on the ratioa/R. Solid sphere values
(a 5 0! are found on the intersections with the ordinate axis.
e-

Tnl~r !5C1~n,l !$b̃1~knlR! j l~knlr !2b1~knlR!yl~knlr !%,
~2.15!

where C1(n,l ) is fixed by the chosen normalization. Th
corresponding eigenvalues are obtained as solutions to
transcendental equation~2.13!. For the degenerate limi
a5R the equation to be solved is

detS b1~kR! b̃1~kR!

b18~kR! b̃18~kR!
D 50, ~2.16!

with the prime denoting differentation respect to the arg
ment. Using standard properties of Bessel functions@15#, it
can be easily shown that

b1~kR!b̃18~kR!2b̃1~kR!b18~kR!

5~kR!26@~kR!2122 l ~ l 11!#,

and, in this case, there is onlyoneeigenvalue for eachl .1,
given by the only root of the above equation2

(klR)25 l ( l 11)22. Figure 1 displaysknlR as a function of
a/R for the first few toroidal modes. The existence of ju
one mode for eachl .1 in the thin shell limit shows as a
divergence ofknlR whena/R approaches 1 andn.1. In Fig.
2 we plot the normalized toroidal amplitudesTnl(r ) for two
quadrupolar modes and three different values of the par
etera/R. We observe that their absolute values at the ou
surface show little dependence on the ratioa/R.

-

2This equation shows explicitly a property shared by all toroid
modes, namely, that their dimensionless eigenvaluesknlR do not
depend on the elastic properties of the material.

-

FIG. 2. Toroidal mode radial functions for the first two quadr
pole harmonics and a few values of the geometric ratioa/R. The
magnitude represented in abscissas is such that the region pl
spans radially the material thickness of the hollow sphere.
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~ii ! Spheroidal modes. This second family is characterize
by

detAP50, CT50. ~2.17!

In this case, the expressions get more involved, as
have to handle a 434 determinant. Once the spectrumknl is
found for a givena/R ands, the system~2.7! can be solved
for C2 /C0 , D0 /C0 , and D2 /C0 . If we label these coeffi-
cientsp0(n,l ), p1(n,l ), andp2(n,l ), the eigenmodes can b
written as

unlm
P 5Nnl~r !Ylm~u,f!n2 iEnl~r !n3LYlm~u,f!,

~2.18!

with
s
d

-

se
n

a
-

cu
to

e

e

Nnl~r !5C0~n,l !F j l8~qnlr !2p0~n,l !
l ~ l 11!

qnlr
j l~knlr !

1p1~n,l ! yl8~qnlr !2p2~n,l !
l ~ l 11!

qnlr
yl~knlr !G ,

~2.19!

Enl~r !5C0~n,l !
1

qnlr
@ j l~qnlr !2p0~n,l !$knlr j l~knlr !%8

1p1~n,l !yl~qnlr !2p2~n,l !$knlr y l~knlr !%8#,

~2.20!

whereC0(n,l ) is, again, free up to normalization. The spe
trum for the degenerate casea5R is given by the solutions
to
detS b4~qR! 2 l ~ l 11!s22b1~kR! b̃4~qR! 2 l ~ l 11!s22b̃1~kR!

b1~qR! 2s22b3~kR! b̃1~qR! 2s2b̃3~kR!

b48~qR! 2 l ~ l 11!s21b18~kR! b̃48~qR! 2 l ~ l 11!s21b̃18~kR!

b18~qR! 2s21b38~kR! b̃18~qR! 2s21b̃38~kR!

D 50, ~2.21!
la-
u-
f its
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e

e
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en-
which happens to havetwo solutions for each value ofl
when l .1 and onlyone root3 for l ,2.

Plotting knlR as a function ofa/R, we see that the third
and higher roots diverge as the inner radius approacheR;
see Figs. 3 and 4. Figures 5–7 show the normalized ra
functions for a few spheroidal modes and values ofa/R. As
in the toroidal case, their values atr 5R ~where measure
ments using transducers are to be made eventually! are
nearly independent ofa/R.

III. CROSS SECTION FOR THE HOLLOW SPHERE

A convenient way to characterize a resonant detector
sitivity is through its GW energy absorption cross sectio
defined as

sabs~v!5
DEa~v!

