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The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality
conservation) is verified for Hamiltonians of degrees N (N> 2) is explicitly determined through a class of
restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus
these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The
possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The
implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality
conservation is discusséd in detail. Also, the explicit derivation of the general unitary operator which linearly
transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general
geometrical interpretation in phase space, such as rotations (parity, Fourier).

I. INTRODUCTION

The relationship between classical and quantum
problems, and the use of semiclassical approxi-
mations in quantum mechanics, are topics that
pervade all branches of physics,! The formulation
of quantum theory draws heavily on classical con-
cepts. As classically both the position and the mo-
mentum are needed to specify the state of a sys-
tem, it is desirable to define phase-space for-
mulations of quantum theory. The implementation
of such formulations can readily be carried out
through the use of continuous representations such
as that of the minimum-uncertainty states (MUS’s).
These states provide the most classicallike de-
scription of a classical particle in quantum mech-
anics.® A particularly useful formulation of these
states can be accomplished through the definition
of a family of non-Hermitian operators depending
on a real, positive (time-dependent or constant)
parameter «,

2

- a4

ala)=ag *Sal:
For each a the set of eigenstates |z(@)) of the gen-
eralized annihilation operator a(a) defines all the
MUS’s of momentum variance @.* This set, which
is overcomplete, is called the a-equivalence
class.® This fact and the calculational advantage
of dealing with eigenstates of annihilation operators
are two basic features of our approach.

In a recent paper? (hereafter referred to as I)
the relevance of quadratic Hamiltonians has been
proved for an appealing algorithm which expresses
the nonrelativistic quantum mechanics of a spin-
less particle in a classicallike way: the pseudo-
classical evolution algorithm. This algorithm
is defined as follows: Given an initial MUS ]zo)
at ¢,, one studies which physical systems verify
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the condition that the MUS |z,), which has for
each ¢ >t, maximum overlapping |(z,|z,, )|* with
the evolved state Izo, t), follows the classical tra-
jectory in phase space:

(Z, |67 izg>:qc1(t);
<2t'ﬁ }zt> =pa(t).

We emphasize that this approach, and in fact all
of our investigation, does not deal with any kind
of approximation (e.g., the classical limit or the
semiclassical ones).

The aim of this paper is to find the most general
class of Hamiltonians that allows the description
of the dynamics in terms of the pseudoclassical
evolution algorithm emphasizing the study of time-
dependent a-equivalence classes of the MUS’s and
the investigation of the cases in which the al-
gorithm is verified not necessarily for all initial
conditions. This program has already been com-
pleted for the special case of constant a and valid-
ity for any initial condition in I. In the general
case we find here that the pseudoclassical con-
dition is not restricted to quadratic Hamiltonians
for some initial conditions. These are explicitly
identified for each nonquadratic Hamiltonian. It is
proved that they form a denumerable set, which
is consequently of measure zero in the phase-
space plane. This study is interwoven with the
corresponding ones for the Ehrenfest algorithm
and the conservation of minimality. By Ehrenfest
algorithm we mean the condition that the expecta-
tion values of ¢ and p verify the classical equa-
tions of motion, so that

<ZO, t'l’i !zoy t> =4y (t) y
<zoa ¢ }P Izoa 1y =D ().

On the other hand, an explicit analysis of the
Hamiltonians which conserve the a-equivalence
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classes leads to a natural way of calculating uni-
tary operators which represent geometrical trans-
formations in phase space.

The main body of this paper is divided into
three sections. In Sec. Il an explicit calculation
is done of the transformation of the MUS’s under
linear unitary operators, that is

;o
Ual' =ua +vat +w,

which are related to the quadratic Hamiltonians

of I. Particular cases of the derived general trans-
formation operator are discussed in the Appen-
dix. These results also clarify some misleading
points in the literature. In Sec. III, the pseudo-
classical and Ehrenfest algorithms and the con-
servation of minimality are explicitly resolved.
These three problems are studied in the general
case of time-dependent @’s and when their validity
is not demanded for all initial conditions. The
higher-dimensional case is briefly outlined and,

in particular, the external magnetic field is con-
sidered. We comment on the difference between
the MUS’s and the gauge-dependent coherent states
usually defined. Finally in Sec. IV, the equivalence
of the two algorithms and their relation to mini-
mality conservation is discussed in detail. These
results provide a deeper insight into quantum
dynamics through classical notions.

II. LINEAR TRANSFORMATIONS IN PHASE SPACE

All one-particle position-momentum MUS’s*
are obtained as the eigenstates® of (F=1)

a(e)= 0+, (2.1)

where a is an arbitrary real, positive parameter.
The set of eigenstates lz(a)) for any fixed a is
overcomplete, and it spans the whole complex
plane z [z=(q,p)]. This leads us to consider the
phase space defined by the continuous spectra of
g and $.” To any point z = (g,p) in this space, there
corresponds a MUS Iz(a)) in each a-equivalence
class.’ The parameter @ measures the variance
of the Gaussian along the p axis.

The different a(a)’s are related to each other by
the linear relation

a(B)=cla, P)a(a)+s(a, Ba'(a), (2.2)
where

c(a, B)=(a®+ #)/2aB= coshr, (2.3a)

s(a, B) = (B - a?)/2aB =sinhr, (2.3b)
and

r=1n(8/a). (2.3¢)

As 4(a) and 4%(a) verify the boson commutation

relations for any @, it follows that all the a(a)’s
are unitarily equivalent.

