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In the simplest model of open inflation there are two inflaton fields decoupled from each other. One of them,
the tunneling field, produces a first stage of inflation which prepares the ground for the nucleation of a highly
symmetric bubble. The other, a free field, drives a second period of slow-roll inflation inside the bubble.
However, the second field also evolves during the first stage of inflation, which to some extent breaks the
needed symmetry. We show that this generates large supercurvature anisotropies which, together with the
results of Tanaka and Sasaki, rule out this class of simple models~unless, of course,V0 is sufficiently close to
1!. The problem does not arise in modified models where the second field does not evolve in the first stage of
inflation. @S0556-2821~97!01216-2#

PACS number~s!: 98.80.Cq

Open inflation has recently received some attention as a
viable model for the early universe@1–5#. The first version
of the open universe model was based on the theory of one
scalar field@1,2#. However, no realistic models of that type
have been proposed so far. Then Linde and Mezhlumian pro-
posed a class of models involving two scalar fields@3#. The
simplest model discussed in@3# describes a tunneling field
s, responsible for bubble nucleation, and a free fieldf of
massm that undergoes slow rollover. The two fields are
decoupled from each other, except of course gravitationally.
When the fields is in its false vacuum, it dominates the
energy density and the universe is in a de Sitter phase with
constant Hubble rateH1. The true vacuum of the the field
s has vanishing energy density, and when a bubble nucle-
ates, the slowly rolling fieldf drives a second period of
inflation in its interior, with Hubble rateH25(m2f2)1/2.

In order for this model to work, the fieldf has to evolve
very slowly outside the bubble. Otherwise, the surfaces of
constantf would not be well synchronized with the hyper-
boloids of constants inside the bubble, and large anisotro-
pies could be expected. The danger of this effect was already
realized in@3#, therefore Linde and Mezhlumian also sug-
gested the possible modifications of the simplest model
where synchronization was exact and no such problems ap-
pear. However, since the simplest model looks more natural,
it would still be interesting to clarify whether or not it is
compatible with observations for some range of the param-
eters.

Outside the bubble of the fields, we have

f~x,t !'fs[Ae2aH1 t̂, ~1!

where t̂ is the cosmological time in the flat Friedmann-
Robertson-Walker~FRW! chart, anda5m2/3H1

2!1 is the
slow-rollover parameter. We shall now concentrate on fluc-

tuations which will arise because of thet̂ dependence off,
so we takeA to be constant over the region of interest.

The true and false vacua for the fields are strongly non-
degenerate, which means we are in the thick wall regime. For
simplicity, we shall take the solution~1! to be valid every-
where outside the forward light cone from the nucleation
event. This approximation is clearly valid if the bubble size
at the moment of nucleation is small compared withH1

21.
Inside the light cone, the spacetime can be covered with

the open chart

ds252dt21a2~ t !@dr21sinh2r ~du21sin2udw2!#. ~2!

The scale factora obeys the Friedmann equation

~12V!ȧ251, ~3!

where V is the density parameter and at early times
a(t)'t. To propagate the solution~1! to the inside of the
light cone we can use the following trick. Let us assume that
inside the bubble, and fort,t* !H1

21, the universe is still
de Sitter, with the same Hubble parameterH1. Since at early
times the universe is dominated by curvature, this assump-
tion will turn out to be harmless. Introducing in Eq.~1! the
relation between the flat and open de Sitter coordinates
t̂5 ln(coshH1t1sinhH1tcoshr), we have

fs5A~coshH1t1sinhH1tcoshr !2a. ~4!

Of course Eq.~4! satisfies the field equation to first order in
the slow-rollover parametera:

f̈s13
ȧ

a
ḟs1

~] r
212cothr ]r !

a2 fs1m2fs5O~am2fs!,

~5!
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with a5H1
21sinh(H1t). However, we should note that from

the point of view of the open chart, Eq.~4! is not a slow-
rollover solution. The largest terms in Eq.~5! for t!H1

21 are
the gradient and friction terms, which balance each other.

The question is now to evolve the approximate solution

fs'~11H1tcoshr !2a, ~6!

which is valid for t,t* !H1
21, into the second period of

inflation. Since Eq.~6! is not an eigenfunction of the Laplac-
ian, one might be tempted to expand it treatingH1t* coshr as
a small quantity, given thatt* can be chosen as small as
desired. However, this would not be appropriate. The scale
factor behaves asa(t)'t up to a time t;H2

21, where
H2!H1 is the Hubble rate at the beginning of the second
period of inflation. Therefore, the comoving size of our
causal past~i.e., the region that has an influence on our ob-
servable universe! at time t* is

Dr;2 ln~H2t* !@1 ~7!

andD(H1t* coshr);H1 /H2@1. Hence the second term in the
parentheses in Eq.~6! is not uniformly small compared to the
first over a sufficiently large patch.

A better strategy is to study a region where the second
term in Eq.~6! dominates. Note that since Eq.~6! is spheri-
cally symmetric, the universe would still look isotropic
around us if we lived in the privileged positionr 50. The
most interesting effects will occur if we live at some
r 5r 0@1. Actually, since the volume grows exponentially
with r , that is where we are most likely to be found. Taking
r 0.2 ln(at*

2H1H2), we have

fs'A~11H1t* coshr !2a'A~H1t* coshr !2a@11O~a2!#

over a region of comoving size~7! centered aroundr 0.
It is now convenient to change the coordinates (r ,u,f) on

the spacelike hyperboloid to a new set (r 8,u8,f8) such that
the point r 5r 0 will be the new origin of coordinates
r 850. One can show that

coshr 5sinhr 0sinhr 8cosu81coshr 0coshr 8.

