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With the aid of the Landau-Lifshitz theory for thermodynamic fluctuations we estimate and com-
ment on the fluctuations in the rates of mass, angular momentum, and other relevant quantities of

massive Schwarzschild and Kerr black holes.

I. INTRODUCTION

In two previous papers we dealt with equilibrium fluc-
tuations of Schwarzschild! and Kerr? black holes. In
both of them, in order to ensure thermodynamic equilib-
rium, the black hole was supposed to be enclosed in a
large idealized box filled with radiation at the same tem-
perature as the hole. The second moments in the fluctua-
tions of the relevant quantities were calculated making
use of the Bekenstein interpretation of black-hole entropy
and the Einstein-Boltzmann formula for equilibrium fluc-
tuations. Inspection of these correlations reveals, on the
one hand, that a phase transition between the black hole
and radiation occurs when the heat capacity of the whole
system vanishes and, on the other hand, that the
aforementioned Bekenstein interpretation works well in
the envisaged situations. However, the situation con-
sidered in both papers seems rather artificial, no realistic
black hole is enclosed in a box, so it would be more in-
teresting to study the mesoscopic behavior of freely
evaporating holes. In this case we definitely face a non-
equilibrium situation in which the mass, angular momen-
tum, and electric charge of the black hole are continuous-
ly decreasing. As is well known,? if the black hole is mas-
sive enough, i.e., its mass exceeds 10'* g, the loss rate of
these quantities is almost constant and the evaporation
may be approximated by a nonequilibrium steady-state
process, provided that the time scale of any realistic mea-
surement is much shorter than the scale of time of the
process itself.

Our purpose in this paper is to analyze the nonequi-
librium thermodynamic fluctuations of massive freely
evaporating Schwarzschild and Kerr black holes. The
correct way to do that should employ the fact that each
normalized wave-packet mode of nearly constant fre-
quency w makes a roughly independent contribution to
the fluctuation, which is ((8N)2)=(N?2) — (N )2, for the
number of particles emitted in the mode, where

(N)=T/{expl[lo—mQ)/T]£1}

is the expected number in a mode of transmission
coefficient T, energy w, axial angular momentum m from
a black hole of temperature 7, and angular velocity (2,
with the upper sign for fermions and the lower sign for
bosons. Units have been chosen so that ¢ =G =%
=kg=1. The number of orthonormal modes emitted per
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time is given by (2m)~' 3 f dw, where Y stands for the

sum over the discrete quantum labeling the particle
species. Thus if each particle carries away a certain
quantity, say y;, and the total carried by N particles is Y},
so (¥;)=(N )y,, the expected emission rate of Y; yields

(v)=2m~'3 [da(N)y, .

Consequently, the second moments in the fluctuations
take the form

(8Y,8Y;)=2m~'3 [ do({N?)—(N))y,y, .

However, because of the complicated dependence of (N )
on w and the discrete quantum numbers, particularly
through T, the corresponding calculation is quite in-
volved requiring numerical analysis. In view of that, we
prefer to use a simpler method due to Landau and
Lifshitz* which applies in classical nonequilibrium statis-
tical theory. Although that theory, widely known as
Landau-Lifshitz fluctuation hydrodynamic theory, was
initially intended just for equilibrium situations its validi-
ty range was successfully extended>® to include non-
equilibrium steady-state situations also. It is well known
that black holes comply with the laws of thermodynam-
ics” and statistical physics.® Therefore it is natural to ex-
pect that, as for simple Newtonian systems, nonequilibri-
um Landau-Lifshitz fluctuation theory has some range of
validity when applied to such collapsed objects. Strictly
speaking, the Landau-Lifshitz theory is valid only for
thermodynamic equilibrium situations, hence one may
challenge its applicability to the situations we want to
deal with. In this connection it is worth noting that the
departure from thermodynamic equilibrium is measured
by the magnitude of the entropy production |S |, or
equivalently by the magnitude of the dissipative fluxes.
However, such as we shall make explicit below, for black
holes whose masses are about 5 10'* g, and beyond, and
angular momentum around M?/2 the entropy produc-
tion becomes quite negligible. So we expect that the
theory mentioned will provide us, whether in the
Schwarzschild case or in the Kerr one, with reasonable
qualitative estimates at least. This is explicitly shown in
Appendix A for a similar calculable problem: namely,
the free emission of photons from a black body sphere.
According to Landau and Lifshitz* if the flux x; of a
given thermodynamic quantity x;, which varies in a gen-
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eral dissipative process, is governed by

