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We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open
universes, as was previously thought, but to an ensemble of very large but finite inflating “islands.” The
reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously
along both field directions and equal-time hypersurfaces in the open universe are not synchronized with
equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value
of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as
localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating
regions of comoving size of ordey !, where y is the supercurvature eigenvalue, which depends on the
parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the
hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized
inside of a single bubble. We may happen to live in one of those patches of comovinssize', where the
universe appears to be open. In particular, we consider the “supernatural” model proposed by Linde and
Mezhlumian. There, an approximaté(1) symmetry is broken by a tunneling field in a first order phase
transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find
that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the
bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.
[S0556-282(198)01410-9

PACS numbes): 98.80.Cq

I. INTRODUCTION In open(and in quasi-openinflation, the dynamics of
bubble nucleation and subsequent expansion turns out to be
In models of open inflation, which lead to a density pa-very important in determining the spectrum of gravity waves
rameter(),< 1, the “horizon” and “flatness” problems are and density perturbations. The reason is that, unlike the case
solved by two very different mechanisms. Although openof stardard inflation, the amount of slow-roll inflation is
inflation can be realized with a single scalar, realistic modelgninimal and the “initial conditions™ right after the bubble
look more natural when the task of solving each one of thes8ucleates are not washed out completely. Thus, for instance,
two problems is entrusted to a different scalar field. Neverguantum fluctuations of the slow-roll field generated outside
theless, models with two fields introduce a host of new efthe bubble can penetrate to the interi8i, causing pertur-
fects which should be carefully investigated. In particular, adations whose wavelength is larger than the curvature scale.
we shall see in this paper, most of the two-field models thaf hese are the so-called supercurvature m¢dgsAlso, the
have been recently proposed do not give rise to an infinitécattering of tensor modes off the bubble wall determines the
open universe but to a large inflating island of finite size: aspectrum of very long wavelength gravitational waves
qguasi-open universe.

The picture of open inflation is the following. The uni- = T T 7
\ ; . . -4 FRW -7
verse starts in a de Sitter phase driven by the potential energy  [\N\, QR . - - —- A
of a scalar fieldos which is trapped in a false vacuum. This -\ \\\ 5 / /7, y
false vacuum decays through quantum tunneling, and spheri- N~ / 7 o

background. After nucleation, the bubbles expand with con-
stant acceleration, following a “trajectory” which is invari- -
ant under Lorentz transformatior®(3,1); see Refs[1,2]
and Fig. 1. Since this is also the symmetry of an | \ |
open Friedmann-Robertson-WalkgFRW) universe, the

o=const surfaces in the interior of the bubble can be iden- g 1. conformal diagram showing a bubble expanding in a de
tified with thet=const sections of an open univef$d. In  sitter background. The bubble wall is represented as the thick gray
this way the symmetry of the bubble takes care of the "ho-jine starting at the point P. It expands with constant acceleration
mogeneity” problem. A second period of “slow-roll” infla- along a 5= const surface. The FRW open universe is inside the

tion inside the bubble, lasting for approximately 60 future light cone from the point O, which is the center of symmetry

e-foldings, would solve the “flatness” problef—7]. of the bubble solution.

cal bubbles of true vacuum nucleate in the smooth de Sitter _\XT
A
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[10,11. In the limit of a weakly gravitating wall, this effect V(D) A
can be alternatively described as a fluctuation of the bubble
wall itself, which induces supercurvature anisotropies inside
the bubblg/12-15.

In principle, tunneling and slow-roll can be done by the
same scalar fielf], but this requires a very special form of
the inflaton potentiaV. Denoting byH=(87GV/3)'? the
Hubble rate during inflation, a sharp barrier whefe>H? is
necessaryfor bubble nucleatiorfi17]. But this barrier must
be right next to a flatter region wheM”<H?, which is
needed to make slow-roll possible. Moreover, the duration of
slow-roll, which depends on the length of the plateau in the FIG. 2. The inflaton potential for the supernatural model. An
inflaton potential, has to be fine-tuned to some extent, beapproximate (1) symmetry is broken through bubble nucleation.
cause a feve-foldings more or less can make the differencewe call o the tunneling direction ane the direction orthogonal to
between an almost flat universe and an almost empty one.it. The instantonoy(7) interpolates between false vacuum at

As mentioned above, models with two fields were intro-7—«, andoy, at 7=0.
duced in order to overcome these difficulties, one doing the
tunneling and the other doing the slow-rfl]. In this way, transition, and slow-roll inflation inside the nucleated
the coexistence of two different mass scales seems mofubbles is driven by the pseudo Goldstone boson. In Sec. lll,
natural. Also, it was argued that in some models the value otve study the quantum fluctuations of the pseudo Goldstone
the slow-roll field after bubble nucleation can be different inboson in the bubble background. Section IV is the core of the
each nucleated bubble, and hence the duration of open infl@aper, where we argue that after tunneling, we do not obtain
tion would be different in each one. As a result, for a givenan infinite open universe, but an infinite ensemble of quasi-
temperature of the cosmic microwave backgro@iB), open universes inside a single bubble. Section V is devoted
one would obtain a different value of the density parameteto more general models, like the “coupled” and “un-
in each universe, and there would always be some open un¢oupled” two-field models. In Sec. VI we briefly describe
verses with a density parameter in the interesting r4hge  the observational implications of our results and in Sec. VII