F~v!
, ~3.1!

where DEa(v) is the energy absorbed by the detector
frequency v, and F(v) is the incident flux density ex
pressed, e.g., in W/m2 Hz. Estimation ofsabs(v) requires a
hypothesis about the underlying gravitation theory to cal
late F(v) and specification of the antenna’s geometry

3The purely radial casel 50 is simpler, because the eigenvalu
equation~2.21! becomes

b4~qR!b̃48~qR!2b48~qR!b̃4~qR!50,

and has only one solution, namely,qR5(m/l)A32m/l. Unlike
toroidal eigenvalues, spheroidal ones do depend onm/l.
ial

n-
,

t

-

calculateDEa(v). Here we shall assume that general re
tivity is the correct gravitation theory and proceed to calc
late the oscillation energy of the solid as a consequence o
excitation by an incoming GW, which we shall natural
identify with DEa(v). We briefly sketch the details of th
process now.

As shown in@8#, an elastic solid’s response to a GW forc
can be expressed by a very general formula, which is ea
particularized to a spherically symmetric body such as
solid sphereor the hollow sphere. In both cases, as we ha

FIG. 3. Functional dependence of the first few spheroidal eig
values of a hollow sphere on the ratioa/R. Solid sphere values
(a 5 0! are found on the intersections with the ordinate axis.
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57 2055HOLLOW SPHERE AS A DETECTOR OF . . .
just seen, the vibration eigenmodes belong to two fami
~spheroidal and toroidal!, but GW’s only couple toquadru-
pole spheroidal harmonics. If the frequencies of these mode
are noted byvn2 (n 5 1 for the lowest value,n 5 2 for the
next, etc.! and the corresponding wave functions byun2m(x),
then the elastic displacements are given by

u~x,t !5 (
n51

`
bn

vn2
F (

m522

2

un2m~x! gn2
~m!~ t !G , ~3.2!

where

gnl
~m!~ t ![E

0

t

g~m!~ t8! sinvn2~ t2t8! dt8 ~m522, . . . ,2!

~3.3!

FIG. 4. Functional dependence of higher spheroidal eigenva
of a hollow sphere on the ratioa/R. The harmonics in this graph d
not exist in the thin shell limit, and this shows as divergences aa
approachesR.

FIG. 5. Spheroidal mode radialN-functions —see Eq.~2.19!—
for the first two monopole harmonics and a few values of the g
metric ratioa/R. The magnitude represented in abscissas is s
that the region plotted spans radially the material thickness of
hollow sphere.
s

andg(m)(t) are the quadrupole components of the Riema
tensor, whilebn is an overlapping integral factorof the
GW’s tidal coefficient over the solid’s extension. Much lik
in the case of a solid sphere, it has dimensions of length
is given by a definite integral of the radial terms in the wa
function un2m(x); more specifically,

bn

R
52

r

ME
a

R

r 3@Nn2~r !13En2~r !# dr

52
C0~n,2!

4p qn2R
@G2~R!2G2~a!#, ~3.4!

where we have introduced the dimensionless function

G2~z![
z3

R32a3
@ j 2~qn2z!1p1~n,2!y2~qn2z!

23p0~n,2! j 2~kn2z!23p2~n,2!y2~kn2z!#

~3.5!

es

-
h
e

FIG. 6. Spheroidal mode radial functions—see Eqs.~2.19! and
~2.20!—for the first quadrupole harmonic.

FIG. 7. Spheroidal mode radial functions—see Eqs.~2.19! and
~2.20!—for the secondquadrupole harmonic.



nc

e

.

sit

to
in

er
ut

a
ti

e
8
e
e

s
a

e
tio
a-
d
th

in
n
es
n-

i-

and
of

and
of

n be
den-

sig-
out-
de-
be

d-
the

nce,

d-
the

nce,

2056 57COCCIA, FAFONE, FROSSATI, LOBO, AND ORTEGA
and assumed the following normalization for the wave fu
tions:

E
solid

uunlmu2 r d3x5E
a

R

r 2 dr r @Nln
2 ~r !1 l ~ l 11!Eln

2 ~r !#

5M . ~3.6!

