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Bubble fluctuations in Q<1 inflation
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In the context of the open inflationary universe, we calculate the amplitude of quantum fluctuations which
deform the bubble shape. These give rise to scalar field fluctuations in the open Friedmann-Robertson-Walker
universe which is contained inside the bubble. One can transform to a new gauge in which matter looks
perfectly smooth, and then the perturbations behave as tensor ifgpdesational waves of very long wave-
length. For (1-Q)<1, where() is the density parameter, the microwave temperature anisotropies produced
by these modes are of ordéf/T~H(Ryul) "Y3(1—Q)"2. Here,H is the expansion rate during inflation,

Ry is the intrinsic radius of the bubble at the time of nucleatjaris the bubble wall tension, arldabels the
different multipoles (>1). The gravitational back reaction of the bubble has been ignored. In this approxi-
mation, GuRy<1, and the new effect can be much larger than the one due to ordinary gravitational waves
generated during inflatiofunless, of course) gets too close to 1, in which case the new effect disapjpears
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[. INTRODUCTION scribed in terms of long wavelength tensor mo@eEsalogous
to gravitational waves and we evaluate their impact on the
The possibility of an open inflationary universe, in which microwave sky. Finally, in Sec. V we summarize our con-
the cosmological density parametfr is less than 1, has clusions and compare them with recent related wari 2.
been intensively studied in recent yefts-7]. According to

this model, the universe is initially in a de Sitter phase, Il. BUBBLE GEOMETRY
driven by the potential energy of a scalar field trapped in a ) )
false vacuunu; (see Fig. 1 A bubble of the new vacuum Before calculating the amplitude of bubble wall perturba-

o, nucleates and its interior undergoes a second period dfons. it will be useful to summarize some of the features of
inflation. The homogeneity of our universe is then attributedh® Spacetime containing the bubble. A conformal diagram is
to the O3,1) symmetry of the bubble: the interior of the light 9iven in Fig. 2. The nucleation event is markedNsThe
cone from the nucleation event is isometric to an operPubble wall is represented by the timelike hypersurface
Friedmann-Robertson-WalkéFRW) universe[8]. The sec- (solid line). In region |, which is the interior of the light cone
ond period of inflation has to be sufficiently long to generateffom N, the line element is given bj8]

the observed entropy, but if it is too long th€his driven "

exponentially close to 1. As a result, to obtdin<1 the ds?=—dt*+a*(t)dQys, )
parameters of the scalar field potential have to be fine tunned ) ) ) ) )
to some extenfil,3]. Nevertheless, if observations ultimately WheredQys is the metric on the unit spacelike hyperboloid
determine thaf) is smaller than one, then open inflation may

be regarded as a “natural” scenalfi).

The cosmic microwave background anisotropies produced )
by a nearly massless scalar field in open inflation were ana- V(o)
lyzed in[3]. It was shown that a “supercurvature” mof#],
which is not normalizable on the open FRW spacelike sec-
tions, would give a significant contribution to the low multi-
poles if 2<0.1 (see alsd6,9]). A more complete study of
cosmological perturbations in open inflation requires the
guantization of fields in the presence of a bubble. Quantum A/8nG
field theory in a bubble background was pioneered i@
and further developped i5—7]. As noted in[2], large con-
tributions to microwave perturbations may result from the
guantum fluctuations of the bubble wall its¢ifl]. The pur-
pose of this paper is to calculate the amplitude of such fluc- £ 1. A scalar field potentia¥(c) which leads to open infla-
tuations and their effect on the microwave background. tjon. The universe is initially in the false vacuum phagewhen a

In Sec. Il we briefly describe the bubble geometry. In Secpybple ofe, nucleates. Then the scalar field slowly rolis down the
Il we calculate the amplitude of wall fluctuations for il until it reachesa,,, at which point the universe reheats. We
bubbles nucleated during inflation. This extends previouseparate the potential into a large p&af8=G and a small part with
work for bubbles in flat spacil1] (see alsd7]). In Sec. IV the barrier feature, since we want to neglect the self-gravity of the
we show that the effect of wall perturbations can be de-bubble. The top of the barrier is denoted dy, .

