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The mutual information expansion (MIE) represents an approximation of the configurational entropy
in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation
data of large systems, such as macromolecules, for which brute-force evaluation of the full config-
urational integral is intractable. Here, we test the validity of MIE for systems consisting of more
than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian
distributions which were generated from protein structures using a variant of the anisotropic network
model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy
as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for
different situations. We find that MIE diverges for systems containing long-range correlations which
means that the error of consecutive MIE approximations grows with the truncation order n for all
tractable n� m. This fact implies severe limitations on the applicability of MIE, which are discussed
in the article. For systems with correlations that decay exponentially with distance, MIE represents
an asymptotic expansion of entropy, where the first successive MIE approximations approach the
exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy
expansion when truncated up to a specific truncation order which depends on the correlation length
of the system. Published by AIP Publishing. https://doi.org/10.1063/1.4996847

I. INTRODUCTION

Computer simulations have become a major tool for
unraveling the microscopic mechanisms behind biological
processes. Trajectories of molecular dynamics simulations
give full access to the time evolution of all simulated atoms,
which, in principle, allows to watch biology at play on the com-
puter screen. Snapshots of Monte Carlo simulations, albeit not
in chronological order, still permit to measure the exact spatial
distribution of the atoms at equilibrium. It is for these powerful
capabilities that both techniques have been applied extremely
successfully to a variety of biological systems during the last
40 years.1

Many biological processes are equilibrium processes
which occur spontaneously with no energy consumption
required. Those processes are often governed by a delicate
balance between the (time-averaged) energy and entropy.2–6

For a theoretical understanding of the process, it is essential
to obtain good estimates for both terms from the simulation.
Taking only energy into account might be insufficient since
entropy has strong impact on important processes such as
protein folding and ligand binding.7–16 The behavior of more
flexible proteins, such as intrinsically disordered proteins, is
even strongly controlled by entropy.17–19

a)Electronic mail: martingoethe@ub.edu

While acceptable energy estimates can directly be
obtained from the simulations, entropy is less accessible since
entropy is an ensemble measure. Precisely, the entropy S is
defined as the integral

S ≡ −kB

∫
dxm ρ

(
x
)
logρ

(
x
)

(1)

performed over all m degrees of freedom (dofs) of the system,
x1, x2, . . . , xm. Here ρ(x) denotes the joint probability density
function (pdf) of the dofs and kB denotes the Boltzmann con-
stant. Computing the integral from the simulation snapshots is
hindered by the “curse of dimensionality”20 which implies that
measuring S accurately requires a number of snapshots Mdata

which scales exponentially with m. This renders brute-force
evaluation of Eq. (1) impossible for large m.

To obtain entropy estimates also for macromolecules,
approximations of the integral (1) need to be considered. Var-
ious approaches have been proposed for this purpose which
can be classified into parametric and non-parametric meth-
ods.21 Parametric methods are based on the assumption that
the dofs are distributed according to a particular pdf for which
Eq. (1) can be integrated analytically. The data are fitted to this
pdf, and the associated entropy of the fitted pdf is used as an
estimate for S. Most approaches are based on the multivariate
Gaussian distribution22–25 but also other distributions26,27 have
been employed. Parametric methods have the technical advan-
tage that no numerical integration is involved. Their accuracy
is determined by the quality of the involved fit, and hence,
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depends crucially on the used coordinate representation.16,28

While the parametric assumption may hold sufficiently well
in a particular coordinate system, it may fail entirely in
another.

Non-parametric methods rely on an alternative approach
unrelated to any particular pdf. Equation (1) is approximated
in terms of low-dimensional integrals which represent the
marginal entropies of subsets containing up to n dofs. The
truncation order n is chosen sufficiently small such that all inte-
grals can be computed reliably from the snapshots via binning
or more elaborated integration techniques.29,30 In real-world
applications, n equals a small integer, typically less than six,
since the curse of dimensionality dictates n = O(log(Mdata)).

Two unrelated non-parametric approaches have been pro-
posed which are feasible for large systems: the maximum infor-
mation spanning tree expansion (MIST)31,32 and the mutual
information expansion (MIE).33–35 MIST is based on an expan-
sion of Eq. (1) which is truncated at order n. This expansion is
mathematically rigorous as guaranteed by the exact inequali-
ties S(1)

MIST ≥ S(2)
MIST ≥ · · · ≥ S(m−1)

MIST ≥ S(m)
MIST = S, for consecu-

tive MIST approximations S(n)
MIST.31 Hence, MIST truncated at

successive orders n = 1, 2, . . . , m approximate S with increasing
accuracy.

