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Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, tak-
ing into account one loop prefactors. In particular, we consider the creation of membranes by an
antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model
for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also consid-
ered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The
instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter
backgrounds. We find the contribution of such instantons to the semiclassical partition function,
including the one loop corrections due to small fluctuations around the spherical world sheet. We
suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated
during inflation. This can be seen as an extension of the usual formula, valid in flat space, according
to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair
production, the results reproduce those that can be obtained using second quantization methods,
confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the
gravitational field and the antisymmetric tensor field are assumed external.

PACS number(s): 98.80.Cq, 04.62.+v, 11.27.4+d

I. INTRODUCTION

A wide class of nonperturbative phenomena in field
theory can be understood in terms of quantum tunnel-
ing. A well-known example is the decay of false vacuum:
the materialization of bubbles of true vacuum in first
order phase transitions [1, 2]. Lower dimensional ver-
sions of this process have been used to model the decay
of metastable topological defects, such as domain walls,
and strings [3].

A closely related phenomenon is the neutralization of
the cosmological constant through membrane creation.
In a spacetime of dimension d = N +1, an antisymmetric
tensor field A of rank N induces a cosmological constant.
This is because the corresponding field strength F' = dA
has only one independent component, which has to be
constant in the absence of sources. Just as an electric
field decays through Schwinger pair creation, this cosmo-
logical constant decays through membrane creation if A
is coupled to a membrane, a process first described by
Brown and Teitelboim [4].

Such tunneling processes can happen in flat as well as
in curved spacetime. In addition, in curved spacetime,
new effects can arise. It has been shown that topologi-
cal defects such as circular loops of string, spherical do-
main walls, and monopole-antimonopole pairs can spon-
taneously nucleate during inflation in the early Universe
[5]. These nucleations are somewhat analogous to parti-
cle production by an external gravitational field. Another
consequence of space-time curvature is the possibility of
true vacuum decay [6], through nucleation of false vac-
uum bubbles.

Nucleation processes can be described using the instan-
ton methods [2]. The instantons are classical solutions
of the Euclidean equations of motion, with appropriate
boundary conditions. They are saddle points of the Eu-
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clidean path integral, and as such they provide the basis
for a semiclassical evaluation of the partition function.
The contribution of one instanton to the path integral
has the form

Ce 5% | (1)

where Sg is the Euclidean action of the instanton, and
the prefactor C arises from Gaussian integration over
small fluctuations around the instanton. The main part
of this paper will be devoted to the calculation of the
prefactors C for the class of processes mentioned above.

The instanton methods can be applied in flat and in
curved backgrounds. One limitation of the formalism is,
however, that the spacetime under consideration has to
have real Euclidean sections. Here, we shall concentrate
on de Sitter and Minkowski space. One reason for study-
ing de Sitter space is that it describes the geometry of
spacetime during inflation. A de Sitter space of dimen-
sion d can be defined as a hyperboloid embedded in a
Minkowski space of dimension d + 1:

naBX*XP =H?. (2)

Here X4 are the coordinates in the embedding
Minkowski space (A = 0,...,d), H is the expansion rate
during inflation and n4p is the Minkowski metric. We
use the metric convention (—,+,...,4+). The Euclidean
section of de Sitter space is obtained by analytically con-
tinuing the temporal coordinate X° to purely imaginary
values. With this rotation the hyperboloid (2) becomes a
d-sphere of radius H ! embedded in flat Euclidean space
(see Fig. 1).

In Minkowski space, at zero or at finite temperature,
the nucleation rates can be related to the imaginary part
of the free energy (7, 2], and they are essentially given
by an expression of the form (1). In curved space, it is
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FIG. 1. Euclidean de Sitter space is a d-sphere of radius
H™!. The instantons for membrane creation and spontaneous
nucleation of defects can be seen as spherical world sheets of
dimension N and radius Ry embedded in the d-sphere. For the
case of spontaneous nucleation, the instantons have maximal
radius Ro = H™'. For the case of membrane creation, the
codimension of the world sheet is one, d = N + 1, and the
instanton can be obtained by intersecting the d-sphere with a
hyperplane at a distance wo from the origin. The world sheet
of the membrane divides the d-sphere into two regions, which
we conventionally denote as the inside and the outside of the
membrane. The value of the electric field in the outside region
is taken to be equal to the background electric field before
nucleation Ey. By Gauss’ law, the electric field in the inside
region is Ey — e.

believed that the nucleation rates also have the exponen-
tial dependence (1), although the theory has not been
developed to the same level of rigor than in flat space.
When the size of the instantons is very small compared
with H~!, one expects that the usual flat space formulas
should apply. However, for the spontaneous nucleation
of topological defects and for the nucleation of false vac-
uum bubbles, the size of the instanton is comparable to
the horizon scale H~!. In such cases it is not clear how
one should compute the nucleation rate, and one may
even question whether such tunnelings can occur.

In this paper we take the heuristic point of view that
these nucleations can indeed occur. We suggest a pre-
scription for computing, from the semiclassical partition
function, the equilibrium distribution of created mem-
branes, bubbles and topological defects during inflation.
This can be seen as a generalization of the formulas that
one uses in flat space.

In 1+1 dimensions the process of membrane (or bub-
ble) creation reduces to that of particle creation in an
external field. In that case, the predictions of the in-
stanton method can be compared with the results that
one obtains by using the better understood method of
Bogolubov transformations [8]. As we shall see, the re-
sults of both methods agree (in the limit where they are
valid), even in the case when the size of the instanton is
comparable to the horizon scale. Then, at least in 1+1
dimensions, the instanton prescription seems to be valid,
and there is no reason to believe that it will not be valid
in higher dimensions.

Finally, we should mention that throughout the pa-
per, both the gravitational and the antisymmetric tensor
fields are assumed to be external. The back reaction
of the membrane on the antisymmetric field can be ne-
glected when the charge e of the membrane is very small
compared to the field strength. Also, in order that grav-
itational field of the membrane be negligible, the mass
scale of the membrane should be sufficiently small (see,
e.g., [5] for a comparison of instantons with and with-
out self-gravity). Gravitational back-reaction effects are
interesting in their own right, leading to qualitatively dif-
ferent behavior at large mass scales, but introducing new
complications and problems [9, 10]. These will be left as
subject for future research.

The plan of the paper is the following. In Sec. II we re-
view the instantons for membrane production. These are
essentially spherical Euclidean world sheets of dimension
N and radius Ry (representing the membrane) embedded
in Euclidean de Sitter space, which is itself a sphere of
radius H~! and dimensionality d = N + 1. The radius
R, is determined by the strength of the antisymmetric
field, the charge of the membrane, its surface tension,
and the expansion rate H. Special attention is paid to
the analytic continuation of the instantons to Lorentzian
signature, and the effect of de Sitter transformations on
the resulting solutions. These Lorentzian solutions de-
scribe the motion of the membranes after nucleation.

As mentioned above, to calculate the prefactor C we
need to integrate over small fluctuations around the in-
stanton. In Sec. III the theory of such fluctuations is
reviewed, with an emphasis in the so-called zero modes.
The zero modes are perturbations which do not change
the shape of the instanton, but correspond to infinitesi-
mal translations of the solution as a whole. We make use
of the covariant formalism developed in Refs. [11-13],
according to which the world sheet fluctuations are rep-
resented by a scalar field ¢ “living” in the unperturbed
world sheet, which has the meaning of a normal displace-
ment. In Sec. IV, we briefly review the instantons for the
spontaneous nucleation of topological defects during in-
flation, and the normalization of the corresponding zero
modes.

Section V is devoted to the semiclassical evaluation of
the partition function. The evaluation of the prefactor
is seen to be formally equivalent to the evaluation of the
effective action for a free scalar field in curved spacetime
(this curved spacetime is the world sheet of the instan-
ton). To illustrate the method, the instanton formalism
is used to compute the partition function for a gas of
massive particles at finite temperature, in the semiclas-
sical limit M >> T, where M is the particle’s mass and
T is the temperature.

In Sec. VI we compute nucleation rates in flat space,
recovering known results for pair creation in 1+1 and 3+1
dimensions, and for bubble formation in 2+1 and 3+1
dimensions. The question of renormalization is briefly
discussed in analogy with the renormalization of the ef-
fective action for a scalar field in curved space.