The purpose of this paper is to show that in models of thigve summarize our conclusions.
sort, with variable(), the picture is actually more compli-

cated. Indeed, instead of an infinite open universe inside of Il. SUPERNATURAL INFLATION
each bubble, what we find is an infinite number of inflating ) ) _ o
islands of finite size inside each bubble. An attractive scenario for open inflation is the model of a

Quasi-open universes are not entirely new. The simpleﬁomplex sgalar field with a slight_ly tilted mexican hat pqten—
two-field model of open inflation, where the tunneling field 1@, (Sée Fig. 2 where the radial component of the field
and the slow-roll field are decoupled, is actually a quasi- does the tunneling and the pseudo Goldstone boson does the
open one, as emphasized by the authors of F&f.Quasi- slow-roll. This model was called “supernatural” inflation in
openness s in principle not a desirable feature, since to Ref-[5], because the hierarchy between tunneling and slow-
typical observer, the universe looks anisotrofi6]. In the  Foll mass scales is protected by the approximate glokal)
simple “decoupled” model, this “classical” anisotropy is Symmetry.
large and, combined with the effect of quantum “supercur- 1N€ action is given by
vature” fluctuations mentioned aboy8], it basically rules
out the mode[19]. S= _f d4x«/—g[a#<b* HD+V(D,D*)], (1)

To circumvent this problem, Linde and Mezhlumian in-
troduced a class of two-field models where the slow-roll field

flating islands is sufficiently large, then the resulting cIassicaPOtemIal of the form

anisotropy may be unobservable. Even so, the fact that these V=Vo(o)+V,(a,¢),
islands are finite leads to a dramatically different picture of
the large scale structure of the universe in open models. whereV, is U(1) invariant andV; is a small perturbation
The plan of the paper is the following. In Sec. Il we that breaks this invariance. It is asumed thahas a local
briefly review the “supernatural” model of inflation, intro- minimum at®=0 which makes the symmetric phase meta-
duced in Ref[5]. In this model, an approximatd(1) sym-  stable. We shall consider a “tilt” in the potential of the form
metry is broken by a tunneling field in a first order phasey, = A4(¢)G(¢) whereA is a slowly varying function ofr
which vanishes ato=0. For definiteness we can take
G=(1—cosg¢lv).
in the caseV”<H? the phase transition can proceed via the The idea is thato tunnels from the symmetric phase
Hawking-Moss instantorf16]. However, this channel represents 0 =0 to the broken phase, landing at a certain valuepof
tunneling to the top of the barrier of a region of site !, and does away from the minimum of the tilted bottom. Once in the
not lead to an open universe. broken phase, the potenti}, cannot be neglected, and the
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field ¢ slowly rolls down to its minimum, driving a second istence of the corresponding instanton does not mean that the
period of inflation inside the bubble. Another attractive fea-field cannot tunnel to a non-extremum valuedyfit simply
ture of this model is that, depending on the value¢gobn = means that tunneling away from the extremum will be some-
which we land after tunneling, the number effoldings of  what suppressed. This question will be addressed in Sec. IV.
inflation will be different. Hence it appears that in principle  Since the effect we are studying is not due to gravity, we
we can get a different value of the density parameter in eachhall start with the case of a bubble in flat spacetime. Includ-
nucleated bubble. As we shall see, however, this picture igg gravity is quite straightforward and will be done below.
somewhat oversimplified. According to the theory of vacuum decfd/], the tunneling
We should point out that the supernatural model is notate is dominated by th€©(4) symmetric solution of the
free from certain restrictions. Indeed, in order for the pseudduclideanized equations of motio(8) with appropriate
Goldstone boson to realize inflation as in the simple freeboundary conditions, which is called the instanton or bounce,
field “chaotic” scenario, we would need=M, whereM,  and which we shall write as
is the Planck mass. On the other handV§{ is a typical _
quartic potential, the bubble walls would undergo topologi- o=o0o(7), ¢=¢=const. 4
cal inflation[20] for v=M,, and this would spoil the open
scenario. Topological inflation occurs when the thickness oHere, we have introduced the Euclidean radial coordinate
the walls is larger than the Hubble rate at the top of ther=(X?+T2)Y2 where (T¢,X) are Cartesian coordinates in
potential barrier separating two local mininidegenerate or Euclidean space. As we move from spatial infinity to the
nof). This is the same condition under which the origin, the bounce interpolates between false vacuum
Coleman—de Luccia instantog] cease to exist, and we oo(7—)=0 and a certain value of the field in the basin of
have a Hawking-MosElL6] transition instead. Hence the con- the true vacuunisee Fig. 2 oo(0)=0y,. In addition, the
dition v =M, also represents the regime where the transitiomounce has to satisfy the boundary conditiq;(O)zo. The
is not of the Coleman—de Luccia type, as would be necessagplution describing the bubble after nucleation is given by
for a successful open universe. As emphasized in[8¢in  the analytic continuation of the instanton to Minkowski time
the case of single-field open inflation, a transition of theT through the substitutiofz=—iT. Then, the bubble solu-