The calculation ofDEa(v) can now be pursued along th
lines set up in Ref.@8#: The Fourier transformU(x,v) of the
response functionu(x,t) of Eq. ~3.2! is calculated, whereby
the spectral energy densitycan be obtained as

W~v!5
1

T E
solid

1

2
v2 uU~x,v!u2 r d3x, ~3.7!

whereT is the integration timeof the signal in the detector
The energy deposited by the GW in thenth quadrupole mode
is hence calculated by integration of this spectral den
over the linewidth of the mode. It is readily found that

DEa~vn2!5
1

2
M bn

2 (
m522

2

uG~m!~vn2!u2, ~3.8!

whereG(m)(v) is the Fourier transform ofg(m)(t).
The GW flux in the denominator of Eq.~3.1! is ~clearly!

proportional to the sum in the right-hand side~RHS! of Eq.
~3.8!, the proportionality factor being in turn proportional
v2 —see@8# for a detailed discussion—so we finally obta

sn[sabs~vn2!5
16p2

15

GMv t
2

c3
~kn2bn!2, ~3.9!

wherev t
2 5 m/r, M is the detector’s mass andG is New-

ton’s constant. This equation allows relatively easy num
cal evaluation of the cross sections, as well-defined comp
programs can be written for the purpose.

As we have seen in Sec. II above, the eigenvalues
wave functions of a hollow sphere only depend on the ra
a/R, and therefore so does the quantity (kn2bn) in Eq. ~3.9!.
So the cross sectionsn only depends on that ratio, too, onc
a suitable unit ofmassis adopted for reference. In Figs.
and 9 we plotsn for the first two quadrupole modes of th
hollow sphere in two different circumstances: In Fig. 8 w
assume a hollow sphere offixedouter radius—thus its mas
decreases with thickness—and in Fig. 9 we have instead
sumed that the mass of the hollow sphere isfixed, so that its
geometrical size increases as it gets thinner. In either cas
see that, for the higher mode, the maximum cross sec
does not happen ata50, but at some intermediate inner r
dius: For a'0.377 45R, the cross section for the secon
quadrupole mode equals that of the first, and we have
possibility of working with a detectorwith the same (high)
sensitivity at two frequencies.

IV. SENSITIVITY TO GW SIGNALS

We assume that the mechanical oscillations induced
resonant mass by the interaction with the GW are tra
formed into electrical signals by a set of identical noisel
transducers~for the sake of simplicity, we consider here no
-

y

i-
er

nd
o

s-

we
n

e

a
s-
s

resonant transducers!, perfectly matched to electronic ampl
fiers with noise temperatureTn . Unavoidably, Brownian
motion noise associated with dissipation in the antenna
electronic noise from the amplifiers limit the sensitivity
the detector. We refer the reader to@16–18# for a complete
discussion on the sensitivity of resonant-mass detectors
report here only a few basic formulas for the evaluation
the detector sensitivity to various signals.

The total noise at the output of each resonant mode ca
seen as due to an input noise generator having spectral
sity of strain Sh( f ), acting on a noiseless oscillator.Sh( f )
represents the input GW spectrum that would produce a
nal equal to the noise spectrum actually observed at the
put of the detector instrumentation. In a resonant-mass
tector, this function is a resonant curve and can
characterized by its value at resonanceSh( f n) and by its half
height width.Sh( f n) can be written as

Sh~ f n!5
G

c3

4kTe

snQnf n
. ~4.1!

FIG. 8. Cross sections of a hollow sphere in its first two qua
rupole modes as a function of thickness. Values are referred to
cross section of a solid sphere in its first quadrupole resona
whose radius is assumed to be equal to theouter radius of the
hollow sphere.

FIG. 9. Cross sections of a hollow sphere in its first two qua
rupole modes as a function of thickness. Values are referred to
cross section of a solid sphere in its first quadrupole resona
whosemassequals that of the hollow sphere.
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TABLE I. Main features and sensitivities for several hypothetical hollow spheres of two different materials.

M ~ton! 2R ~m! (R2a) ~cm! f 1 ~Hz! f 2 ~Hz! s1 ~m2 Hz! s2 ~m2 Hz! ASh1(Hz21/2) ASh2(Hz21/2)

CuAl 200 4 81 395 1188 1.5310223 2.4310223 4.7310224 3.7310224

200 6 25 191 753 1.1310223 1.7310223 5.4310224 4.4310224

100 4 31 302 1161 5.8310224 8.8310224 7.5310224 6.1310224

100 6 12 185 738 5.6310224 8.2310224 7.7310224 6.3310224

40 3 22 399 1543 2.3310224 3.5310224 1.2310223 9.7310224

40 4 11 281 1115 2.2310224 3.3310224 1.2310223 1.0310223

Al 5056 200 6 90 273 935 1.8310223 2.9310223 4.3310224 3.4310224

100 6 37 230 896 7.7310224 1.2310223 6.6310224 5.4310224

40 4 35 361 1370 3.2310224 4.8310224 1.0310223 8.3310224

40 6 14 218 866 3.0310224 4.4310224 1.0310223 8.7310224
to

th
c

n

en

r

e
ca
o
e

fo
th
c

ar
e
s

s

e
um
oy
st
oise

ris-

he

er
the
s is
s-
er

go

les.
HereTe is the thermodynamic temperature of the detec
plus a back-action contribution from the amplifiers, andQn
is the quality factor of the mode.