In Sec. VII we discuss the nucleation rates in curved
spacetime. We find the size distribution of created mem-
branes, bubbles and defects during inflation. We also give
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the momentum distribution for the case of pair creation.

Some conclusions are summarized in Sec. VIII. The
computation of functional determinants on the N-sphere,
necessary for the evaluation of the instanton prefactors,
is done in the Appendix.

II. PRODUCTION OF MEMBRANES BY
AN ANTISYMMETRIC TENSOR FIELD

In this section we describe the instantons for the cre-
ation of membranes by an antisymmetric tensor field
and their analytic continuation to Lorentzian signature.
These instantons also represent the formation of true (or
false) vacuum bubbles in the thin wall limit.

A. Membrane coupled to an
antisymmetric tensor field

Consider an antisymmetric tensor field of rank N, A =
Apy...pdz A---AdzP, interacting with the N-dimensional
world sheet of a charged membrane [14] in a spacetime of
dimension d = N + 1 [4]. To keep the discussion simple,
we shall consider the situation in which the field A is
external, so that back reaction of the membrane on the
field is ignored. The action is given by

S=—M/2\/_—_§dN£+e/EA. (3)

The first term is the Nambu action, proportional to the
area of the world sheet ¥, where v is the determinant of
the world sheet metric ,3, and £* (a =0,...,N —1) is a
set of coordinates on ¥ . In (3) M is just a constant. For
N=1 this constant is the particle mass, for N=2 it is the
tension of a string, and for N = 3 it is the surface tension
of a membrane. The second term is the generalization of
the electromagnetic coupling e [ A, dz*.

The field strength F' = dA has only one independent
component, the electric field E:

F =-F¢, (4)
where
€= /|gley..dz” A--- Adz¥ . (5)

Here €,,..., is the antisymmetric symbol, with €y..5 = 1,
and g is the determinant of the spacetime metric g,,. If
we added a kinetic term for A in the action, then the
corresponding Maxwell’s equations would imply [4] that
in the absence of sources the electric field is constant
E =const, whereas the effect of a charged membrane is
to produce a discontinuity AE = e in the electric field
as we go from one side of the membrane to the other.
In other words, the only equation for E is Gauss’ law,
which is an equation of constraint [15], and so A does
not actually have any field degrees of freedom.

The rate of membrane production can be computed
using the instanton methods. For this, it is necessary
to solve the Euclidean equations of motion. The Eu-
clidean action Sg can be found by complexifying the
temporal coordinate z° — —iz%, d¢° — —id¢y and
leaving the field strength F#¥ — F§ ™" unchanged [4].
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This requires that we complexify the antisymmetric field
A — 1Ag. With such rotations the Euclidean action is
found to be (1S — —Sg)

SE:M/);ﬁdNS-}-e/EA. (6)

Unlike the Lorentzian case, in Euclidean space we can
consider closed world sheets, and actually these will be
the ones relevant to membrane production. A closed
world sheet divides spacetime into two regions. Follow-
ing [4] we denote them as the “inside” and the “outside”
of the world sheet (see Fig. 1). Note that in flat space
there is a natural way to assign these labels, but in de
Sitter space (that is on the N-sphere) these denomina-
tions are just conventional. We denote by “outside” the
region in which, upon analytic continuation, the electric
field does not change when the pair is created, maintain-
ing its initial value Ey. By Gauss’ law, the field in the
inside region would be given by E; = Eq — e.

For closed world sheets we can use Stokes’ theorem and

(4) in (6) to find

ngMfﬁdNE—eEo/E, (7)
z v

where we have used a constant external electric field Ej.
The integral in the last term is just the volume of the
spacetime region “inside” the closed world sheet. The
only effect of including back reaction on A would be to
replace Ey by Eg — (e/2) in (7). Notice that (7) is pro-
portional to the area of the world sheet minus a term
proportional to the volume enclosed by the world sheet.
This has exactly the same form as the Euclidean action
for the process of false vacuum decay through bubble nu-
cleation [2], in the limit in which the thickness of the wall
separating the true from the false vacua is much smaller
than the radius of the bubble. Both processes are simi-
lar in many respects [4], the main difference being that
membrane production by an antisymmetric tensor field
can occur repeatedly at any given point in space, whereas
vacuum decay occurs only once.

B. The instantons

The equation of motion following from (7) has been
given, for instance, in Refs. [11, 13]

eEo
K@ — ~ob Kop=——2 | 8
a =7 ab M (8)
where Kg, is the extrinsic curvature of the Euclidean
world sheet,

Koy = —ep, Vont . 9)

Here n" is the normal to the world sheet, and e =
Opx*(£°) are the tangent vectors (our sign convention is
that n* points toward the outside region).

In (1+1)-dimensional flat spacetime, the only solution
of (8) is a circular world line of radius Ry = M/eE,,
(z%)? + (=')? = R2. The evolution of the pair after nu-
cleation is given by the analytic continuation of this tra-
jectory to Minkowski space:
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~(2%)% + (z")* = R . (10)

This hyperbola has two branches. The branch on the
right represents a particle of charge e moving forward in
time. The one on the left represents a particle of charge
e moving backward in time, which is interpreted as an
antiparticle of charge —e moving forward in time. The
particle and antiparticle pair nucleate at time z° = 0,
separated by a distance 2Ry and with zero velocity. After
that, due to the constant force exerted by the field, they
start moving away from each other with constant proper
acceleration Ry .

In higher dimensions there are also N-spherical world
sheets which are extrema of the action. These represent
the nucleation of spherical membranes [4]. Let us con-
sider directly the instantons in de Sitter space of radius
H~!. The flat space instantons can be obtained as the
limiting case H — 0.

With a spherical ansatz for the world sheet the action
(7) takes the form

Sg = MSN(Ro) — eEoVn(0o) - (11)
Here
o’
Sn(Ry) = ———RY 12
N( 0) F(%) 0 ( )

is the surface of a world sheet of radius Ry, 6o is the
polar angle on the d-sphere of radius H~! (see Fig. 1)
such that Ry = H~1sinfp, and Vn(6o) is the volume of
the d-sphere that is enclosed by the world sheet of radius
R()Z

27'r'1y
Vn(6o) = —x—~

r(%9)

Extremizing (11) with respect to 8y we find

tan@ozNH—A—A— , (14)
eEg
which means that the radius of the Euclidean world sheet
is

+1
2
1

6o
H—<N+1>/ snVodo . (13)
1]

NM
(N2H2M? 1 2E2)/2

Substituting (15) back into (11) we find the Euclidean
action for the instantons

Ry =

(15)

Sp = 2nH™? [(MZHZ + e2E2)Y/2 eEO] (N=1),

(16)

Sg =4nH™3 [MH - @ arctan 2HM
2 eEy

| -2,

(17)

9H2 M? + 2¢2E3
(9H2M? + e2E2)1/?

Sg = §'1r2H_4 [ - 26E0]
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An interesting feature of Egs. (16)—(18) is that one finds
instantons of finite action both for e > 0 and e < 0.

For e > 0 the electric field in the inside region de-
creases with respect to the initial value. From (14) this
corresponds to 6y < 3. For e < 0 the electric field in the
inside region actually increases with respect to the initial
value. This corresponds to 6y > 5. In this case the “in-
side” region is actually larger than the “outside” one (see
Fig. 1). Strictly speaking, if the electric field is treated
as external, we should not say that the field increases
or decreases in the inside region, but both cases should
still be distinguished. For instance, in 141 dimensions,
the instanton with e > 0 corresponds to the creation of
a pair with the “screening” orientation. That is, after
nucleation, the + charge is to the right of the inside re-
gion and the — charge is to the left (recall our convention
Ey > 0). On the other hand, for e < 0 the pair has the
“antiscreening” orientation, with the + charge to the left
and the — charge to the right. Similarly membranes can
nucleate with two different orientations depending on the
sign of e.

It might appear that the particles in pairs with the
antiscreening orientation would move toward each other
after nucleation, and eventually annihilate. However, as
we shall see, the distance between both particles actually
grows with time due to the inflationary expansion. We
should also say that the antiscreening instantons are just
as physical as the screening ones. In order to find agree-
ment with the results obtained using Bogolubov transfor-
mations [8], both instantons have to be included. In the
context of vacuum decay, the case e > 0 corresponds
to the ordinary transition from false to true vacuum,
whereas the case e < 0 corresponds to the decay of the
true vacuum through nucleation of false vacuum bubbles

[6].