We wish to consider here a generalization of
Eq. (2.2), that is, the most general linear canoni-
cal transformation on @(a):

A, v, w)=ui(a)+vat (@) +w, (2.4)
where
|u|2—|v[2=1. (2.5)

In the following we shall restrict ourselves to the
case w=0, since the w term is induced simply by
a displacement operator D(w); if

Ua(a)U-! =ud(a) +vat (@) +w, (2.6a)

Va(a)V-! =ua(a) +va' (@), (2.6b)
then

ﬁ:b(u*w—vw*)l;=¥75(w). 2.7

Unitarity means that the A eigenstates [Z;u,v)
(eigenvalue Z) which we shall call linear trans-
formed MUS’s (LTM’s)® verify the same kind of
relations as the MUS’s [z(a))., In particular we
have for an arbitrary operator M(, ):

(Zyu, v |M[A @, v), A, )] |9)

VA )

=M<Z*,—2-+ —8—Z-T>(Z;u,v[zp) (2.8)

from where we can calculate the overlap integral

(@)® 1ZP v

<Z(a)IZ;u’U>:u-mex"[" 2 7 "2 (@)

*
sz Lz ] (2.9)
2u u

We remark that naturally a MUS is a LTM but a
LTM is not always a MUS, since for the latter

A, =270 u? =022 (2.10)
as it easily follows from the definitions.
A. Hamiltonians for the MUS - LTM evolution

We shall obtain the Hamiltonian which transforms
any initial state |z,(a,)) into the LTM |Z;u(t), v(¢))
(Ref. 9), where

Z(t)=n(t)zo(a,) +m(t). (2.11)
The LTM eigenvalue equation can be written as
DA | 2o(@,)) = [n(t)zo(t,) + m ()] | 20(et))
(2.12)

and since the states [zo) form a complete set, it

follows that
/i(t)=n(t)&,,(a0; -t)+mflt), (2.13)

where the subscript H refers to the Heisenberg



1084 V. CANIVELL AND P. SEGLAR 18

picture (the absence of this subscript implies the
Schrddinger picture). We rewrite this equation
as

c()a(a,) + s(1)a' () = dylag; -t) + &),  (2.14)
where

c®)=ult)/n), (2.15a)

s®)=vt)/n(), (2.15b)

A(t)=m(t)/n(t). (2.15¢)

As both u,v and ¢, s define two different A opera-
tors, we conclude from Eq. (2.5) that n(¢) is a
complex phase function.

The initial conditions for the complex functions
c, s, and & are 1, 0, and 0, respectively. Now
the idea is to write down the equation of motion
of (2.14), so that we find the relation between the
coefficients of the Hamiltonian and the known func-
tions ¢, s, and A,

If we consider the normal-ordered expansion of
the Hamiltonian'

H(#) =Y fum®)a™(g)a"™ (1) (2.16)
we calculate
57 (s 1) + A

=i D fum®lnec®)at™ (o )am(,)

— ms()a'(a,)a™ ()] + A@)  (2.17)

and as this equals

%A(t):é(t)&(ao)+é(t)?x'(ao)

we obtain from a term-by-term comparison

i(cfi = Sfy) + 220, (2.18a)
¢=ilcf,, - 2sf,,) s (2.18b)
S =i(2¢fo0 = Sf11) s (2.18¢)
fam=0, n+m>2. (2.19a)
This leads us finally to the result
fro=i(Be* - Axg)=fX (2.19b)
fi=ilcc* - s*s), (2.19¢)
Foo = SilsC* = c*8) =f%,. (2.194)

It should be noted that given u, v, m, and n
(six mathematical degrees of freedom) we have de-
fined ¢, s, and A (five degrees) and these deter-
mine f,,, f,,, and f,, (five degrees). This means
that there exists an exhaustive (one-to-one) cor-
respondence between the sets u, v, m, and n (c,
s, and 4) and f,,, f,,, and f,,. The liberty in the

phase n(t) explains the apparent disagreement be-
tween different results in the literature.!
As an application we study the case

A(t)= expliot)]a(a,)
in which /v is real, so that | Z(t);u(f), v(8)) equals
|z4(a,)) and®®
Z(t) = z,(a,) + A(t) = z,(ay) .
Equations (2.19) lead us to the Hamiltonian [we
write a, = a(t)]
ﬁam(t) =3¢ cosh2r a' (a,)a(a,)
+ (¢ sinh2y - iv)a™(a,)
+i(A et coshy — A* ot sinhr)a'(a,)

+ %foo +H.c., (2.20a)

which can be expressed in terms of a(a,) as'?
Hy ey ()= $0(1+ & sini?2r)at (a,)a(a,)
- Lip[a(e,) - 8%(e,)] + id e 95" (a,)

+%3(f,o — @ sinh®) + H.c. (2.20b)

We stress that both these results are expressed
in the Schrodinger picture and that @(e,) is not to
be identified with @, (a;t), as follows from Eq.
(2.13).*

The physical meaning of I;{a(,) is that it conserves
minimality with @,# 0 (»# 1); it generalizes the
&, =0 case'® (A,) through the f,, (and f,,) terms.
The relationship between both cases is expressed
by the equations

az,y("' t) = (at/ao)zh,y(‘ ),
Isz,ll(— t) :(ao/at)ﬁl,”(- t) ’

where the subindex 1 (2) refers to d,#o (d,: 0).
Thus &, + 0 induces a “canonical reciprocal scal-
ing” of the ¢,p axes in phase space.

The presence in ﬁa(,) of the term

$i7@*-a)

(2.21a)
(2.21b)

(expressed in terms of any «) has the one and only

role of changing o, (the A, of the MUS) in time and

can be thus considered to be apart from the rest

of the dynamics. This can be visualized as follows.
Making use of the group property we can write

(T, 0) =lim¥(@mr, (n - 1)7)- + - U(7,0),

where the limit is taken over n— « and 7— 0 (with
nt =T, as usual), and where

Ut+1,8)=1-iH@)T+0(1?).

At t the most general Hamiltonian which pre-
serves the MUS’s of the class a;, is ﬁaw‘ (£). Now
at £+ 7 the evolved MUS should correspond to a,,,
and not @,, so that we have to apply'® ﬁ(at-— Qyyr).
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This repeated process, ﬁa=at(t+7, t) and
U(a,~a,,,), can be understood as a unique evolu-
tion process. We shall prove that this combined
process is precisely the one corresponding to
H,(8); if

2 2
N R PP
Ula, =~ a =ex lsmh—‘-’f—-——-—‘—>
(e eer) Pz 20, a4,

x[a%(a,)-a"(a,)]
=1+17[a%a,) -d"%ay)] +0(?),

Ooma (t+7,0) = i-id,. o, (T +0(7%)
then
(o, ~ a“,)ﬁa:dt(t +7,1)
=1-ir{f.. o (8) =537 [aT(e,) - @*(a,)]} +O ()

=Ua(t)(t+1', t) .

Q.E.D.

Finally, we would like to point out that, although
the free (or even driven) oscillator is included in
If’a, a free oscillator with time-varying frequency
is not included in Hg).