MIE provides an expression for S which can be derived
from Eq. (1) by iterative application of the generalized Kirk-
wood superposition approximation.34 Also the untruncated
MIE expression equals S exactly (see Sec. II). However, unlike
MIST, successive truncations of MIE are not guaranteed to
yield entropy approximations of increasing quality. Mean-
ing, it has not been proven that the error |S − S(n)

MIE | of the

nth MIE approximation S(n)
MIE decreases for consecutive trun-

cation orders n. Moreover, MIE has never been tested for
high-dimensional systems containing more than m ≈ 20 dofs.
Hence, it is unknown whether MIE truncated at low order n
� m approximates S acceptably well for large systems. This
is of particular importance since MIE has been applied to a
multitude of systems.11,19,36–41

In this work, we test MIE for large systems of up to m
= 150 dofs and various truncation orders n = 1, 2, . . . , 6. This
represents the natural situation for which MIE has been pro-
posed, namely, when brute-force estimation of S is intractable.
We use multivariate Gaussian distribution for which S as well
as all MIE contributions can be calculated semi-analytically to
arbitrary precision. Our test highlights severe limitations for
the applicability of MIE.

II. METHODS
A. The mutual information expansion

MIE33–35 expresses the high-dimensional integral of
Eq. (1) in terms of specific low-dimensional ones which can
reliably be computed from the simulation snapshots. We con-
sider a system of m dofs described by continuous coordi-
nates x1, x2, . . . , xm. The set of all coordinates is denoted
by Am ≡ {x1, x2, . . . , xm} while subsets containing exactly k
coordinates are denoted by Uk . As short hand for a coordinate
set {xi1 , xi2 , . . . , xik }, we use the set of indices {i1, i2, . . . , ik}.
The marginal entropy of a set of dofs Uk = {i1, i2, . . . , ik } is

the k dimensional integral

Sk(Uk) ≡ −kB

∫
dxi1 dxi2 . . . dxik ρ(Uk) log ρ(Uk), (2)

where ρ(Uk) denotes the joint probability distribution of Uk .
The lower index k of Sk reflects the dimensionality of the inte-
gral. The mutual information (MI) of two dofs U2 = {1, 2} is
defined as

I2(U2) ≡ S1(1) + S1(2) − S2(1, 2). (3)

MI has been generalized to larger sets of dofs Uk with k > 2.
It is defined as

Ik(Uk) ≡
k∑

l=1

(−1)l+1
∑

Xl⊂Uk

Sl(Xl), (4)

where Xl denotes a subset of Uk containing exactly l coor-
dinates and where the second sum runs over all

(
k
l

)
possible

subsets Xl. For example, the third order MI for U3 = {1, 2, 3}
is given by

I3(U3) = S1(1) + S1(2) + S1(3) − S2(1, 2)

− S2(1, 3) − S2(2, 3) + S3(1, 2, 3). (5)

Using these definitions, one can write the total entropy S as

S = Sm(Am) =
m∑

k=1

(−1)k+1Tk , (6)

where
Tk ≡

∑
Uk ⊂Am

Ik(Uk) (7)

is the sum of the mutual information for all possible
(

m
k

)
sets

Uk⊂Am. Note that the lower index k of Ik and T k reflects the
highest dimension of all involved integrals.

The mutual information expansion of order n represents
a truncation of Eq. (6) after n terms,33–35 i.e.,

S(n)
MIE ≡

n∑
k=1

(−1)k+1Tk (8)

=

n∑
k=1

(−1)n−k
(
m − k − 1

n − k

) ∑
Uk ⊂Am

Sk(Uk). (9)

Equation (9) is obtained by rearrangement of all occurring
marginal entropy terms (see the Appendix). This “unrolled”
representation is useful as it allows to compute S(n)

MIE in an iter-
ative way where each marginal entropy contribution Sk(Uk)
occurs only once throughout the calculation. For n = m,
Eq. (9) further shows that the equality of Eq. (6) holds trivially
just because all Sk with k < m cancel, i.e., Eq. (6) indeed reads
Sm(Am) = Sm(Am) after cancellation.