In the limit when the electric field is switched off, Eg —
0, the instantons become spheres of maximal radius Ry —
H~1, and the action (16)—(18) reduces to

SEZMSN(H_I) . (19)

These are the instantons for the spontaneous nucleation
of defects during inflation [5], which we shall consider in
more detail later on. In general, for finite Ey, the action
for eEy > 0 is always smaller than that for eFy < 0. This
means that it is more probable to nucleate a screening
membrane than an antiscreening one, in agreement with
naive expectations.

In the flat space limit H — 0, the antiscreening pro-
cess is not possible. Only the action for the screening
instanton e > 0 remains finite. For e > 0 and H — 0 we
have

NM
= 20
RO €E0 ( )
and
M
Sg = Sn(Ro) - 21

This expression reproduces the thin wall instanton action
for vacuum decay in flat space [2], where M is the tension
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of the wall and eEy is the difference in energy density
between the false and true vacua.

C. Analytic continuation

The evolution of the membranes after nucleation is
given by the analytic continuation of the instantons back
to Lorentzian signature. We have seen that, for the
d = 1+ 1 case in flat space the instanton is a circle,
and the analytic continuation is a hyperbola representing
the world line of the particle and antiparticle accelerat-
ing away from each other. Note that the hyperbola (10)
is centered at the origin z! = 0, but of course pairs can
nucleate at other locations too. If we act on the instan-
ton with a spacetime translation, the resulting trajectory
(z% — ag)? + (z! — b)2 = R} is also an instanton. Thus
the circle centered at the origin is just one solution out
of a two parameter family. By analytically continuing
z% — iz° and ag — ia, we obtain a two parameter fam-
ily of Lorentzian solutions

—(z°—a)*+(z' -b)?=R2, (22)

which represent pairs nucleating at any spacetime point
z* = (a,b).

Similar steps have to be taken to analytically continue
the instantons describing the creation of membranes in
de Sitter space. The instantons can be represented as
the intersection of the d-sphere with a hyperplane at a
distance

wo = H™ Y cos by

from the origin, where 8y is given by (14), see Fig. 1. In
the representation (2), letting X° = —¢X$, the instanton
is given by

d
(X2)*+) (X))’ =H?,
J=1
(23)
X4 =wy=(H* - R})"?,
where X4 are the coordinates in a “fictitious” embedding
Euclidean space.
Following [5], to analytically continue this solution we
choose the flat Friedmann-Robertson-Walker (FRW) co-

ordinates in de Sitter space, (¢,x). In these, the metric
takes the form

ds? = —dt? + e2Htgx? . (24)

These coordinates are related to X# through the equa-
tions

X% = H 'sinh Ht + %szth,
XdzH_lcosth—%szth , (25)
X = xe¥t,

where the vector X has components X7 (J =1,...,d— 1).
The coordinates (t,x) cover only half of the hyperboloid

().

Taking X¢ = wy in (25), the world sheet of the mem-
brane after nucleation is given by

x? = H %(1 4 e 2Ht) _ 2H lwoe Bt . (26)

This solution represents a spherical membrane which is
expanding in time, with physical radius given by

R? = H %(e*Ht £ 1) — 2H 'weefl* . (27)

Note that sgn(wo)=sgn(e), but R never vanishes for ei-
ther sign of e. In both cases, the radius grows like the
scale factor at late times. For N = 1 the spherical “mem-
brane” reduces to a pair of points, whose world line is
given by z = £(x?)'/2, with x? given by (26). In this
case R is one half of the physical distance between the
particle and antiparticle in the pair.

As with the flat space case discussed above, the solu-
tion (26) belongs to a family of solutions which can be
obtained from a d-parameter family of instantons. This
family is obtained by applying O(d + 1) rotations to the
instanton (23). The group O(d + 1) has d(d + 1)/2 gen-
erators. Of these, d(d — 1)/2 leave the instanton invari-
ant. They correspond to rotations in the space (X%, X).
The remaining d generators correspond to rotations in
the (X9,X2) plane or in any of the (X9 X7) planes
(¢=1,...,d—1). These generators which do not leave the
instanton invariant are the so called zero modes. Their
effect is to rotate the hyperplane X¢ = wy in (23), effec-
tively translating the center of the world sheet to a new
location on the d-sphere.

Upon analytic continuation the parameters corre-
sponding to rotations in the (X%,X7) plane (J # 0)
have to be complexified along with X2 in order for the
resulting solutions to be real. Recall that even in flat
space, the parameter ag had to be complexified to ob-
tain (22). In the present case, rotations turn into boosts
in the (X° X7) plane when the angle ag of rotation is
complexified:

ag =ia . (28)

In this way, the group of rotations O(d + 1) becomes the
group of de Sitter transformations O(d, 1) [which can also
be thought of as the group of Lorentz transformations
in the Minkowski space in which the hyperboloid (2) is
embedded).

Let us consider the case d = 1+ 1 in some detail. The
general world line after nucleation is obtained by taking
X% — iX° in (23) and then applying a boost in the
(X°,X?) plane followed by a rotation in the (X!, X2)
plane:

X" = X%°cosha + X?sinha

X" = —(X°sinha + X2 cosha)sin 3
+X'cosf3, (29)

X"? = (X°sinha + X2 cosha) cos 8 4+ X sin 3.

Here o and (3 are arbitrary parameters.
Eliminating X! and X° from the previous equations
one has
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X"?coshacos B — X" coshasin — X'%sinha = X2.

Taking X ? = wy, dropping primes and using the transfor-
mations (25) we find, after some algebra, that the general
world line after nucleation is given by

R? = e2Ht(z — )2
_ H”‘Z(eZH(t_“) + 1) _ 2H*1w06H(t-to) ) (30)
where
coshasin 8
o = H™1 31
o coshacosf +sinha ’ (31)
to = H 'In(cosh acos B + sinh ) . (32)

Equation (30) represents a pair centered at point xo. The
parameter tog shall be referred to as the time of nucle-
ation. For Ry ~ H~! this is somewhat conventional,
since there is no precise instant of time at which the pair
nucleates [5]. The problem is that the concept of simul-
taneity becomes blurry at distances comparable to the
horizon. Strictly speaking, all we can say is that solu-
tions with different values of t, are time translations of
one another. From a geometric point of view, however,
it is clear that (zo,to) represents the center of symmetry
of the world sheet, and in this sense it is natural to think
of it as the nucleation event.

Note also that there is no absolute value sign in the
logarithm in (32). For wo # 0, the solutions with
coshacos 3 + sina > 0 are qualitatively different from
the ones with cosh a cos B+sinh a < 0. Actually, we shall
see that the latter ones are unphysical. They correspond
to pairs whose “inside” region is centered at spatial in-
finity, so upon nucleation the electric field would change
over an infinite (and disconnected) region of space. To
find agreement with the Bogolubov method these solu-
tions have to be discarded.

The same arguments can be repeated for N > 1. The
general Lorentzian solution is a spherical membrane of
physical radius (27) centered at any spacetime point [5].

III. PERTURBATIONS AND ZERO MODES

To compute the contribution of the instantons to the
partition function we need to study small fluctuations
of the instanton world sheet. For this it is very useful to
adopt the covariant formalism developed in Refs. [11-13,
16], according to which the world sheet perturbations are
represented by a scalar field “living” on ¥, which has the
meaning of a normal displacement.

Denoting by z* the coordinates in de Sitter space, the
instanton configuration will be expressed as z#(£%). Con-
sider now a slight deformation of the world sheet

TH(£%) = z*(€%) + oz (£7) (33)

Since only deformations orthogonal to the world sheet
are physically meaningful, we can set

SH(E%) = M7 2g(e%)n . (34)

Here n* is the normal to the world sheet and ¢(£?%) is the
normal displacement. The factor M~1/2 is inserted so
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that ¢ has the correct dimensions for a scalar field in N
dimensions, [¢] = (mass)(N/2)~1,

Actually, the equation of motion for ¢ can be derived
from kinematical considerations. Since ¢ is a scalar on
the world sheet, it has to satisfy a covariant equation.
The only tensors available in ¥ are the metric 7,5 and
the extrinsic curvature K,;, but because of the symme-
tries of our problem they are proportional to each other
Kap X 7ab (see, e.g., [5]). The only covariant second
order differential equation that we can write down with
such ingredients is

—Ap+M?*¢p=0, (35)

where A is the Laplacian on the spherical world sheet.
By symmetry, M has to be constant.