=_2rux,+5x , (1)

and the entropy rate by
i

then the second moments in the fluctuations of the fluxes
read

Here and throughout the angular brackets mean average
with respect to the steady state, and the fluctuations 8x;
are considered spontaneous deviations from the steady-
state value (x;) so (8x%;) vanishes. The quantities I';;
and X; stand for the phenomenological transport
coefficients and the thermodynamic force conjugate to
the flux Xx;, respectively. As usual kz denotes the
Boltzmann constant.

In Sec. II we study the fluctuations of the rate of mass,
entropy, and temperature of a massive Schwarzschild
black hole, whereas in Sec. IIl we extend our analysis to
massive Kerr black holes. Finally, Sec. IV is devoted to
comment on the behavior of the second moments in the
limit J —>M2.

II. THE SCHWARZSCHILD BLACK-HOLE CASE

As was derived by Page® the mass of freely evaporating
black hole decreases with time according to

M=—aMM™?, @)

where a(M) is a positive-definite numerical coefficient
which depends on which species of particles can be emit-
ted at a significant rate. For black-hole masses around
5% 10'* g the hole preferably emits neutrinos, photons,
and gravitons and a(M) may be replaced by a constant,
a,, of the order of 10~* Usually M is referred to as
minus the luminosity of the hole.

Obviously if the measurement time is much shorter
than the characteristic decay time ( < M*) we may con-
sider that the right-hand side of Eq. (4) does not vary
while the corresponding measurement is made. It is easy
to check that for M > 10" g the characteristic decay time
is of the order of the age of the Universe. So, for
M > 10'* g we can accurately say that we are dealing with
a steady-state evaporation process. Then it is reasonable
to study it in light of the nonequilibrium thermodynamic
fluctuation theory sketched above. According to this we
substitute a(M) by a, in expression (4) and we consider
the stochastic equation M = —a,M ~ +8M where M
represents a spontaneous fluctuation of M around its
steady-state value: namely, (M )= —a,M ~2. Some care
must be taken in using the Landau- Llfshltz method in
conjunction with the Schwarzchild black-hole entropy
expression S =47M? since that method was conceived
for systems of common entropies, i.e., for systems whose
entropy was supposed to be concave. In the case we are
dealing with the entropy is not concave, and a slight
modification in the Landau-Lifshitz procedure for obtain-
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ing the second moments is needed. For nonconcave en-
tropies in the realm of black-hole thermodynamics see
Refs. 9 and 10. The aforementioned modification consists
in substituting expression (2) for the more general one

S=3 (+X;x,), (5)

where the upper sign holds for contributions to the entro-
py rate which come from nonconcave parts of S, whereas
the lower sign holds otherwise. In the case we are facing
now S is nonconcave and the second moments for 8M are
found to be

(OMSM ) =ay(4mM3)~! . (6)

For black-hole masses about 5X 10'* g the mass flux is
of the order of IOT5 g/sec whereas the entropy and entro-
py production, |S | =(87kgzG /ch)MM, are of the order
of 10°! erg/K and 10° erg/K sec, respectively. In view of
these figures we can say the system is close to the local
thermodynamic equilibrium; hence we are confident that
the results of the Landau-Lifshitz theory when applied to
Schwarzschild black holes of mass M >5x10'* g are at
least qualitatively correct.