B. MIE for a multivariate Gaussian distribution

We limit our analysis to a particular case for which we have
semi-analytical access to all involved integrals. This allows us
to accurately estimate the error due to MIE since the integrals
can easily be computed to arbitrary precision. We assume that
the m dofs are distributed according to a multivariate Gaussian
distribution with zero mean and positive-definite covariance
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matrix Σ. The joint probability density function (pdf) is given
by

ρ(Am) ≡
1

(2π)m/2 [det Σ]1/2
exp

(
−

1
2

xt
Σ
−1 x

)
, (10)

where the superscript (.)t denotes transposition and det denotes
the determinant. The associated entropy of the distribution
reads

S = Sm(Am) =
kB

2
log det Σ + mη (11)

with η ≡ kB log (2πe)/2 ≈ 1.419kB.42 The multivariate Gaus-
sian distribution has the desirable property that the marginal
pdf of any subset Uk of dofs is also a multivariate Gaussian
with (k × k)-dimensional covariance matrix ΣUk . ΣUk is read-
ily generated from Σ by deleting all rows and columns which
correspond to dofs not included in Uk .43 Consequently, the
associated marginal entropy Sk(Uk) for Uk⊂Am simply reads

Sk(Uk) =
kB

2
log det ΣUk + kη. (12)

Hence, for a multivariate Gaussian distribution, computing all
terms of Eq. (9) reduces to the calculation of determinants of
sub-matrices of Σ. This was done efficiently and accurately by
using Cholesky decomposition and arbitrary-precision arith-
metics. Since the number of summands contributing to S(n)

MIE
grows very rapidly with m and n (where n� m), we addition-
ally rearranged all sums as sums of adequate partitions of the
data to prevent precision loss. We further made use of the fact
that all contributions proportional to η cancel in Ik with k > 1.

It is advantageous to express the covariance matrix Σ
= D R D in terms of the correlation matrix R and the fluctuation
matrix D ≡ diag(σ1, σ2, . . . , σm) which is a diagonal matrix
with the standard-deviationsσi ≡ std-dev(xi), (i = 1, . . . , m) on
the main diagonal. The total entropy S then decomposes into
S = Sfluct + Scorr where Sfluct ≡

∑m
i=1 S1(i) is the contribution to

the entropy produced by the fluctuations of the dofs if they were
all independent, and Scorr ≡

kB
2 log det R ≤ 0 is a negative con-

tribution to the entropy entirely caused by the correlations of
the dofs. The first MIE contribution T1 equals Sfluct, i.e., S(1)

MIE
accounts only for the fluctuation part of the entropy, neglecting
all correlations. This equality is exact and does not need to be
tested. Unclear is, whether S(n)

MIE −T1 truncated to higher order

2 ≤ n� m approaches Scorr. Trivial equality S(m)
MIE −T1 = Scorr

is found for n = m, as discussed above. In this work, we check
whether the error |S−S(n)

MIE | decreases with the truncation order
n for small values of n�m. Precisely, we generate covariance
matrices Σ (see below), calculate R, and compare S(n)

MIE − T1

with Scorr. This tests the situation relevant for application: for
a system of many dofs m, one calculates S(n)

MIE for small trun-

cation order n, say n = 2 to 5, and expects that S(n)
MIE is a better

approximation to S than simply Sfluct.

C. Anisotropic network model

We employ the anisotropic network model (ANM)44,45 to
generate covariance matrices Σ from protein structures. The
model stems from the potential energy

V̂ (x) =
γ

2

N∑
i,j;
i<j

(rij − dij)
2 θ(rc − dij) (13)

representing N beads in 3 dimensions coupled by harmonic
springs if their equilibrium distance is smaller than a cutoff
distance rc. Here, γ is the coupling constant setting the energy
scale, dij = dist(Oi, Oj), Oi is the equilibrium positions of bead
i, dist(A, B) is the Euclidean distance between A and B, rij

= dist(Oi + ξ i � Oj � ξ j), ξ i is the displacement vectors of
bead i from its equilibrium positions Oi, θ is the Heaviside
step function, and x = [ξ t

1, ξ t
2, . . . , ξ t

N ]t denotes the 3N dimen-
sional vector composed of all displacement vectors {ξ i}. By
expanding V̂ around x = 0 to second order in x, one obtains
the potential energy

V0 = xt H x (14)

of the ANM in terms of the (3N × 3N)-dimensional Hessian
matrix

H =
*.....
,

H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...
HN1 HN2 · · · HNN

+/////
-

(15)

which is composed of (3 × 3)-dimensional sub-matrices H ij.
To construct H from a set of given equilibrium positions {Oi},
we first initialize all sub-matrices equal to zero. For all pairs
(Oi, Oj) with i < j and dist(Oi, Oj) < rc, we then update
H ii ← H ii + W, H jj ← H jj + W, H ij ← H ij � W, and H ji

← H ji � W where W = (ddt)/(dtd) and d = Oi � Oj. The Hes-
sian H possesses at least 6 eigenvalues equal to zero because
Eq. (13) is invariant under translation and rotation. Addi-
tional zero eigenvalues occur if a bead is coupled to less than
three other beads and/or if the positions {Oi} show additional
symmetries.

