
h
lker
ks

d

s

PHYSICAL REVIEW D 15 OCTOBER 1996VOLUME 54, NUMBER 8

0556-28
Bubble fluctuations in V<1 inflation
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In the context of the open inflationary universe, we calculate the amplitude of quantum fluctuations whic
deform the bubble shape. These give rise to scalar field fluctuations in the open Friedmann-Robertson-Wa
universe which is contained inside the bubble. One can transform to a new gauge in which matter loo
perfectly smooth, and then the perturbations behave as tensor modes~gravitational waves of very long wave-
length!. For (12V)!1, whereV is the density parameter, the microwave temperature anisotropies produce
by these modes are of orderdT/T;H(R0m l )

21/2(12V) l /2. Here,H is the expansion rate during inflation,
R0 is the intrinsic radius of the bubble at the time of nucleation,m is the bubble wall tension, andl labels the
different multipoles (l.1). The gravitational back reaction of the bubble has been ignored. In this approxi-
mation,GmR0!1, and the new effect can be much larger than the one due to ordinary gravitational wave
generated during inflation~unless, of course,V gets too close to 1, in which case the new effect disappears!.
@S0556-2821~96!00918-6#
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I. INTRODUCTION

The possibility of an open inflationary universe, in whic
the cosmological density parameterV is less than 1, has
been intensively studied in recent years@1–7#. According to
this model, the universe is initially in a de Sitter phas
driven by the potential energy of a scalar field trapped in
false vacuums f ~see Fig. 1!. A bubble of the new vacuum
s t nucleates and its interior undergoes a second period
inflation. The homogeneity of our universe is then attribut
to the O~3,1! symmetry of the bubble: the interior of the ligh
cone from the nucleation event is isometric to an op
Friedmann-Robertson-Walker~FRW! universe@8#. The sec-
ond period of inflation has to be sufficiently long to genera
the observed entropy, but if it is too long thenV is driven
exponentially close to 1. As a result, to obtainV,1 the
parameters of the scalar field potential have to be fine tun
to some extent@1,3#. Nevertheless, if observations ultimatel
determine thatV is smaller than one, then open inflation ma
be regarded as a ‘‘natural’’ scenario@2#.

The cosmic microwave background anisotropies produc
by a nearly massless scalar field in open inflation were a
lyzed in@3#. It was shown that a ‘‘supercurvature’’ mode@4#,
which is not normalizable on the open FRW spacelike s
tions, would give a significant contribution to the low mult
poles ifV,0.1 ~see also@6,9#!. A more complete study of
cosmological perturbations in open inflation requires t
quantization of fields in the presence of a bubble. Quant
field theory in a bubble background was pioneered in@10#
and further developped in@5–7#. As noted in@2#, large con-
tributions to microwave perturbations may result from th
quantum fluctuations of the bubble wall itself@11#. The pur-
pose of this paper is to calculate the amplitude of such fl
tuations and their effect on the microwave background.

In Sec. II we briefly describe the bubble geometry. In Se
III we calculate the amplitude of wall fluctuations fo
bubbles nucleated during inflation. This extends previo
work for bubbles in flat space@11# ~see also@7#!. In Sec. IV
we show that the effect of wall perturbations can be d
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scribed in terms of long wavelength tensor modes~analogous
to gravitational waves!, and we evaluate their impact on the
microwave sky. Finally, in Sec. V we summarize our con
clusions and compare them with recent related work@2,12#.

II. BUBBLE GEOMETRY

Before calculating the amplitude of bubble wall perturba
tions, it will be useful to summarize some of the features o
the spacetime containing the bubble. A conformal diagram
given in Fig. 2. The nucleation event is marked asN. The
bubble wall is represented by the timelike hypersurfacew
~solid line!. In region I, which is the interior of the light cone
from N, the line element is given by@8#

ds252dt21a2~ t !dVH3, ~1!

wheredVH3 is the metric on the unit spacelike hyperboloid

FIG. 1. A scalar field potentialV(s) which leads to open infla-
tion. The universe is initially in the false vacuum phases f when a
bubble ofs t nucleates. Then the scalar field slowly rolls down the
hill until it reachess rh , at which point the universe reheats. We
separate the potential into a large partL/8pG and a small part with
the barrier feature, since we want to neglect the self-gravity of th
bubble. The top of the barrier is denoted bysm .
4764 © 1996 The American Physical Society
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54 4765BUBBLE FLUCTUATIONS IN V,1 INFLATION
dVH35dr21sinh2r ~du21sin2udw2!. ~2!