The procedure we have followed allows us to define a
sort of “phenomenological coefficient” associated to the
spontaneous irreversible process of mass evaporation.
That quantity reads T'j, =ay(87M3)~!. Likewise we
note, in passing, that the procedure trivially leads to es-
tablishing a kind of fluctuation-dissipation relation for
this steady-state process: namely, (S8M8M ) =2TI",,, re-
lating the autocorrelation in that state to the above-
defined phenomenological coefficient in close analogy
with the usual fluctuation-dissipation expressions for
equilibrium. In the case under study there is no gradient
with which to associate, we have at our disposal a gen-
eralized “thermodynamical force” given by the inverse of
the black-hole temperature, T~ ! =87 M.

Having derived expression (6) it is straightforward to
obtain the following set of correlations:

(8888 ) =16maM !, )
(8T8T ) =ay(256m°M7) !, (8)
(8S8M ) =2a,M 2, )
(BMST ) = —ay(32m*M5)~ !, (10)
(888T ) = —aydrM*)~! . (1

Note that the right-hand side of Eq. (9) is positive while
that of Egs. (10) and (11) are negative. This is a direct
consequence of both M and S decreasing with time and T
increasing.

III. THE KERR BLACK-HOLE CASE

An evaporating Kerr black hole radiates away not only
its mass but its angular momentum J also. The rates of
both emission processes have been reported by Page!! to
be

M=—fM~?, (12)
J=—gIM~3 . (13)
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The parameter f is defined through f=n,,f,
+n,f,+n,f,—an analogous expression holds for the
parameter g —where the n; indicate the number of mass-
less particle species with spin 1, 1, and 2, respectively.
Both parameters are positive definite. Page assumes
ny,=2,n;=1,and n,=1. In their turn the f;’s and g;’s

depend just on the ratio J/M?, and they have numerical-
ly been calculated for diﬁ'erent intervals of that ratio—
see Table I in Ref. 11 —ranging from a maximum rotat-

ing hole (J=M?) to a nearly nonrotating one
(J =10"2M?). For J =0 it is understood that f goes
over a.

In view of the aforementioned table of values and bear-
ing in mind the considerations of the previous section
about the measurement time, we may safely say that Kerr
black holes with masses beyond 5 10'* g will spend a lot
of time with nearly the same value of M and J. There-
fore, the interval of time used in any realistic experiment
of measurement of M and J will be much shorter than the
interval of time needed for the hole to emit any notice-
able quantity of mass or angular momentum. Then, we
feel it is not unwise to consider, in our approximation, f,
8 M, and J constant. In this way we are facing a twofold
steady-state process, in which (M) and (J) are fixed
and given by the right-hand sides of Egs. (12) and (13), re-
spectively. Now we can consider spontaneous random
fluctuations, 8M and 8J, around these mean values, and
apply the Landau-Lifshitz method as above.

The entropy and temperature of a rotating black hole
read

S=2rM?*1+b), (14)
T=4rM)"'b(1+b)" ", (15)
with b =[1—(J2/M*)]'/2. For black-hole masses around

5x 10 g and angular momentum, say, M?/2 the corre-
sponding fluxes of mass and angular momentum, in
Planck units, are of the order of 10~*! and 10~%2, respec-
tively. Likewise, the entropy and the entropy produc-
tion,

| S| =(7/2M)(1+b)[b Y g —2f)—g],

are of the order of 10 and 10722, respectively. Once
again, we see that the system is so close to the local ther-
modynamic equilibrium that it is quite reasonable to ex-
pect at least good qualitative predictions. Besides, in-
spection of the above expressions for |S | reveals that
for M > 5% 10" g the entropy production is negligible for
rotating holes with angular momentum quite close to M?
[for instance, if J =(1—10"3)M?2, | S| becomes of the
order of 107 '¥]. In this view the Landau-Lifshitz theory
seems to be qualitative valid even in that extreme situa-
tion. Of course, if J =M?, | S| diverges and that theory
is no longer reliable.