>
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o=0y(7).

It has the shape of a kink that interpolates between the false
vacuumo; and the true one, [8]. The locus where the field
is at the top of the barrierg(7,)=0,,, can be identified
with the trajectory of the domain wafbolid timelike line in

A Fig. 2). There, we have actually drawn an eternal bubble. A
real bubble would nucleate at a given moment of time, say
p=0, with intrinsic radius

I

p=0

Ro=R(7y). Y

The intrinsic radius would subsequently expand withas
Rqcostp. The scalar field in region | can be found by ana-
ytically continuing from back tot [8].

. Lo |
FIG. 2. A conformal diagram of spacetime in the presence of a . . .
bubble. The nucleation event is markedMasRegion | corresponds Both the bubble configuration and the corresponding

to an open FRW which inflates and eventually becomes our obser\ﬁpacet'me metric enjoy an(Gll)_ symmetry '”he.“Fed from
able universe. The trajectory of the domain wall is markedvalt the. spherical 'sy.mmetry of the |rjstant0n describing thg tun-
lies in region II, which is covered by the char). The spacelike Neling [8]. This is the group of isometries of the de Sitter
hypersurfacep=0, connecting\ with the antipodal poin®\, is a  leaves in region Il and of the open .hyperboIOIds in region I.
good Cauchy surface for the entire spacetime. Clearly, no sucfOr the scalar field, the symmetry simply means thaonly
surfaces exist in region I. Region IIl, the interior of the light cone depends omr (or t).
from A, is uninteresting for our purposes.

IIl. SCALAR FIELD FLUCTUATIONS

— 2 H 2 H 2
dQps=dr®+sinffr (d6°+sirde). ) In this section we calculate the amplitude of small fluc-

. . tuations for a bubble that nucleates during inflation. This
Equation(1) represents the geometry of an open FRW uni- i .
quation(1) rep 9 y P ur xtends previous results for bubbles in flat spgkE10,7.

verse. This open universe inflates up to the time when th : ST . .
e shall work in the approximation in which the gravita-

scalar field reaches the value= o, (see Fig. 1 and then jonal back reaction of the bubble can be ignored. In practice,

reheats. After the usual radiation and matter dominated eraﬁf that up to the i ¢ reheating. th d
it eventually becomes our observable universe. At all stage 1IS means that up to the ime of reheating, the energy den-
ty of matter can be expressed as a large cosmological con-

of expansion, the scale factor obeys the Friedmann equati Tlant partA/8=G, plus a small parbp., which contains the
(1-0)a2=1, 3) barrier feature of the potential energsee Fig. 1 plus the
gradient and kinetic contributions of the scalar field. Then
where() is the ratio of the matter densify,, to the critical ~We take the limit
densityp.=(3/8wG)(a/a)?.
The chart(1) covers only the interior of the light cone

from N. One can cover the outside by analytically continuingThe case when gravitational back reaction is included will be
the coordinated andr to the complex plane. By taking (iscussed elsewhere.

87Gdp<A. (®)

t=irandr=p+i(m/2), wherer andp are real, we havgg] In our approximation, the geometry during inflation is that
ds2= +dr2+ R3(7)dOys. @ Céfq(.j(ellfl\t\t;iat;space. In region Il the line element is given by

HereR(7)=—ia(i7), and R(r)=H lsinH7) (0<r<wH™ Y, 9)
dQgs= —dp®+cosip(d6?+sirfode?) (5)  whereH=(A/3)"2 is the de Sitter Hubble rate. Note that