Equation~1! represents the geometry of an open FRW un
verse. This open universe inflates up to the time when t
scalar field reaches the values5s rh ~see Fig. 1!, and then
reheats. After the usual radiation and matter dominated e
it eventually becomes our observable universe. At all stag
of expansion, the scale factor obeys the Friedmann equa

~12V!ȧ251, ~3!

whereV is the ratio of the matter densityrm to the critical
densityrc5(3/8pG)(ȧ/a)2.

The chart~1! covers only the interior of the light cone
fromN. One can cover the outside by analytically continuin
the coordinatest and r to the complex plane. By taking
t5 i t andr5r1 i (p/2), wheret andr are real, we have@8#

ds251dt21R2~t!dVdS. ~4!

HereR(t)52 ia( i t), and

dVdS52dr21cosh2r~du21sin2udw2! ~5!

is the metric of a~211!-dimensional de Sitter space of uni
‘‘Hubble length.’’ Note thatt is now a spacelike coordinate
playing the role of a proper radial distance fromN. In this
way, the spacetime outside the light cone fromN is foliated
into ~211!-dimensional de Sitter leaves with constantt. In
each one of these leavesr plays the role of time.

The scalar fields obeys the field equation

2hs1
dV~s!

ds
50, ~6!

whereh is the covariant d’Alembertian andV(s) is a po-
tential of the form depicted in Fig. 1. The bubble configura
tion is a solution of Eq.~6! of the form

FIG. 2. A conformal diagram of spacetime in the presence o
bubble. The nucleation event is marked asN. Region I corresponds
to an open FRW which inflates and eventually becomes our obse
able universe. The trajectory of the domain wall is marked asw. It
lies in region II, which is covered by the chart~4!. The spacelike
hypersurfacer50, connectingN with the antipodal pointA, is a
good Cauchy surface for the entire spacetime. Clearly, no su
surfaces exist in region I. Region III, the interior of the light con
from A, is uninteresting for our purposes.
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s5s0~t!.

It has the shape of a kink that interpolates between the fals
vacuums f and the true ones t @8#. The locus where the field
is at the top of the barrier,s(tw)5sm , can be identified
with the trajectory of the domain wall~solid timelike line in
Fig. 2!. There, we have actually drawn an eternal bubble. A
real bubble would nucleate at a given moment of time, say
r50, with intrinsic radius

R05R~tw!. ~7!

The intrinsic radius would subsequently expand withr as
R0coshr. The scalar field in region I can be found by ana-
lytically continuing fromt back tot @8#.

Both the bubble configuration and the corresponding
spacetime metric enjoy an O~3,1! symmetry inherited from
the spherical symmetry of the instanton describing the tun
neling @8#. This is the group of isometries of the de Sitter
leaves in region II and of the open hyperboloids in region I.
For the scalar field, the symmetry simply means thats0 only
depends ont ~or t).

III. SCALAR FIELD FLUCTUATIONS

In this section we calculate the amplitude of small fluc-
tuations for a bubble that nucleates during inflation. This
extends previous results for bubbles in flat space@11,10,7#.
We shall work in the approximation in which the gravita-
tional back reaction of the bubble can be ignored. In practice
this means that up to the time of reheating, the energy den
sity of matter can be expressed as a large cosmological con
stant partL/8pG, plus a small partdrm which contains the
barrier feature of the potential energy~see Fig. 1! plus the
gradient and kinetic contributions of the scalar field. Then
we take the limit

8pGdrm!L. ~8!

The case when gravitational back reaction is included will be
discussed elsewhere.