B. Transformation operators — explicit derivation

In the last section we have found the Hamiltonians
which make initial MUS’s evolve into LTM’s for
all > 0 in a continuous manner. The calculation
of the evolution operator of these H (t) cannot al-
ways be given in quadratures.!” This is related
to the fact that the set of differential equations
(2.19), now considered with f;; as data,® is not
always explicitly integrable.

In this section we obtain the transformation op-
erator [J of the MUS’s into the given LTM’s:

Olzo(ay)y=e*®lzo(a) +Ajc, s), (2.22)

where ¢, s, and A are given [via Egs. (2.15) from
the data u, v, m, and x] for all z; and @,. Al-
though this is not a time-evolution process, we
propose to derive U by calculating the evolution
operator l}(T, 0) of an appropriate constant Ham-
iltonian which transforms the MUS’s at ¢ =0 into
the LTM’s of interest at ¢ =T (the result being
independent of 7). The phase ¢ induced by this

3

operator is then calculated with the aid of normal-
ordering techniques.

If we solve Egs. (2.19a) and (2.19b) for constant
fi;’s we arrive at

é+(fu®- 4lfzol2)c =0.

This allows three kinds of solutions: (i) f,,%> 4lfl%,
(ii) f1,*< 4lf2ol®, and (idd) f,,* = 40l
In the first case (i) we obtain [A= (f,,% ~ 4|f,,%"?]

(2.23a)
(2.23b)

c(t) =cosnt +i(f,,/1) sinxt,
S(8) =2i(f,0/2) sinnt
so that from (2.20c) there follows
A(t) = (2fa0for —f11f10)(COSNE = 1)/A2 =i (f,,/N) sinrt.

(2.23¢)

We have to distinguish two possibilities: s=0,
s#0. If s=0 (and |c|=1) we have

f11=(1nc)/iT=argC/T, (2.243.)
f20=0, (2.24b)
fio=ialnc/T(c ~1)=Aargec/T(1-c), (2.24c)
and
U =exp(-iTH)
=exp(-1i argc)[&*(ao)&(ao) +1?—c a'(ay)
T a(aoﬂ, (2.25)

where for simplicity we take f,=0. The trivial
case ¢ =1 is considered in the Appendix (displace-
ment operator).

When s # 0, from Egs. (2.23) and after some
straightforward algebra we infer

1 Imc

fu=g3 T-(Rec) (2.26)

7 cos~!(Rec),
f20=—ifus/2 Imc , (2.27a)

S

7 =exp <—%‘) {2 Imc g7 (ad(ay) +ils*a®(a,) - sii”(oto)]

+[ReA (Imc +Ims) — ImA (1 +Rec - Res)][a" (o) +ad(a,)]

+i[Rea (1 + Rec — Res) +ImaA (Imc — Ims)][a" (o) —a(ay)]}.

S1o =2—I’~H1E{[ReA (Imc +Ims) - ImA (1 + Rec — Res))
+i[ReA (1 +Rec — Res) +ImA (Imc — Ims)]},
(2.27b)
and
(2.28)
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In the second case (ii) we obtain the same result
(2.28) except for

1 Imc o
fu T (Rec) ~117° cosh™!(Rec) (2.29)
the condition reading |Rec|> 1 (so necessarily
s# 0).
In the last case (iii) the only modification is
fuu=Ime/T, (2.30)

the condition of applicability being |Rec|=1 and
s+ 0.

Thus we have explicitly calculated U. There
only remains to calculate the phase it induces.
This can be done by taking the scalar product of
Eq. (2.22) with (z,(a,)],

(2ol Tlzg(a = ez (@) |24 (@) +a; ¢, S).

The left-hand side is evaluated by normal order-
ing,'® and the right-hand side through Eq. (2.10).
The result is

* 1 1 F |al2+1nc s*A?
+ZO[E-A\;_§ +( +———2-—————“c— ’

(2.31)
where
A=Ji-1,
B =(y sinhj)(jJ)™*,
C = (zsinhj)(jJ)™,
D=j"3%(1A +2uB) ,
E=j"%(uA+27B),

(2.32a)

- 1

=—3Ind —x+j %@ —xb6€) +j"*rpA
+j~ " Y(4yzp — x°p — Bxyzbe)sinhy

with
J =coshj —y~7x sinhj ,
j= (2 —-4yz)Y?  x=—iTf,,
@=ye?+20%, y*=z=-iTf,,, (2.32b)
T7=x6-2ye, €=-0*==iTf,,,
L=x€—225.

In conclusion, when s =0 the result is given by
Egs. (2.25), (2.31), and (2.32); when s+ 0, by
(2.28), (2.31), (2.32) and by (2.26) if |Rec|< 1, by
(2.29) if |Rec|> 1, and by (2.30) if |Rec|=1.

This general result is applied in the Appendix
for the derivation of the following particular
transformations:

Case s =0. The displacement operator and the
rotation operator about an arbitrary point in
phase space. This includes the Fourier operator
and parity, which is closely related to the Wigner
distribution function. As s =0 the equivalence
class of MUS’s is conserved. This means that the
actuation of 7 on an arbitrary state conserves the
same geometrical interpretation in phase space as
it has for the MUS’s (in terms of which it is orig-
inally defined).

Case s# 0 and |Rec|< 1. Rotations of the MUS’s.

Case s# 0 and |Rec|> 1. The change of a-equiv-
alence class with an added displacement. We
comment here on the » =+« limit of the MUS’s.

III. QUANTUM DYNAMICS IN PHASE SPACE -
CLASSICAL ALGORITHMS

The question envisaged here is: When and how
does classical “intuition” work in the quantum-
mechanical dynamics of a nonrelativistic, spinless
particle? To begin with, the classical picture of
a particle as a point in phase space is best trans-
lated by a MUS with the same localization.'® Thus
the initial condition of the quantal systems’ evolu-
tion will always be taken as MUS’s in our discus-
sion.

Given the Hamiltonian A as a function H(d, 5, t)
and the initial MUS located at z,, we can determine
the corresponding classical problem. Three dif-
ferent algorithms are studied below in order to
see when and in what way does the time evolved
state follow the classical trjectory in phase space:
Ehrenfest, minimality conservation, and pseudo-
classical. The analysis is done in two cases: for
any initial MUS, and not for all initial MUS’s; in
each case both @ =0 and &+ 0 are considered.

