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We show the existence of a resonant behavior of the current of Brownian particles confined in a
pulsating channel. The interplay between the periodic oscillations of the shape of the channel and a
force applied along its axis leads to an increase of the particle current as a function of the diffusion
coefficient. A regime of current inversion is also observed for particular values of the oscillation
frequency and the applied force. The model proposed is based on the Fick-Jacobs equation in which
the entropic barrier and the effective diffusion coefficient depend on time. The phenomenon observed
could be used to optimize transport in microfluidic devices or biological channels. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4982884]

I. INTRODUCTION

Transport of particles through corrugated narrow channels
is frequently found in physico-chemical and biological sys-
tems in which particles are constrained to move along a main
transport direction.1–4 Confinement changes significantly the
transport properties of the particles and the energy conver-
sion mechanisms.5–7 The presence of boundaries or obstacles
discloses intriguing entropic contributions due to the reduc-
tion of the volume of the configuration space available to the
diffusing particles.8 These entropic phenomena manifest in
the appearance of entropic forces in the so-called Fick-Jacobs
approximation to describe the steady-state particle densities.
This equation provides a very accurate description of entropic
transport in 2D and 3D channels of varying cross section. It is
equivalent to a Smoluchowski equation in 1D.9–14

In many of the studies carried out up to now, channels are
considered as rigid structures: kinetics of molecular motors
and diffusion in zeolites,15–18 cell membrane channels, or ion
translocation through protein channel.19–21 However, in many
real systems, the flexible and changing nature of the channel
plays a very important role in the transport properties, as in
the case of vascular22,23 or peristaltic channels24 and flexible
DNA nanochannels.25

Beyond the intriguing features of the transport under the
effect of static boundaries, it is interesting to analyze the
novel features introduced by time-changing boundaries. Rec-
tification and resonant transport are two distinctive phenom-
ena found in systems subject to time-dependent forces.26,27

In addition to the presence of energy barriers, confinements
introduce entropic barriers that can also be time-modulated.

In recent works, the entropic transport of Brownian parti-
cles in the case of an oscillatory confined geometry was stud-
ied. A resonant transport, in the absence of an external force or
when a force is acting perpendicular to the flow (e.g., a gravita-
tional force) was found.28–30 We propose to analyze a different

a)Electronic mail: flor@ungs.edu.ar

situation corresponding to an external stimulus applied perpen-
dicular to the cross section of the channel, such as gradients
or fields, in the presence of a time-dependent entropic barrier.
Moreover, unlike previous works,29,30 our model based on the
Fick-Jacobs approximation introduces an effective diffusion
coefficient also affected by the time-dependent entropic bar-
rier. We predict not only a current rectification but also a current
reversal (CR) phenomena not found when the external force is
acting perpendicular to the direction of the flow. The dynamics
of the particles and therefore the transport can be controlled
by the diffusion coefficient, the oscillation frequency, and the
strength of the force.

The article is organized as follows. In Sec. II, we introduce
the entropic transport model and the effective quantities used
to characterize the transport. The results obtained are presented
in Sec. III. In Sec. IV, we present our main conclusions.

II. THE MODEL

We study the confined motion of N non-interacting Brow-
nian particles through a two dimensional periodic channel
which consists of units of length 2L, formed by two subunits
of length L, as is shown in Fig. 1.

The shape of the boundaries of the channel is periodically
modulated in time. The height is given by:

h(x, t) =




a1(t)x2 + d
2 , 0 ≤ x ≤ b

2

−a1(t)(x − b)2 + s(t) , b
2 < x ≤ b

−a2(t)(x − b)2 + s(t) , b
2 < x ≤ L+b

2

a2(t)(x − L)2 + d
2 , L+b

2 < x ≤ L

, (1)

where b indicates the location of the point of the maximum
width and d is the width of the bottleneck.

The time-dependent coefficients are a1(t) = 2[s(t)−d]
b2 ,

a2(t) = 2[s(t)−d]
(L−b)2 , and s(t) = s0 + s1 sin(ωt + Φ). The values

of the parameters are set to guarantee asymmetric subunits.
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FIG. 1. Snapshot of a unit of the channel oscillating out of phase with period
T, for two different times. The solid (black) line corresponds to t = 0 and the
dotted (blue) line corresponds to t = T /2.