In our approximation, the geometry during inflation is that
of de Sitter space. In region II the line element is given by
Eq. ~4!, with

R~t!5H21sin~Ht! ~0,t,pH21!, ~9!

whereH5(L/3)1/2 is the de Sitter Hubble rate. Note that
R vanishes both att50 ~the nucleation eventN) and at
t5pH21 ~the antipodal pointA). To study the wall fluctua-
tions, we expand the scalar field as

s~t,xi !5s0~t!1f~t,xi !, ~10!

wherexi are the coordinates on the~211!-dimensional de
Sitter leaves~5!. The small perturbationf is promoted to a
quantum operatorf̂, which is then expanded into a sum over
modes times the usual creation and anihilation operators a
f̂5(fklmaklm1 H.c. As noted in@6#, the spacelike surface
r50, connecting the nucleation eventN with its antipodal
A, is a good Cauchy surface for the entire spacetime~see Fig.
2!. Therefore we shall normalize our modes on that hyper-
surface. Some of them, the so-called supercurvature mode
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4766 54JAUME GARRIGA
@3,4#, may not be normalizable on the open hyperboloids
the Friedmann-Robertson-Walker chart~2!, but this is just
because the hyperboloids are not good Cauchy surfaces
we shall see, the perturbations of the bubble wall are sup
curvature.

The equation of motion for small perturbations is

@2h1m2~s0!#fklm50, ~11!

wherem2(s0)5d2V/ds2us5s0(t)
. With the ansatz

fklm5R21~t!Fk~t!Yklm~xi !, ~12!

this separates into

@2 ~3!h1k2#Yklm~xi !, ~13!

and

2
d2Fk

dh2 1R2@m2~s0!22H2#Fk5~k221!Fk . ~14!

Here (3)h stands for the covariant d’Alembertian on th
~211!-dimensional de Sitter leaves~5!, k2 is a separation
constant, and the conformal ‘‘radial’’ coordinateh is defined
through the relationR(t)dh[dt,

coshh[
1

sin~Ht!
5

1

HR~t!
. ~15!

Equations~13! and ~14! have a familiar interpretation
@10,11#. The first one tells us thatYk behave as scalar fields
of mass k2 living in a ~211!-dimensional unit de Sitter
space. The massesk2 are determined as the eigenvalues
Eq. ~14!, which is simply a one-dimensional Schro¨dinger
equation with effective potential

Ueff5R2@m2~s0!22H2#. ~16!

Note also that the modesfklm must obey the Klein-Gordon
normalization condition

2 i E fklm]m

↔
fk8 l 8m8
* dSm5dkk8d l l 8dmm8, ~17!

whereS is the hypersurfacer50. If we choose theYklm to
be Klein-Gordon normalized on the (211)-dimensional de
Sitter leaves, then Eq.~17! reduces to

E
2`

1`

FkFk8dh5dkk8, ~18!

which is the usual normalization condition for eigenfunctio
of the Schro¨dinger equation.

The effective potential~16! is schematically represente
in Fig. 3. The height ofUeff at h50 @which corresponds to
R(t)5H21# is basically given by (mf

2H222), wheremf is
the scalar field mass in the false vacuum. The narrow well
the left corresponds to the location of the bubble wall, whe
m2(s) is negative and large in absolute value. The equat
of motion ~6! for s0 written in terms of the conformal coor-
dinateh is
of
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s082

dV~s0!

ds
R250,

where primes denote derivatives with respect toh. Taking
one more derivative with respect toh it is straightforward to
show that

F23[Ns08~h! ~19!

is a solution of Eq.~14! with eigenvaluek2523. This is
analogous to what happens for bubbles in flat space@11#.
Note thats085Rṡ0, where a dot indicates derivative with
respect to the ‘‘radial’’ variablet. But in order for the in-
stanton to be smooth, we must haveṡ0→0 both at the nucle-
ation event (h→2`) and at the antipodal point(h→1`)
@8#. From Eq. ~15!, R(h) also vanishes exponentially at
h→6`. Therefore it is clear that the mode~19! is normal-
izable and that its eigenvaluek2523 belongs to the spec-
trum. In addition, sinces0 is a monotonous function inter-
polating between true and false vacuum, the mode~19! has
no nodes and is the eigenstate of lowest eigenvalue. A
though all higher modes will contribute to density perturba
tions and microwave temperature distorsions@6#, for the re-
mainder of this paper we shall focus on the lowest mod
This mode has a clear geometrical interpretation as deform
tions of the bubble shape, which is the effect we are conce
trating on. To linear order we can write the perturbed field a

s0~t!1f23~t,xi !'s0„t1NY23lm~xi !….