) ) ) ) ) _ R vanishes both at=0 (the nucleation evenN) and at
is the metric of a2+1)-dimensional de Sitter space of unit ,_ j4-1 (the antipodal poind\). To study the wall fluctua-
“Hubble length.” Note thatr is now a spacelike coordinate, tjons, we expand the scalar field as

playing the role of a proper radial distance frdsn In this

way, the spacetime outside the light cone frbhis foliated (1, x)=0o(7)+ ¢(7,x"), (10
into (2+1)-dimensional de Sitter leaves with constantin ,
each one of these |eav¢sp|ays the role of time. wherex' are the coordinates on th@+1)-dimensional de
The scalar fieldr obeys the field equation Sitter leaveg5). The small perturbatiorb is promoted to a
quantum operatog, which is then expanded into a sum over
dV(o) modes times the usual creation and anihilation operators as
~Hot do =0, ©®) ¢=2 dymam+ H.C. As noted in6], the spacelike surface

p=0, connecting the nucleation eveNtwith its antipodal
where is the covariant d’Alembertian and(o) is a po- A, is a good Cauchy surface for the entire spacefsee Fig.
tential of the form depicted in Fig. 1. The bubble configura-2). Therefore we shall normalize our modes on that hyper-
tion is a solution of Eq(6) of the form surface. Some of them, the so-called supercurvature modes
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[3,4], may not be normalizable on the open hyperboloids of

the Friedmann-Robertson-Walker ch&2), but this is just b Uets

because the hyperboloids are not good Cauchy surfaces. As

we shall see, the perturbations of the bubble wall are super-

curvature. Ty T—

The equation of motion for small perturbations is i / >
n
[~0+m(00)]$m=0, (12) W
wherem?(ao) =d?V/do?|, (. With the ansatz
brim= Ril(T)Fk( T)Yklm(xi)a (12 FIG. 3. The effective potentidl .+ as a function of conformal

radius». The narrow well atyp,, corresponds to the location of the

this separates into bubble wall, where the effective mas¥® (o) is negative.

[~ @0+ K2]Ygm(X), (13 . LR, dV(ao)
" oot 230’0— do R?=0,

and

2F where primes denote derivatives with respectjtoTaking

— 2k +Rm2(ay)—2H2]F, = (k*—1)F,. (14)  One more derivative with respect ipit is straightforward to
dn show that
®) i ; i )

Here '*’O0 stands for the covariant d’Alembertian on the F_s=Na}(7) (19)

(2+1)-dimensional de Sitter leave$), k? is a separation
constant, and the_ conformal “radial” coordinateis defined 5 5 solution of Eq.(14) with eigenvaluek?= —3. This is
through the relatioR(7)d7=dr, analogous to what happens for bubbles in flat sgdda.
1 1 Note thato(=Ray, where a dot indicates derivative with
coshy= — = ) (15) respect to the “radial” variabler. But in order for the in-
sin(H7)  HR(7) stanton to be smooth, we must hawg— 0 both at the nucle-
ation event p— —o0) and at the antipodal point(— + «)
[8]. From Eg. (15, R(#) also vanishes exponentially at
n— * o, Therefore it is clear that the mod#&9) is normal-
izable and that its eigenvalu€= —3 belongs to the spec-
trum. In addition, sincery is a monotonous function inter-
polating between true and false vacuum, the md® has
no nodes and is the eigenstate of lowest eigenvalue. Al-
though all higher modes will contribute to density perturba-
tions and microwave temperature distorsip@ for the re-
mainder of this paper we shall focus on the lowest mode.
This mode has a clear geometrical interpretation as deforma-
tions of the bubble shape, which is the effect we are concen-
trating on. To linear order we can write the perturbed field as

Equations(13) and (14) have a familiar interpretation
[10,11]. The first one tells us that, behave as scalar fields
of massk? living in a (2+1)-dimensional unit de Sitter
space. The masség are determined as the eigenvalues of
Eg. (14), which is simply a one-dimensional Schinger
equation with effective potential

Uei=R?[m?(07g) — 2H7]. (16)

Note also that the modasy,,, must obey the Klein-Gordon
normalization condition

_if Brimd w Bty A= Sir Ot Sy » (17) A .
oo(7)+ p_3(7,X")=0o(T+NY_gn(X")).

where, is the hypersurface=0. If we choose theY,,, to

be Klein-Gordon normalized on the ¢21)-dimensional de Therefore, like in the case of flat spafkl], the perturba-

Sitter leaves, then Eq17) reduces to tions associated wittk’=—3 correspond to deformations
that shift the position of the bubble wall inya dependent
f”’F Eodn=28 (18) way, without altering the “radial” profile functiorry(7).
KK S Ok The normalization constant in Eq19) will eventually

determine the magnitude of the effect. In order to calculate it
which is the usual normalization condition for eigenfunctionswe use Eq(18), in the form
of the Schrdinger equation.