A. The Ehrenfest algorithm

In this well-known problem,* the question is
when do the expectation values ({2),, ($),) =z z(¢) fol-
low the classical trajectory z,(f). [We write (4),
as shorthand for @(¢)|A |$(#)).] The answer is if
and only if*!

~i[q,H]) ;= 8H oy (@4, (B 1y 1)/ 3D sy (3.1a)
i[5y A= 0H o (@4 By )/ 3D, (3.1b)

1. For all [zo). Equations (3.1) are verified for
a general quadratic operator H,, and for all initial
states |y(t=¢,)) (not necessarily MUS’s). But in
general z ,(¢) cannot be identified with the coordin-
ates of the classical particle: The classical tra-
jectory, solution of a second-order differential eq-
uation, is determined by the initial conditions,
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while the expectation values (.- -), depend upon the
initial wave function. Given this function, <‘I>t0 and
(p), are determined, but they are not mdependent
Thus if, for example, |¥(¢,)) is an energy eigen-

-i[g, A) = (20,i) H{(c* - s*)[A

H)+(c - s)A", H]} =
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state of an oscillator, (3), is zero for all {. This
fact also underlines the importance of dealing with
the MUS’s as initial conditions.

2. Nol for all |z,). We can write

2 F AT A
7, S

- F,, <a0(c* # 5%+ 5 (¥ - c*)5> (@ole +$)i + 5 (e - s)[>> = F,.P,G,5), (3.2)

where F ; and P,  are defined in the second and
fourth e}gualmes. The expectatlon value of (3.2)
equals 2/, F P, ((@),, (p)), if and only if
(A"(t)As(t)) factorizes. This nece551ty stems from
the fact that the A’ s, linear in ¢ and p, provide the
most general realization of the commutation re-
lations. The factorization is trivial when the max-
imum of 7 +s is one (for fIQ). When this is not the
case, the necessary and sufficient condition is that
|zo(ao);t) be a LTM with c(¢) and s(¢) (see the Ap-
pendix and Ref. 35 for a comment on the case of
(@'"a°) and the MUS’s; the proof for (474%) and the
LTM’s is a straightforward generalization). We
shall prove below that for Hamiltonians more than
quadratic, conservation of the LTM’s can be ver-
ified, but only for some initial conditions. In par-
ticular, we shall obtain a similar result for mini-
mality conservation (both for ¢,=0 and &,#0).

B. Conservation of the LTM’s and MUS’s (minimality)

We are interested in finding the conditions under
which a particular initial LTM state Izo,co, o is
an eigenstate of A(t) for all times { with an eigen-
value z,. A first-order calculation leads us to

[AW,H®]|z,;¢0),s0)
=4[Z ,+ ($s* - éc*)f{(t) +(cs - éc).t{'(t)]
x|z (), s@), (3.3)

where |z,;c(t),s(t)) is the time-evolved state from
[24; €0, So) (except for a phase). In the Heisenberg
picture we have

[‘ao,ﬂ(t)y ﬁu(t)] lzo; Cos so>
=iz + (5% = Ec¥)A, 4(1) + (&5 = 5)AT 4(1)]

X |Zo; Cos So?

so that the argument that follows is valid in both
pictures.

Making use of the normal-ordered expansion of
H in terms of A(t),

A@®)= 3 F, (OAMBA™?) (3.4)

n,m

and taking the scalar product with an arbitrary
(z,3¢(t),s(®)], Eq. (3.3) leads us to

S nF (2T
n,m

=i[z,+ (§s* —cc*)z, + (¢s - 5c)z¥]. (3.5)

The arbitrariness of z, implies

Z F .0z,m=i[z,+ (ss* —Cc*)z o (3.6a)
Z F,.(t)z,"=%i(cs - s¢), (3.6b)
> F,,(z,"=0, n>2. (3.6¢)

I A is a polynomial of degree N (the maximum,
over all terms, of the sum of exponents of § and
p), an upper bound to the number of possible z,’s
will be N -2, which is the degree of the N — 2 poly-
nomial equations (3.6¢). From (3.6) we conclude
that, given F,;, N -2 solutions z, are possible al-
though their existence is not guaranteed. On the
other hand, given z,, there exist many H’s which
verify (3.6).

As we are interested in minimality conservation
where ¢ and s are coshr(t) and sinhr(t), respec-
tively, from (3.6) we obtain

ZFlm(l)[Z (a)]m=i%,(a,), (3.72)
> Font)z @ )" = -id /2a,, (3.7b)
> Fon®lz4(a,Jm=0, n>2, (3.7¢)

m

where in this case the F, correspond to the nor-
mal-ordered expansion of H in terms of d(a ,). In
the particular case &,=0, the right-hand side of
(3.7b) becomes zero.??

If we restrict the condition of validity for only a
particular initial condition, to validity for any in-
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itial condition, Eq. (3.6) leads us to

F,.=0, n+m>2, (3.8a)
F,o=3i(ts ~5c)=Fpy, (3.8Db)
F, =i(3s* =Cc*)=F7,, (3.8¢)
F ,=iA=Fy, (3.84)

where
z,=2,+A().

When the corresponding £, of (2.16) are calculated,
we naturally reobtain (2.19), with the only differ-
ence that the initial conditions (for LTM conser-
vation) for ¢ and s are ¢, and s, instead of 1 and 0.
In particular when minimality is conserved, we re-
cover® H,,, if &,#0 and H, if d,=0 (see Sec. IIA).
For this reason any ]zo(ao)) was valid.

We note that when z, in Eq. (3.5) is taken as z,,
we get precisely the classical evolution for (§),
and (p), (Ehrenfest algorithm). The explicit time
dependence of A(¢), of which the evolved LTM is an
eigenstate, reflects itself in the right-hand side of
(3.5). Inthe caseof minimality conservation, the ef-
fectis adilatation (if &, > 0) of the g axis (at arate
a'a,/a,) and a reciprocal contraction of the p axis.
These renormalizations of the phase-space axes
are due to the 3 i7(2*> —a%) term in H,,,, and are
in agreement with the interpretation given in Sec.
IIA.