To determine the value of M we can use “known” so-
lutions of (35): the zero modes. These are field modes
for ¢ which do not correspond to true perturbations of
¥, but to the infinitesimal version of the rotations con-
sidered in the previous section. These solutions can be
found from geometric considerations. Let the instanton
be given by (23). The vector n*, orthogonal to ¥, can be
thought of as a vector in the embedding flat space, with
components n. As such, it is tangent to the d-sphere
of radius H ™! centered at the origin, and orthogonal to
the N-sphere of radius Rg centered at X¢ = wo, X! =0
(I # d). Tt is easy to see that n® = HRy"'(Xwo, —R3).
Here X has components X! (I # d). A small rotation of
angle a in the (X7, X¢) plane induces the change

5X7 = aXx?, §X%=-aX’.

This transforms ¥ into a new world sheet which is also
a solution of the equations of motion. Therefore, taking
X% = wy in the equations above, the field

MT2g(6%) = nh6X 4(€%) = a(HRo) 1 X7(€%)
(36)

has to be a solution of (35), for any J = 0,...,d — 1.
As is well known, the Cartesian components X7 (£2) of
the points on the N-sphere are linear combinations of the
spherical harmonics with L = 1. The spherical harmonics
are eigenfunctions of the Laplacian with the eigenvalue

AL =—-L(L+N-1)R;? (L=0,...,00) ; (37)

so, taking L = 1, we have A¢ = —NREZ(ZS. Comparing
with (35) we have the mass that we were looking for

M?*=_-NR;?. (38)

For eEp — 0 this reduces to M2 = —~NH? [5].

Of course, Egs. (35) and (38) can also be derived from
a perturbative expansion of the action. Introducing (33)
in the action and expanding to second order in ¢, the
action for the perturbed world sheet ¥ can be written as
[11-13)

Sp[E] = Sp[T] + ST (¢,

where S £[X] is the action for the unperturbed instanton
(16)-(18), and
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SPD[g) = / dVEJA(—AG + M3?) | (39)

with A the Laplacian on ¥ and

W phnt) - (%)2 . (40)

Here R is the Ricci scalar on ¥, and R,(“, and g,
are the Ricci tensor and the metric in the embedding
de Sitter space [actually Eqs. (39) and (40) are valid for
pertubations to any world sheet solution, embedded in an
arbitrary curved spacetime of dimension d = N +1]. In
de Sitter space R\Y = H2(d — 1)g,,,, whereas on the N-
spherical world sheet, R(N) = 42» RY) — N(N —1)R;2.
Substituting in (40) and using (15) for Ry, the effective
mass M? simplifies to M2 = —N R, 2, in agreement with
(38).

For later convenience we expand an arbitrary pertur-

bation ¢ in terms of the (real) spherical harmonics on the
N-sphere, quJ:

= ZCLJ¢LJ(§a) . (41)
LJ

2 __ N d
M? =RM — R (g

These satisfy A¢r; = Apdrs, with Ay given by (37) and

[ etavadve=1. (2)
The index J (J =0, ...
given L where

_ L+ N —1)(N + L —2)!
gL = (N - 1)

,9r — 1), labels the degeneracy for

(43)
For L =1 we have, with the normalization (42),

N 1/2
bus = (W;’(;—)) x7(¢), (44)

where Sy is given by (12).

Comparing (36) with (41) and using (44) we find that,
for an infinitesimal rotation of angle da; in the (X7, X™)
plane,

M5y (Ro) ) 1/2

dCy;y=H!
w=4H da’( N+1

(45)
This equation is often referred to as the normalization
of the zero modes, and it will be important in order to
interpret certain divergences in the semiclassical evalua-
tion of the partition function. In the flat space limit, the
square root on the right-hand side of (45) reduces to the

familiar expression .5'115./ 2 2.

IV. NUCLEATION OF TOPOLOGICAL
DEFECTS DURING INFLATION

We saw in Sec. IIB that for H # 0 the action for
the instantons remains finite when the external field is
switched off. This corresponds to the spontaneous nucle-
ation of membranes (or topological defects), due to the
gravitational field alone.

Since the external field Ey is zero, there is no need
to restrict ourselves to codimension 1. Thus monopole
pairs, strings and domain walls can spontaneously nucle-
ate in d-dimensional de Sitter space, with d > N. The
corresponding instantons are found by intersecting the d-
sphere with the necessary number of hyperplanes through
the origin:

d
Z XAXA — H—Z
A=0

(46)
X'=0 (i=N+1,..,n),

which gives N-spheres of radius H~! (here we use the
lower-case Latin index ¢ for later notational convenience).

When studying small perturbations for codimension
larger than 1, we will have more scalar fields “living”
on the world sheet, one for each normal direction. The
generalization of (34) is

d

1/2 Z ¢(i)(£a)n(i)u . (47)

i=N+1

dzh(£%) = M~

Taking the normal vectors to be perpendicular to the
hyperplanes X* = 0, the effective action for ¢(*) is [5,11,
16]

SO =1 Y [a%eyaiOa a0

z-—N+1
(48)

where M? is still given by (38) with Ry = H~!. Ex-
panding in terms of spherical harmonics on the N-sphere,
o) = EC$}¢LJ, the normalization of the zero modes
can be worked out in the same way as before. For
an infinitesimal rotation in the (X7, X?) plane (where
J=0,..,N,i=N+1,...,d) of angle da_(]i) we have
MSy(H-1)\? "

N+1 ) ’ (49)

Rotations of the X/ among themselves or of the X
among themselves leave the instanton invariant, so these
will not correspond to zero modes. Then, the total num-
ber of zero modes is (N + 1)(d — N).

In general, of the (VN + 1)(d — N) zero modes, d will
correspond to spacetime translations and the remaining
N(d—N —1) correspond to rotations in the spatial orien-
tation of the defect [5]. For instance, monopole pairs in
(3+1)-dimensional de Sitter space can nucleate with all
possible orientations of the relative position, and loops of
string can nucleate with all possible orientations of the
plane of the loop.

dCl) = H~'da) (

V. SEMICLASSICAL PARTITION FUNCTION

For systems at finite temperature, the lifetime of a
metastable state is related to the imaginary part of the
free energy (2,7,17] [see Eq. (73) below]. The free energy
is defined as
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F=-81'Inz, (50) Equation (53) is rather formal, because we have not spec-

1. . . ified the measure of integration. However, if all we are

vs.rhere B~ is the temperature and Z is the partition func- interested in are small fluctuations around the instanton
tion solutions, the integration over neighboring world sheets
7 = tr[e_ﬁﬁ] ; (51) amounts to an ordinary path integral over the pertur-

with A the Hamiltonian of the system. The key to the
semiclassical evaluation of Z is to first express it as a path
integral. For instance, for the case of a single nonrela-
tivistic particle in flat space moving in a potential V(z),
one has (see, e.g., Ref. [18] for a nice discussion)

z :/ Da(t)e 5% | (52)
2(0)=2(8)

where the integral is over all paths which are periodic
in Euclidean time with periodicity 8, and Sg is the Eu-
clidean action.

As is well known [19], de Sitter space behaves in some
respects like a system at finite temperature 37! = H/2x.
One difference with flat space is, however, that on the
sphere all directions are compact. Therefore, once in Eu-
clidean action there is no actual distinction between tem-
poral and spatial directions. In our case, the Euclidean
action is given by (7) and the natural generalization of
(52) is

— [ Dx(enese, (53)

where now the integral is taken over all closed world
sheets.

In the semiclassical limit, Z will be dominated by
the stationary points of Sg, and so it will be a sum of
contributions from multi-instanton configurations Z =
Zo+ Zy + ---. Here Zj is the contribution of a configu-
ration with k£ widely separated instantons. This config-
uration has action kSg, where Sg is the action for one
instanton. Hence Z; will have the exponential depen-
dence

Z) x e "SE (54)

To find the preexponential factor, one has to integrate
over small fluctuations around the stationary points.