The effective potentia(16) is schematically represented
in Fig. 3. The height o) at =0 [which corresponds to
R(7)=H '] is basically given by fiZH2—2), wherem is
the scalar field mass in the false vacuum. The narrow well oiThe integral can be numerically evaluated for any particular
the left corresponds to the location of the bubble wall, wheraype of bubble, but its meaning is best illustrated in the thin
m?(o) is negative and large in absolute value. The equatiowall case. In this case is very small except in a small
of motion (6) for o written in terms of the conformal coor- region of size comparable to the width of the narrow well in
dinate 7 is Fig. 3, which is centered around the location of the wall, at

N2 f R(7)oidr=1. (20)
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T=r1,. The factorR(r,) can be pulled out of the integral

and what remains is simply the wall tensign Therefore Y (F(SH)F(I _1)) 1/2P3_/|2_1/2(005h) Yim(6,0)
! ; —3Im™ - im0, @).
2 Vsinhr
1 27

NZ=——.
Rou Here we have used Eg@&.738.2 and(8.732.5 of Ref.[13].

Here, as in Eq(7), Ro=R(r,,) is the radius of the bubble at The Legendre functions can be given in terms of elementary

the moment of nucleation. In the general case, the denom}‘ynctlons. Fol=0,1, and 2 they are

nator in the right-hand side is just shorthand for the integral P3’,21’2:(2wsinkr)*1’zsinr(2r) (28)
in Eq. (20). ’
In the thin wall case, the explicit expression for the radius 1 sinfr ) 32
of the bubble at nucleation is given ltgee, e.g.[15]) Pyg’zzm(T) ,
3u 112
Ro= , (21 _ 2 ) _
0 (9,LL2H2+ 62)1 P3/g/2=<; W[ésmﬂ4r)— %SInf‘(Zl’)'f‘r],

wheree is the jump in energy density between the true and . .
the false vacuum. As mentioned before, we have neglecte d for highel they can be obtained through the well known

' P . - ~_Trecurrence relations.
the bubble’s gravitational back reaction. For the approxima Several comments should be made. First of all,Ife0

tion to be valid, we need on one hand tlia<A [see Eq. - o . : .
(8)]. On the other hand, we are neglecting the gravity of theandl =1 the normalization factor in Eq27) diverges. This

wall. As is well known, the gravitational field of a domain s not a problem, since these modes do not contribute to

- : ; : ; bservables. They simply correspond to spacetime transla-
Il is ch Rindler-type h e O .
wallis characterized by a Rindler-type horizon dista tions of the nucleation eveht1]. Second, the modes are real

1 on the open chart, and hence their Klein-Gordon norm van-
lw 87Gu (22 ishes there. This is not a problem either, because the open
TR hyperboloids are not good Cauchy surfaf@k Finally, the

Oafnalytic continuation of Eq(13) with k= —3 tells us that

We need this distance to be much larger than the radius
the bubble at nucleation AY _gm=+3Y_3m

GuRy<1. (23)  and so the eigenvalue of the Laplacian has the “wrong”
sign. Not surprisingly, the modes diverge exponentially for

So far we have found the modes describing quantum flucg, g6 As we shall see, this divergence does not appear in
tuations outside the light cone froh: the physical effect.