C. The pseudoclassical evolution algorithm

As stated above, once the quantum problem is
defined [Hamiltonian A and initial condition |z,(a,))
at ¢,], we can immediately calculate the solution to
the corresponding classical problem z(f). The
pseudoclassical evolution* is verified when z , (¢)
equals a z,(t) defined for the quantum problem as
follows. Although there is a one-to-one corres-
pondence between ]20(a0)> and phase space (for
each a,), this is not the case for the time evolved
|z,(a,);t) since this state is not in general a MUS.
Taking into account

|zofan); =17 [ dz(@) (@) 20(@0); )] 2(a))
(3.9)

we define for |z,(a,);t) the phase-space point z,(#),
which corresponds to the maximum overlap:

z,(1)=max |(z(a)|z,(a); )2, (3.10)

since, of the set {|z(a))}, it is |z,(t)) which best
describes |z,(a,);#). This is the idea behind the
pseudoclassical condition: That the best (of the
most classicallike?*) position-momentum measure-

ments lie along the classical trajectory in phase
space.

We shall first consider the same a(=q,) for all
t. The point z,, which corresponds in fact to the
maximum of the antinormal distribution function,’
verifies*

ERGICBIEICHIENCREY
=[z,(0](@) (2,0 ](@) | zo(ap); ), (3.11)

where |[z,()](a,)) is the a, equivalence class
MUS of eigenvalue z,(f). To first order in time
this is

z,(to+71)=25(t,+7)+0(7%), (3.12)

where z; denotes the expectation-values (Ehren-
fest) phase space point. So the verification of the
pseudoclassical condition implies the Ehrenfest
condition in first order. On the other hand, the
Ehrenfest condition, if it is required for any ¢, is
equivalent to the Ehrenfest condition (not in first
order). This necessary condition is also sufficient
as we prove below.
(i) For all |z,). In this case the Ehrenfest con-
dition is verified by (and only by)
Ho(l) = 300D * + cop (D3 + ¢4 (D] b, 1,
+C1o(0P + Coy (G + oo (8). (3.13)

These Hamiltonians®® verify, in addition, the
pseudoclassical evolution. Equation (3.10) now
reads

z,(t) = max| z(a,) |zo(a0) + A(l);c(zf),s(t))‘2 (3.14)

and this gives
[2,(0](ae) = c* (1) [zo(ag) + A(1)] = s(D)[zo(ae) + AN]*.
(3.15)

The initial condition is correct, and so are the
evolution equations: From (2.18) it follows

z,(0) = =i, (1)z, (1) = 2, (2% (1) = if o (2)

which is the same as the classical equation of mo-
tion

(3.16)

G ) =2¢,0t)p () + i (Da e (B) +c o),  (3.17a)

Da®)==ci (Db (t) = 2¢0,(Ng o () = coy(t)  (3.17TD)

taking into account the relation between the f, and
¢;;» This proof completes the one given in I.

(ii) Not for all [zo). The Ehrenfest condition is
equivalent to LTM conservation, Egs. (3.6). But
from (2.9) it can be shown that the MUS |z(a)) with
maximum overlap with the LTM }Z;c, s) is defined
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by
z(a)=c*Z - sZ*,

so that its localization z =(g,p) in phase space is
precisely the LTM-expected values of § and . The
conjunction of these conditions implies the pseudo-
classical algorithm.

2. d,#0

We next approach the same problem when the a-
equivalence class chosen in each time varies con-
tinuously as a,. This extra liberty in o, could gen-
eralize the &,=0 results. That this is not the case
can be seen as follows.

(i) For all |zy). The equivalent to (3.11) is now

<[Z,(t)](a,) Ia(ag) IZO(C!O); t)

=[2,(®)) (e X[z, ®)](@,) |20(@); 8 . (3.18)

Nevertheless, a first-order calculation based on
the relations
Q=0+ &"r +0(1%),
z2(t+7)=[qt+7),p(t+T)]
=z(t)+z()T+0O(1?),
[2(t+T)NQppr) = Aporq(t +T) + (/20 )p(E+T)
=[z2()](@) + (@,/a)[2()]* ()T

+[2() ()T +0(T?),
[lz®)(ap); t+7) = |[2(8)] () = iTH(t) [[2(6)])(e,))
+0(1?),

d(ay,,) =a(a,) + (@,/a,)1a" () +0(1%) (3.19)
also leads to Eq. (3.11), so that the result can-
not be more general than 170.

_In order to explicitly prove the sufficiency of

H, we translate the nonconstant-« problem into a
constant-a one for each f, by writing

[24(g0) + A(); c(8), s (@) = |Zo () + AR); (), 52,

(3.20)

where
Z5(@y) = 2,(a,), (3.21a)
ct)=c(t) cla,, o) —s(t) s(ay, o), (3.21b)
5(t)= —c(t)s(ay,, o) +s(t)cla,, ay). (3.21c)

Equation (3.10) is now formally a problem with
fixed @ (= ;, for each t), and the solution is [see
Eq. (3.15)]

[2,®)](ay) =[c*(t)c(ay, @) - s*(t)s (@, ;)]
X [2,(0) + A(1)]
- [s(t)c(ay, @) - clt)s(a,, a,)]
X [2q(a,) + A@B)]*.

The equation of motion for z,(t) calculated from
Egs. (2.20) and from

(3.22)

é(ao7 ag) = (&g/ag)s(ao, ag) (3.233)
$(ay, @) =(&,/a,)c(ay, a,) (3.23b)
is
%{[2,(0](11,)}:0(&0, @)z, () +s(a,, a,)2x(a,)
+(&y/ a2y ®))(ay), (3.24)
where
zy(a,) = c*()zo( @) + A@)] - s (E) 2, (@) + AR)]*.
(3.25)

Equation (3.24) implies
z,(t)=Z,.

The physical significance of z, is the pseudoclas-
sical phase-space point in the case c'r, =0, Eq.
(3.15). As z, equals z,,(t), so does z,(t).

(ii) Not for all |z,). A similar argument to the
one for the &,=0 case leads to Egs. (3.6) as neces-
sary and sufficient conditions.

D. The 3-dimensional case

The generalization of the previous results to
higher dimensions is straightforward. We define
a vectorlike operator a(@) whose three components
are

aa)=a,4,+@@/20,)p,, j=1,2,3. (3.26)

The commutability of these component operators
allows the definition of common eigenstates |Z(a))
as the direct product of three component MUS’s
|z4(a,)) eigenstates of a,(c,).