Taking into account that the entropy part correspond-
ing to M is nonconcave (i.e., 92S/0M?>0) whereas the
part corresponding to J is concave (i.e., 3%S /8J% <0) and
proceeding along the same lines as in Sec. II we obtain

(BMBSM ) =f(2m) " 'bM[(b +b>)M*+J2]~!, (16)
(8J8J ) =gb(7M)~" . (17)
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These second moments may be interpreted as
fluctuation-dissipation expressions for nonequilibrium
steady-state evaporation, where the associated dissipative
coefficients are nothing but one-half of the corresponding
right-hand side. A quick inspection of the right-hand
side of Eq. (16) reveals that a Schwarzschild black hole
will experience fluctuations in the mass flux greater than
a rotating hole of the same mass. For vanishing angular
momentum {8M8M ) reduces to its Schwarzschild value
as it should. However, {8J8J ) does not vanish since the
parameter g remains above zero (see Table II in Ref. 11).
This should not be surprising since the angular momen-
tum flux can fluctuate around its vanishing average value.
This kind of feature is also present in equilibrium fluctua-
tions of dissipation quantities in electric and hydro-
dynamic systems. On the other hand, it should be real-
ized that the minus sign in Eq. (13) indicates that the
black hole preferably emits angular momentum of the
same sign as the hole. Then, it is possible that the hole
emits angular momentum of the opposite sign increasing
in this way its angular momentum. In this light it is
easier to understand expression (17).

As mentioned above, for extreme Kerr black holes,
J =M?, the system ceases to be close to local thermo-
dynamic equilibrium for the entropy production diverges.
Therefore, the application of the Landau-Lifshitz theory
to that situation is not justified in principle, and, at best,
it can be viewed as an extrapolation. However, as noted
before, since one can go quite close to maximum rotating
black-hole situations without the system deviating
significantly from local thermodynamic equilibrium it is
tempting to speculate about which physical consequences
may be drawn in the limit J —M?2. As we shall see these
consequences will prove to be quite reasonable.

For J — M? both second moments, expressions (16) and
(17), tend to vanish. This is so because J cannot go
beyond M2, otherwise the event horizon would disappear
and the singularity inside the hole would attain causal
connection with the external world. Hence, the con-
straint J < M? represents a boundary condition, and it is
well known, for instance, in hydrodynamic systems,® the
autocorrelations vanish when a relevant parameter in the
fluctuating system reaches a boundary value. Likewise, it
can be easily understood that if M and J were able to fluc-
tuate when J =M? then either J could surpass M? or
equivalently M? could go over values below J.

For the cross correlations one has

(8M8J )=0. (18)

This result can be understood from different points of
view. On the one hand, one may consider the microscop-
ic stochastic emission of quanta from the black hole. The
energy and angular momentum, around the hole axis, of
each individual quanta leaving the black hole, in the pro-
cess of evaporation, are not related to each other. There-
fore, it is quite natural that the flux of energy and angular
momentum are, on the average, completely uncorrelated.
On the other hand, employing the Gibbs equation for
black holes, T8S =8M —Q8J, it can be guessed that SM
and 8J are uncorrelated, much in the same way as 8M
and 8J are in equilibrium fluctuations of Kerr black
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holes.?

It is straightforward, with the use of Eqs. (14)-(18), to
determine any second moment involving whichever of the
relevant fluxes. Some of them are listed below while
some others are collected in Appendix B in order not to
burden the main text:

(asonr) = 2L, (19

(658))=—2EM 20)
2rM

<ssas>— 5[2fb(l+b)M“+(2f+g)J2] (21)