J

= e H/ 1/2

1 2
|- (T
LJ
where A is given by (37). After Gaussian integration
one obtains

Zy = e~ %= [Jl(uRo) AL %)
L

= =55 (det[(uRo) ~20]) /2, (60)

where gy, is given by (43). Here we have introduced the
dimensionless operator O = RZ(—A + M?), with eigen-
values Ay, = REZ(M? — 1) [see (37)].

Since the eigenvalues are known, the determinant can
be calculated with the {-function regularization method.
In terms of the generalized ¢ function,

- AL)C%J>

bation fields ¢(£%) that we introduced in Sec.
Therefore, we can write

i e hS (/Dqse*sm )k , (55)
k=

where ng) is the second variation of the action, given
n (39). The sum is over multi-instanton configurations.
The path integrals over ¢ give the contribution of fluctu-
ations around each one of the spherical world sheets. The
k! in the denominator can be understood as follows [2].
When integrating over ¢ we are integrating also over the
zero modes. That means that we are integrating over all
possible locations of the instantons in Euclidean space.
Since the instantons are identical, we must divide by k!
to avoid overcounting.
Equation (55) can be rewritten as

III [20].

Z =e% | (56)
where
Zy=e 5 /D¢exp (/ B(A + M2)¢ﬂdN§) :
(57)

This is just the path integral for a free scalar field on a
curved background (the sphere), and can be calculated
using well-known manipulations.

Following [21], the field is expanded in spherical har-
monics ¢ry [see (41)]. The integral over ¢ can then be
expressed in terms of the coefficients Cp ;:

dc
D¢ = H/‘ Lljz (58)

Note that Z; is dimensionless, whereas Cr,; has dimen-
sions of (mass)~!. To render D¢ dimensionless one has
to introduce the parameter y with dimensions of mass.
Using (41) and (42) one has

f
((z) =) g9zAL”, (61)
L
the determinant can be expressed as
det[(Ro) 20] = (uRo) % (@e=¢'(0) (62)

The values of ¢(0) and ¢’(0) for the operator O on the
N-sphere are calculated in the Appendix. For N =
we obtain ((0) = 0 and (’(0) = —21n[2sinh(7RoM)], so
that

_SE

%= sameran V=1 (63)
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Note that, since {(0) = 0, the dependence on the arbi-
trary renormalization scale p disappears.

For world sheets of dimension NV > 1 it turns out that
¢(0) = 0 only for odd N [22]. In general, for even N the
determinant will depend on the renormalization scale u.
As mentioned before, the calculation of Z; is the same as
the calculation of the effective action for a free scalar field
in a curved spacetime of dimension N. The appearance of
a renormalization scale in that context is well known [23,
21] (in particular, this scale is responsible for the so-called
trace anomaly, the quantum mechanical breakdown of
conformal invariance). The difference between even and
odd dimensions can be understood from the fact that in
dimensional regularization the infinities come from the
poles of the gamma function I'[j — (IN/2)], where j is an
integer. As aresult, for odd N the effective action is finite
after dimensional regularization, and the usual In y terms
do not appear. In general, for even N we have to live
with the arbitrary scale p, unless ((0) happens to vanish
accidentally for our particular world sheet geometry and
mass of the scalar field ¢. It is well known that ((0)
can be computed in terms of geometrical invariants. For
N = 2 we have

(0 =4 [ e A [—mz ; (% - f) Rm] ,
(64)

where m? + ¢R(?) is the quantity that we have denoted
as M? [see Eq. (40)]. Notice that both in flat and de
Sitter backgrounds, the term involving the external Ricci
tensor in (40) is constant, and can be included in m2. We
shall come back to the discussion of y and its role in the
context of renormalization in the next section.

Our derivation of the semiclassical partition function
has been rather formal. As a check, let us apply these
ideas to a simple example where the result is known: the
case of free particles at finite temperature in flat space.
This will also illustrate the general procedure for dealing
with the zero modes.

For a massive particle at finite temperature the Eu-
clidean action is

B
Sp = M / [+ 32 (ts)]dts | (65)

where tg is the Euclidean time and x(tg) is the Euclidean
trajectory, which has to be periodic x(tg) = x(tg + 3).
The instantons for this system are straight lines wrap-
ping around the compact temporal dimension x(tg) =
Xo =const. The second variation of the action is found
by substituting x(tg) = xo + M~Y2¢(tg) in (65):

1 /8.
s =3 [ @ras. (66)

The fluctuations ¢ can be thought of as a set of massless
scalar fields in 0+1 dimensions. The zero mode solution
¢ =const amounts to a spatial translation of the original
solution x = x,.

For simplicity we may start by considering only one
spatial dimension transverse to the world line, hence only

one field ¢. Expanding ¢ in “spherical harmonics” on the
one-sphere,

= g-1/2 3 S 2Lt5_']
o=p Co+\/—ﬂsz=:1{CLcos[L 3

+Dy sin [LZW%] } , (67)

we see that the zero mode is in the L = 0 sector. An
infinitesimal translation dz corresponds to

dCo = dzoS3/? (68)

where Sg = M3 is the instanton action.

The perturbation field ¢ is massless, M = 0, and
so the expression (63) diverges because of the van-
ishing denominator. This is to be expected because
the operator O has a zero eigenvalue corresponding
to the translational zero mode. However, noting that
(27r)_1/2deo exp(—M2CZ%/2) = M1, the divergence
at M — 0 can be avoided by leaving the integral over
dCy undone and by excluding the factor M~! from the
determinantal factor. Then we can write

A dC
- —2A1\~1/2,~MB 0
42y = (det'[(uRo) 0D 50 L (69)
where
9 A . det[(uRo)"20
detl[(ﬂRO) 2O]EI&}§0 € [(IJ‘M(;) ]
= (2mRy)? (70)

is the determinant without the zero eigenvalue.
Using (68) and 2rRy = B we have

M 1/2
dz, = —_ M8,
Zl d.’L'() (27I'ﬂ) [

Increasing the number of transverse dimensions to three,
each transverse dimension brings an additional power to
the preexponential factor. Interpreting d3zo as the vol-
ume element and setting T = 3~ we have

MT 3/2
Zl =V (W) C_M/T . (71)

This is the correct expression for the “one-particle” parti-
tion function of an ideal gas with the Maxwell-Boltzmann
distribution [note that the instanton method is only valid
when the exponent in (71) is large, in which case there
is no difference between bosonic and fermionic distribu-
tions]. The grand canonical partition function is ob-
tained, according to (56), by exponentiating this expres-
sion.

Actually, Eq. (56) gives the partition function for the
case of vanishing chemical potential, something that we
have tacitly assumed in our derivation. The effect of a
chemical potential i is to replace Z; in (56) by e##Z,.
The number of particles A in the volume V is then given
by

N =p"1 (8ln_Z) =efPZ,.
o7 BV
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For vanishing /i, we have
N=2. (72)

Therefore Z; is also the equilibrium number of particles.

VI. NUCLEATION RATES IN FLAT SPACE

In flat space and at sufficiently low temperatures, the
decay rate of a metastable state is given by [7]

['=2(Im F|=28""Im Z,| . (73)

(For temperatures 8~ > Ry 1 this formula has to be
modified [7].) As shown in the previous section, the cal-
culation of Z; reduces to the calculation of a functional
determinant. The fact that F' has an imaginary part is
due to the fact that the action S() in (39) has a negative
mode, corresponding to L = 0, so the determinant will
be negative. Upon taking the square root a factor of ¢
will emerge.
The membrane creation rate can be expressed as

dT = L x 267 |det/[(uRo) "20)|7Y/2e ™55 |J|dV dtg

(74)
where the Jacobian is given by
d—1 ~1/2
2 dC
) = L= —dC1 (75)

dVdtg

This equation follows from (73) and (60). As before [see
|

where A is the number of membranes created. Let us
now evaluate this rate for spacetimes of different dimen-
sionalities.