We also study a variant of the ANM referred to as the
modified anisotropic network model (mANM) which is found
to exhibit only short-range correlations. It is defined by Vε
= xt Hε x with

Hε = H + ε1, (16)

where 1 denotes the unitary matrix and ε > 0 is a parameter.
The ANM is recovered for ε = 0.

Since Vε is a quadratic form in x, the displacement vec-
tor x is multivariate Gaussian distributed with zero mean and
covariance matrix,

Σ =
kBT
γ

H−1
ε , (17)

where H−1
ε denotes the (pseudo-)inverse of Hε and kBT

denotes the product of the Boltzmann constant and temper-
ature. For simplicity, we set γ = kBT. The (3 × 3)-dimensional
sub-matrix of Σ for the coordinates of the beads i, j is denoted
by Σij.

III. RESULTS

Before we consider more realistic models of macro-
molecules, we first check the validity of MIE for the ANM
in one dimension. To this end, we place N beads at the posi-
tions Oi = (i, 0, 0)t for i = 1, . . . , N and couple only nearest
neighbors by setting rc = 1.5. The Hessian has the following
tridiagonal form:
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H(α1, α2) =

*..........
,

2 − α1 −1 0 . . . α2

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

α2 . . . 0 −1 2 − α1

+//////////
-

(18)

after reduction to the rows and columns which correspond to
the x-coordinates of the beads. The parametersα1 andα2 select
for the applied boundary conditions. Open boundary condi-
tions are established for (α1, α2) = (1, 0) while periodic bound-
ary conditions for (α1,α2) = (0,�1). In both cases,H possesses
one zero eigenvalue (due to the symmetry of V under parallel
translation of all beads) which renders the MIE test impossible.
Therefore, we introduce a third type of boundary conditions
by setting α1 = α2 = 0 which breaks the symmetry and ensures
det H(0, 0) > 0. Anyway, except for the zero eigenvalue, all
three models have the same asymptotic behavior since inde-
pendently of the boundary condition, log det+ H = O(log(N))
with det+ being the pseudo-determinant.

For the linear-chain model given by H(0, 0), Fig. 1(a)
shows the MIE contributions T2, T3, T4, and T5 of Eq. (7)
as a function of the number of dofs m (where m equals the
number of beads in 1D). To leading order, all terms grow with
a different power of m, i.e.,

Tk = O(mk) (19)

for m → ∞ and k fixed. Consequently, also S(n)
MIE is of order

O(mn) while the true entropy S is of order O(m). Hence, for
this model, consecutive MIE approximations do not approach

S. Instead, MIE diverges since the error |S − S(n)
MIE | = O(mn)

increases dramatically with n for 1 < n � m. To be precise,
we use the term “divergence” to describe that the error of MIE
grows with n for all tractable values of n� m. We remind the
reader that MIE is exact for n = m (see Sec. II) which shows
that the error of MIE will occasionally decrease with n for
intractable large n ∼m. However, this crossover behavior does
not matter here since n is limited to small values in practice.

The divergence of MIE for the linear-chain model can
be traced back to the strong correlations between the dofs
of the model. Figure 1(b) shows the correlation matrix R
= D−1H(0, 0)−1D−1 of the model. WhileH(0, 0) is sparse since
only nearest-neighbor beads are coupled, R takes non-zero
values everywhere. Also distant beads are strongly correlated
since correlations are “transmitted” along the chain of inter-
acting beads. The associated correlation function C(d) decays
asymptotically as

C(d)/const. ∼ 1 − const.
d
m

(20)

with distance d = |i � j| (see the Appendix) which only van-
ishes for d = O(m) such that each dof is correlated to O(m)
others. This fact also emerges in the sub-linear behavior S � ηm
= �

kB
2 log (m + 1) instead of the usual linear behavior for

systems with short-range correlations.
These strong correlations give rise to the scaling behav-

ior of Eq. (19) which can readily be illustrated for T2

=
∑

U2⊂Am
I2(U2). There are

(
m
2

)
= O(m2) many summands

I2 ≥ 0. Therefore, T2 can only be O(m) if each bead is inde-
pendent of all but O(1) many beads. In the linear-chain model,

FIG. 1. (a) MIE contributions T k (k = 2, 3, 4, 5) as a function of m for the ANM in 1D, i.e., the linear-chain model defined by H(0, 0) of Eq. (18). Asymptotically,
Tk = O(mk) which implies that MIE strongly diverges for this model since |S − S(n)

MIE | = O(mn). The first asymptotic, T2 ∼ m2/8, is derived in the Appendix.