¢—3Im:%§Y—3lm(xi)- (24) IV. FROM SCALAR TO TENSOR MODES

° The wall fluctuations induce scalar field fluctuations of
The modesY _j, are those of a scalar field of tachyonic the form(26) in the open FRW universe. These will locally
(mas3?=k?= —3[11] living in a (2+1)-dimensional de Sit- advance or retard by an amount
ter spacdb). If we want to preserve the(@,1) symmetry of
the bubble solution then we need to choose the Bunch- ®_3m _y
Davies vacuum in the lower-dimensional timelike= const ot= o = (Row) ™2 _gim(r. 6,) (29)
sections. The corresponding normalized modeq ht¢

the time at which the universe reheats. Deformations of the
2 reheating surface generically induce density fluctuations and
Ri(tantp)Yim(6,), perturbations in the microwave background. It turns out that
(25  the particular mode&6) do not cause density perturbations
[12], but, as we shall see, they do affect the microwave back-
where Y, are the spherical harmonics and ground just like gravitational waves do.
R)(X)=P}(x)—(2i/m)Q}(x). HereP and Q are the Leg- A nice framework to study deformations of the constant

endre functions on the cut 1<x<1. scalar field surfaces is that of Refl4]. One defines a
In order to assess the effect of these fluctuations in ourfluid” velocity
Universe today, we must first analytically continue to the

al(1-1)\2

4T (1+3)

Y _gim=—

coshp

interior of the light cone, (o
L P L (30
o(t) Tu
¢—3Im:(RoM)172Y—3lm(r'0"P)’ (26) orthogonal to the constant field surfaces, and projects its co-

variant derivativeu,,., onto these surfaces:

where now the analytically continued harmonics can be cast, )
after some algebrgl3], into the form Uy, =35 +u,uf)u,,.
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One can separatg,, into a symmetric and an antisymmet-
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Introducing Eq.(33) in Eg. (35) we can calculate the evo-

ric part. The antisymmetric part is called vorticity and it canlution of the amplitudeE throughout the different stages of

be shown that it vanishes for a four vector of the foi30).
As a consequence, the projected covariant derivatiyg

coincides with the intrinsic covariant derivative on the sur-

faceso=const[14]. The symmetric tensdf,,,=u,,, is also
known as the extrinsic curvature. Its tragg:=0 is the
expansion, and in the unperturbed FR@&/=3(a/a). A

expansion. In terms of conformal timel f=a'dt), we
have

!

a
E"+2—E’'+E=0.
a

straightforward calculation shows that under perturbations oPUring inflation E is given by Eq.(34) and it tends to a

the form(26) the expansion does not charigd]. The trace-

less part of K,, is the shear tensoro,,=K,,

—(0/3)(9,,TuLu,). To linear order in perturbations and in

the coordinate systerti), we have

u,=(=1Y,), (31
where Y stands for Y, ,(x'), with x'=(r,6,¢). Then
O'OOZO'OiZO and

Herey;; is the metric on the unit spacelike hyerbolgg). In
addition to being traceless, the shear tensorkfor —3 is
transverser;;' =0, just like a tensor modg/].

constant:

H
\/ROM,

whereH = (A/3)Y2. In the radiation erd)=1 to very high
accuracy, and it can be checked that as a réssitays con-
stant.

During the matter era~t?*~ 72, so

E=

4
E'+—E'+E=0,
n

This can be solved in terms of Bessel functions. For small

n
This immediately suggests going to a new coordinate sys-

tem which straightens out the constant scalar field surfaces, H

while still remaining in a synchronous gauge
'—t+ St N R aé\t
t'=t+ot, X =X—v 2.9Ui-
Here 6t is given by Eq.(29). In this new gauger=g(t') is
constant ort’ =const surfaces, but the metric reads
dSZZ _dt2+ a2( ’y” + hll)dXIdXJ
Here

and, during inflation,

E= 2 (Row) 2 (34

Once in the new transverse and traceless gauge, the matte
distribution looks perfectly smooth. It is now legitimate to .
evolve h;; with the usual equation for tensor perturbations

through the entire cosmic evolutiga7]

. a. 1
ij + 33 ij — 2 (Ahij +21;) =0. 39

E=

2
7
(1 T

VRou

From Eq.(3) we haven=2(1—Q)'? and in what follows
we shall concentrate in the case{Q)<1. (The general
case can be treated numerically along the lines of Refs.
[4,3])