Our solution is now of the form

fs'B~ t ! f 2a~r 8,u8!, ~8!

where

f ~r 8,u8![~coshr 81sinhr 8cosu8!. ~9!

Note that, to first order ina, f 2a is an approximate eigen-
function of the Laplacian~with eigenvalue22a), and there-
fore we can factorize the time dependence in Eq.~8!.

It can be checked that between the timest* and
t2;H2

21 the gravitational backreaction of the scalar field
perturbations can be neglected, and hence all that will hap-
pen is thatB(t) will evolve as t2a. After t2;H2

21 slow
rollover will set in and gravitational backreaction has to be
taken into account. For this purpose, one has to separate the
field into a background partf0(t) and a perturbationdf.
Since the gradient terms are negligible in the slow rollover
regime ~the wavelength of the perturbations we consider is

much larger than the horizon!, df need not be an eigenfunc-
tion of the Laplacian, and the decomposition into back-
ground and perturbation has some degree of arbitrariness.
We choosef05B(t2) anddf5B(t2)a lnf at the time when
the slow rollover starts inside the bubble. The standard pro-
cedure then yields the answer that at the end of inflation the
gauge-invariant potential is given by

F'
3

5

H2df

ḟ0
U

t5t2

5
3

5S H2

H1
D 2

lnf ~r 8,u8!. ~10!

Somewhat surprisingly, the answer does not depend onm2

but only on the ratio between the Hubble rates inside and
outside the bubble~of course, in a slow-roll model,H2 indi-
rectly depends onm2, for fixed spatial curvature!. In Fig. 1
we plot the potentialF at the surface of last scattering
r LS5arccosh@(2/V0)21# for different values ofV.

It remains to be seen howF contributes to observables.
The present Hubble radiusH0

21 corresponds to the comoving
distancer 085@a(t0)H0#215(12V0)1/2, where the subindex
zero indicates the present time, and we have used Eq.~3!. If
the present spatial curvature is small, thenr 0

8!1 and lnf can
be expanded as

lnf 'x2
x2

2
1

x3

3
1•••,

where

x[~sinhr 8cosu81coshr 8!21!1. ~11!

As mentioned before, lnf is not an eigenfunction of the La-
placian, and is not normalizable, another illustration of how
non-normalizable supercurvature modes can arise in the open
inflationary models.

The dominant contribution for small curvature is propor-
tional to x. The term in parentheses in Eq.~11! is a super-
curvature mode with eigenvalue of the Laplacian equal to
13, and it can actually be checked that it is pure gauge. It
corresponds to the shift (dt,dxi)5(Ft,F, i lnt) during the
curvature dominated period. The constant21 in Eq. ~11!

FIG. 1. The gauge potentialF at the surface of last scattering
r LS5arccosh@(2/V0)21# as a function of the polar angleu8, for
V0 ranging from 0.3 to 0.9.~The anisotropy has azimutal symme-
try.!
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will also not induce any anisotropies. Therefore, the first
nontrivial contribution will stem from thex2 term in the
expansion of lnf. This is proportional tor 82cos2u8. Hence,
the dominant effect will be in the quadrupole. Higher multi-
poles, labeled byl , will be accompanied byr 8 l . Since
r LS8 '2(12V0)1/2, we have

dT

T U
l

class

; f l~12V0! l /2S H2

H1
D 2

, ~12!

where f l;1021. We have numerically checked that the
above estimate works well by order of magnitude, even for
V0 as low as 0.3 andl &10. Notice that this is a classical
effect, and cosmic variance cannot be invoked to minimize
it. The integrated Sachs-Wolfe effect is shown in Fig. 2 as a
function of the polar angleu8 and for different values of

V0 ~the monopole and dipole contributions have been sub-
tracted!. For lowV0, the anisotropy would show up as a cold
spot of small angular size.

Unless the curvature of the universe is very small, the
ratio H1 /H2 would have to be large in order to avoid conflict
with observations. For moderate curvature, we need
(H1 /H2)*102, whereas for (12V0)!1 one can get away
with a lower ratio.

However, Tanaka and Sasaki have shown that the quan-
tum fluctuations off generated during the first stage of in-
flation induce an enhancement of the temperature anisotro-
pies in supercurvature modes compared with the fluctuations
in subcurvature modes@6,7#:

dT

T U
l

sup

;~12V0! l /2S H1

H2
D dT

T
sub.

Comparing with Eq.~12! the ratio of Hubble constants ap-
pears reversed. If what we observe is due to quantum fluc-
tuations generated during inflation, thendT/Tusub;1025.
With (H1 /H2)*102, as required above for moderate curva-
ture, the model would give rise to temperature anisotropies
of order 1023, which are ruled out by observations. Of
course the model can be saved if the curvature is sufficiently
small, say, (12V0)&1022.

Also, as we already mentioned, there are alternative mod-
els @3,5# in which the slow-roll fieldf does not evolve dur-
ing the first stage of inflation. These would not be con-
strained by the mechanism discussed above.
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FIG. 2. The temperature anisotropy as a function of the polar
angleu8, for the same values ofV0 as in Fig. 1. This is found from
numerical integration of the Sachs-Wolfe effect along the line of
sight. The monopole and dipole have been subtracted.
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