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Pair production by an electric field in (141)-dimensional de Sitter space
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We use the method of Bogolubov transformations to compute the rate of pair production by

an electric field in (1+1)-dimensional de Sitter space.

The results are in agreement with those

obtained previously using the instanton methods. This is true even when the size of the instanton

is comparable to the size of the de Sitter horizon.
PACS number(s): 98.80.Cq, 04.62.+v, 11.27.4+d

In a previous paper [1] we used the instanton methods
to compute the rate at which membranes can be cre-
ated by an antisymmetric tensor field [2], both in flat
and in de Sitter space. As a particular case, we con-
sidered the creation of particle-antiparticle pairs by an
electric field. It should be noted that in flat space there
is a well-defined prescription for obtaining the creation
rates from the imaginary part of the free energy den-
sity [3]. However, in curved space it is not so clear how
to interpret the instanton contributions to the partition
function. In [1] we took the heuristic point of view that
the rates are given by a simple generalization of the usual
flat space formula, which seemed natural from a math-
ematical point of view. The purpose of this paper is to
approach the problem using the method of second quan-
tization. Since this cannot be done for membranes, we
shall content ourselves with considering the case of scalar
particles.

The Klein-Gordon equation for a charged scalar field
¢ coupled to an external electromagnetic field 4, is

—g"(V, —ied,)(V, —ied,)p + M?*p =0, (1)
where M is the mass of the particles. As we shall see
below, for a constant electric field in 1+1 de Sitter space
this equation can be solved in terms of special functions.
Then the problem of particle creation is amenable for
calculation using Bogoliubov transformations (see, e.g.,
[4]). Note that, unlike the case of higher dimensions,
where the electric fields lines are diluted by the expansion
of the Universe, in 1+1 dimensions a constant electric
field is a solution of the homogeneous Maxwell equations.

To apply the method of Bogoliubov transformations it
is necessary to specify an “in” state and an “out” vac-
uum. The “in” state |in) is the physical quantum state
of our system, fixed by initial conditions. The “out” vac-
uum |0)oy is a different quantum state in the Hilbert
space, whose choice amounts to a definition of particles
at late times. Whether or not one can unambiguously
specify |0)out depends on whether or not it is physically
reasonable to define particles at late times. One way to
guarantee a reasonable definition is to switch off the grav-
itational and the electric fields at late times (although
this may not be necessary).
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To illustrate the procedure, consider the case of van-
ishing electric field first [5]. The metric is given by
ds?® = —dt® + eftdz?. In terms of the conformal time
n=—H 'e H and with ¢ = px(n)e**=, Eq. (1) reads

MZ
or + (k2 + H2n2) ok =0, (2)
where a prime denotes a derivative with respect to 7.
This equation is symmetric in &, and following the usual
convention, we take k > 0 (for Ey = 0, the results for k <
0 are the same). Equation (2) has the general solution

oetn) = (1) [AHD (k) + BHD ()], 3

where

1 M2 1/2
ve (Z" F)

and H,(,l) are the Hankel functions. For the “in” state, we
shall take the Bunch-Davies vacuum [5]. This is charac-
terized by positive frequency modes of the form (3) with
A, =1,B, =0

ol () = (g)l/z H (kn). (4)

The choice of this vacuum as the physical “in” state can
be motivated from many different points of view, and it
is a clear favorite in studies of inflation. In the open co-
ordinate system that we are using, this is the only truly
de Sitter invariant vacuum [6]. The two-point function
in this state coincides with the Euclidean two-point func-
tion [7], which has the important property of having the
Hadamard form (roughly speaking, this means that it has
a similar ultraviolet behavior as the two-point function
in flat space). Also, it is believed that if the Universe nu-
cleated from “nothing” into a de Sitter phase, then this
is the quantum state that the fields would be in after
nucleation [8, 9].