The amplitude of microwave fluctuations due g is
given by the well known Sachs-Wolfe formula

oT B 1fr|5dhrr

T 2o dy "
whereri~2(1— Q)2 is the comoving distance to the sur-
face of last scattering arid, is evaluated ay=rs—r. Since

rsis assumed to be small, we can use the asymptotic form of
the Legendre functions in Eq&7) to obtain

Y_am=~T27 0y,

wherel“|=[l“(3+l)l“(l—1)]1’2/F(I+3/2) Using this form
in Egs.(32) and(33) one immediately obtains

Mo B Ly qye (36)

which for low spatial curvature is dominated by the quadru-

Note that althoughAY=+3Y, the corresponding tensor Polel=2.

mode, derived from Eq<$33) and(32) satisfies
Ahl] = — 3h|] y

It should be noted that the tensor mdug is pure gauge
during inflation (as it should since we are neglecting the
bubble’s back reactionHowever, the overall configuration
taking the scalar field into account is not. Tée= const sur-

with the “correct” sign for the Laplacian eigenvalue. For faces have nonvanishing shear. As we evdiyepast the

=0 andl=1, it can be readily checked tha{;=0, and so  reheating surface, it gradually ceases to be pure gauge, as can
the tensor mode only exists fbr 1, as expected of gravita- be checked by expressing the evolved mode in the longitu-
tional waved18]. dinal gaugd17]. Also, it can be checked that although the
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scalar mode¥ _ 5, diverge exponentially at large distances, nant effect is in the quadrupole, with
the corresponding tensor componemtsentering the Sachs-

Wolfe formula do not. oT H (1-0)
TR

V. CONCLUSIONS

We have calculated the amplitude of small fluctuations inW'th'n the limits Of validity of our apprommaﬂorﬁsee Eq.
3], and unlesg) is too close to 1, this can be much larger

the shape of bubbles nucleated during inflation. In the caseti an the distortion produced by usual gravitational waves
thin bubbles, the result takes the simple fo{26). Since the produced during inflation, which is of ord&2H (however,

de Sitter mode¥ _3,, grow like the intrinsic radius of the : o )
bubbler = Rycostp (pR is the proper time coordinate on the ?neae[lﬁ,ellg)égi]fiecrzif ;’;';ZE%”%IK dggsavétargggt;j omaggrvx;ﬁlls
bubble wal), the relative amplitude of proper local radial y Yy ' y

; S vestigation.
wall displacements is given by Finally, we would like to compare our results with those
ﬂN(Rsﬂ)_yz of Ref.[12]. There the amplitude of a homogeneous fluctua-
0 ’

tion is estimated by considering the small chaddggin the
where R, is the radius of the bubble at the time of nucle- instanton action when the radius of the bubble is changed by

ation, given by Eq(7), and u is the wall tension. This co- an amountda. This is used to estimate the “typical devia-
incides by order of magnitude with the estimate of Rgfin  tion” da as the one that corresponds A&~ 1. However,
the case when the size of the bubbles at the time of nucldhe physical meaning of that prescription is unclear, because
ation is much smaller than the de Sitter horizen ™. the radius of the bubble cannot have a homogeneous fluctua-
The propagation of wall perturbations to the interior of tion. In flat space, this would violate energy conservation,
the light cone gives rise to shear deformations of the renea@nd & similar argument can be applied in curved space. The
ing surface, and consequently, of the surface of last scatteRNly homogeneous radial fluctuations allowed in the thin
ing. The simplest way to study the cosmological evolution ofwall limit are time translations of the nucleation point.
such perturbations is to use a synchronous coordinate system
in which matter looks perfectly smooth. Somewhat surpris-
ingly, the metric fluctuations in this gauge are transverse and
traceless, just like usual gravitational waves. This transmuta- It is a pleasure to thank Alex Vilenkin, Takahiro Tanaka,
tion of scalar into tensorlike modes is only possible becausand Juan Garcia-Bellido for stimulating discussions, and the
of the peculiar(supercurvatuneeigenvalue of the Laplacian Tufts Cosmology Institute for warm hospitality during the
for the scalar modes corresponding to wall fluctuationspreparation of this work. This work has been partially sup-
k?=—-3[7]. ported by CICYT under Project No. AEN95-0882, by Euro-
For (0—1)<1, the anisotropies of the microwave sky pean Project No. CI1-CT94-0004 and by a NATO collabo-
produced by these waves are given in E2f). The domi-  rative research grant.