The phase difference between adjacent subunits inside each
unit cell is given by

Φ =




0 , x ∈ [0, L]

[0, π] , x ∈ (L, 2L]
. (2)

A phase lag Φ = π means that consecutive subunits can
shrink and enlarge alternatively such that the total volume does
not change much, a closer situation to what happens in a real
transport channel.

We will analyze the transport properties by means of the
Fick-Jacobs equation that govern the dynamics of the proba-
bility distribution of the ensemble of non-interacting Brownian
particles

∂P(x, t)
∂t

=
∂

∂x

[
D (x, t)

∂P(x, t)
∂x

−
D (x, t)

kBT
Feff (x, t)P(x, t)

]
.

(3)
Here D (x, t) is an effective diffusion coefficient that in our two
dimensional case is given by11

D (x, t) =
D

(1 + h′(x, t)2)
(1/3)

, (4)

where D corresponds to the diffusion coefficient and Feff (x, t)
is an effective force acting in the x-direction due to the
energy and entropic barrier contributions to the free energy
A (x, t),

Feff (x, t) = −
∂A (x, t)
∂x

= F0 + kBT
h′(x, t)
h(x, t)

(5)

with A (x, t) � E − TS = −F0x − kBT ln h(x, t). In Fig. 2, a
schematic illustration of these magnitudes is presented for a
generic time.

From Eq. (3), we indentify the instantaneous particle
current

J(x, t) = −

[
D (x, t)

∂P(x, t)
∂x

−
D (x, t)

kBT
Feff (x, t)P(x, t)

]
. (6)

The Fick-Jacobs approximation assumes that the proba-
bility density reaches equilibrium in the transverse direction
much faster than in the longitudinal one. This requirement is
fulfilled if |h′(x, t)| << 1 for all times and positions, that is,
when the section of the tube varies smoothly.

For the sake of simplicity, we use dimensionless quanti-
ties. We scale the lengths with the unit length Lo = 2L, times
with the diffusion time τdif =L2

oγ/(kBT ) with γ the Stokes’

FIG. 2. Schematic illustration of Feff (x, t) (red dashed line), h′(x, t) (blue
dotted line), and D (x, t) (inset) in a subunit cell (black full line). Time is
chosen generically as t = T /4.

friction of a spherical particle of reference radius r, ener-
gies with kBT, forces with units of kBT /Lo, and currents with
of Lo/τdif . Thus, the nondimensional diffusion coefficient D
can be expressed as the ratio between the particle size and
a reference radius taken as the width of the bottleneck. A
typical diffusion constant in colloids in aqueous solution is
D ≈ 10−12 m2/s. Therefore a typical Brownian time scale or
average time for a particle to diffuse in a distance equal to
its diameter is of the order of 1–100 s, for particles of sizes
from 1 to 10 µm and velocities in the range 10−1–1(µm)/s.33,34

Besides, in our case, the validity of the Fick-Jacobs approach
requires that the dimensionless frequency ω has to be smaller
than one, this implies modulations smaller than 2π10 rad/s
approximately. This range is of the order used in recent exper-
iments on transport of molecules in confined media subject to
entropic barriers and to a driving force.32

In addition to the conditions required for the validity of
the Fick-Jacobs equation such as a smooth channel and slow
oscillations, we assume strong viscous dynamics combined
with a dilute density. Therefore under these assumptions, we
can neglect hydrodynamic particle-wall and particle-particle
interaction effects in the motion of the particles.

III. NUMERICAL RESULTS

From the dimensionless Fick-Jacobs equation, we obtain
numerically the probability density P(x, t) with periodic
boundary conditions at x = 0 and x = 1.

We introduce the mean particle current as

j(t) =
∫ 1

0
J(x, t)dx (7)

with the probability current J(x, t) given in Eq. (6). It can be
written as31

j(t) =
d
dt

∫ z0+1

z0

P(x, t)xdx + J(z0, t) (8)

=
d
dt
〈x(t)〉 + J(1, t), (9)

where z0 is an arbitrary reference position. Here we choose z0

= 1 that corresponds to the upper boundary of the unit.
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Eq. (9) indicates that the particle current is composed by
the motion of the “center of mass” (CM) of the ensemble and
the probability current evaluated at the reference point. Then
we define the position

X(t) ≡
∫ t0

t
j(t ′)dt ′ = 〈x(t)〉CM +

∫ t0

t
J(z0, t ′)dt ′, (10)

where we have defined 〈x(t0)〉 = 〈x(t0)〉CM .
We take the time average of the particle current in a period