The fact of S being an increasing function of M and a de-
]
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creasing one of J is reflected in that the right-hand side of
relation (19) is positive whereas that one of relation (20) is
negative. Note that (8S8M) goes over to its
Schwarzschild value when f is substituted by a. The
cross correlation (8S8J) vanishes both for nonrotating
as well as for maximum rotating black holes. The first
case, J =0, is an obvious consequence of the fact that
Schwarzschild entropy does not involve angular momen-
tum, and the second one, J =M?, is a direct consequence
of the above-mentioned boundary restriction. For van-
ishing angular momentum (8S8S) reduces to its
Schwarzschild values and for J =M? diverges. This last
result agrees with that one by Page'! stating that the rate
at which the event horizon area varies diverges as J ap-
proaches M2,
Other relevant second moments are

o 1 fIb(1+b)M*—2J)
(8T8T) = +g’% ], 22
16r°M 614" | 2b(1+bM*+77] & 22
(s08))=—D3%8 |y | 23)
TM"(14b) 2M
L. 2 4, 72732 2
(605Q) = 764b . f{4(1+b)M2+;3J[161r(12+b:M —;—J 1} 1— 12 bl 24)
M'(1+4b) I1+b)°M’[2(b +b*)M*+J°] 2M
. 1
(888T )= ———————{f[b(1+b)M*-2J%1gMJ} , 25
21rM8b(1+b)2{f[ + leMJ} (25)
T
where the angular velocity of the hole equals 7J(MS)~ L (SMSM. )= f 26)
For extreme Kerr black holes (878T) and (8557 T e MI[2(14-5)]112
diverge, whereas both (8Q8J ) and (8Q8Q ) vanish. The o 7
latter result is, once again, a consequence of the boundary (SM8M o, ) =— T2—ss 37 (27
condition J <M?2. The former one will be interpreted 27"rM>(1+b)
below in the light of the other divergences occurring in ) ] 7 4
the limit J—>M?2. As can be checked the right-hand side ~ (8M, 6M )= — ——— |eb+ —7'2[2 F(b+b)M*
of Egs. (22) and (25) reduce for nonrotating black holes to 16m°M b M
their ~Schwarzschild value ay(2567°M7)~! and
—ay(4mM*)™1, respectively. Note that the right-hand +(2f +gW?] (28)
side of Eq. (23) cannot become negative, it reflects the

fact that Q is an always increasing function of J. For
vanishing angular momentum (8{8J ) and (808Q) do
not vanish though J, J, Q, and Q vanish. This corro-
borates once again that the rates of the angular quantities
fluctuate around their vanishing average values.

It is traditional to split the square total energy of a ro-
tating hole in two pieces, M>=M2_ +M?,. The first one,
M?2_=(4m)"'S is proportional to the entropy and corre-
sponds to that part of the total energy that cannot be
drained from the hole by a series of Penrose processes.'?
The second one, M2, =47J%S !, corresponds to that
part of M that can be obtained from the black hole
through that process. It is clear that in the steady-state
evaporating regime the fluctuations of M, M, and M,
have to be related to each other much in the same way as
in the equilibrium? the fluctuations of M, M, ., and M,
are related. A brief calculation leads to the expressions

As can be checked, for nonrotating holes (8M8M,,, )
reduces to its Schwarzschild counterpart ay(4mM H-1,
while the right-hand sides of Egs. (27) and (28) vanish as
expected in accordance with Eq. (18). For extreme Kerr
black holes the two former right-hand sides remain finite
but expression (28) diverges. The positive-definite char-
acter of Eq. (26) and the negative-semidefinite of Egs. (27)
and (28) correspond to the fact that the black-hole energy
increases with the entropy and decreases with the angular
momentum.

Inspection of all second moments reveals that given
two black holes with the same ratio J/M? the fluctua-
tions will be smaller in that one with the higher mass, or
equivalently with the higher angular momentum. So
loosely speaking, we may say that both J and M tend to
diminish the strength of the fluctuations. On the other
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hand, (8J8J ) is greater than (8M&M ). This is in ac-
cordance with the fact that black holes emit their angular
momentum faster than their mass,'' so they are expected
to experience fluctuations in J greater than in M.