The half height width ofSh( f ) gives the bandwidth of the
resonant mode:

D f n5
f n

Qn
Gn

21/2. ~4.2!

Here, Gn is the ratio of the wideband noise in thenth
resonance bandwidth to the narrowband noise,

Gn.
Tn

2bn Qn Te
, ~4.3!

where bn is the transducer coupling factor, defined as
fraction of the total mode energy available at the transdu
output.

In practiceGn ! 1 and the bandwidth is much larger tha
the pure resonance linewidthf n /Qn . In the limit Gn→0, the
bandwidth becomes infinite. The bandwidth of the pres
resonant bars is of the order of a few Hz@1#. If a quantum-
limited readout system were available, values of the orde
100 Hz could be reached@19,20#.

Equations~4.1! and ~4.2! can be used to characterize th
sensitivity of the quadrupole modes of a hollow spheri
resonant-mass detector. The optimum performance is
tained by filtering the output with a filter matched to th
signal. The energy signal-to-noise ratio~SNR! of the filter
output is given by the well-known formula

SNR5E
2`

1` uH~ f !u2

Sh~ f !
d f , ~4.4!

whereH( f ) is the Fourier transform ofh(t).
We now report the SNR of a hollow spherical detector

various GW signals. To be specific, we shall assume that
thermodynamic temperature of the detector can be redu
to below 50 mK and that the quality factors of the modes
of the order of 107, so that the overall detector noise will b
dominated by the electronic amplifier noise. If we expre
the energy of the latter as a multiple of thequantum limit,
i.e., kTn 5 N\v, then the strain spectral density become
r
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Sh~ f n!.
G

c3

4pbnN\

sn
. ~4.5!

In these conditions the fractional bandwidthD f n / f n be-
comes of the order ofbn that we assume of about 0.1. W
shall consider hollow spheres made of the usual alumin
alloy Al 5056 and of a recently investigated copper all
~CuAl! @21#. Table I displays numerical values of the mo
relevant parameters for a few example detectors with a n
level equal to the quantum limit, i.e.,N 5 1.

A. Bursts

We model the burst signal as a featureless waveform,
ing quickly to an amplitudeh0 and lasting for a timetg

much shorter than the detector integration timeDt5D f n
21 .

Its Fourier transform will be considered constant within t
detector bandwidth:H( f ).H( f n)5H0. From Eq.~4.4! we
get

SNR5
2pD f nH0

2

Sh~ f n!
. ~4.6!

For SNR5 1 and using the equationH0
min 5 h0

mintg , we find

~h0
min!burst5tg

21F Sh~ f n!

2pD f n
G1/2

. ~4.7!

The level h0
min.10222 can be reached by the lowest-ord

mode of a typical large hollow spherical detector such as
one being considered. The GW luminosity of burst source
still largely unknown, and so it is difficult to accurately e
timate their detectability. The above sensitivity is howev
likely to enable the detection of GW collapses in the Vir
cluster for an energy conversion of 1024 M ( into a milli-
second GW burst. See Table II for a few specific examp

B. Monochromatic signals

We consider a sinusoidal wave of amplitudeh0 and fre-
quency f s constant over the observation timetm . The Fou-
rier transform amplitude atf n is 1/2h0tm with a bandwidth
given by tm

21 . The SNR can be written as
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TABLE II. Sensitivity to burst and monochromatic~integrated for 1 y! GW signals of a few hollow spheres of two different materials.