T = 2π/ω,

J =
1
T

∫ T+t0

t0

j(t)dt, (11)

and the time average of the mean position

X =
1
T

∫ T+t0

t0

X(t)dt. (12)

Numerical results for J are obtained as a function of D,
ω, and F0. In Fig. 3, we present a contour plot of J versus
D and the static external force F0. We observe the pres-
ence of a current reversal (CR) for which J switches from
negative to positive values, even for negative values of the
external force. Although F0 < 0, the effect of the entropic
force and the effective diffusion during a time period can
compensate the negative static force. A net particle current is
produced in a direction opposed to F0 assisted by the entropic
contributions. Current inversion is found for the allowed fre-
quencies of our model, in the ranges of D and F0 shown in
Fig. 3.

We observe the current as a function of D when F0

exhibits monotonic and non-monotonic behaviors. The strictly
monotonic behavior is found approximately for F0 ≤ −1.5 and
F0 ≥ −0.5. However, for intermediate values, a resonant-type
regime is found where an optimal diffusion coefficient max-
imizes the current in an opposite direction to the force, thus
yielding a most favorable situation for the coherent motion
of particles in the confined geometry. In Figs. 4(a) and 4(b),
we depict some representative curve levels for ω = 0.5 and
ω = 1.0, respectively. This effect depends on the frequency
and is enhanced as long as ω increases resulting in a greater
positive current for larger D as it is shown in Fig. 5. This

FIG. 3. Contour plot for J versus D and F0 for ω = 0.5. The values of the
parameters are s0 = 0.45, s1 = 0.35, b = 0.25, d = 0.15, L = 1. Currents are
given in units of µm/s.

FIG. 4. J versus D for different values of F0 indicated in the figures. Panel
(a) corresponds to ω = 0.5 and (b) to ω = 1. Other parameters as in Fig. 3.

resonant-type response is appreciable for faster oscillations;
in the limit of a static channel (ω → 0), the effect is washed
up. Moreover when ω increases, not only the maximum but
also the crossings to negative currents (CR) move to larger
values of D as it is also shown in Fig. 4.

The dependence on D reflects the dependence on the parti-
cles’ size and can be understood by reminding that the value of
the entropic potential at the bottlenecks increases with larger
particle radius since there are less accessible positions for a
larger particle. In other words, the effective boundaries confine

FIG. 5. J versus D for ω = 0.1 (black), ω = 0.5 (red), and ω = 0.8 (blue),
and F0 = �1.3. The values of the remaining parameters are the ones used in
Fig. 3.
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larger particles in a stronger way than the boundaries associ-
ated with the smaller ones. The large particles are guided to
the bottleneck if the external force points to the right, whereas
a force that points to the left leads to trapping of the par-
ticles at the channel wall if the particles are not located in
the area of the bottlenecks. However the interplay between
these two effects will depend on the joint action between the
external drift and the periodic change in time of the effective
boundaries. It is important to note that a uniform distribution in
transverse direction is used in the argumentation (Fick-Jacobs
validity).

In order to display all these effects together, we show in
Fig. 6 the current in the D-ω plane. In the figure, we indicate the
region where current reversal occurs which separates a region
of negative monotonic current from a region of positive cur-
rent with resonant-type behavior. This interesting phenomenon
suggests some kind of diffusion-selected effect. Given that the
diffusion coefficient D depends on the particle size, by adjust-
ing ω it is possible to separate particles moving in different
directions or in the same direction but with different velocities.

Note that there are different time scales involved. The
fastest one is associated with the equilibration in the transver-
sal direction. Another one is associated with the inverse of
the frequency of the oscillations and a third one associated
with the diffusion process. It is important to keep in mind
that although D is constant, the effective diffusion coefficient
given in Eq. (4) displays a dependence on the position and
time that although weakly affects locally the diffusion time
scale. To analyze the relation between the last two scales, we
plot in Fig. 7 the average particle current J as a function of
ω for three different values of D and F0 = �1.2. We observe
that J increases monotonically with ω, regardless of the value
of D. In the adiabatic limit, the pulsation can be expressed
by a boundary in two static configurations. The particles have
enough time to explore the whole area of the unit. If F0 = 0, the
probability of particles acting on the slanted wall (right part of
the subunit) should be larger than that on the steep one (smaller
area in the left) resulting in a negative entropic force. How-
ever when F0 is negative, more particles are located near the
steep region resulting in a positive effective entropic force. On
increasing ω, the particle does not get enough time to explore

FIG. 6. Contour plot for J versus ω and D. F0 = �1.3 and other parameters
as in Fig. 3.