ACKNOWLEDGMENTS

[1] M. Bucher, A. Goldhaber, and N. Turok, ifrends in Astro- [9] B. Ratra and P. Peebles, Phys. Reva?) 1837(1995.
particle Physics Proceedings of the Workshop, Stockholm, [10] T. Vachaspati and A. Vilenkin, Phys. Rev.43, 3846(1991);

Sweden, 1994, edited by L. Bergstrazh al. [Nucl. Phys. B V. Rubakov, Nucl. PhysB245 481 (1984.
Proc. Suppl43, 173(1995]; M. Bucher and N. Turok, Phys. [11] J. Garriga and A. Vilenkin, Phys. Rev. 81, 1007(1991); 45,
Rev. D52, 5538(1995. 3469(1992.

[2] A. Linde and A. Mezhlumian, Phys. Rev. 62, 6789(1995.  [12] J. Garcia-Bellido, Phys. Rev. B4, 2473(1996. _

[3] K. Yamamoto, M. Sasaki, and T. Tanaka, “Large angle CMB [13] I.S. Gradshtein and I._M. RyzhikTables of Integrals, Series
anisotropies in an open universe.,” Report No. KUNS- 14 :‘AndBProqL;CtgAcagem'ca'\éevl‘éY;”E“,lgsg wum G
1309, 1995(unpublishegt K. Yamamoto and E. Bunn, “Ob- [ ]9 l92rf?i§9l2 unsby, and G. F. R. Ellis, Class. Quantum Grav.
servational tests of one bubble open inflationary cosmologicahS] J’ Garriga P.hys Rev. BY, 6327 (1994
models,” Report No. KUNS-1357, 199%inpublishegl L L ' s n

16] A. Vilenkin, Phys. Lett.133B, 117 (1983; J. Ipser and P.

[4] D. Lyth and A. Woszczyna, Phys. Rev. 12, 3338(1995; J. [16] 4 B (1983 P

. . . o Sikivie, Phys. Rev. B0, 712 (1984.
Garcia-Bellido, A. Liddle, D. Lyth, and D. Wandghid. 52, [17] V. Mukhanov, R. Brandenberger, and H. Feldman, Phys. Rep.

6750(1993. _ 215 203(1992.
[5] T. Tanaka and M. Sasaki, Phys. Rev5D, 6444(1994. [18] B. Allen, Phys. Rev. D51, 5491(1995; B. Allen and R. R.
[6] M. Sasaki, T. Tanaka, K. Yamamoto, and J. Yokoyama, Phys.  caldwell, “Primordial gravitational waves in spatially open
Lett. B 317, 510(1993; M. Sasaki, T. Tanaka, and K. Yama- inflation,” Report No. WISC-MILW-94-TH-21, No. DAMTP
moto, Phys. Rev. 31, 2979(1995. R94/47, 1996 unpublishedl
[7] T. Hamazaki, M. Sasaki, T. Tanaka, and K. Yamamoto, Phys[19] A.A. Starobinsky, inCosmoparticle Physics, Jedited by M.
Rev. D53, 2045(1996. Yu. Khoplov, M.E. Prokhorov, A.A. Starobinsky, and J. Tran
[8] S. Coleman and F. de Luccia, Phys. Rev2D 3305(1980); Thanh Van (Editions Frontieres, Gif-sur-Yvette, France,

A. Guth and E. Weinberg, Nucl. PhyB212, 321(1983. 1996.