Hawking-Moss type would leave unacceptable anisotropiegion depends only on the Lorentz invariant “distance” to the
in the CMB. These constraints can be made less severe kytigin (X2—T?)Y2 where (T, X) are the usual Minkowski

choosing a suitable form fory, with higher curvature at the coordinates.
top of the potential between the two minima, or perhaps a |t is useful to change to the new coordinates
special form forG. In any case, we shall take~ M, in what

follows. r=(X2=TH)¥2  p=tanh }(T/|X]), (5)
IIl. QUANTUM FLUCTUATIONS in terms of which the line element reads
In this section, we compute the amplitude of quantum dsz=d72+a§(r)dﬂdss. (6)

fluctuations of the pseudo Goldstone field in the supernatural ) _ _ _
inflation model. For this, we need to review the formalismHere dQgg=—dp?+ costt p(d6*+sir? 6de?) is the line el-

for quantizing fields in the background of a bubble. ement of a (2-1)-dimensional de Sitter space of unit “ra-
The field equation forb is dius,” and in flat spac@g(7) = 7. Including gravity,ag has
to satisfy the(Euclideanizeyl Friedmann equation, as de-
® V(D) o ) scribed below. This (2 1)-dimensional de Sitter space can
T R (2) be thought as the hyperboloid swept by the bubble wall dur-

ing its time evolutionsuitably rescaled In spite of its name,
where V=V,+V;. In terms of the modulugr and phase the coordinate is timelike, whereas is a “radial” space-

¢lv, we have like coordinate.
The above coordinates cover only the exterior of the light-
igior | V(@) v N(o, @) cone from the origin. In order to cover the interior, which is
O(oge'??)— +i— e?'=0. (3 : ; .
Jo o 9P where the open universe sits, we use the coordinates

~ — 2_y2\1/2 — =1
It should be noted that classical solutions with=¢ t=(T*=X*)¥%  r=tanh (|X|/T). (7

=const exist only ifé is an extremum of5, so that In terms of these the metric reads

Y

A d2=—dt2+a2(t)dQys, ®
¢

=0.
o=t wheredQz=dr2+sink? r(d6?+sir? 6d¢?) is the metric on
This is true also for the Euclidean solutiofisstantonsde-  the unit 3-dimensional hyperboloid ar(th flat spacg the
scribing the tunneling, and so strictly speaking these instanscale factor is given bg(t)=t.
tons can only take us from the false vacuum to the extrema Notice that Eq.(8) is the metric of an open FRW. When
of V; in the broken phase. Even if we relax the condition thatgravity is included, the scale facta(t) will no longer be
¢ should be constant, there may not be any instantons whicproportional to the cosmological timebut it will be given
can take us to non-extremum values. Of course, this nonexy the solution of the Friedmann equation
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(1-Q)=(aH) 2. m is the mass of the pseudo Goldstone boson. Of course,

using the unperturbed equations of motion the linear term in
In the general case, the metri® and(8) are related by the Eq. (12) drops out.

analytic continuation of coordinates and scale factor in the The action(13) has been studied in some detail in the past

following way: [21,13 because it is the same as the one for a one-field
model. In particular, it describes the fluctuations of the
- ;
i o —ia (i bubble wall itself. Here, we shall concentrate 8§ ¢5]
t=—ir, r=p+i=, a(t)=—iag(it). 9 - , i, X i 21
P72 ® e(it) © which describes fluctuations in the direction transverse to
tunneling.

These relations can be used to analytically continue solutions |, order to study quantum fluctuations, the figld is
from the outside to the inside of the light-cone from theexpanded as a sum over modes times the corresponding cre-

origin. _ ation and annihilation operators:
In what follows, we shall assume that tunneling occurs

along the real direction fod, i.e. $=0 in Eq. (4), and we

shall consider perturbations around the classical solution of 0= @pimdpim* H.C. (16

the form

_ The equation of motion satisfied by the modes is
V2O =0p(7)+o1+ips. (10

V(o)

Note that Oepim— ©—2 (o) ©pim=0.

¢ .
=y 0—2. (1)  Following [21,13, we take the ansatz
0

_ -1 i

We could also have considered tunneling in the direction epim=ag () p(7) Vpim(X), 17)

$=vm. However, it is easy to show that the action for the, ;..o xi=(p,6,¢) are coordinates on th@+1) de Sitter

corresponding instanton is Iarger than the one correspondirg;p‘,ice spanned by the motion of the bubble wall. Introducing
to tunneling to the minimum af =07 Substituting into the  the conformal coordinate; defined through the relation
action (1) we obtain the second order action for IinearizedaE(T)d 77=d7-’ the equation of motion separates into a

perturbations: Schralinger equation
s2= + | d*% = g[Ooo— Vi +s d*Fp 5| V(oo R
Sol o] xy=g[Hoo—Vo(oo) o1t Si[¢1] — Pra2 +m?(oy)— = |F,=p3F,, (18
d7/2 E oo 0 6 p p:
+ S 2], (12

where the separation constatt plays the role of an energy
where eigenvalue, and a Klein-Gordon equation for the modes of a
scalar field of masp?+ 1 defined on thé2+1)-dimensional
1 . de Sitter space:
Si=— > f d*x\—g[d,@19" @1+ s(oo)eil, (13 P
(S)Dyplm:(p2+1)yplm- (19
Vé(Uo)