For pair creation in 141 dimensions, from (76), (A7),
and (77), the creation rate per unit length is

r M _s

L~ 27Ro"
Taking Ry = M/eE, we have

T _ EEO ex 7'l'./\/t2
L 2 P eEy |’

(78)

This can be compared with the results of Stone [25], who
computed the vacuum decay rate in the sine-Gordon the-
ory with nondegenerate vacua. His one-loop result was

T CEO _wm?2

—_ = —|In(1 — eE ,

=Sl — e )

where M is the mass of the kink and eFy is the vacuum
energy density gap between neighboring vacua. As ex-
pected, the instanton calculation gives a good approxima-
tion when the Euclidean action is large Sg >> 1. Equa-
tion (78) also gives the rate at which a metastable cosmic

(70)] the prime in the determinant means that the (N +41)
zero modes (which are now in the L = 1 sector) are
omitted, because the integration over dC4 ; is left undone:

C (uRo) K@<
Mz—jl—nNRg (M? + NR2)N+1

det'[(Ro)20] =

(76)

The Jacobian, which is needed to change variables from
dC, s to the Euclidean spacetime volume element dV dtg,
can be read off from (45) [in the limit H — 0 we replace
H 'day by dtg (for J = 0) or by dx (for J = 1,...,d—1)]:

) = (%v%%)

The overall factor of 1/2 on the right-hand side (RHS)
of (74) is explained in Refs. [24, 2]. It arises because the
free energy of an unstable state can only be defined by
analytic continuation from a Hamiltonian in which the
same state is stable. As a result, the contour of integra-
tion over the negative mode dCj has to be deformed into
the complex plane in such a way that only half of the sad-
dle point contributes to ImF. We should note, however,
that in the derivation of (73) given in [7], these consider-
ations are not really relevant; and 2|Im F| is essentially
a convention to denote the RHS of (74).

Integration over Euclidean time tg cancels the factor
of 71, and we are left with the rate per unit volume:

) ’ |det'[(uR0)~2O]|'1/ze‘§E , (77)

f

string will break up by nucleating pairs of monopoles [3].
In that case e Ey should be replaced by the string tension
and M by the mass of the monopoles.

For pair creation in 3+1 dimensions, in addition to
the radial perturbations of mass M? = —R2, we have
perturbations ¢, and ¢, which are transverse to the plane
of the instanton. These behave like massless fields M? =
0. Each field contributes its own determinantal factor,
which for ¢, and ¢, is given by (70). Also, by considering
the normalization of the corresponding zero modes, it is
easy to see that each contributes a factor (R,oj\/i)l/2 to
the Jacobian. With this, Eq. (78) is modified into

2
L _ B vy (79)

vV~ 83

This coincides with the rate of production of charged
bosons in scalar electrodynamics:

= (B0 5 (SOl 1 oety)

n2
(80)

in the limit Sg >> 1. (For a more thorough account



49 NUCLEATION RATES IN FLAT AND CURVED SPACE

of monopole production by a magnetic field, and pair
production in the strong coupling regime see Refs. [26,
27].)

For string creation in 2+1 dimensions, from (77) and

(A9),

N _ MSz(RO) 32 7/3p—3_—8g
—I—/- = (‘6—7r> (/.LR()) RO [ . (81)

Note that, since ((0) # 0, the determinant depends ex-
plicitly on the renormalization scale p [the exponent 7/3
can also be derived from (64)]. Because of the arbitrari-
ness in p we cannot give an absolute estimate of the nucle-
ation rate the way we do for N =1 or N = 3. However,
since p is a constant, we can still predict how the rate
changes when we change the external field Eq, (that is,
when we change Rp). It is seen that the dependence of
the prefactor on Ry is more complicated than what one
would have guessed from dimensional analysis.

So far, by using the (-function method, we have
avoided the question of ultraviolet divergences, since
they are automatically removed by analytic continuation
[23] (see also [28] for a recent discussion, and references
therein). However, we should recall that the functional
determinants contain such divergences, and that these
can be eliminated by suitable counterterms in the ac-
tion. For N = 2, all divergences can be removed by
counterterms of the form [23]

c / P67 +d / ¢ /AR.

The first term is a contribution to the membrane ten-
sion. The second is a topological invariant which does
not contribute to the equations of motion. Note, from
(62) and (64), that a rescaling of the arbitrary parame-
ter u can be reabsorbed in a redefinition of c and d. Then,
we can eliminate the renormalized ¢ by rescaling u, and
the renormalized d by shifting the string tension M. In
Ref. [29] a different approach was followed in which the
product over all eigenvalues was cut off at some physical
scale p. This method also produced the factor (uRo)"/3,
which was referred to as the “universal term” [29, 30].

Finally, for membrane creation in 34+1 dimensions, us-
ing (77) and (A13) we have

r Sa(Ro)\ 2 4R:* .
- (PR T ones . (@

This can be compared with the results of Affleck [30].
He studied the decay rate of false vacuum in the theory
of a scalar field with a symmetry breaking potential and
nondegenerate vacua, in the limit in which the thickness
of the wall separating the true from the false vacuum
is much smaller than the radius of the bubble at nucle-
ation. The first factor on the RHS of (82) is the Jacobian
|J| that comes from the normalization of the zero modes.
The rest of the preexponential factor coincides with what
Affleck calls the “universal terms.” These are due to fluc-
tuations of the world sheet and therefore are independent
of the details of the field theoretic model. The evalua-
ton of quantum corrections to the effective action due
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to finite thickness of the wall is in itself an interesting
subject, and the corrections can be important in realistic
theories (30, 26, 27, 31].

VII. NUCLEATION RATES IN CURVED SPACE

Although the calculation of determinants for the in-
stantons in de Sitter space offers no special problems (we
only need to substitute the appropriate values of Ry in
the expressions found in the Appendix); the definition of
a nucleation rate in de Sitter is a more subtle issue which
has often been eluded in the literature. One possibility
would be to simply use Eq. (77), interpreting dV as the
physical volume element at the time of nucleation dV,

dr = |MdVp , (83)

where || is defined as the RHS of (77).

Although we believe that this expression is correct
(when properly interpreted) it clearly needs further jus-
tification. First of all, the physical volume element, dVp,
is proportional to a power of the scale factor ef?e at
the time of nucleation. If Eq. (77) was derived from a
purely Euclidean calculation, how does the exponential
of a Lorentzian time find its way into the RHS of (83)?
Also, as pointed out in [5], the time of nucleation in de
Sitter space is a somewhat ambiguous concept when the
size of the instantons is comparable to the horizon, and
in principle it is not clear what time one should use in
dvp.

These difficulties prompt us to search for an alterna-
tive way of calculating nucleation rates in de Sitter space,
which does not take (73) as the starting point. Recalling
that de Sitter space behaves in some respects like a ther-
modynamical system, one can try to estimate directly
the equilibrium distribution of membranes. For this one
can use Eq. (72), with A/ the number of membranes and
Z, given by (57). It is clear that

d—1
AN = (det'[(uRo)720])~1/2e=5= [ (2m)~"/2dCrs.
J=0

Using (45), we have

d—1
d.N=)\H_deaJ,
J=0
where
MSy(Ro)\ 7
— N{fto ’ -2AN\—-1/2,-5&
(Trrre) " e furo) 202

(84)

Equation (45) is valid only for infinitesimal rotations, and
in that case [[ day can be identified with the differential
solid angle on the d-sphere, df2, within which the center
of the instanton world sheet is to be found:

dN = AH~4dQ . (85)

One can interpret this equation as the “equilibrium dis-
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tribution of instantons” in Euclidean space.

Of course, an equilibrium distribution of instantons is
not a measurable object. However, it may be conjectured
that the equilibrium distribution of membranes in the
Lorentzian section is given by the analytic continuation
of the previous object to real time. This prescription
is just heuristic, and we do not know how to justify it
further, except by saying that it reduces to (77) in flat
space and that it is quite natural from the mathematical
point of view.

To see how the analytic continuation is done, let
us consider, for simplicity, the (1+1)-dimensional case
(higher dimensional cases are completely analogous).
Then (85) reads AN = AH2cosapdagdf, where ag
and (3 are polar and azimuthal angles on the two-sphere.
Upon analytic continuation ag = ia [see (28)],

dN = |A\|H % cosh ada df.

Note that the factor of 7 from dag cancels the imaginary
factor from the square root of the determinant in A, so
that dA is actually real. Using Egs. (31) and (32), one
can change variables from (a, ) to (z¢,to). The Jacobian
is

d(a,P)

and therefore

a(t
' (to, o) =H‘2coshae_Ht°,

dN = |Aeftodzodt, . (86)

Generalizing to spacetimes of arbitrary dimension we
have

dN = |M|eN o dx,dty, (87)

which is very similar to (83), but now all ambiguities in
dVy have been resolved.