All proofs and results go through to the 3-dimen-
sional case, the only qualitative difference being
the appearance in all the Hamiltonians of crossed
4P, terms for i#j; as q, and p, commute, their
appearance is natural.

The appearance of these crossed terms implies
that a charged particle in a magnetic field 3(¢),

At =@m) ' [p-A@P (3.27)
with
F@t)=V xA®)

conserves minimality (and verifies the pseudo-
classical condition) if and only if 3 is uniform,
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as follows from the previous sections. Obviously
this result is independent of the gauge chosen.

In the usual treatment of the uniform magnetic
field, a class of coherent states is defined which
depends upon the gauge. This coherence is con-
served by (3.27). We remark that due to this gauge
dependence not all these classes are MUS’s. The
usually considered coherent states,’® the symme-
trical gauge ones, are MUS’s. As the unitary
gauge transformation operator is

G- exp[iwf(a)] ,

where w is a real constant, we conclude that it
corresponds to minimality-conserving transforma-
tions only in the case of a linear f function. In

fact G has to be restricted to a displacement oper-
ator. So the gauge function f referred to the sym-
metrical gauge®” can only be linear in a We con-
clude that, in this sense, coherence and minimality
are different matters.

IV. CONCLUDING REMARKS

The previous discussion leads us to establish the
equivalence between the pseudoclassical and |
Ehrenfest algorithms, for both the @ =0 and a
#0 cases. Furthermore, the requirement of
LTM conservation is verified by the same class of
Hamiltonians. This is true in the two cases when
all or only some particular initial conditions are
studied. We note that minimality conservation
implies the above algorithms, but the converse is
not true. We interpret this in the sense that MUS
conservation is a restriction on mean values but
also on the second moments’ relation. The sig-
nificance of the subindexes a and a(f) (=a,) of
H,, H,, is the reference made to which of the
a-equivalence classes does the conservation
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of minimality refer to.

These equivalences are synthetized in the table
below. But first we would like to emphasize the
conceptual distinction® between the a,’s which
characterize the equivalence class of the MUS’s
and the arbitrary a’s in terms of whose a@(a),
a'(a) one can express the Hamiltonians. This is
exemplified by H,,, which allocates |z4(a,);¢)
in the @,-equivalence class: A, can be ex-
pressed in terms of a(a,),a'(a,) [see Eq. (2.24b)]
but also in terms of a(a,),a' (a,) [see Eq. (2.24a)]
and in terms of any a(B),a’(B). This distinction
plays a central role in our discussions, as is
highlighted by the study of the rotation operator in
the Appendix. On the other hand and also in rela-
tion with H,(,, , we remark that the time depen-
dence of a(a,) is an explicit one, and it does not
correspond to the dynamics in the Heisenberg pic-
ture.’* The same comment is relevant for the time
dependence of the a,-equivalence class considered
in the pseudoclassical equations, and of the A
considered in the LTM conservation.

The relevant features of these Hamiltonians are
the following (all the coefficients are time-depen-
dent functions):

(1)

HQ(t) = Czoﬁz + c()z‘;2 +% 611[5’&] +

+cm$+cm?1+c00. (4.1)
(il) A,,, equals A, with
Coa/Cao=4a,*, ¢, =id,/a, (4.2)

(iii) I;a equals I?a,“ with @, = 0.

(iv) g

HL(t) = Z % Cij [i)i ,aj ]4- = ZF"MA*"(t)AA’"(t)
7]

nm

(4.3)

TABLE 1. Equivalence of the pseudoclassical and Ehrenfest algorithms with LTM conser-
vation, and their relation with minimality conservation.

Valid only
Initial Applicability Valid for all for some
condition Algorithms initial conditions  initial conditions
Minimality conservation & =0 I}D‘o 131
MUS |zo(@g);t) is a @, MUS @=0 He(s) H,
Pseudoclassical a=0 )
MUS zp (t) =24 (t) a=0 . .
Ehrenfest Ha Hy
MUS Zp(t)=alt) ?
LTM LTM conservation
(or MUS)  U(t ,t )]20;Cy,Sg isa LTM J
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with
L(t)=i{z,(a)+[ss* =cc*]zg (@)},  (4.4a)
Ly(t)=5i[c(t)s(t) —s(t)e(t)], (4.4b)
L,(t)=0, n>2, (4.4c)

where

Z F,. (0o e(d) + s(1)]

+(i/2a.) [e(t) = s() ] pey (D}
(4.5)

and

A(t)=c(Da(e,) + s(hal(a,) ,

Z2g(0=[ge, (8), e ()] .

(v) ﬁz(t) equal ﬁL(t) with ¢(#) and s(f) being
coshr(t) and sinhr(t):

H()= 3 fmd"(@,)a™a,), (4.6)

L(t)=i[Z,()(a,), (4.7a)

L(=ia,/2a,, (4.7b)

L, (D=0, n>2 (4.7¢)
and

L,)= 3 nf ({2 (O 1(a)}™ . (4.8)

m

(vi) H,(#) equals Hy(f) with &, =0.

Although Eqs. (4.4) must be verified for all ¢
(t>t,), they express restictions on the initial con-
ditions ifﬁ is given; conversely, they restrict a
class of H if the initial conditions are given. These
equations essentially restrict the quantum class of
physical systems in which the algorithms are veri-
fied, to those in which the classical trajectories
comply with a number of restrictions. In conclu-
sion, we have shown that for Hamiltonians of
degree N (N> 2), the pseudoclassical algorithm is
verified at most by N — 2 classical trajectories.

In this respect, the main conclusion of our
analysis can be thus stated as follows:

Theovem. The set of initial conditions for which
the pseudoclassical evolution algorithm [minimality
conservation] is verified for Hamiltonians more
than quadratic is defined by (4.4) [(4.7)] and is
denumerable. Thus, the pseudoclassical algorithm
[ minimality conservation] is verified if and only if
the Hamiltonian is at most a general [restricted)
quadratic form in the dynamical variables (4.1)
[(4.2)], except for a set of measure zero.
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APPENDIX

1. Change of a-equivalence class.

U, |2()) = et |(z7+ a7)(B))

~
U, verifies

with
(2'+A7)(B)=2"(B)+A'(B),
z2'(B)=z(a),
AYB)=BA[+ 5 A=A,
so that
Ua(@)0,  =a(8)+ 4.

