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The tunneling approach to the wave function of the Universe has been recently criticized by Bousso and
Hawking who claim that it predicts a catastrophic instability of de Sitter space with respect to pair production
of black holes. We show that this claim is unfounded. First, we argue that different horizon size regions in de
Sitter space cannot be treated as independently created, as they contend. And second, the WKB tunneling wave
function is not simply the ‘‘inverse’’ of the Hartle-Hawking one, except in very special cases. Applied to the
related problem of pair production of massive particles, we argue that the tunneling wave function leads to a
small constant production rate, and not to a catastrophe as the argument of Bousso and Hawking would
suggest.@S0556-2821~97!06616-2#
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I. INTRODUCTION

The tunneling proposal for the wave function of the Uni-
verse has been recently criticized by Bousso and Hawking
@1# who argue that it predicts a catastrophic instability of de
Sitter space with respect to production of black hole pairs.
Here it will be shown that their argument is incorrect.

Let us first review the Bousso-Hawking argument. First,
they estimate the pair production rate for black holes~BH! in
an inflating universe as

G}exp@2SBH1S0#, ~1!

where S0 and SBH are Euclidean actions for de Sitter and
~degenerate! Schzwarzschild–de Sitter instantons, respec-
tively. The Schwarzschild–de Sitter instanton, which has the
topology of S23S2, is interpreted@2# as describing nucle-
ation of two black holes whose horizon radii are equal to the
radius of the de Sitter horizon,H21. A simple calculation
gives ~in Planck units!

G}exp~2p/3H2!. ~2!

For H!1, black hole nucleation is exponentially suppressed.
Evaluation of the tunneling rates using instanton techniques
is a standard practice in the literature, and results similar to
Eqs. ~1! and ~2! for black hole nucleation have been previ-
ously derived by Mellor and Moss@3# and others@4#. We
have no objections against these results@5#.

Now, Bousso and Hawking suggest that instead of using
the standard instanton approach, the nucleation rate can be

calculated directly from the wave function of the Universe.
They argue that each horizon volume in an inflating universe
can be regarded as having been nucleated independently of
other horizon regions. The rate of black hole production can
then be found as

G}PBH /P0 , ~3!

where PBH is the probability of quantum nucleation for a
horizon-size universe containing a pair of black holes, and
P0 is the same without black holes.

The nucleation probability in quantum cosmology is sen-
sitive to the choice of boundary conditions for the wave
function of the Universe. With Hartle-Hawking~HH! bound-
ary conditions, the wave function is given by the integral@6#

cHH5E e2S, ~4!

whereS is the Euclidean action and the integration is taken
over compact Euclidean geometries and matter fields with a
specified field configuration at the boundary. The boundary
configuration is chosen to be the three-geometry at the mo-
ment of nucleation. For a de Sitter universe this is the maxi-
mal S3, while for black holes in de Sitter it isS13S2. The
probability is found fromP}ucu2. Assuming that the severe
divergence problems of the integral~4! are somehow re-
solved, one can expect that the dominant contribution to Eq.
~4! is given by the instantons

cHH}e2S, ~5!
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so that P}e22S, where 2S is the corresponding instanton
action. Then Eq.~3! reduces to Eqs.~1! and ~2!. This com-
pletes the quantum-cosmological derivation of the black hole
pair production rate.

Turning to the tunneling wave function, Bousso and
Hawking argue that, since it is suppressed rather than ampli-
fied under the barrier, this wave function should be given by

‘‘ cT’ ’ }e1S. ~6!

Then the sign of the exponent in Eq.~1! is changed to the
opposite, and Eq.~2! is replaced byG}exp(1p/3H2). This
shows no suppression of black hole production, indicating an
instability of de Sitter space.

We have two objections to this argument. First, we dis-
agree that horizon volumes in an inflating universe can be
treated as nucleating independently. Second, the tunneling
wave function is not given by Eq.~6!, except in some very
special cases.

In the next section we explain why we believe that differ-
ent horizon volumes cannot be regarded as nucleating inde-
pendently. In Sec. III we discuss the tunneling boundary con-
dition for c and explain why it is very difficult to implement
it in the problem of black hole nucleation. Fortunately, the
tunneling wave function can be found in a very similar prob-
lem of massive particle production during inflation. The
Bousso-Hawking argument can be applied to this problem
without change. If the argument were true, the tunneling
wave function would predict a catastrophic instability of de
Sitter space with respect to particle production. However, we
show in Sec. IV that it actually predicts a small, constant pair
production rate, in agreement with instanton calculations.