0o

¢3|.  Here ®O is the covariant d’Alembertian in this lower di-
(14) mensional space, arid is the four-dimensional Ricci scalar,
which from the unperturbed Einstein’s equations can be writ-
Here ten asR=8wG[4V(ap) + (gi/ag)?].
The modesp,,, should be Klein-Gordon normalized on a
) v? 4 , ) Cauchy surface such as=0. This amounts to Klein-Gordon
m*(ao) = ?A (00)G"(0)= o2 (19 normalizing the lower dimensional mode,, in the
0 0 (2+1)-dimensional sense, and then normalizigas in the
is a small~dependent “squared mass” due to the potentialSchralinger problen{21]:
V. In the last equality we have usédl of the form G=
(1—cosd¢lv). When the fieldo is in the broken phase, then

+ m2(0'0)

s=-5 | ¢%/~g

(9#@2(9“(,02"'

f_ Fprrd’Y]: 5pp’ ’ (20)

2In the thin-wall limit and ignoring the backreaction, the tunneling where the delta function will be discrete or continuous de-

action is given bySc=(2772/2)S%/(AV)3. HeresS, is the domain pendmg on whether we are _con5|der|ng_ discrete or continu-
wall tension, which in the thin wall case is roughly independent ofoUS €igenstates of the Schiger equation. In flat space,
the tunneling direction, andV is the gap in energy density be- @g=Roe7, whereR, is an arbitrary constant which can be
tween the false vacuum and true vacuum. Clearly, the smaller thisonveniently taken to be of order of the radius of the bubble
gap is, the larger the action will be, and the lower the tunnelingat the time of nucleation. Therefore, the effective potential in
probability P~ exp(— ). the Schrdinger equation
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12p-1-12
Pip_l,z(coshr)

Yim.
ysinhr '

(23

rd+1-ip)I'(d+1+ip)
2

pim

These are proportional to the often used harmongg,
which are normalized on the hyperbolditf [9]:

= _F(ip) rd+1-ip)
Y e Yom="0" N+ 1+ip) "o

FIG. 3. The effective potential in E¢21). In flat space(dashed These analytically continued modes are normalizable on
line) the potential grows without bound at largewhereas includ- H3 only for p2> 0. Since the mode Witb2=0 has a wave-
ing gravity it tends to zero. Ay— —c, which corresponds to the |ength comparable to the curvature scale, the non-

center of the bubbley tends to zero. normalizable modes witp?<0 have been dubbed “super-

curvature” modeg9]. Writing p=—iA, the supercurvature
V(o) R modes are given by
Veil( 17) =22 +m?(ag)— = 21
erl( M) =2k oo (@)= @D C(A+I+1)T(—A+1+1)]42
Alm™ 2
tends to zero ay— — o0 (center of the bubb)eand to infinity P, ¥%(coshr)
at — + (false vacuuni see Fig. 3. In curved space, it can X—"reY- (24
ysinhr

be shown[2] that ag(7— *%)—0, and s0V/ vanishes at

o e, e SDeCUL e have adce s comma fe he subindeto e
for p2<0 ' that it is the value ofp rather tharp.) We repeat, however,

' that if the corresponding bound state exists in the Schro
dinger equatior{18), then these modes are perfectly normal-
izable on the Cauchy surface, and hence they must be in-
cluded in the expansion of the field operaf6).

In a time-dependent background, the choice of a vacuum
state is always somewhat ambigud@g]. Here, this ambi- B. Degenerate case
guity corresponds to the freedom of choosing the “positive o
frequency” mode$),,, on the hyperboloid. In principle, the To begin with, let us neglect the mass te;mlﬁ, Eq.(19),
ambiguity can be resolved dynamically if the initial quantum Which comes from the tilt in the potential, . Then, using
state before the bubble nucleates is given. the equation of motion satisfied y, it is straightforward
The quantum state of a nucleating bubble has been extef Show that
sively studied both in flat and in curved spd@s]. In our F = Naco (25)
model, ¢, is treated as a free field which couples to the ! Ev0
bubble via as-dependent mass term. For this type of model,is 5 solution of Eq(18) with eigenvaluep?=—1 or A=1.
it has been shown that if the initial quantum state is de Sitteforeover, this solution is normalizable and it belongs to the
invariant before the bubble nucleates, then right after bubblgiscrete spectrum. The normalization constafitis found
nucleation the fieldp, will be in anO(3,1) symmetric state. from Eq. (20):
This is perhaps not too surprising: the appearance of the
bubble breaks th©(4,1) de Sitter symmetry by selecting a
“nucleation point” in spacetime, but otherwise the bubble
solution respects a®(3,1) subgroup of isometries.
What this means is that the positive frequency modeHere, we have changed back to the physical coordirate
Ypim Must be taken as the Bunch-Davies modes, which guakyhich measures the physical distance to the center of the

A. Quantum state of a nucleating bubble

Tmax -2
N= J aEO'(Z)( T)dT) . (26)
0

antee the desired symmetry. These are given by bubble. In flat space,.yis actually infinite, but the integral
. 12 is finite becauser, vanishes exponentially fast outside the
= I(+1-ipI'd+1+ip) bubble. Including gravityr,, 5, becomes a finite value, and so
P 2 the integral is also finite. The explicit value ¢f can be
=12, calculated numerically for any given model.Rf, is the size
Pip-1/2(i sinhp) Yo (0.6) (22  Of the bubble andr, is the value of the field at the center of
Ji coshp M 7 57 the bubblesee Fig. 1 at the time of nucleation, then we can