This case corresponds to |Rec |) | and we obtain

U,= exp{%r[&Z(a) -a'(a)]

+ ——[ad"(@) -A*&(a)]}

with 7 defined in (2.3), so that ¢ (s) equals coshy
(sinhr). The phase is

. l-s-¢
1,¢1=z( %

A+A*c(c+s—1)—23)_Azs

2c(c+s-1) c
1 (c—2)(c+s—1)+23)
* A* ¢
+Z( c(c+s—1)+A 2¢(c+s-1)

e C¥ =S l-¢ l)
+(a%-a )2C(C+S 1)2+I | <c(c+s—1)2+2 ’

When &= O, we reobtain®® the usual operator
U(a=B) (and ¢, =0),

U@~ B)= exp(r/2)[ 4, 5]. (A1)
which scales as follows

0q0= e = (8/)7,

UpU™ = e p=(a/B)p

At this point we wish to comment on thelimit of
(A1) as ¥~z <, It would seem that H,,, (see Sec.
ITA) with @, monotonically increasing (decreasing)
towards «(0) would transform an initial MUS into
states with &, =~ 0 (4,— 0), thatis eigenstates of g ($).°
We note the followmg facts: (i) The norm of
Ula— B) |z(a)) (e fixed) is 1, so limJ(a—~B)|z(a))
when =+, if it exists, has norm 1; hence this
state cannot be an eigenstate of § or p. (ii) von Neu-
mann’s theorem?® states that all representations of
the commutation relations are unitarily equivalent
within the same Hilbert space.*® So if limU(a - B)
exists it cannot drive us out of the original Hilbert
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space (L?). (iii) The limit of |<q* |U(a-—ﬁ |2() NE
[|<p’ IU(Ot-v |z(a))] 2] for r= [r= =] is
equal to 8(q’ —¢q) [6(p’ —p)]. (iv) The limit when
r—=1° of the ﬁ(a-—B) matrix elements is zero.
From the above facts® we believe that this limit is
not well defined.

2. Displacement in phase space. A displacement
A=(a,b) of |z(@)) means that (§) and () are dis-
placed by a and b. This is

0, 2(@)) = et®2 |(z+8)(@))

and corresponds to the case s=0. As here c=1,
Eqgs. (2.24) reduce to

Ju =fzo=0, f10=iA/T

and we obtain

0,= expla(a)a’ (@) - a%(@)a(@)]
= expi(bg - ap),
ig,=2"[a(a) z%(a) - aAXa)z(a)] .

This is the well-known Weyl operator.

3. Rotation in phase space. A rotation 6 of
lz )) means that (g) and (p) are rotated an angle
0 about the origin:

c=cosf-isinf(a?+1/4a?) (A2a)
s=+1 sinf(a? - 1/4a?), (A2Db)
A=0. (A2¢)

When @ =2"1/2 we apply the case s= 0 and obtain
0, (=272 = expl(+i6)a'(2"*/H)a(27/?)]
=exp[(+2i0)(p*+§* -1)] ,
ipg(@=2"12)=_3if .

(A3a)
(A3b)

This is the evolution operator for a harmonic oscil-
lator withm =1, w=1attimef=-6. For this system
the trajectories in phase space of (§), and (),
are circles, as should be. The structure of
U, (a=2"/2) tells us that it conserves the a=2"/2
MUS’s (of course, s=0). When 8= -7 we have an
implementation of the parity operator.3?

For any @, when 6= -7 we apply also case s=0:

U.= exp[-i na%(@)a(a)]

~exp (im0 g 72-4) |-

ip_ =zim.

(Ada)

(A4b)

We verify that this is the parity operator B: From
the overlap (2.9) we have

|z(a); 1,0y =771 ffz’(z'(a) |z(@);-1,0) |z*(@))
= —i |[(-z)(@))

and as

(q|-2)=(-q|2)
we obtain
(q|0.,]2(a)) =i(q |2(a); -1,0)
=(q |(=2)(e)
= (~q |2(a)
so that
U =b.

-7

In the general case when a # 2°/2 and 6+ —7 in
(A2), we apply case |Rec |< 1 (s# 0). The result
U,,i¢p, turns out to be

0, = exp(+ i6) [(a2+ %) & (c)a(ar)

_% <a2
1. A2 2 2 1
=exp(+219)[q +p -(a + W>] ,

. . 1
1’¢8 =_%10 ((X + E>

As in (A3) and (A4), the independent term of the
(§,p) form is directly responsible for the phase ¢.
Obviously (79 does not conserve the minimality of
the MUS’s in the a-equivalence class. This is only
valid for a=2"/2 The special role played by this
a is due to the circular trajectories of the corre-
sponding oscillator in phase space (for general a
they are ellipses).

For an arbitrary state |d)> a rotation @ in phase
space implies the corresponding rotation of ex-
pected values (7), (p). 1t is clear that in the case
Ugla=27 1/2) the conservation of minimality assures
us that no other changes (see below) have been en-
tailed in the IlP) probability distribution. This
leads us to define the rotation operator as

) 8%+ )]
(A5a)

(A5Db)

R,=U,(a=212),

In this way, R@,0 is the unlty operator 1 and Ro_
is the parity operator B. We can obtain P con-
tinuously from 1 because we are dealing with the
rotation group in an even-dimensional space (phase
space).

The state R¢9 Iz(a ) ) has the mean-square devia-
tions

B,5°=(40%)" cos®0 + ®sin®6 ,
A, %= 0% cos®0 + (4a”) ™" sin’f

which allows us to visualize the wave function
0{q |2(@)) (where |g), denotes R‘9 lg)) asa
Gaussian probability distribution of variance &_,
for each 6 over phase space. This Gaussian over
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phase space is rigidly rotated around the origin
by R,: This rigidity was what was meant by no
other changes. In this sense it should be stressed
that I‘éo |z(a)y (@ #271/2) is not equal to |(e® z)(a))
nor to |z,(@)) with z,(@)=ez2(a): these states

are the MUS’s of the a@- equivalence class, while
R, |2(@)) is clearly not.