To define the “out” vacuum it is convenient to write
down the equation for the scalar field in terms of the
cosmological time ¢:
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. . 2 k2 shall not be considering this limit.
O+ Hpp + | M* + wr =0,

a2(t) A purist would object that we cannot define particles
unless the expansion of the Universe is switched off. Con-
sider then a Friedmann-Robertson-Walker (FRW) model
in which the expansion rate H = a/a is time dependent.
Then 1, satisfies the equation

'HZ k2

. 1 -
Vi + M2~T+a—2—5% Y = 0. (10)

where an overdot denotes d/dt and a(t) = exp(Ht). In-
troducing ¢ = a~'/24;, we have
. H2 k2
¢k+[M2—_‘+—§]¢k=0- (6)
4 a
Let us take M > H and define t; as the time when
the physical wavelength a(t)k~?! is equal to the particle’s
Compton wavelength:

After a sufficiently long period of inflation, a o exp(Ht),
the expansion is adiabatically switched off starting at
time t,, in such a way that H < M?2, until a(t) reaches

ke Hte — M. (7)  a constant value. The space-time is Minkowskian in the
asymptotic future. It is clear from (10) that if ¢, > t4, the

For t > t, the k?a~? term is negligible compared to M?. mixing between positive and negative frequency modes
Then we will have approximate solutions of the form will be negligible during the period in which the expan-

sion is being switched off. This means that for modes
such that t, > t; the number of particles that is calcu-
lated using the definition (9) for positive and negative

Ok a-—l/2 [Cke—iwt + Dke+iwt]

where frequency modes is the same as the number of particles
, 1., 1/2 that would be found in the “out” Minkowski region.
w = (M - ZH ) (8) The “in” positive frequency mode can be expressed as
a linear combination of the “out” positive and negative
Since M > H, the exponentials oscillate very fast com- frequency modes
pared to the rate at which a!/2 changes, and so we will +) N (
have an approximate definition of positive and negative Pink = ak‘met),k + 5k</’0;3,k- (11)

frequency “out” modes. For t > ti, )
The coeflicients a and () are the so-called Bogoliubov

<pf:§t)k o a~ /2 Fiwt (9) coefficients. Using the asymptotic expression for the
' Hankel functions at late cosmological times t — oo (i.e.,
This definition is not very natural for M? <« H2, so we n — 0),

J

1/2 4 kn|\* , Enl\ ™ '
etkm) = - (1) L [('—2’1') ra-vjet 2 - (I50) Tra e 2| 4 ogen),
(N
and the relation in Eq. (13). Using M2 > H? we have
2 2 _ 3 2
|al® = 16" = 1, (12) N PR (_27rM) Kk s
- d3x (2m)3 H 2m2
one readily finds
(15)
|Bk|? = [exp(2rwH ™) —1]71, (13) )
Comparing (14) and (15) with the corresponding distri-
where w is given by (8). This equation was found, e.g.,  butions found in Ref. [1] we find complete agreement, not
in Refs. [10, 11] (see also references therein), using a only in the exponential behavior, but also in the preex-
different coordinate system. ponential factor. Note that the exponential in the dis-
The number density of particles per unit coordinate tributions has the form of a Boltzmann factor with the
volume is then Gibbons-Hawking temperature T = H/2x [12].
N Let us now consider the case of nonvanishing constant

dk Commpg-t dk
1ﬁk|2%ze2”"” = (d=1+1),

on electric field in 1+1 dimensions. In conformal time, the

Klein-Gordon equation with vector potential given by
Al‘ = H_onﬂ_l(Suz

dr
(14)
where we have used M > H. The same calculation can

be done in d space-time dimensions. The only difference reads (note that V,A* = 0 and F,, F*¥ = 2E})
in the final result is that

e?E2
< (d _ 1)2 1/2 H2772§0k" + (’Csznz — 2€E0kn + M2 + ~f1—20<> P = 0.
w=[M? - —Hz)

1 (16)
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This is the Whittaker equation, having the general solu-
tion

P = AkWA_U(ZikTI) + BkW__,\,a.(—Z'I:k'I)), (17)
where W), are the Whittaker functions, with A =
+ieEoH 2% and

L (1 M eER
4 H? H4

(18)

At early times (n & —o0), Eq. (16) is very similar to (2),
and both reduce to

ok + k) = 0.

Using the asymptotic expression for H ,Sz)(kn) at large 7,
the “in” positive frequency mode in the Bunch-Davies
vacuum has the form vf:i ~ (4mk)~1/? exp(—ikn), and
so it is positive frequency with respect to the conformal
time. With the electric field switched on, we would like
to choose a positive frequency mode which has similar
behavior at 7 & —oo. Noting that

Wi, (2ikn) ~ e~k (ikn)A ,

and since Wy (2) = W_, 5(—2), it is clear that we have
to take By = 0 in (17):

o) = (4mk)"V2W, , (2ikn), (19)

where the normalization is due to the usual Wronskian
condition.