II. BLACK HOLE NUCLEATION VS NUCLEATION
OF UNIVERSES WITH BLACK HOLES

To see why different horizon volumes cannot be regarded
as nucleated independently, consider a generic case of infla-
tion driven by a scalar fieldf with a slowly varying potential
V(f), disregarding for the time being the process of black
hole production. The fieldf is approximately constant on
the horizon scale, and nucleation of horizon-size universes
with different values off can be approximately described by
de Sitter instantons. The corresponding probability is

P~f!}exp@6p/H2~f!#, ~7!

whereH2(f)58pV(f)/3 and the upper and lower signs are
for the Hartle-Hawking and tunneling wave functions, re-
spectively@6–8#. ~This is one example when the two wave
functions do differ mainly by the sign in the exponent.! Sup-
pose an observer occupies a horizon-size region withf5f0
and wants to know the probability distribution forf in the
adjacent regions. If different horizon volumes were nucleated
independently, then this distribution would be given by Eq.
~7! and would be independent off0. This would imply rapid
variation of the fieldf from one horizon region to another.
Of course, the observer will not be able to see this variation
as long as inflation continues. But after inflation, all these
horizon volumes will eventually come within the observer’s
horizon, and rapid variation off will manifest itself in large
density fluctuations on all scales. This conclusion is in a

sharp disagreement with the standard analysis of density
fluctuations in the inflationary universe@9#.

The evolution of the fieldf during inflation is determined
by the quantum state of the field. It is usually assumed that
this state is close to the de Sitter-invariant~Bunch-Davies!
vacuum. Then, it has been shown@10# that the evolution off
can be pictured as a diffusion process, resulting in strong
correlations between the values off in adjacent horizon re-
gions. As a consequence, density fluctuations are small on
sufficiently small scales. It is possible that some highly ex-
cited state of the field would result in evolution suggested
by the random nucleation picture. Hence, the quantum-
cosmological problem of finding the probability for the uni-
verse to nucleate with a given value off is not the same as
the problem of finding the probability distribution forf
within the universe. Quantum cosmology can be said to de-
termine the latter distribution only in the sense that it deter-
mines the initial quantum state off at the nucleation of the
universe.

Quite similarly, the probability of black hole pair produc-
tion in an inflating universe is determined by the quantum
state of the gravitational field. It is not related in any simple
way to the probability for the universe to nucleate with a pair
of black holes. Equation~3! with the Hartle-Hawking wave
functioncHH correctly gives the leading exponent of the pair
production rateG only becausecHH is defined in terms of the
same Euclidean path integrals used in the instanton evalua-
tion of G.

III. THE TUNNELING WAVE FUNCTION

The wave function of the Universec is defined on super-
space, which is the space of all three-geometries~and matter
field configurations!. It satisfies the Wheeler-DeWitt equa-
tion

Hc50, ~8!

whereH is a differential operator on superspace. The tunnel-
ing boundary condition, as defined in Refs.@8,11#, requires
that c includes only outgoing waves at singular boundaries
of superspace. The physical meaning of this condition is that
the Universe originates in a nonsingular way~at the regular
boundary!, but may end at a singularity. The regular bound-
ary of superspace includes all singular three-geometries
which can be obtained as nondegenerate slices of smooth
Euclidean four-geometries.

The word ‘‘nondegenerate’’ means that the presence and
the nature of the singularity are stable with respect to small
perturbations of the slicing. To give an example of a degen-
erate slicing, consider a torus lying on a horizontal surface
and imagine slicing it with horizontal planes. The slice at the
bottom is a circle. But if the torus is slightly tilted, the cir-
cular slice disappears, and the bottom slice is an isolated
point. The circular slice is degenerate in the sense that it is
present only for a very special slicing. A rigorous definition
of nondegenerate slices is given in Morse theory@12,13#. It
can be shown that singularities on nondegenerate slices al-
ways occur at isolated points.
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In addition to the tunneling boundary condition, one has
to impose some kind of regularity condition, e.g.,ucu,`.