estimate

whereP? are the Legendre functions angl, are the usual
spherical harmonics. When analytically continued to the in- *Tunneling rates in the case when there is an exact internal sym-
side of the light-cone, through the relatiof®, they become metry have been recently investigated 24].
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V2 that, strictly speaking, the=0 mode should have been quan-
tized as a collective coordinate instead of as a harmonic os-
cillator [26]. The divergence simply means that all values of
The above estimate is for bubbles such fRgis small com- ¢ are equally probable after nucleation. When we include the
pared with the Hubble radius, so thag~ . Also, we have effect of Vy, the degeneracy will be broken and the 0
substitutedr, by o, in the integrand, and we have integrated Mode will have a finite amplitude.
7 from zero up toR,. Becauseoy<oy, our estimate is
actually a lower bound oV, and in some thick wall models C. Non-degenerate case

the effect can be somewhat higher. When the tiltV; in the potential is includedp®=—1 is
If we asume a large energy d_|fference bgtween false angg longer an eigenvalue of the Sctinger operator(18).
true vacua, then we are in the thick wall regime &ds of  However, it is clear that for smal? there will still be a
the order of the thickness of the bubble wall: discrete eigenmode whose eigenvalue we can calculate in
Ro~M-1 perturbation theory. Denoting by—1) the unperturbed
0 : bound statg25), the perturbation to the eigenvalue will be
egiven by

N~

Rooy

HereM is the mass of the field in the false vacuum. If, on th
contrary, the vacua are sufficiently degenerate, then we are in
the thin wall regime, and the expression fy can be found y=p?+1=(—1|a2m? — 1)=/\/Zf agoim?(og)d7.
e.g. in Appendix C and Ref25]. (29)

The normalized mode has an amplitude

Again, v can be computed numerically for any particular
_ V2 oo(7) model, but we can estimate it as being of order
‘Pl,lm“R_O_—yl,Im(Xi)- (27
0 b 3 2.2

Jagogm“(og)dr 1 » 2
Physically, what happens is that the field does not simply Y= W” EROmbv (30
tunnel to a sharply defined value ¢f but a distribution of
values. Taking into account that the phase of our complexhere m§EA4(gb)/g§; see Eq.(15). The above estimate

scalar field® is given by Eq.(11), thex' dependence in Eq. uses the same approximations as the estimaté/fafter Eq.
(27) shows that, after nucleation, different points on the(2g).

bubble have different values of the angte The normalized =0 mode will now be given by
When analytically continued to the interior of the light-

cone from the origin, through the relatio(®, = is replaced y 1 oot) 1 sind(1—y)Y]

with the cosmological time and,(t) quickly follows its ¢l=0=NooVp00~ TRy oy Ff? sinhr '

evolution towards its expectation valeg~uv > oy, . Hence, (31)

inside the light-cone, the normalized supercurvature mode

will take the form where, from now on, we shall use the notatigjito denote

the modes witlp?= — 1+ . In this expression, and the ones
v that will follow, we give only the unperturbed time depen-
Pum(t.r,0,¢)= Ro 0p Vrim(T. 6, 4), (28 dence, without including the first order correctionynThe
field oq(t) quickly rolls down fromo, and settles down to
which is time independent. In order for the bubble solution toits minimum ato,=v. It is understood that, after that, the
exist, the mass of the field in the false vacuum should béime derivative of the mode will be dominated by the correc-
M>Hg, whereH is the Hubble rate in the false vacuum. In tions of ordery, which slowly drive the Goldstone modes to
our model,Hg is considered to be much greater than thethe minimum of the tilted potential. The amplitude of the
Hubble rate in the true vacuuid.* Therefore, the ampli- higher! excitations will also suffer corrections of ordes
tude of supercurvature perturbations is of ordefof,)M.  but since these amplitudes were already finite, the effect on
This exceeds by far the amplitude of the usual “subcurvathose is not so dramatic. To leading order, the amplitudes are
ture” fluctuations, which is only of ordeH;. The corre- the ones calculated in the previous subsection.
sponding effect in the CMB places severe constraints on the Itis interesting to look at the distribution of the field on a
model[8]. We shall come back to this question in Sec. VI. hyperboloidt=const. Note that the amplitude of the=0
Note that forA=1 the amplitude of the homogeneous mode near the origin=0 is of order
model =0 diverges because one of the gamma functions in

Eg. (24) has a vanishing argument. This is related to the fact 0o 1 o

1
y: r<y 1) ~ — N ~ s (32)
@0l Y Vi ),Tz 77_Rwl oy

“We are considering here strongly non-degenerate minima. Howhich is a factor ofy vz larger than the amplitude of the
ever, in Ref.[5] they also consider various depths of the centralindividual I>1 modes found in Eq28). But the amplitude
minimum, depending on radiative corrections, and in some case@f the I=0 mode decays exponentially foe>y~*, which
(g*=3272\) the two minima become degeneraté;=Hg. This ~ means that at large distances it will become negligible. How-
weakens the constraints and makes the model viable in certai@ver, the quantum state that we have chosen(i3,1) sym-
range of parameters. metric, which means that the rms fluctuation of the field
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cannot depend on. Therefore, the loss in amplitude of the