FIG. 7. J versus ω for D = 0.02 (black), 0.04 (red), and 0.08 (blue), and F0
= �1.2. J is normalized by the velocity v0 = |DF0 | of the unbounded system.

the full region in one period. The probability density in the
area of the steep wall is now larger along one period of time
so most particles are subject to the effective (positive) force
acting in this region. This effect is enhanced for particles of
smaller size. The current is still negative but with a smaller
absolute value. Therefore, by controlling (increasing) ω, it is
possible to switch to a positive net current. Moreover, the cur-
rent inversion is observed for greaterω as long as D increases.
The tuning between the diffusion and oscillation time scales
is the underlying mechanism.

Motivated by current experimental studies on transport
of colloidal particles based on tracking techniques by video
microscopy, it is also useful in the complementary analysis of
the time evolution of the ensemble average position. In Fig. 8,
the mean position of the ensemble of particles (Eq. (10)) versus
time is depicted. Initially, particles are located in one unit cell.
Fig. 8(a) evidences the expected sensitivity of the current to the
strength of the static force. The increase of |F0 | means larger
|J | unless F0 takes values close to the current inversion. It is
also interesting to note the behavior with D shown in Fig. 8(b).
For instance, when F0 = �1.2 (close to CR) and low diffusion,
X(t) is confined in one unit cell. When D increases, the motion
is mostly bounded during longer times but slightly drifted.
For higher diffusion, the motion is still oscillatory but with
an important drift. Even more, in one period the oscillations
take place between neighbor units consequently with larger
amplitudes.

As it was discussed, it is possible to adjust the velocity by
just changing the frequency when assuming constant diffusion
(Fig. 8(c)). That is, depending on ω, it is possible to rectify in
a desired direction even for a fixed static force as it is shown
in Fig. 8(c). For instance, for F0 = �1.1 and low frequency,
particles move to the left. However by increasing ω, the mean
position is confined in one unit of the channel during many
periods with a small drift to the right. Something similar is
observed for F0 = �1.3. Approaching the condition for current
inversion, we observe that the oscillatory motion of the center
of mass of the ensemble spend many periods inside one unit
cell. CR phenomenon corresponds essentially to an oscillatory
motion of the center of mass inside one unit cell without a net
drift from one side to the other side of the bottleneck. Therefore
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FIG. 8. X(t) versus t/T for different values of F0 (a), D (b), and F0 and ω
(c). Horizontal dot lines separate units of length. The remaining parameters
correspond to the ones in Fig. 3.

depending on F0, D, andω, the oscillatory evolution of X(t) can
be bounded or unbounded with amplitudes smaller or larger
than the length of one unit cell. This mechanism can be used as
the basis for a dynamical selective rectifier or a setup sensitive
to specific properties of the colloids. In previous works,35,36

a particle splitter based on a static geometry under the action
of time dependent external forces was studied. However in
our model, the central mechanism is more complex because it
relies on the modulation of the walls and consequently on an
effective time dependent force but also on an effective diffusion
that depends on time and position.

The time evolution of the mean position in one period of
time is determined by the evolution of the probability density
P(x, t). In Fig. 9, we plot P(x, t) at four different times within
a period T. The figures correspond to D = 0.03 and ω = 0.1
(a) and 0.5 (b) with F0 = �1.3. The probability distribution
oscillates inside one unit cell during a period of time. If D is
small, the particles are located more likely in one subunit every
half time period, but for greater D, in the same half period the
particles are distributed more equally in both subunits.

In the previous analysis, we have assumed that the phase
difference between consecutive units is π. This is an oversim-
plified assumption to keep nearly conserved the total volume
of the system as it should be expected in many real systems.
However in a modelling work, it is also desirable to analyze
the transport through unit cells oscillating with a general phase
lag. In Fig. 10, we show J as a function of Φ in the interval
[0, π]. We observe a current reduction whenΦ→ π. Therefore
out of phase oscillations seem to reduce J. However, the depen-
dence on D is nontrivial. When the phase lag between adjacent
subunits is small, diffusion plays the relevant role during the
part of the time period in which the entropic force is reduced
almost at the same time in all the units. During those inter-
vals, diffusion dominates and so the net current is then more
sensitive to D and F0. On the other hand, when Φ is larger,
the decrease of the entropic force occurs alternately between
neighboring units counterbalancing the diffusive process (and
F0) with the possibility of current inversions. Therefore, the
phase lag tunes a kind of transition between a regime where