We do not know how to solve the Wheeler-DeWitt equa-
tion ~8!, except in simple models of high symmetry, when
the infinite number of degrees of freedom of the Universe
can be reduced to one or two, with the remaining degrees of
freedom being treated as small perturbations. For example,
the nucleation of an inflating universe~without black holes!
can be described by treating the radius of the Universe,a, as
a nonperturbative variable and deviations from spherical
symmetry as perturbations. The regular boundary of super-
space is then ata50, with finite amplitudes of the perturba-
tions.

To find the tunneling wave function for a Universe with a
pair of black holes, one needs to construct an appropriate
minisuperspace model. TheS23S2 instanton and the sym-
metry of the problem suggest a minisuperspace consisting of
three-geometries having topologyS13S2 with the radius of
the sphereS2 fixed atH21. This model would have the ra-
dius r of the circleS1 as its only variable and would cer-
tainly be simple enough to solve. However, the minisuper-
space boundary atr 50 cannot be regarded as a regular
boundary. This is clear from the fact that this singular geom-
etry has singularities on a two-dimensional surface (S2),
rather than at an isolated point@14#. A more complicated
model, where the radii ofS1 andS2 are both allowed to vary,
has a similar problem. The tunneling boundary condition
cannot be implemented in such models. Moreover, it appears
that such models are not suitable as minisuperspaces, since
they include configurations which are unstable with respect
to small perturbations. Extensions ofS13S2 models that
would not have this problem are bound to be less symmetric
and far more difficult to solve. We note that even if we
managed to construct a suitable minisuperspace model and
solve for the tunneling wave functioncT , this result would
be relevant only for the problem of the nucleation of a uni-
verse with a pair of black holes, and not for the rate of black
hole production during inflation.

IV. NUCLEATION OF MASSIVE PARTICLES

Instead of trying to fix theS13S2 minisuperspace for
black hole nucleation, we shall consider a related problem of
nucleation of massive particles. The corresponding instanton
is the de SitterS4 with a particle world line in the form of a
big circle @15#. A similar instanton for nucleation of small
extremal black holes was discussed by Mellor and Moss@3#.
The instanton action isSp5S012pH21m, and the nucle-
ation rate is

G}exp@2Sp1S0#5exp~22pm/H !. ~9!

Particle nucleation in de Sitter space has all relevant features
of black hole nucleation, and the Bousso-Hawking argument
can be applied to it without change. If the argument were
true, then the tunneling wave function would predict a cata-
strophic instability of de Sitter space with respect to pair
production. However, we will show that in fact it gives the
correct particle production rate~9!.

We shall assume that the mass of the created particles is
sufficiently small that their gravitational back reaction can be

ignored,m!1, yet sufficiently large that the concept of par-
ticle can be unambiguously defined in our expanding back-
ground. As we shall see, this requiresm@H. This is actually
the same mass range in which the world line instanton ap-
proximation is valid.

Within this regime, we can represent the particles as ex-
citations of a massive scalar fieldf. Let us expand the field
configuration asf5( f nQn , whereQn are the harmonics on
the three-sphere. Then the Wheeler-DeWitt equation~8! can
be solved perturbatively inf n using the WKB ansatz
c;exp(iS), where@16#

S5S0~a!1
1

2( Sn~a! f n
2 ~10!

and

dS0

da
56a~a2H221!1/2. ~11!

The solution of the Hamilton-Jacobi equation~11! is the ac-
tion along the classical de Sitter solution, which represents
an inflationary universe. Fora,H21 classical motion is for-
bidden,S0 is imaginary, andc is a linear combination of
growing and decaying exponentials. Fora.H21 classical
motion is allowed andc is a linear combination of incoming
and outgoing waves, whose flux points towards and away
from the forbidden region, respectively. The tunneling
boundary condition ata→` requires that only the outgoing
wave should be present. The matching conditions forc then
imply that the growing and decaying components have com-
parable magnitude near the classical turning pointa5H21.