M ~ton! 2R ~m! (R2a) ~cm! f 1 ~Hz! f 2 ~Hz! (h01
min)burst (h02

min)burst (h01
min)m (h02

min)m

CuAl 200 6 25 191 753 4.9310222 2.0310222 1.4310227 1.1310227

100 4 31 302 1161 5.5310222 2.3310222 1.9310227 1.5310227

Al 5056 100 6 37 230 896 5.5310222 2.3310222 1.7310227 1.4310227
th
pc

al

ca
on
ira
le
m
e

si
in

im
e

i-
a

-
rp
n
a

ure
d
r to

nd
e of
res
s

re-
os-
ent
s,

GW
le

with

he
lues

cy
SNR5
tm h0

2

2Sh~ f n!
$11Gn @Q2~12 f s

2/ f n
2!1 f s

2/ f n
2#%.

~4.8!

For SNR5 1 we obtain a minimum detectable value ofh0,
which at f s 5 f n is

~h0
min!m5F2Sh~ f n!

tm
G1/2

. ~4.9!

See Table II for a few specific examples. For instance,
nearby pulsar@22# PSR J0437-4715, at a distance of 150
might emit at 347 Hz a GW amplitude~optimistically! of
2310226. This would give SNR5 100 on a hollow spheri-
cal detector havingM5100 tons after integrating the sign
for 1 y.

C. Chirps

We consider here the interaction of the hollow spheri
detector with the waveform emitted by a binary system, c
sisting of either neutron stars or black holes, in the insp
phase. The system, in the Newtonian regime, has a c
analytic behavior, and emits a waveform of increasing a
plitude and frequency that can sweep up to the kHz rang
frequency.

From the resonant-mass detector viewpoint, the chirp
nal can be treated as a transient GW, depositing energy
time-scale short with respect to the detector damping t
@23#. We can then use Eq.~4.6! to evaluate the SNR, wher
the Fourier transformH( f n) at the resonant frequencyf n can
be explicitly written as

H~ f n!5 H F E h~ t !cos~2p f nt ! dtG2

1F E h~ t !sin~2p f nt ! dtG2J 1/2

, ~4.10!

with h(t) indicating h1(t) or h3(t). Substituting into Eq.
~4.10! the well-known chirp waveforms for an optimally or
ented orbit of zero eccentricity in the Newtonian approxim
tion @18#, the SNR for chirp detection is@24#

SNR5
21/35

12

G5/3

c3

p2D f n

Sh~ f n!

1

r 2
Mc

5/3~2p f n!27/3. ~4.11!

Mc is the chirp mass defined asMc5(m1m2)3/5(m1
1m2)21/5, wherem1 andm2 are the masses of the two com
pact objects andr is the distance to the source. The chi
mass is the only parameter that determines the freque
sweep rate of the chirp signal in the Newtonian approxim
tion and can be determined by adouble passagetechnique
e
,
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-
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@24#: Much like in a solid sphere detector, one can meas
the time delayt22t1 between excitations of the first an
second quadrupole modes on a hollow spherical detecto
calculate the chirp mass through equation

Mc528/5S 5

256D
3/5 c3

G S v2
28/32v1

28/3

t22t1
D 3/5

, ~4.12!

wherev1 andv2 are the angular frequencies of the first a
second quadrupole modes, respectively. Time delays ar
the order of a fraction of a second for the hollow sphe
considered in this paper, well within the timing possibilitie
of resonant mass detectors@25#.

Another consequence of the multimode and multif
quency nature of a spherically symmetric detector is the p
sibility to determine the orbit orientation by the measurem
of the relative proportion of the two polarization amplitude
and thereby the distance to the source and the intrinsic
amplitudes@24#. See Figs. 10 and 11 for a specific examp
referring to optimally oriented circular orbits.

Because of the Newtonian approximation, Eqs.~4.11! and
~4.12! become inaccurate near coalescence. In analogy
previous analyses@23,24#, we limit our considerations to the
frequency at which there are still five cycles remaining in t
waveform until coalescence. The highest chirp mass va

FIG. 10. Contours of constant chirp massMc in m1, m2 space.
At each chirp mass corresponds the maximum distancer at which
the chirp can be observed with a SNR510 by a 200-ton CuAl
hollow sphere, 6 m in diameter, at its first resonance frequen
f 15191 Hz. The reported chirp mass values~in units of solar
masses! and the corresponding maximum distances areMc58.0,
r 5214 Mpc~curvea), Mc54.0, r 5119 Mpc~curveb), Mc52.6,
r 584 Mpc ~curvec), andMc51.2, r 545 Mpc ~curved).
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reported in the figures are determined by the requirement
the five-cycle frequency of the source be larger than the re
nant frequencies of the detector.