It is quite straightforward to show that the state de-
fined by the modes (19) is a Hadamard vacuum. For
this, one simply writes the two point function as a sum

W,\’U(Z)

W_,\,a(——z)
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over the modes (19). Similarly, one can write the Bunch-
Davies two-point function as a sum over the modes (4).
Because of the similarity in the ultraviolet behavior of
both sets of modes, it is easy to show that the difference
between both two-point functions is finite in the limit
of coincident points, which simply means that both two-
point functions have the same singularity structure.

To define particles at late times (7 — 0) we observe
that, in this limit, Eqgs. (2) and (16) are again very sim-
ilar, so the procedure that worked there will work here
too. In terms of cosmological time ¢t and the variable
P = al/chk we have

ezEg_fli l_c_z__2eEOE Vi =0
H? 4 a? H a k=

i + (M2 +
(20)

Let us denote by t;, the time at which the physical wave-
length of the mode is equal to the effective Compton
wavelength

_ e2E2 1/2
ke Htx = (M2 + ——H;’) (21)
Provided that
2B H2\?
wE(Mz-{-—I{TO—T) > H, (22)

it is clear that for ¢ > t; we can define particles in the
mode k, using as positive and negative frequency modes
the solutions

<p(():§t),,c ox a~1/2eFiwt (23)
As before, these definitions are not meaningful for w <«

H, and we shall not consider this limit.
Let us introduce the new Whittaker function M) ,:

- ind | —in(o+3)
M -(z) =T (20 +1)e e Tlo+ A+ 1)

For small z = 2ikn we have [13]
My, = 22+[1+ 0(2)],

and so this behaves like ‘P(()It),k in (23) provided that we
take o = +i|o| (recall that o is pure imaginary). Then,
using (19), the Bogolubov coefficients can be read off
directly from (24). Using (12), Wy ,(2) = W_»0(—2),
and the relation

|I‘(% +iy)|? = 7r(cosh7ry)_1.,

we have
coshm|o — A
e?mlol cosh|o + A| — cosh7|o — A|’

1Be|? =

(25)

T(e-A+1)

] <—g7r <argz < %w) . (24)

For |o £ A| > 1,
|ﬂk|2 ~ e——21r|¢7+A|, (26)

where

lo £ A = H? [(M2H2 +e2E2)Y2 & eEo]

+O(H?*w™?).

As mentioned above, in keeping with standard notation
we have taken k > 0. The result for k£ < 0 is obtained by
changing the sign of e in the final expression, since the
differential equation only depends on the relative sign of
k and e. Therefore
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2

|Bx|? ~ exp (’Hz [(MZHZ + e2E2)/2 4 eEo])

(k > 0),
2
7 ~ exp (5 [(MPH? + 2ED? — eko) )

(k <0). (27)

The fact that we have nonvanishing 3 coefficients both for
positive and negative k corresponds to the fact that [1],
due to the gravitational field, the pairs can nucleate both
with screening or antiscreening orientation with respect
to the applied field. For both signs of k, the exponent in
the previous equations can be identified as the Euclidean
action Sg of the corresponding instanton, given in [1]:

Iﬁk!z ~ e~—SE .

Therefore
dN 2 dk 5 dk
—_= — e °F—, 28
7n = Bl o e o (28)

Again, this distribution agrees with the result found in

(1].

Apart from the agreement of (28) and (15) with the
corresponding instanton results, the time t; at which the
definition of particle starts being meaningful [see (21)],
is the same as the time of nucleation tg in the instanton
formalism, a suggestive coincidence. Note that the dis-
tributions are flat k (as expected on the grounds of scale
invariance). However, as noted in [1], there is an upper
cutoff at k2, -~ M? + (eE}/H?), where e is the charge
of the particle, Ej is the electric field, and kpnys = e #tk
is the physical momentum. This cutoff corresponds to
the momentum of the particle at the time of nucleation
to (the physical momentum is subsequently redshifted).
It is then straightforward to show [1] that the number
density of particles per unit physical length

1 eE2\/? -

~— (M2 2 exp(—SEg),

"o ( + H? p(=5%)

is constant in time. This is because, although particles
are constantly being produced, they are also being di-
luted by the expansion.
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