Therefore, like in the case of flat space@11#, the perturba-
tions associated withk2523 correspond to deformations
that shift the position of the bubble wall in axi dependent
way, without altering the ‘‘radial’’ profile functions0(t).

The normalization constant in Eq.~19! will eventually
determine the magnitude of the effect. In order to calculate
we use Eq.~18!, in the form

N2E R~t!ṡ0
2dt51. ~20!

The integral can be numerically evaluated for any particula
type of bubble, but its meaning is best illustrated in the thi
wall case. In this caseṡ0 is very small except in a small
region of size comparable to the width of the narrow well in
Fig. 3, which is centered around the location of the wall, a

FIG. 3. The effective potentialUeff as a function of conformal
radiush. The narrow well athw corresponds to the location of the
bubble wall, where the effective massm2(s) is negative.
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54 4767BUBBLE FLUCTUATIONS IN V,1 INFLATION
t5tw . The factorR(tw) can be pulled out of the integra
and what remains is simply the wall tensionm. Therefore,

N25
1

R0m
.

Here, as in Eq.~7!, R05R(tw) is the radius of the bubble a
the moment of nucleation. In the general case, the deno
nator in the right-hand side is just shorthand for the integ
in Eq. ~20!.

In the thin wall case, the explicit expression for the radi
of the bubble at nucleation is given by~see, e.g.,@15#!

R05
3m

~9m2H21e2!1/2
, ~21!

wheree is the jump in energy density between the true a
the false vacuum. As mentioned before, we have neglec
the bubble’s gravitational back reaction. For the approxim
tion to be valid, we need on one hand thatGe!L @see Eq.
~8!#. On the other hand, we are neglecting the gravity of t
wall. As is well known, the gravitational field of a domai
wall is characterized by a Rindler-type horizon distance@16#

l w[
1

8pGm
. ~22!

We need this distance to be much larger than the radius
the bubble at nucleation

GmR0!1. ~23!

So far we have found the modes describing quantum fl
tuations outside the light cone fromN:

f23lm5
ṡ0~t!

~R0m!1/2
Y23lm~xi !. ~24!

The modesY23lm are those of a scalar field of tachyoni
~mass! 25k2523 @11# living in a ~211!-dimensional de Sit-
ter space~5!. If we want to preserve the O~3,1! symmetry of
the bubble solution then we need to choose the Bun
Davies vacuum in the lower-dimensional timeliket5const
sections. The corresponding normalized modes are@11#

Y23lm52S pG~ l21!

4G~ l13! D
1/2 1

coshr
Rl
2~ tanhr!Ylm~u,w!,

~25!

where Ylm are the spherical harmonics an
Rn

l(x)[Pn
l(x)2(2i /p)Qn

l(x). HereP andQ are the Leg-
endre functions on the cut21,x,1.

In order to assess the effect of these fluctuations in
Universe today, we must first analytically continue to th
interior of the light cone,

f23lm5
ṡ~ t !

~R0m!1/2
Y23lm~r ,u,w!, ~26!

where now the analytically continued harmonics can be c
after some algebra@13#, into the form
l
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Y23lm5S G~31 l !G~ l21!

2 D 1/2P3/2
2 l21/2~coshr !

Asinhr
Ylm~u,w!.

~27!

Here we have used Eqs.~8.738.2! and~8.732.5! of Ref. @13#.
The Legendre functions can be given in terms of elementa
functions. Forl50,1, and 2 they are

P3/2
21/25~2psinhr !21/2sinh~2r !, ~28!

P3/2
23/25

1

G~5/2! S sinhr2 D 3/2,
P3/2

25/25S 2p D 1/2 1

8~sinhr !5/2
@ 1
12sinh~4r !2 2

3 sinh~2r !1r #,

and for higherl they can be obtained through the well known
recurrence relations.