(b) Illustration of the correlation matrix R = D−1H(0, 0)−1D−1 for the ANM in 1D and m = 100. The ANM exhibits strong correlations. All dofs are mutually
correlated.
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all beads are mutually correlated which leads to T2/kB ∼m2/8 +
o(m2) (see the Appendix). Also the higher order contributions
T k with 2 < k ≤ n� m will in general only be of order O(m)
for systems with no long-range dependencies. A proof for a
general model cannot be given here because Ik is not of defined
sign for k > 2. However, exact cancellation is unlikely to occur
in general.

Summarizing, MIE truncated at order n with 1 < n � m
does not serve as a useful entropy expansion for systems which
exhibit long-range correlations. This represents a severe lim-
itation for the applicability of MIE. Long-range correlations
can occur for various reasons, e.g., due to thermal fluctuations
close to a critical point46 or due to insufficiently screened
Coulomb interactions.47 Moreover, long-range correlations
can also be generated artificially if the system is represented
inappropriately. This can happen if m dofs are represented by M
>m coordinates which fulfill M �m constraints. The M coordi-
nates (or subsets of them) become mutually dependent as they
are coupled through the constraints. This can cause the diver-
gence of MIE if sufficiently many coordinates are affected.
Arguably the most prominent example for this situation is the
use of Cartesian coordinates to describe the atom positions
of macromolecules. The stiffness of the bond lengths causes
dependencies between the Cartesian coordinates leading to the
divergence of MIE. Furthermore, collective motion of the dofs
will also cause MIE to diverge if the collective motion is inher-
ent also in the coordinate representation. Assume an ideal gas
in a container which performs oscillatory movement. The gas
atoms are independent when represented in a coordinate sys-
tem which is linked to the container while they are strongly
correlated through the collective motion when expressed in an
external coordinate system. Various types of collective motion

have been observed in proteins48–50 such as hinge bending
motion where distinct subregions perform periodic relative
motion or breathing modes where the total volume of the
protein oscillates periodically. In the literature, however, MIE
was applied to internal coordinates51 when used to estimate
molecular entropies. For such coordinates, long-range corre-
lations caused by collective motion are vastly reduced, even
below the resolution threshold for µs simulations.52

In the remaining, we test MIE for systems that only exhibit
short-range correlations. To this end, we study the mANM of
Eq. (16) which represents the ANM extended by an additional
force driving all beads independently to their equilibrium
positions such that long-range correlations are suppressed.

The Hessian of the mANM in 1D reads Hε = H(0,−1)
+ ε1 with ε > 0 when periodic boundary conditions are
applied which reduces finite-size effects but does not alter the
asymptotic behavior of the model. The associated correlation
function

C(d)/const. ∼ exp(−d/ξ) (21)

decays exponentially at large distances with the correlation
length

ξ =

[
arcosh

(
2 + ε

2

)]−1

(22)

(see the Appendix). Hence, each bead is now correlated to
only O(1) many beads as shown in Fig. 2(a). This meets the
necessary condition for MIE established previously since for
a multivariate Gaussian distribution, the absence of correla-
tions implies independence. It further leads to the usual O(m)
behavior S � ηm ∼ � kB

2ξm (see the Appendix).
For the mANM in 1D, all MIE terms T k are asymp-

totically proportional to m as shown in Fig. 2(b) where

FIG. 2. (a) Correlation matrix Rε for the mANM in 1D with periodic boundary conditions, defined by Hε = H(0,−1) + ε1. We choose ε = 0.062 83 which
corresponds to a correlation length ξ ≈ 4.0. Each dof of the mANM is correlated to onlyO(m) many dofs which meets the necessary condition for MIE established
previously. (b) Unsigned error of MIE per dof, (−1)n(S − S(n)