The previous analysis can be done for the ro-
tation operator around the phase-space point
A=(a, b):

Ry(a,b)= eXp(+i)(%9(z72+132) + % [a(~26%+ cosb — 1) + b(sinb — 6)]§

1 -
+ 3 [b(—%02+c056—1)-a(sin0_9)]p+ % 0(a®+b%-3)+

The transformation it induces is
R,(a,b) |z(a)) =e'w’2|z(a):c,s,w)

with

1
c=cosf i sin9<a2+ ZEF) ,

. 1
S=+i sm9<ot2 - W) ;

1 . i
w=(1 —cose)(aa+ 73 b) +siné (ab -5 @ )
The presence of w only alters our scheme in that
now & —w plays the role of A. The parity about
A is R_,(a,b) and

R_(a,b) |2(@) =D(2a) |(-2)(@)) .
This operator has a special interest®® since its
expectation value, that is the overlap of the wave
function with its mirror image about (a, b), is the
Wigner distribution function at (a,b).

4. Fourier operator. The -m/2 geometrical ro-
tation in phase space interchanges the roles of the
coordinate and momentum axes. This is in accord-
ance with the performance of R_,,,; it is easily
verified that

(q" |R.q o 2(@))= (p" |2())

where |g’y(_|p’)) is an eigenstate of §() with ¢’
=p’. This R.,,, is the Fourier operator.*

This result gives us an insight into the physical
interpretation of B,. | (g’ |v)|2dq’ [|<p" |¥) |2dp’]
is the probability distribution in a vertical [hor-
izontal] slit of phase space (with the ¢’ axis as
abscissa axis) through the phase-space point (¢’, 0)
[0,p9]. As (p" |[¥) is (q'|R},, |¥) (with eigen-
values p’=q’), we conclude® that |(g’|R}(a,d) |¥)|?

a2

2
;b (1 -cos9)>.

-
X dg} is the probability distribution in a tilted (by
an angle 0+7/2) slit of phase space which includes
the point rotated of (¢’ ,0) about (a,d) by an angle 6.
5. Comment. We would finally like to comment
on a generalization of the rotation operator which
does not transform a MUS into a LTM. R, can be
written as

-~

R, =exp(+i64ta),

where « is understood to be 27*/2, and
R, |z) =Z et (y ]z) In) .
n

If the phases are allowed to become arbitrary (i.e.,
if each component |n) rotates a different angle),
one obtains

[p)=>"e*n(n]|2) |n). (A6)

These states (A6) (Ref. 36) are the most general
ones which satisfy

(¢ |atman |o)=(o |a*|p)" (o |a]e)". (AT

In fact, (A7) is verified for any a@(a) when | @), is
defined in (A6) for the corresponding a [ |z(@))
and |n),). Nevertheless, the most general
states |y), which factorize

LY |arm(@)ama) [9Y, = o |t )0 Ly ]a ]y
(A8)

for all n,m are the MUS’s of the corresponding
a-equivalence class.*® From this factorization
property which testifies to the absence of certain
quantum correlations in these states, there follows
their relevance in quantum noise and communica-
tion theory.*’

13. Klander, in Path Integrals and theiv Applications
in Quantum, Statistical and Solid State Phvsics, pro-
ceedings of the NATO A.S.I., Antwerpen, Belgium,
1977 (Plenum, New York, to be published).

*The spectrum of MUS’s is continuous but the set of
MUS’s is overcomplete. In fact there exists a discrete
subset which spans the whole of the MUS’s Hilbert
space (L%, as was first noted by von Neumann. See,
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J. Klauder and E. Sudarshan, Fundamentals of Quan-
tum Optics (Benjamin, New York, 1968), p. 115;
A. Barut and L. Girardello, Comm. Math. Phys. 21,
41 (1971).

5G. Patsakos, Am. J. Phys. 44, 158 (1976).

4y, Canivell and P. Seglar, Phys. Rev. D 15, 1050 (1977).

5D. Stoler, Phys. Rev. D 1, 3217 (1970).

6. Messiah, Mécanique Quantique (Dunod, Paris,1969),
Vol. 1. Chap. 8, p. 254.

"Although a classical phase space has no meaning in
quantum mechanics [see, e.g., P. Dirac, The Princi-
ples of Quantum Mechanics (Oxford Univ. Press, Lon-
don, 1970), 4th ed., p. 132], distribution functions in
the space of eigenvalues of ¢ and p can formally act as
classical probabilities for conveniently ordered oper-
ators. See G. Agarwal and E. Wolf, Phys. Rev. D 2,
2161 (1970).

8H. Yuen, Phys. Rev. A 13, 2226 (1976). See Sec. III:
Our LTM’s are essentially the two-coherent states of
quantum optics, which appear in the study of two-pho-
ton lasing processes.

%We obviate the consideration of the complex phase func-
tion which is necessary to guarantee the correct solu-
tion of the evolution equation. This phase only contrib-
utes to the determination of the c-number term in the
Hamiltonian, which does not affect the relevant phys-
ics here. Nevertheless, when this phase is overlooked
one can be led in some problems to uncorrect results.
This has been pointed out by H. Letz [Phys. Lett. 604,
399 (1977)] in reference to a recent paper.

101n this case we know that H is quadratic (for a linear
transformation). For future reference we note that
normal expansions are appropriate (in the sense of
weak convergence over the set of MUS’s) under very
general conditions, more than for antinormal or sym-
metrical ones. See K. Cahill and R. Glauber, Phys.
Rev. 177, 1857 (1969).

U This liberty is the link between Yuen’s results (Ref. 8)
that correspond in fact to the choice n(?)=1 [ which
does not allow the caseu(t)=1, v(¢)=0], and previ-
ous results in the literature for quadratic Hamiltonians
related to the conservation of minimality [C. Mehta

et al., Phys. Rev. 157, 1198 (1967)] and others [A. Holz,

Lett Nuovo Cimento 4, 1319 (1970); I. Malkin et al.,
J. Math. Phys. 14, 576 (1973)] which differ from Yuen
becausen (£) = 1.

12Even for A=0, as z )=z, ,) implies g, = (@,/a)q,
and p = {@,/a ,)p,, this unitary transformation moves
the MUS localization z in phase space.

13The relevant feature of this result is the fy (and fo,)
term, which was first obtained by D. Trifonov [ Phys.
Lett. 48A, 165 (1974)], although with a changed sign,
in a first-order calculation.

H4This identification has inadvertently been done in the
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