An equation of the same form as the previous one was
given in [5], based on kinematical considerations. How-
ever, the parameter A was left unspecified. Like in [5],
Eq. (87) is a distribution in the space of parameters z,
and to, and it is therefore independent of the time of
observation.

Following [5], we can use (30) to express o in terms of
the physical radius R, and thus find the size distribution
of membranes (or bubbles):

AN |A| R(R®-R%)'/?

= 2t dR
dVohys  H4 [wo +(R2 - Rg)l/z]d

where dVp,s = exp(NHt)dVxo. Notice that the distri-
bution diverges at the lower end R — H~! when wo < 0.
This divergence was interpreted in [5]. For large radii,
one finds the scale invariant distribution
dN  _|A|dR
dVohys  HI R4’

(88)

which depends on the external field £y and membrane
tension only through the coefficient A. The fact that the
size distributions are time independent is easy to under-
stand. As the bubbles are created, they are stretched
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and diluted by the inflationary expansion, giving rise to
a stationary distribution of sizes [5].

The “nucleation rates” |A| for d = 2,3, and 4 can be
read off from the RHS of (78), (81), and (82), respec-
tively, where Ry is given by (15) and Sg by (16)—(18).
This covers the case of codimension one, d = N + 1. For
completeness, we shall also consider the case of strings
and monopole pairs spontaneously nucleating in 3+1 di-
mensions.

For the case of strings, the codimension is 2, and so
there will be two independent perturbation fields ¢(*) and
two determinantal prefactors. From (81) it is clear that
X will contain one factor of M3 and a factor of u!%/3
where p is the renormalization scale. Taking Ry = H ™2,
the rest will be a numerical factor (which can be absorbed
in u), times the appropriate power of H necessary to give
A the dimensions of (mass)*:

1Al = u14/3M3H—11/3e~5'E.

Because of the arbitrary renormalization scale, we cannot
obtain an absolute estimate for |A|, but only its depen-
dence on the expansion rate H. Like in Sec. VI, to obtain
a crude absolute estimate one can set p ~ M2 which
gives

M /3
A ~ (F) H*exp(—4nMH™?) . (89)

For M >> H this can be considerably larger than the
naive dimensional estimate |[A\| ~ H*exp(—Sg) men-
tioned in [5], or even the more sophisticated |A| ~
M3H exp(—Sg). Unfortunately, the existence of an ar-
bitrary renormalization scale leaves us quite uncertain as
to the overall normalization of (89).

Let us now consider the case of pairs spontaneously
nucleating in 3 + 1 dimensions. The codimension is 3
and so there will be 3 perturbation fields ¢(*), each one
of them with mass M? = —H~2 contributing to the
determinantal prefactor. Each field has 2 zero modes [in
the L = 1 sector, see (49)], which makes a total of 6. Four
of them correspond to spacetime translations and two of
them to changes in the orientation of the monopole pair
in three-dimensional space. Thus we have

A = (%)3(%)6—55 d=3+1).  (90)

The factor of (MH/2m)% comes from taking the third
power of the prefactor in (78), with Rg = H~'. The fac-
tor 4mrH 2 is a correction due to the fact that two of the
zero modes represent changes in the angular orientation
of the pair, rather than translations. For each angular
variable, the Jacobian (75) has an extra power of H in
the denominator [see (49)]. Integration over all possible
orientations gives the factor of 4.

For the case of pair creation a “size” distribution such
as (88) is not very useful. Instead, it is more convenient
to find the momentum distribution of particles. Let us
find the conserved momentum as a function of the time of
nucleation tg. In 1+1 de Sitter space, the vector potential
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A, = —H 'Eoefts,,, (91)

represents a constant electric field (note that F,, F*¥ =
2E2). With this, the action for the point particle coupled
to A, reads

S=-M /(t‘ — 2201247 _ %/ema’:dr ,
(92)

where 7 is the proper time and an overdot denotes deriva-
tive with respect to 7. Since the Lagrangian does not
depend on z, the momentum

k= 8—9 = Mie?Ht _ eEgeft,
oz
is conserved. Setting o = 0 in (30) we have

dz  Huwge Hlto+t) _ o—2Ht
dt Hzx

and from &2 — #2e2Ht* = 1, it follows that { =

eflto H|z|(1 — H?w2)~'/2. Therefore,

M Ht
) oson(z 93

where we have taken into account that the particle to the
left of the inside region has charge of opposite sign.
Using this equation in (86), with |A| given by the right-
hand side of (78), we have
N _ s, dk

d_avo—e 2w

In 341 dimensions (without electric field), using (87),
(90), and (93), we have

aN 27 M\ k2dk
d3—z0—exP(_—H )“z;‘ (
Note that the momentum distributions are flat, as ex-
pected on the grounds of scale invariance. The distri-
butions (94) and (95) can be compared with the results
of a calculation based on second quantization [8]. Both
calculations agree in the limit Sg >> 1, not only in the
exponential dependence but also on the prefactor.

At any given time ¢ we only need to integrate up to a
cutoff momentum

d=1+1). (94)

=3+1).  (95)

M
kl ~ Ht
[~ e

since particles with higher value of the coordinate mo-
mentum have not been created yet [see (93)]. Then

1 M 5
N~ ERS T ([@=1+1)
and
3
~ e W (@=3+1),

where n is the number density of particles per unit phys-

ical volume. As noted in [5], for the case of vanish-
ing electric field the distribution of particles contains a
Boltzmann factor exp(—M/T) where T = H/2rm is the
Gibbons-Hawking temperature [19].

VIII. SUMMARY AND CONCLUSIONS

We have computed the nucleation rates for the process
of membrane creation by an antisymmetric tensor field
in a spacetime of dimension d = N + 1, for N =1, 2, and
3.

To this end, we have evaluated the contribution of the
relevant instantons to the semiclassical partition func-
tion. These instantons are N-spherical world sheets of
radius Ry [given by (15)] embedded in a Euclidean de
Sitter background, which is itself a d-sphere of radius
H~!. The flat space instantons are obtained by taking
H — 0. We have discussed the analytic continuation of
the instantons, describing the motion of the membranes
after nucleation. The Lorentzian solutions are spherical
membranes which at late times expand like the scale fac-
tor in the flat inflationary Friedmann-Robertson-Walker
(FRW) model. The effect of de Sitter transformations on
a given solution corresponds to spacetime translations of
the solution.

To evaluate the preexponential factor of the instanton
contribution, it is necessary to study small fluctuations
of the instanton world sheet. We have reviewed the co-
variant theory of such perturbations, according to which
the normal displacement of the world sheet is viewed as
a scalar field ¢ living on the unperturbed world sheet.
We have given a kinematical derivation of the equations
of motion for ¢, based on the fact that the zero modes,
which correspond to infinitesimal translations of the in-
stanton, have to be solutions.

The evaluation of the prefactor is seen to be equiv-
alent to the calculation of the effective action for a
free scalar field (the field ¢ mentioned above) living in
a curved background (the N-sphere). The functional
determinants that arise from Gaussian integration can
be explicitly calculated using (-function regularization.
This method automatically removes all ultraviolet diver-
gences. In the case N = 2, an arbitrary renormalization
scale p appears in the final result. Rescalings of u are
seen to be equivalent to a finite renormalization of the
membrane tension and of a new term which has to be
added to the action. This new term is just the Einstein-
Hilbert action on the world sheet, which for N = 2 is
a topological invariant and hence does not contribute to
the equations of motion.

In flat space, the nucleation rates are obtained using
the standard formula which relates them to the imagi-
nary part of the free energy [see (73)]. We have recovered
known results for the production of kinks in 1+ 1 dimen-
sions, charged pairs in 3 + 1 dimensions and “bubble”
formation in 2+1 and 3+1 dimensions. Our results ap-
ply only to the case when the membranes are infinitely
thin, having no internal structure. The effect of finite
thickness of the membrane can be important in realistic
field theories [30, 26, 27, 31].

In de Sitter space, there is no standard procedure for
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the calculation of nucleation rates. We have introduced
a heuristic prescription to obtain the distribution of nu-
cleated objects during inflation, following ideas related
to the treatment of this problem in Ref. [5]. This distri-
bution is obtained from the one instanton contribution
to the partition function. The parameters corresponding
to the zero mode rotations, which form a subgroup of
O(d + 1), have to be analytically continued along with
the instanton so that they correspond to a subgroup of
the de Sitter group O(d,1). With these manipulations,
the one instanton contribution to the partition function
lends itself to interpretation as a distribution of mem-
branes in a space of parameters. The parameters can be
chosen to be the place and time of nucleation. In flat
space this prescription reduces to the standard formula
(77) for the calculation of nucleation rates. From the
parameter distribution one can easily find the size distri-
bution of membranes in the inflationary universe, which
turns out to be stationary and nearly scale invariant [see
(83)].