IV. BEHAVIOR OF THE FLUCTUATIONS
IN THE J —» M2 LIMIT

As _noted 'above, some second moments, ngmgly,
(8888 ), (8T8T), (8S8T), (M, 8M,, ), (8Q8T),
(8M,,8T), and (8M,, 8T ) (see Appendix B for the last
three) tend to diverge in the J—M? limit. From statisti-
cal thermodynamics it is well known that phase transi-
tions are usually accompanied by the occurrence of diver-
gences in some relevant correlations.!* Hence, one is
tempted to speculate that these divergencies may corre-
spond to a nonequilibrium phase transition from extreme
to nonextreme Kerr black holes. This conjecture seems
reasonable since, on the one hand, no divergences occur
in any of the second moments for values of J other than
M?; which agrees with the fact that no radical change
affecting the black-hole properties is seen for values of J
lower than M2 On the other hand, extreme Kerr black
holes have some properties radically different from
nonextreme ones. In particular, their temperature
vanishes—see Eq. (15)—hence, no Hawking thermal ra-
diation coming from the extreme hole is observed at
infinity. In fact they can radiate only through superradi-
ant scattering. Besides, the inner horizon region degen-
erates into a timelike one. Therefore we might say that
the aforementioned divergences closely correspond to the
sudden change in properties from extreme to nonextreme
Kerr black hole. Our result is in accordance with that
found by Curir!* who exploits the analogy between rotat-
ing black holes and paramagnetic systems. These diver-
gences in the second moments in the limit J —M?2 can be
attributed to the same mechanism that makes the rates of
the event-horizon area and surface gravity diverge in that
limit [see Sec. IV and Egs. (54) and (56) in Ref. 11]. At
this point it is convenient to keep in mind that the event-
horizon area and the surface gravity are proportional, re-
spectively, to the entropy and temperature of the hole.
That mechanism is nothing but the superradiant (stimu-
lated) scattering of quanta by the black hole. At J values
close to M? the Kerr hole emits particles essentially via
superradiant scattering, whereas at lower values of J the
spontaneous (thermal) Hawking radiance dominates over
the superradiant emission. Lastly, at J =0 no superradi-
ant scattering is expected. So, on physical grounds, it
should not be surprising that the divergences dS /dt and
dT /dt, encountered by Page,!! are accompanied by diver-
gences in some second moments, all of them involving ei-
ther 85, 8T, or both. This may be seen as giving support
to our conjecture which states that these divergences in
the second moments seem to correspond to a phase tran-
sition between extreme and nonextreme Kerr black holes.

Some additional support to that conjecture can be ob-
tained from quantum optics. On the one hand, it is well
known that the stimulated emission of quanta by rotating
black holes resembles that occurring in atomic physics."
In particular, superradiant scattering by black holes is a
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laserlike phenomenon.!® Suppose we have a gas of atoms
possessing two energy levels and we prepare the gas so
that initially most atoms are in the excited state. If elec-
tromagnetic radiation is incident on these atoms transi-
tions from the upper level to the lower one will primarily
be induced resulting in stimulated emission. In this way
the transmitted electromagnetic radiation becomes
amplified. This is nothing but the basic mechanism of a
laser gas. On the other hand, it was established long ago
(see, e.g., De Giorgio and Scully!”) that when the frequen-
cy of a laser crosses the laser threshold a thermodynamic
second-order phase transition takes place. The laser
behaves quite differently above than from below the
threshold. Above it their atoms oscillate in phase at a
single resonant frequency while below the threshold these
atoms emit radiation with random phases like a conven-
tional lamp. In view of this analogy between lasers and
rotating black holes it seems quite reasonable to expect
that a phase transition also takes place when a Kerr black
hole, which may be understood as an excited state of a
Schwarzschild hole, passes from the superradiant scatter-
ing regime to that one dominated by spontaneous thermal
radiation. It is to say, when it passes from J values close
to M? to lower J values.