MIE)/m, as a function of m for the same model as in (a). For the mANM, Tk = O(m) since the curves
flatten out for m→∞. MIE also diverges for ξ ≈ 4.0 since the error grows with n. Note the additional oscillations absorbed into the factor (�1)n.
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FIG. 3. The asymptotic value limm→∞(− 1)n(S −S(n)
MIE)/m as a function of the truncation order n for various values of ξ ∈ [2.0, 5.0]. The data suggest that MIE

represents an asymptotic expansion of entropy. Consecutive MIE approximations S(n)
MIE approach S for truncation orders smaller than some critical value n0(ξ)

while MIE diverges for larger values of n (i.e., for n0 < n � m). n0(ξ) = 1 for large correlation lengths ξ ≥ 3.6, i.e., MIE is unable to improve the naive entropy
estimate Sfluct = S(1)

MIE =
∑m

i=1 S1(i) obtained by neglecting all correlations. For intermediate ξ ∈ [2.899, 3.4], we find 1 < n0 < 6, i.e., MIE improves Sfluct when
truncated at n with 1 < n ≤ n0. For small ξ ≤ 2.884, we conjecture that n0 ≥ 6.

(−1)n(S−S(n)
MIE)/m is plotted as a function of m for ε = 0.062 83

corresponding to ξ ≈ 4.0. The different curves for S(1)
MIE, S(2)

MIE,

. . . , S(6)
MIE flatten out for m & 80 confirming Tk = O(m).

However, reading off the asymptotic values k−1
B limm→∞(S −

S(n)
MIE)/m yields �0.466, 0.535, �0.755, 1.130, �1.723, 2.645

for m = 1, 2, 3, 4, 5, 6, respectively. Hence, MIE still diverges
since the absolute error increases with the truncation order n.

To assess the dependence of ξ on the behavior of MIE, we
show in Fig. 3 the asymptotic value limm→∞(−1)n(S−S(n)

MIE)/m
as a function of the truncation order n for various values of ξ
∈ [2.0, 5.0]. MIE diverges for large values of ξ ≥ 3.6 while
S(1)

MIE, S(2)
MIE, . . . , S(6)

MIE approach S for small ξ ≤ 2.884. For
intermediate values ξ ∈ [2.899, 3.4], a crossover behavior is
visible. While S(n)

MIE approaches S for the first truncation orders
n, it eventually diverges for larger n. These data suggest that
MIE represents an asymptotic expansion of entropy for sys-
tems with correlations that decay exponentially with distance.
Consecutive MIE approximations S(n)

MIE approach S for n = 1,
2, . . . , n0(ξ) up to a critical value n0(ξ) which depends on the
correlation length. Beyond n0(ξ), MIE diverges instead, i.e.,
|S − S(n)

MIE | grows with n for truncation orders n with n0 < n
�m. Our analysis for n ≤ 6 reveals this behavior for ξ ≥ 2.899
where n0(ξ) < 6. We conjecture that MIE represents an asymp-
totic expansion also for ξ < 2.899 with a larger value n0 ≥ 6.
Summarizing, MIE represents a useful entropy expansion for
small values of ξ where S(1)

MIE, S(2)
MIE, . . . , S(n0)

MIE approach S (up to
oscillations).

Finally, we show that the previous results obtained in one
dimension also hold in three dimensions. For this purpose,
we constructed mANMs in 3D using 85 protein structures
to define the equilibrium positions {Oi}. The selected pro-
teins contained 50 to 53 amino acids and showed at most
30% sequence similarity. Oi’s were placed at the alpha-carbon

positions of the inner 50 residues. Pairs of beads were coupled
up to a cut-off distance of rc = 15 Å.

Correlations decay exponentially with distance also for
the mANM in 3D. Figure 4 shows the correlation function

C3D(d) =
dt
Σij d

[
(dt
Σii d) · (dt

Σjj d)
]1/2

, (23)

where Σij is the sub-matrix of Σ for beads i, j and d = Oi

� Oj. No analytical expression is available for the dependence

FIG. 4. The correlation function of the mANM in 3D [Eq. (23)] for various
values of ε ∈ [0.5, 32] measured from 229 proteins (of maximal 30% sequence
similarity and 50 to 59 residues). Data points represent the median of all C3D
values for pairs of beads with distance d. Shaded areas show the first and
third quartiles. Data points for d > 20 Å were fitted to an exponential decay
resulting in the correlation lengths ξ given in the legend.