With our ansatz, the Wheeler-DeWitt equation reduces to
the functional Schrodinger equation for the quantum field
f in a fixed de Sitter background, with the scale factor play-
ing the role of time. Its solution is given by
Sn5H2a2ṅn /nn , where a dot indicates derivative with re-
spect to the conformal timet, defined bya5(Hcost)21, and
nn(t) are normal modes of the classical scalar field equation.
For eachn there are two independent solutions, and the
quantum state is specified once we choose a particular linear
combination of these as our ‘‘negative frequency’’ modes
nn . The mode functionsnn should, in principle, be deter-
mined by the outgoing-wave and regularity conditions at the
boundaries of superspace:a→0, f n→6`. This, however,
cannot be implemented within the perturbative approach,
since the expansion~10! breaks down at large values of
f n . Instead, we shall follow Ref.@17# and require that the
wave function does not increase towards largef n . It appears
that this is the best one can do to represent the boundary
conditionc(u f nu→`),`. Mathematically, our condition re-
quires that Im(Sn).0 along the three branches of the semi-
classical wave function~growing, decaying, and outgoing!. It
can be shown that this requirement uniquely determines
nn , and hence the quantum state of the scalar field@17#. The
corresponding eigenmodes are given by

nn}costeintF„m,12m,n11;~11 i tant!/2…, ~12!

m5
1

2
2S 9

4
2

m2

H2D 1/2

,
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wheret ranges from 0 top/2 for the outgoing branch and
from 0 to 6 i` for the growing and decaying exponentials.
These modes correspond to the Bunch-Davies or de Sitter-
invariant vacuum.

The Hartle-Hawking wave function for this model in-
cludes only the growing exponential fora,H21 and a linear
combination of incoming and outgoing waves with equal
amplitudes ata.H21. The mode functionsnn are given by
Eq. ~12! and are the same as those for the tunneling wave
function. It is easily seen that the two wave functions are not
related by the transformationS→2S, as suggested by
Bousso and Hawking@see Eqs.~5!, ~6!#.

It is well known that a particle detector responds in the
Bunch-Davies vacuum as if there was a thermal distribution
of particles with temperatureH/2p @18#. This is already in
qualitative agreement with the instanton result~9!. The cor-
respondence can be made even more precise by using the
method of Bogoliubov coefficients@20#.

For m@H and for eachn, an unambiguous definition of
particles can be given at late times. The scalar wave equation
is given by

n̈n13Htanh~Ht !ṅn1m2nn1
~n221!

a2 nn50, ~13!

where now the dots indicate derivative with respect to cos-
mological time defined bya5cosh(Ht). For t@tn , wheretn
is the time at which the particles become nonrelativistic,
a(tn);nH/m, the last term can be ignored and we have
approximate solutions of the form

nn}a23/2~aneivt1bne2 ivt!,

wherev[Hum21/2u'm. For largem, the exponentials os-
cillate fast compared with the expansion rate and we have a
good definition of positive and negative frequency modes
corresponding to our ‘‘out’’ vacuum. The Bogoliubov coef-
ficients bn can be readily found by using the expansion of

the hypergeometric functions~12! at late times and the nor-
malization conditionuanu22ubnu251. The expectation value
of the number of ‘‘out’’ particles in a given mode is then

Nn5ubnu25~e2pv/H21!21'e22pm/H.

The distribution is independent ofn, as expected for nonrel-
ativistic particles. At any given time, the occupation numbers
of the relativistic modes are exponentially suppressed with
respect to the nonrelativistic ones, so the distribution is cut
off at n;am. The resulting particle production rate per unit
physical volume is (dN/dtdV);m3Hexp(22pm/H) @20#. In
Ref. @19# it was shown that the same rate can be obtained by
considering the one-loop prefactor to the instanton contribu-
tion. There, the cutoff arises because particles with
n@a(t)m have not been created yet at timet.

Hence, the tunneling boundary condition does not lead to
disastrous pair production, but to a result which is in good
agreement with the instanton calculation.

In following this tunneling vs Hartle-Hawking debate, the
reader should be aware that both wave functions are far from
being rigorous mathematical objects with clearly specified
calculational procedures. Except in the simplest models, the
actual calculations ofcT and cHH involve additional as-
sumptions which appear reasonable, but are not really well
justified. ~The results presented in this paper are no excep-
tion.! For a recent discussion of the problems associated with
defining and interpreting the cosmological wave function
see, e.g., Ref.@11#.
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