For the case of pair creation, we have given the distri-
bution in terms of the conserved coordinate momentum
k. This distribution turns out to be independent of k (as
expected on the grounds of scale invariance) with an up-
per cutoff k2, =~ M2+ (eE%/H?), where e is the charge

phys
of the particle, Ey is the electric field, and kppys = e 2Htk

is the physical momentum. This cutoff corresponds to
the momentum of the particle at the time of nucleation
to (the physical momentum is subsequently redshifted).
For the case of pairs, the results can be compared with
those obtained by using the formalism of second quanti-
zation [8]. Both methods agree, not only in the exponen-
tial dependence but also in the prefactors. This is true
even when the size of the instantons is comparable to the
horizon size.

To summarize, our results seem to indicate that the
spontaneous nucleation of defects during inflation and
the decay of false or true vacuum through nucleation of
true or false vacuum bubbles is well described by the
instanton formalism, at least in 1+1 dimensions. Also,
that our prescription for finding the equilibrium distribu-
tion of nucleated objects from the semiclassical partition
function is correct. Although we have not attempted to
give a rigorous justification to this prescription, we hope
that with the examination of further examples a clearer
picture will emerge. After this paper was completed, we
became aware of Refs. [33], dealing with the semiclas-
sical approximation to the path integral. The methods
developed in these references may be useful to provide
a rigorous foundation to our prescription. Work along
these lines is currently under way.

Finally, some comments on negative modes. Coleman
has shown [34] that in flat space and at zero temperature
an instanton describing the decay of a metastable state
has one and only one negative mode. As noted in [5],
for the instantons describing the spontaneous nucleation
of defects during inflation the number of negative modes
is equal to the codimension of the world sheet. It was
shown in [5] that this is not in direct contradiction with
Coleman’s theorem, which does not apply in de Sitter
space (or in flat space at finite temperature). Still, the
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question remains of whether the wrong number of neg-
ative modes renders the instanton “unphysical.” From
the analysis of the previous section we think that this is
not the case. Using the method of Bogolubov transfor-
mations, one finds [8] that particles are produced in de
Sitter space for arbitrary codimensionality of the world
line, and that the results are always in agreement with
the instanton results. Also, a nice feature of the pre-
scription given in Sec. VII is that the distribution dA/
is always real regardless of the codimension, because the
extra factors of ¢ coming from additional negative modes
are compensated by imaginary factors coming from the
complexification of additional boost zero modes.
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APPENDIX

In this appendix we evaluate the functional deter-
minants for a free scalar field ¢ on the N-sphere, for
N = 1,2, and 3. For the evaluation of {(z) we follow the
method of Ref. [35], where the case N = 4 was studied.
For an alternative derivation, see [36], for N odd, and
[37], for N even. For N = 1, see [38].

1. Determinant on the circle

This is the case N = 1. From (37) and (60) the eigen-
values are A;, = L2+ M?2R: =12+ 2% (L =0,..., ).
For L # 0 the degeneracy is 2 and for L =0 it is 1, so

oo 2 —2z
) — .2z —2z z
((z)== +;2L (1+f5> :

Expanding the binomial term in powers of z/L,
k

1_2 —z oo _1:2
(m) = ()

k=0

(A1)

we have

((z) =72 4 z 2c,z2k(—1)kCr(22 + 2k) , (A2)
k=0

where (r(z) = > 7., L7 is the usual Riemann’s zeta
function. Of the coefficients c; all we need to know is
that

co =1, (k>1). (A3)
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Then it is clear that, since (g(0) = —1/2, ((0) =
2¢r(0) = 0.
To evaluate (62) we also need ¢’'(0). Expanding (A2)

in powers of z we have

((z) = —2zIn(27z)

+ f: 2%:102"(3(%)(—1)’“ + 0(z%),
k=1

where we have used (r(0) = -1/2,{3(0) =
—(1/2)In(27). As a result,
¢'(0) = — In(2rz)® + Z(—1)‘=%x2k4ﬁ,(zk) . (A4)
k=1

Now we need a technique to sum the series.
For convenience one introduces the notation (r(z,a) =
oL 7% so that (r(z,1) = (gr(z). Using [35]
(d"\I'(a)/da") = (— )" *1n!¢r(n + 1,a), one easily ar-
rives at the expressions

Z(R(2n+1,a)z2":—%[\Il(a—i-z)—r\ll(a—z)] (A5)
and
ZCR (2n, @) 2[\I'(a+ z)—¥(a—2z)], (A6)

where U(z) = dInI'(2)/dz is the digamma function.
Now for the evaluation of (A4). Differentiating with
respect to z and using (A6) we have

d

L0 = -2 12w +iz) - ¥(1 )]

Upon integration we obtain the result
¢'(0) = —21In(2sinh7z) . (A7)

In the last step, the constant of integration is chosen
so that (A7) agrees with (A4) when z — 0. Restoring
z = M Ry we obtain the desired result (63).

2. Determinant on the two-sphere

In this case the eigenvalues are given by
Ap=L(L+1)+ M?R}
E(L-{— +u)(L+ 3 —u),

where u? = (1/4) — M2RZ%. The degeneracies are given
by gr = 2L + 1. It follows that

n

n=1/2

(=) =

where n runs over the positive half integers. Expand-
ing the binomial term in powers of (u/n) one has {(z) =
Ym0 2cku?*¢p(22+2k—1,1/2). Expanding in the neigh-
borhood of z = 0 we obtain

((2) = & + v+ 2[4¢R'(-1,3) + Q] + O(z%) ,
(A8)

where
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2u 2k
Q= Z ~1,1) - 2420 (1) .
Here we have used (g(2z+1,a) = (2z)"1 — ¥(a) + O(z2),
and the relation (g(—1,a) = —(1/2)a?+(1/2)a—(1/12).

It is clear that ¢(0) = (1/12) + 2.
To evaluate ¢’(0) we need to find Q. Using (A5) one
easily arrives at
aQ _
du
After a bit of algebra,

Q=—ir—3In(3 —u)+C+0(2u-23),

—2u[¥(L +u)+ (L —u)]

where C is a numerical constant of order unity. The last
term, indicated as O(2u — 3) vanishes when u — 3/2, i.e.,
when M2 — —2R;?, the case we are interested in. Using
(76) one finds, in the limit u — 3/2,

(det/[(uRo)~20)) /% =

= (uRo)"*R5® . (A9)

Some numerical constants have been absorbed in a redef-
inition of the renormalization scale p.

3. Determinant on the three-sphere
In this case, from (37) and (60), with y?> = 1 — RZM?,

Ar = (L + 1)%2 — y2. The degeneracy is given by g; =
(L+1)% so0

(A10)

where ¢ are given by (A3). Expanding around z = 0 we
have ¢(z) = Cr(—2) + z[2¢r(~2) + Q] + O(2?), where

It is clear that ¢(0) = (r(—2) = 0.

Also, ¢'(0) = 2¢g'(—2) + Q. To evaluate Q we first
differentiate (A11) and then use (A6) to find, after some
algebra,

?rrd

r(2k —2) . (A11)

aQ . d . .
@y y dy[ln(s1n7ry)].
Integrating,

Ty

Q = —y*In(sinmy) + %/ zln(sinz)dzr , (Al2)

0
where the constant of integration is chosen so that Q(y =
0) = 0, in order to agree with (A11).

The integral in (A12) cannot be done analytically for
arbitrary my. However, this is not a problem, since
we want to calculate the determinant only for M2 —
—3R; 2, which implies y = 2. Then the second term in
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(A12) is a definite integral which can be found in the
tables [32], and we have

Q(y) = —y?In(sinmy) — 41n2 + 3im
+0(y —2) .
Putting it all together we have

(A13)

¢'(0) = 2¢R'(—-2) —4In2 + 3in
—y? In(sinmy) + O(y — 2) ,

where y = (1 — Ry 2M?)Y/2.
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