I =0 mode as we move away from the origin has to be made
up for by the joint contribution of th&>0 modes, smeared
over a suitable length scale. This is analogous to what hap-
pens for a massive field in de Sitter space, except that here
we are considering a spacelike manifttdconst rather than

a spacetime. In the Appendix B we show thatrfery* we

have

I 2 2
g
Y2 — Y\2 o 0 Yo=Y
(Ae?) _;1 (21+1)(ef) szyl*e ! FIG. 4. On at=const hypersurface inside the bubble, the co-

moving coherence length of the slow-roll fieldris- y~*. If the rms
wherel,>1 is a certain cutoff. If we smear over a fixed fluctuations of the field are large, then regions where the field is
comoving lengthé, as we move away from the origin we large and positive will be next to regions where the field is large
have to include more and more modes in the sum. Since thahd negative. These will be separated by regions where the field is
Ith multipole has wavelength proportional to (sifH, we small and there is no second stage of inflation.
take |, =sinhr/&,  With this, we find QA¢")?2 . . . .
~(Nzo§/2w2y)(2§)‘7. Notice that the result is rather in- Previous section, the comoving correlation length for quan-
sensitive to the choice @f As long agIn §|<7_1- the added tum fluctuations (in units of the curvature scaleis

a1 i ; -1
contribution of all relevant modes at largeis the same as d | Yo TZUS' pe_ltches olgcbompvrllng size-y \r’]\'here%
the contribution of thd =0 mode near the origin, given by is large and positive would be right next to patches wheye

Eq. (32). We also show in Appendix A that the two-point is large and negative. These patches would be separated by

correlations on &= const surface die off with comoving dis- regions wh_erepz '?.Sma” and the_ universe does not inflate.
tanced ase~ 792 Patches with positive and negative values can also be sepa-

Hence, around the timg, when the fieldo, settles down  'ated by “walls” where ¢, is close tomv. In the case
to its minimumaoy~v the supercurvature fluctuations of the v~Mp these domgln Wa.”S of.the pseudo Goldstone potential
field are of order would be topologically inflating20]. Hence, instead of a

smooth inflating hyperboloid, we have a patchy mosaic of
V2 1 vZ A2(v) 1 M2 inflating regions, as depicted in Fig. 4. In principle, each
(Ap")~— (—) — Y~ patch can give rise to a successful cosmology, but this cos-
™ mology will not be an open universe in the traditional sense.

At best it will be a “quasi-open” one, i.e. one which locally

Here,m=A2(v)/v is the mass of the pseudo Goldstone bo-"€S€mbles an open FRW.

son in the true vacuum. In the last step we have asumed that When (A¢”)<mu the spread in the distribution of the
A(0) is a slowly varying function ofr, and setRy~M 1. pseudo Goldstone field inta=t, section is small. What this

Note that the fluctuation irp, can easily reach Planckian M€ans is that if_ the nucleated bubble is described by the
values. It suffices to tak®l ~ 106 GeV andm~ 103 Gev.  ©9(3.1) symmetrl_c quantum state, ther_1 most of the s_urface
With these values, the field is displaced enough from itd =tx has a non-inflating value of the field. However, in an

minimum that it can drive inflatiofirecall that we are asum- INfinite hypersurface, there will be a certain density of occa-
ing v~M,) sional large fluctuations which will lead to inflating islands
n)-

of comoving sized~ y~ 1. Each one of these islands will be
a quasi-open universe.

This is in clear opposition with the conventional adiabatic

Tunneling to a large value of the field is usually under-picture described in the first paragraph. It is interesting to
stood in an “adiabatic’ sense. The idea is that since thepursue the adiabatic picture for a moment, in order to see in
motion of the phase is dictaded by the explicit symmetrywhich sense it is adequate or not. To keep the discussion
breaking potentiaV,, it will be much slower than the mo- Simple, let us consider tunneling to a range of valueg tir
tion of the radial component of the field dictated by the largewhich the linearized expressidd2) is still valid, but suffi-
U(l) Symmetric part of the potentiaL Hence, one can esti.CientIy Iarge that it can be diStingUiShed from tunneling to
mate the rate for tunneling at amyby solving the Euclidean the bottom¢=0. This will be the case ik, [see Eq(11)] is
equations of motion foo- while ¢ is kept as a frozen param- in the range
eter. This frozen parameter is then used as the initial value of
the slow-roll field on the=t, hypersurface. Here, as above, (Agr)<@r<v, (34)
t, is the time at whicho reaches its expectation value

However, it is clear that when the spread of the pseudavhere (A ,)?=(N203/2%y) was computed in the previ-
Goldstone field on the=t, hyperboloid is comparable to its ous section.
range, A¢”)=mv, the picture that each bubble nucleates Since¢, and ¢, decouple, we may take approximate
with a different value ofp, is not adequate. Instead, all of Euclidean solution of the formb=(1+i¢/v)oy(7)/V2,
the “vacuum” manifold is pretty much sampleiiside a  where ¢ is taken as constant in the adiabatic approximation.
single bubbleIn this case, inflation does not take place co-Substituting this configuration in the Euclideanized version
herently on the =const hyperboloids. As mentioned in the of Eq. (12) we find, after straightforward algebra,

Op

(33

IV. QUASI-OPEN UNIVERSE
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1 the bubble. This is what we call an “inflating island” or
Sel ¢1=Sel o0l + 5 J d*x/— gmPe3=Se[ 0] quasi-open universe. Again, this amplitude will depend on
the action of a semiclassical Euclidean trajectory. In order to
yr? 5 make the metri¢8) into one of Euclidean signature, we must
+ W¢ . consider the analytic continuation of the coordinates
t=—i7andr=irg. With this we have