Several comments should be made. First of all, forl50
and l51 the normalization factor in Eq.~27! diverges. This
is not a problem, since these modes do not contribute
observables. They simply correspond to spacetime trans
tions of the nucleation event@11#. Second, the modes are rea
on the open chart, and hence their Klein-Gordon norm va
ishes there. This is not a problem either, because the op
hyperboloids are not good Cauchy surfaces@6#. Finally, the
analytic continuation of Eq.~13! with k2523 tells us that

DY23lm513Y23lm ,

and so the eigenvalue of the Laplacian has the ‘‘wrong
sign. Not surprisingly, the modes diverge exponentially fo
large r . As we shall see, this divergence does not appear
the physical effect.

IV. FROM SCALAR TO TENSOR MODES

The wall fluctuations induce scalar field fluctuations o
the form ~26! in the open FRW universe. These will locally
advance or retard by an amount

dt5
f23lm

ṡ
5~R0m!21/2Y23lm~r ,u,w! ~29!

the time at which the universe reheats. Deformations of t
reheating surface generically induce density fluctuations a
perturbations in the microwave background. It turns out th
the particular modes~26! do not cause density perturbations
@12#, but, as we shall see, they do affect the microwave bac
ground just like gravitational waves do.

A nice framework to study deformations of the constan
scalar field surfaces is that of Ref.@14#. One defines a
‘‘fluid’’ velocity

um[
s,m

~2s,ms,m!1/2
~30!

orthogonal to the constant field surfaces, and projects its c
variant derivativeum;n onto these surfaces:

umun[~dm
r 1umu

r!ur;n .
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One can separateumun into a symmetric and an antisymme
ric part. The antisymmetric part is called vorticity and it ca
be shown that it vanishes for a four vector of the form~30!.
As a consequence, the projected covariant derivativeumun
coincides with the intrinsic covariant derivative on the su
facess5const@14#. The symmetric tensorKmn5umun is also
known as the extrinsic curvature. Its traceKm

m[Q is the
expansion, and in the unperturbed FRWQ53(ȧ/a). A
straightforward calculation shows that under perturbations
the form~26! the expansion does not change@11#. The trace-
less part of Kmn is the shear tensorsmn5Kmn

2(Q/3)(gmn1umun). To linear order in perturbations and i
the coordinate system~1!, we have

um5~21,Y, i !, ~31!

where Y stands for Yklm(x
i), with xi5(r ,u,w). Then

s005s0i50 and

s i j5Yu i j2Yg i j . ~32!

Hereg i j is the metric on the unit spacelike hyerboloid~2!. In
addition to being traceless, the shear tensor fork2523 is
transverses i j u

j50, just like a tensor mode@7#.
This immediately suggests going to a new coordinate s

tem which straightens out the constant scalar field surfac
while still remaining in a synchronous gauge

t85t1dt, xi 85xi2g i j
ȧ

a
dt u j .

Heredt is given by Eq.~29!. In this new gauges5s(t8) is
constant ont85const surfaces, but the metric reads

ds252dt21a2~g i j1hi j !dx
idxj .

Here

hi j522Es i j , ~33!

and, during inflation,

E5
ȧ

a
~R0m!21/2. ~34!

Once in the new transverse and traceless gauge, the m
distribution looks perfectly smooth. It is now legitimate t
evolve hi j with the usual equation for tensor perturbation
through the entire cosmic evolution@17#

ḧi j13
ȧ

a
ḣi j2

1

a2
~Dhi j12hi j !50. ~35!

Note that althoughDY513Y, the corresponding tenso
mode, derived from Eqs.~33! and ~32! satisfies

Dhi j523hi j ,

with the ‘‘correct’’ sign for the Laplacian eigenvalue. Fo
l50 andl51, it can be readily checked thats i j50, and so
the tensor mode only exists forl.1, as expected of gravita
tional waves@18#.
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Introducing Eq.~33! in Eq. ~35! we can calculate the evo-
lution of the amplitudeE throughout the different stages of
expansion. In terms of conformal time (dh5a21dt), we
have

E912
a8

a
E81E50.

During inflation E is given by Eq.~34! and it tends to a
constant:

E5
H

AR0m
,

whereH5(L/3)1/2. In the radiation eraV51 to very high
accuracy, and it can be checked that as a resultE stays con-
stant.

During the matter eraa;t2/3;h2, so

E91
4

h
E81E50.