D. Stochastic background

In this caseh(t) is a random function and we assume th
its power spectrum, indicated bySGW( f ), is flat and its en-
ergy density per unit logarithmic frequency is a fracti
VGW( f ) of the closure densityrc of the Universe:

drGW

dln f
5VGWrc . ~4.13!

SGW( f ) is given by

SGW~ f !5
2G

p
f 23VGW~ f !rc . ~4.14!

The measured noise spectrumSh( f ) of a single resonant
mass detector automatically gives an upper limit toSGW( f )
@and hence toVGW( f )#.

Two different detectors with overlapping bandwidthD f
will respond to the background in a correlated way. The S
of a GW background in a cross correlation experiment
tween two detectors located near one another and havi
power spectral density of noiseSh

1( f ) andSh
2( f ) is @26#

SNR5S SGW
2

Sh
1Sh

2
D f tmD 1/4

, ~4.15!

wheretm is the total measuring time.

FIG. 11. Contours of constantMc for the same hollow sphere a
in Fig. 10, observing the chirp at the second resonance frequ
f 25753 Hz, with SNR510. The chirp masses and the maximu
distances areMc52.0,r 5131 Mpc~curvea), Mc51.2,r 586 Mpc
~curve b), and Mc50.9, r 565 Mpc ~curve c). If the double-
passage technique is applied, the delay times between the exci
of the first and the second mode by the chirps of the given mass
160 ms~curvea), 373 ms~curveb), and 648 ms~curvec).
at
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t

R
-
a

Detectors located some distance apart do not corre
quite so well because GW’s coming from within a certa
cone about the line joining the detectors will reach one
them before the other. The falloff in the correlation wi
separation is a function of the ratio of the wavelength to
separation and has been studied for pairs of bars, pair
interferometers@27,28#, and pair of spherical detectors@29#.

Assuming two identical large hollow spherical detecto
are colocated for optimum correlation, the background w
reach a SNR5 1 if VGW is

VGW.1029 3 S f n

200 HzD
3 S ASh

1~ f n!

10224 Hz21/2D
3S ASh

2~ f n!

10224 Hz21/2D S 20 Hz

D f n
D 1/2S 107 sec

tm
D 1/2

,

~4.16!

where the Hubble constant has been assumed 100 km s21.
Hollow spherical detectors can set very interesting lim

on the GW background. In particular, following recent es
mations based on cosmological string models@30#, it
emerges that experimental measurements performed a
level of sensitivity attainable with these detectors would
true tests of Planck-scale physics.

Equation ~4.15! and ~4.16! hold for whichever cross-
correlation experiment between two GW detectors adjac
and aligned for optimum correlation. An interesting cons
quence is that the sensitivity of a hollow spher
interferometer observatory will be unprecedented. It can
worthwhile to build a hollow spherical mass detector close
a large interferometer, like LIGO or VIRGO, to perform st
chastic searches@31#.

V. CONCLUSIONS

In this paper we have been mainly concerned with
problem of how an elastichollow sphere responds to a GW
signal impinging on it. To address this problem we ha
developed an analytical procedure to fully sort out the eig
frequencies and eigenmodes of that kind of solid, and t
applied it to calculate the GWabsorption cross sectionfor
arbitrary thicknesses and materials of our solid.

When realistic hypotheses are made regarding the
and material of a possible GW detector of this shape,
have seen that a hollow sphere can be advantageous in
eral respects. It has all the features associated with its s
metry, such as omnidirectionality, and the capability to d
termine the source direction and wave polarization. Also,
quadrupole frequencies are below those of an equally m
sive solid sphere, thus making the low-frequency range
cessible to this antenna with good sensitivity. We have
vestigated the system response to the classical GW si
sources~bursts, chirps, continuous, and stochastic! for sev-
eral sizes and materials, and seen that interesting signa
noise ratios are attainable with such a detector. Also,
bandwidth partly overlaps with that of the projected lar
interferometers@32,33#, and so potentially both kinds of de
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tectors can be operated simultaneously to makehybrid GW
observatories of unprecedented sensitivity and signal cha
terization power.

While it seems possible to cool a 100-ton solid sph
down to 50 mK@34#, the possibility of cooling a large hol
low sphere at such low temperatures, as well as the fabr
tion technique and the influence of cosmic rays on a lo
temperature GW detector of that shape and dimension
currently under investigation.
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