224102-7 Goethe, Fita, and Rubi J. Chem. Phys. 147, 224102 (2017)

FIG. 5. (a) Performance of MIE for the mANM in 3D (m = 150, constructed from 85 proteins). The sample average [(−1)n(S − S(n)
MIE)]sample shows the same

qualitative behavior found for the mANM in 1D (see Fig. 3). Error bars indicate one-sigma confidence intervals in both panels. (b) Probability pbetter that
|S − S(n)

MIE | < |S − S(n−1)
MIE | vs. n. Consecutive MIE approximations are likely more accurate for large values of ε and n = 1, . . . , 5, while MIE should be truncated

at n = 1 for small values of ε.

of the correlation length ξ on ε; however, ξ(ε) can readily be
obtained from the data. This confirmed that ξ → 0 for ε →
∞ as in 1D (see Fig. 4). Equation (23) represents a possible
definition of the correlation function in 3D which measures
the amount of correlation along d. Alternative definitions have
been proposed in the literature53 and the precise ξ(ε) depen-
dence varies between definitions. Qualitatively, we obtained
the same behavior for all possible definitions (not shown): the
correlations decay exponentially at large distance with ξ(ε)→
0 for ε → ∞. Hence, the necessary condition for MIE is met
since each dof depends only on O(1) many other dofs.

We compute MIE up to n = 5 for the mANM’s of all pro-
teins and various values of ε. Figure 5(a) shows the average
[(−1)n(S − S(n)

MIE)]sample vs. n where [. . . ]sample denotes averag-
ing over proteins. These averages show the same qualitative
behavior as described previously for 1D. For large values of
ε thus small correlation lengths, S(n)

MIE approaches S for n = 1,
2, . . . , 5. For intermediate values, consecutive MIE approxi-
mations first approach S but finally diverge for larger orders
n. For small ε or large ξ, MIE purely diverges such that S(1)

MIE

represents the best approximation. The sign of S − S(n)
MIE does

not alternate strictly with n for all proteins. However, most pro-
teins do follow the pattern such that [|S − S(n)

MIE |]sample behaves

quantitatively very similarly to [(−1)n(S − S(n)
MIE)]sample (not

shown).
Another representation of the data is given in Fig. 5(b)

where we show the probability pbetter that |S − S(n)
MIE | < |S −

S(n−1)
MIE | estimated via counting statistics. S(n)

MIE is likely to be a

better approximation than S(n−1)
MIE for small values of ξ and n

< n0, while MIE should be truncated at n = 1 for large ξ.

IV. DISCUSSION

We have tested the performance of MIE for multivariate
Gaussian distributions for which the exact entropy and all MIE

contributions can be computed to arbitrary precision. We stud-
ied systems containing a large number m of dofs and truncated
MIE at low orders n = 1, 2, . . . , 6�m. This case represents the
typical situation for which MIE was proposed, namely, when
m is too large for brute-force evaluation of Eq. (1) while low-
dimensional integrals up to n dimensions can be computed
from the available data.

We found that MIE diverges for systems which exhibit
long-range correlations. This severely limits the applicabil-
ity of MIE to systems in which each dof depends only on
O(1) many other dofs. MIE can neither be applied to systems
held in the vicinity of a critical point nor to systems contain-
ing unscreened long-range interactions. Moreover, MIE may
also diverge for purely short-range systems when the dofs are
inappropriately described in a coordinate representation which
artificially generates long-range correlations. This can happen
when m dofs are described by M >m coordinates that satisfy M
� m additional constraints. In general, the M coordinates will
be mutually dependent through the constraints which cause
MIE to diverge. This result questions the application of MIE
to macromolecules described in Cartesian coordinates (even
after subtraction of roto-translation).

If the correlation function decays exponentially at large
distances, our results are strong evidence that MIE repre-
sents an asymptotic expansion of entropy. S(n)

MIE occasionally
diverges with n for sufficiently large n, namely, for n0(ξ) < n
� m where n0(ξ) depends on the correlation length ξ of the
system. We found that n0 = 1 for large ξ such that MIE diverges
for all n. For small ξ, n0 > 1 such that the first consecutive MIE
approximations approach the correct result. For those cases,
MIE represents a useful entropy expansion when truncated at
order n ≤ n0.

Arguably the most important application of MIE is for
macromolecules represented with internal coordinates. Our
approach cannot be generalized to cover this case since internal



224102-8 Goethe, Fita, and Rubi J. Chem. Phys. 147, 224102 (2017)

coordinates do not follow a multivariate Gaussian distribution.
To our knowledge, it is unknown how the correlations of these
coordinates decay with distance; it is even not obvious which
distance definition should be used. If the associated correla-
tion function decays sub-exponentially at a large distance then
our results do not carry over to internal coordinates. How-
ever, sub-exponential decay is extremely unusual. Realistic
systems generally exhibit correlations which asymptotically
decay exponentially with distance. Assuming that such behav-
ior is also found for internal coordinates then it is natural
to believe that MIE represents an asymptotic expansion of
entropy also for internal coordinates. The value of the associ-
ated correlation length needs further investigation, but it is
probably rather small.52 For these reasons, we expect that
MIE serves as a useful entropy expansion for macromolecules
at physiological conditions when described in internal
coordinates.