FIG. 9. Probability distribution P(x, t) for T /4 (black full line), T /2 (red
dashed line), 3T /4 (blue dot line), and T (green dashed-dot line). D = 0.03 (a)
and D = 0.5 (b). F0 = �1.3 and ω = 0.1. Lower panel to D = 0.5.
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FIG. 10. J versus Φ/π for D = 0.03, 0.1, and ω = 0.1, 0.5. F = �1.0.

diffusion is the process that dominates along units during the
full period of time, to another one where the oscillation has a
comparable relevance.

It is well known that the features of the entropic transport
are highly dependent on the asymmetry of the boundaries. The
shape and parameters used in our work guarantee an asymmet-
ric geometry meanwhile the walls oscillate. In particular the
width of the bottleneck d, that is related to the entropic barrier,
plays a crucial role related to the flow of particles between
adjacent units.

In Fig. 11, we depict a contour plot of J in the d–ω plane.
Forω < 0.2, J increases monotonically with d and forω ≈ 0.2
is almost constant for greater d. Forω > 0.2, a non-monotonic
response with a maximum value of J that depends on the fre-
quency is obtained. In Fig. 12, we plot the current vs. d for
different values of F0 and a fixed value of D, that is, for par-
ticles of a given radius when flowing through channels with
bottlenecks of different widths. The three curves have simi-
lar shapes; however, they are shifted suggesting an optimal
value of d almost independent of F0. Moreover, and contrary to
what one could expect, a wide bottleneck does not necessarily
enhance transport. Also we observe in Fig. 11 that the optimal
value of d slightly decreases with ω. Narrower bottlenecks
yield the same J when the channel oscillates faster.

FIG. 11. Average current J in the d-ω plane. F0 = �1.1 and D = 0.03. The
black solid contour line corresponds to current inversion. The dashed line
indicates the location of the maximum.

FIG. 12. J versus d for F0 = �1.5 (black full line), �1.1 (red dashed line), and
�0.7 (blue dotted line). D = 0.03 and ω = 0.5.

IV. CONCLUSIONS

We have investigated the dynamics of Brownian particles
in a confined channel whose shape is periodically modulated
in time. We have identified two distinctive regimes of current
rectification. One in the direction of the static external force
and another one in an opposite direction, where the entropic
contribution plays the key role. The average current presents
a monotonic and non-monotonic dependence on D depending
on the values of frequencies and external forces. The non-
monotonic case is like a resonant-type response, where the
maximum value of J is strongly dependent on F0 and ω. It is
opposite to the external force direction and shifted to higher
values of D when walls oscillate faster. Moreover, we found a
current reversal that takes place when a negative static external
force is acting. This phenomenon requires the time-dependent
entropic barrier that affects the effective force and diffusion
coefficient.

On the other hand, an out of phase oscillation between
consecutive units was found to be less beneficial to increase
velocity, however it was found to be more favorable for the
appearance of CR when D or F0 are properly chosen.

Recent works considered the case of directional transport
due to time-dependent forces with static37 and time-dependent
boundaries, constant diffusion, and constant transversal
forces.29,30 Our model considers a time dependent boundary
that has a relevant effect not only on an effective longitudinal
force but also on an effective position-time dependent diffusion
coefficient. We found that it is possible to rectify the transport
but also to optimize and invert its direction, phenomena that
appear as a transition between an energy-dominated regime
and a time-dependent entropic-dominated one.

Rectification and current reversal obtained from our anal-
ysis have also been observed in ratchet devices,38 where the
directional transport can be achieved through the breaking
of temporal and/or spatial symmetry. In our system, the tube
oscillations are essential to produce the directional transport
that even in the absence of energetic barriers and with a sym-
metrical shaped tube, a ratcheting effect is possible because
the time symmetry is broken.
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Our results show that time-modulated boundaries can play
a constructive role in the transport properties of particles. This
fact can be interesting in many practical situations as in the
rectification of microswimmers motion, Janus particles, sub-
stances delivery, or vascular systems, to mention just a few.
The pulsating action required could be exerted by externally
controlled actions or by the system itself, processes which
may be of great significance in physico-chemical or biological
systems taking place in confined geometries.
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