Some underlying resemblance seems to exist between
the results of this paper and those of equilibrium situa-
tions."2 In the latter ones a phase transition also hap-
pens but in those cases the transition involves the disap-
pearance of the black hole which evaporates away alto-
gether. It occurs when the effective heat capacity of the
whole system, black-hole plus radiation, vanishes as it
leads some second moments to diverge. In the case we
are considering the phase transition does not entail
black-hole disappearance as the event horizon persists.
The divergence of some second moments indicating the
phase transition is due to the vanishing of parameter b
which measures the separation of the hole from the ex-
treme Kerr case.

The reasonableness of our results, is to say that the
satisfactory behavior of the correlations seems to indi-
cate that despite the fact that Landau-Lifshitz theory
represents a crude approximation to this problem rotat-
ing black holes might be viewed as dissipative systems
amenable to a judicious treatment along the lines of that
theory. This in turn corroborates that one quarter of the
area of the event horizon plays also the role of black-hole
entropy in nonequilibrium processes. A parallel study to
that carried out here could be done for electrically
charged black holes by resorting to the equation for the
rate of charge emission.'®

Some time ago, Davies,!® in his analysis of the equilib-
rium between a Kerr black hole and rotating thermal ra-
diation, claimed to have discovered a phase transition at
J =(2v/3—3)/2M2. For that value of J the heat capaci-
ty of the hole, T(3S /3T ), suffers an infinite discontinuity
which, according to Davies, would indicate the oc-
currence of a second-order phase transition. However,
such a claim was refuted by Sokolowski and Mazur®® who
were able to show that, in reality, such a phase transition
is purely geometrical in origin lacking actual physical
meaning inasmuch as the Kerr black-hole behavior does
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not experience any sudden change. In particular, its
internal state remains unaffected. This greatly contrasts
with the nonequilibrium phase transition reported here
since the divergences in several correlations are accom-
panied by important changes in the black-hole demeanor.

Nonequilibrium black-hole fluctuations have also been
studied by Bekenstein.?! His analysis makes no use of
Page’s Eqgs. (11) and (12) nor of the Landau-Lifshitz
method. However, his approach, unlike ours, seems to be
able to infer consequences for black-hole luminosities in
the small-mass regime. Nonetheless, cross correlations
are not calculated and no mention about the possible
thermodynamic phase transition is made.
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(SM8T )= — fIb(1+b)M*—2J7]
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APPENDIX A

Let us consider the blackbody emission of photons
from a sphere of radius R >>T ! freely radiating into
vacuum space. For the dominant frequencies, @ >>R ~1,
T is close to unity for most of the roughly 2R *w? modes
having impact parameter equal to or less than R, and
close to zero for nearly all the other modes. So one has

2 3
. 2 © w w 24
~ — Y dw="T_RT*, Al
(EY=2R* [ e =15 R (A1)
4, w/T
rsE)~2R? [* —W e g aT(E
(BEBE)~2R? [ T dw=4T(E) ,  (A2)

where E denotes the energy emitted per unit of time. The
Landau-Lifshitz theory when applied to this problem
yields (S8ES8E )=2T({E ), which shows good qualitative
agreement.

APPENDIX B
In this appendix we collect the following correlations:

, B1)
[87°M3(1+b)*][b(14+b)M*+2J7] (
s J
(88T )= ——5 , (B2)
4m*MS(1+b)?
(EMBQ) = — 4fb{4(1+b)M?*+3J [167(1+b)M*+J?]} B3)
3ITMI(1+b) [b(1+b)M*+J?] ’
. . gJ
(M) == 1677 .
. . gb
(8M,,8J) =m(4sw+ﬂ) . (BS)
s 2 4 ~p2q | HIEDIM243T f J
SO8T ) =——7"— |b(1+b)M*—2J +J [1— , B6)
¢ = ararer |20 N izeom? | b(soM 1T wm? |8 (
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