APPENDIX: SUPPORTING CALCULATIONS

Equation (9) follows from the equality

S(n)
MIE =

n∑
k=1

λ(m, n, k)
∑

Uk ⊂Am

Sk(Uk) (A1)

with

λ(m, n, k) ≡
n−k∑
j=0

(−1)j
(
m − k

j

)
(A2)

established in Ref. 37 since

λ(m, n, k) = (−1)n−k
(
m − k − 1

n − k

)
, (A3)

where
(

.

.

)
denotes the binomial coefficients generalized to neg-

ative arguments.54 In particular, λ(m, m, k) = 0 for 0 < k < m
and λ(m, m, m) = 1 for m > 0. It follows that Eq. (6) holds
trivially because all marginal entropies Sk with k < m cancel
on the right hand side of Eq. (6).

The remaining appendix outlines various exact results for
the (modified) linear-chain model defined by the (m × m)-
dimensional Hessian Hε(m) = H(0, 0) + ε1 of tridiagonal
form with 2 + ε on the main diagonal and �1 on both
next-to-main diagonals.

The recursion relation

det Hε(m) = (2 + ε) · det Hε(m − 1) − det Hε(m − 2) (A4)

for the determinant of Hε is readily obtained via Laplace
expansion. The recursion is solved using linear algebra yield-
ing log det Σ = log det H−1

ε = − log det Hε with

log det Hε(m) =

{
log(m + 1) for ε = 0
m/ξ + o(m) for ε > 0

(A5)

with ξ defined in Eq. (22). This illustrates the fundamental
difference of the ANM and the mANM. An analytic expression
for the inverse matrix Σ = H−1

ε is available,55

Σi,j =




(i + j − |i − j |)(2m + 2 − |i − j | − i − j)
4(m + 1)

for ε = 0

cosh[(m + 1 − |j − i|)/ξ] − cosh[(m + 1 − i − j)/ξ]
2 sinh(1/ξ) · sinh[(m + 1)/ξ]

for ε > 0
(A6)

from which the asymptotic behavior of the correlation function
[Eqs. (20) and (21)] can be read off. Here, Σi ,j denotes the
element (i, j) of Σ. This should not be confused with Σij of the
main text which denotes a (3 × 3)-dimensional sub-matrix for
the 3D case. By using Eq. (A6) and dropping all sub-dominant
terms, one can express the asymptotic behavior of

T2 =
∑
i<j

I2(i, j) = −
kB

2

∑
i<j

log *
,
1 −

Σ2
i,j

Σi,iΣj,j

+
-

(A7)

for ε = 0 in terms of the Riemann integral

T2 = −
kB

2
m2

∫ 1

0
dx

∫ 1

x
dy log

(
x − y

y(x − 1)

)
+ o(m2) (A8)

over a right triangle of length unity which can be solved ele-
mentarily.56 In this way, we obtained T2 = kB

8 m2 + o(m2)
shown in Fig. 1. To prove Tk = O(mk) [i.e., Eq. (19)] for k
> 2, one can proceed in an analogous way. With Eq. (A6), a
Riemann integral representation for T k is found which is mul-
tiplied by a factor mk . Showing that the integral is finite can be

done (without explicitly solving it) by bounding the integral
appropriately.57
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21D. Suárez and N. Dı́az, “Direct methods for computing single-molecule
entropies from molecular simulations,” Wiley Interdiscip. Rev.: Comput.
Mol. Sci. 5, 1 (2015).

22M. Karplus and J. N. Kushick, “Method for estimating the configurational
entropy of macromolecules,” Macromolecules 14, 325–332 (1981).

23O. Edholm and H. J. C. Berendsen, “Entropy estimation from simulations
of non-diffusive systems,” Mol. Phys. 51, 1011–1028 (1984).

24J. Schlitter, “Estimation of absolute and relative entropies of macro-
molecules using the covariance matrix,” Chem. Phys. Lett. 215, 617
(1993).

25I. Andricioaei and M. Karplus, “On the calculation of entropy from covari-
ance matrices of the atomic fluctuations,” J. Chem. Phys. 115, 6289–6292
(2001).
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