This can be solved in terms of Bessel functions. For sma
h

E5
H

AR0m
S 12

h2

8
1••• D .

From Eq.~3! we haveh52(12V)1/2, and in what follows
we shall concentrate in the case (12V)!1. ~The general
case can be treated numerically along the lines of Ref
@4,3#.!

The amplitude of microwave fluctuations due tohi j is
given by the well known Sachs-Wolfe formula

dT

T
5
1

2E0
r lsdhrr
dh

dr,

wherer ls'2(12V)1/2 is the comoving distance to the sur-
face of last scattering andhrr8 is evaluated ath5r ls2r . Since
r ls is assumed to be small, we can use the asymptotic form
the Legendre functions in Eqs.~27! to obtain

Y23lm'G l2
2~ l11!r lYlm ,

whereG l5@G(31 l )G( l21)#1/2/G( l13/2) Using this form
in Eqs.~32! and ~33! one immediately obtains

dT

T
'

H

AR0m

G l

8
~12V! l /2, ~36!

which for low spatial curvature is dominated by the quadru
pole l52.

It should be noted that the tensor modehi j is pure gauge
during inflation ~as it should since we are neglecting the
bubble’s back reaction.! However, the overall configuration
taking the scalar field into account is not. Thes5const sur-
faces have nonvanishing shear. As we evolvehi j past the
reheating surface, it gradually ceases to be pure gauge, as
be checked by expressing the evolved mode in the longit
dinal gauge@17#. Also, it can be checked that although the
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54 4769BUBBLE FLUCTUATIONS IN V,1 INFLATION
scalar modesY23lm diverge exponentially at large distance
the corresponding tensor componentshrr entering the Sachs-
Wolfe formula do not.

V. CONCLUSIONS

We have calculated the amplitude of small fluctuations
the shape of bubbles nucleated during inflation. In the cas
thin bubbles, the result takes the simple form~26!. Since the
de Sitter modesY23lm grow like the intrinsic radius of the
bubbler5R0coshr (rR0 is the proper time coordinate on th
bubble wall!, the relative amplitude of proper local radia
wall displacements is given by

dr

r
;~R0

3m!21/2,

whereR0 is the radius of the bubble at the time of nucle
ation, given by Eq.~7!, andm is the wall tension. This co-
incides by order of magnitude with the estimate of Ref.@2# in
the case when the size of the bubbles at the time of nu
ation is much smaller than the de Sitter horizonH21.

The propagation of wall perturbations to the interior
the light cone gives rise to shear deformations of the rehe
ing surface, and consequently, of the surface of last scat
ing. The simplest way to study the cosmological evolution
such perturbations is to use a synchronous coordinate sys
in which matter looks perfectly smooth. Somewhat surpr
ingly, the metric fluctuations in this gauge are transverse a
traceless, just like usual gravitational waves. This transmu
tion of scalar into tensorlike modes is only possible becau
of the peculiar~supercurvature! eigenvalue of the Laplacian
for the scalar modes corresponding to wall fluctuation
k2523 @7#.

For (V21)!1, the anisotropies of the microwave sk
produced by these waves are given in Eq.~36!. The domi-
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nant effect is in the quadrupole, with

dT

T
;

H

AR0m
~12V!.

Within the limits of validity of our approximation@see Eq.
~23!#, and unlessV is too close to 1, this can be much large
than the distortion produced by usual gravitational wave
produced during inflation, which is of orderG1/2H ~however,
see@18,19#!. The case with strongly gravitating domain walls
may yield a different result@12#, and is currently under in-
vestigation.

Finally, we would like to compare our results with those
of Ref. @12#. There the amplitude of a homogeneous fluctua
tion is estimated by considering the small changeDS in the
instanton action when the radius of the bubble is changed
an amountda. This is used to estimate the ‘‘typical devia-
tion’’ da as the one that corresponds toDS;1. However,
the physical meaning of that prescription is unclear, becau
the radius of the bubble cannot have a homogeneous fluct
tion. In flat space, this would violate energy conservatio
and a similar argument can be applied in curved space. T
only homogeneous radial fluctuations allowed in the th
wall limit are time translations of the nucleation point.
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