If the decay rate is proportional t® t, the relative prob-
ability of having a bubble with a certain value @$ at nucle-
ation will be

d?=dr?+aZ(7)dQg, (36)

, wheredQ gs=dr2 + sir? re(dé?+sir? 6d¢?) is the metric on
—¢2 the three-sphere, and the ranger gfis from O to .
P(<p2)~exp{ Z(sz)zy (39 The semiclassical trajectory we shall consider is simply
the analytic continuation of the=0 supercurvature mode
where we have used E@l1) and, perhaps not too surpris- (31):
ingly, found (A@,)%=(N?03/2m?y), the same expression
obtained in t_he p_revious secti_on fr(_)m considerations of quan- @,=Af(T)g(rp), (37)
tum fluctuations in thé>(3,1) invariant state. Thus, two ap-
proaches which in principle are aimed at answering different
questions end up giving the same answer. Here, we wer@heref(7)=oo(7)+0O(y) and
asking how likely is it for a bubble to nucleate at a large
value of ¢, whereas in the previous section we were com- sin(1— Y)MFE]
puting the amplitude of fluctuations inside a given bubble. g(re)=———
Undoubtedly, both questions are related, since at least locally
we cannot distinguish a large value of the field induced by
the nucleation of the bubble from a fluctuation of the field Note that this solution is not regular at one of the poles of the
inside the bubble. three-sphera,z.= 7. This is of course expected, singés an
However, even though the adiabatic approximation mayeigenfunction of the Laplacian with eigenvalye which is
give the right answer for the probability of tunneling to a not in the spectrum. Hence, Eq37) is not a regular
large value of¢, it suggests the wrong picture for bubble “bounce” around which we should expand in order to find
nucleation. Sinceb=const is used in the above estimate, onethe false vacuum persistence amplit|dg.® This is not a
m|ght imagine that an infinite open universe with homoge-pr0b|em for us here, because we are not estimating the total
neouse, in the range(34) can be created. We shall argue decay rate of the false vacuum but a particular transition
that the probability for this to happen is actually zero. Firstamplitude. For this, we only need “half” of the Euclidean
of all, the formulaP~exy—S:] is only justified when the solution, which interpolates between false vacuum at
Euclidean action is evaluated on a solution of the equations—®, re~0 and an inhomogeneous configuration at
of motion. But¢=const is only a solution in the case when I'e= /2. At rg= /2 this solution is matched to a Lorentz-
V, is neglected. We can try and correct this configuration sdan solution atp=0 (the spacelike surface where the bubble
that it will be a solution, while still keepin@(4) symmetry.  nucleation takes plagesimply by the analytic continuation
In the linear regime, what this means is that we want a sot=—i7 and p=i(rg—w/2) [see Egs(9)]. The solution is
lution of Eq.(18) with p?=—1, so that Eq(19) is satisfied then propagated to the interior of the bublie “open”
by Vpim(x')=const and we have a homogeneous solutiorHniverse through Eqs(Q). _ .
inside the bubble. However, fon?>0 the lowest eigenvalue ~ The transition amplitudel is WKB suppressed only in
is p2=—1+y>—1, which means that the solution with the Eug:lidean regime; the Lorentzian evolution contributing
p2=—1 is not normalizable. As a result, the correspondingan oscillatory phase. Therefore
Euclidean action is badly divergent. If the action is regular-
ized with a cutoff and if we take the?= —1 solution to be |\p|~e*SE,
well behaved at the center of the bubbte O, then it is easy
to show that the action starts growing exponentially, h
Se~exd2M(7.—Ry)], as the cutoffr; in the radial direction where
7 becomes larger than the size of the bubble. Hérés the
mass ofd outside the bubble. Hence it is not justified to say
that the estimat€35) gives the nucleation rate for a homo- The semiclassical trajectory we consider does not have vanishing
geneous bubble. Rather, using a homogeneous solution witemporal” derivative at the bounce pointge=m/2 where we
would get a divergent action and hence a vanishing probabnatch the Euclidean solution to the Lorentzian one. Hence it is a
lility. complex trajectory which has a small imaginary paftordery) in
the classically forbidden region. The imaginary part decreases ex-
ponentially fast in the Lorentzian section on a time scale of order
Ry .
To compare, we can now ask what is the amplitude for gThis is a blessing, because an inhomogeneous instanton would
tunneling from a false vacuum to a spherically symmetric butause the well-known problem that the decay rate should be multi-
inhomogeneous configuration with a large valuepgfinside  plied by the infinite volume of the Lorentz group.

sinrg

A. Creation of a quasi-open universe
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S w2 _ Also, in the supernatural model, it is possible to modify
SE=2WJO drag(7) JO dre sir? the shape of the potential near the false vacuum so that there
is a misalignment between the preferred direction for tunnel-

) g\ 2 [V} ing [5] and the direction of the minimum of the pseudo Gold-
Xre| oo+ 2Z (97) + 0—4—m2 @5 stone potential in the broken phase. In this case, we expect
EVTE 0 that thet=t, surfaces inside the bubble will have a mean

value of = ¢.# 0, determined by the most probable escape
path (i.e., the instanton, which in this case will not land on
¢=0). This value of ¢, will determine the number of
e-foldings of inflation and hence the mean value of the den-
sity parametef), on the hyperboloid. Let us call this value
yr? yr? Q.. If the tunneling path is not too narrow, there will still be
SE=AZT J aécrgdn wAZW, a supercurvature mode which will cause fluctuations in the
density parameter on comoving scales of orglef, which
are of course much larger than the Hubble radius. The pic-
ture is then that we have an ensemble of large patches with
different values of the density parameter. This is an interest-
ing situation which deserves further study. However, since
this model involves more parameters, for the remainder of
this paper we shall concentrate on the simplest case dis-
cussed above, where the preferred tunneling direction and
. (39 the minimum of the pseudo Goldstone potential are aligned.

It is easy to show that since, is a solution of the equations
of motion, after integration by parts the only contribution to
the integral comes from the boundary termrat /2. A
straightforward calculation gives

whereA is the constant introduced in E@Q7). After analytic
continuation to the interior of the bubble, we have
e(r<y 1)=Ac,. Hence, the relative probability for
nucleating through the inhomogeneous traject@dy) is
again given by

2
—¢2

P=|V¥ 2~exp{—

] 2(Agy)*

Although this is in perfect agreement with E85), it is now V. MORE GENERAL MODELS
clear that it does not mean that the whole open universe will | this section we shall consider the class of two-field
have the valugp,, but only a patch of comoving sizey™*  models with a potential of the form
will have this value.

Thus, tunneling to a value of the field which is far from 1 1
the one indicated by th®(4) symmetric instanton is per- V(o,¢)=Vo(o)+ §m2¢2+ 5902¢2- (39
fectly possible, with a somewhat suppressed probability.
However, the resulting universe is not an infinite open uni-
verse but just a quasi-open one.

Models of this type were introduced in REE]. HereV, is a
non-degenerate double well potential, with a false vacuum at
o=0 and a true vacuum at=v. When ¢ is in the false
B. Many universes in one bubble vacuum,V, dominates the energy density and we have an

The arguments used in the previous subsection leading fitial de Sitter phase with expansion rate given B
Eq. (38) are somewhat heuristic. In particular, we have not~(87G/3)V,(0). Once a bubble of true vacuumr=uv
attempted to justify why semiclassical trajectories of theforms, the energy density of the slow-roll fieleimay drive
form (37) should be the only relevant ones. Note, howevera second period of inflation.
that the probability distributiort38) for nucleating at a high As pointed out in Ref{5], the simplest two-field model of
value of the fieldp, nearr=0 is the same as the Gaussianopen inflation, given by Eq(39) with g=0 andm#0, is
distribution for the amplitude of the=0, p?=—1+y mode  actually a quasi-open one. Since there is no coupling be-
in the O(3,1) invariant state. In fact, the possibility of nucle- tween the two fields except for the gravitational one, we shalll
ating at different values of the field is already accounted forcall this the “decoupled” two-field model. In this model,
by this quantum state and need not be considered separateifflation starts chaotically at large values (o, ) =< Mé.
The analysis of Ref$23], whose result we described in Sec. In some regions of the universe, the fietavill be trapped in
[l A, takes into account all paths ig-field space, not just the false vacuum, whilé rolls down from large values. If a
the semiclassical one used above. That analysis should Heibble nucleates at a point whege-M,, the value of the
regarded as a more rigorous derivation of the re&aj. slow-roll field will be large enough to drive a short second
Because of the invariance of the quantum state, it is clegperiod of inflation inside the bubble. One problem with this
that there is nothing particular about the paint0, and an model is that the slow-roll field moves also outside the
inflating “blob” is equally likely to develop around any bubble, and so the synchronization of tlge=const and
point on thet=t, hyperboloid. Therefore we are led to the o=const surfaces inside the bubble is not perfect, as pointed
picture where in each comoving volume of size comparableut in Ref.[5].
to the correlation lenghy ™1, the probability distribution for In Ref.[19], the classical evolution of the slow-roll field
¢,, is given by Eq.(39). Clearly, since the volume of the from the outside to the inside of the bubble was studied, and
hyperboloid is infinite, inflating islands with all possible val- it was found that on the hypersurfabeH;1 the high value
ues of the field at their center will be realized inside of a¢~M decays exponentially with the distance to the origin
single bubble. We may happen to live in one of those patcheas
of comoving sized<y~, where the universappearsto be
open. dpcexd — y.r/2], (40)
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® ¢= 0. Surfaces of constagt are indicated by different shad-
ings. Even though the field is massless outside the bubble,
|="17 we find that it does not stay exactly constant there. As a
result of the finite size of the bubble at the time of nucle-
ation, the field¢ feels the presence of the bubble everywhere
inside the light-cone from the “point” P. As a result, inside
= the bubble, the hypersurfaces= const are not perfectly syn-
chronized with theo=const hypersurfaces. Thus, we are
= back to a situation where the inflating region inside the
w2 ! ' T bubble has a finite size, as in the decoupled médete that
w2 the ¢=const lines cross the bubble wall trajectory
P Note that this effect is due to the finite size of the bubble.

; 4
FIG. 5. Conformal diagram of de Sitter space with a bubeeWe shall see below that the effect is of ordéfeR)". In

expanding in it. Herey andp are the usual conformal coordinates in Fig. 5, the parameters have been chosen so that the effect is

the closedchart. The bubble wall is represented by the curved thickVerY dramatic and the size of the inflating islands is compa-
line starting at the point P. The figure shows the result of a numerifable to the curvature scale, but one can choose parameters

cal evolution of the slow-roll fieldb in the coupled modeB9) with SO that the inflating islands are as large as desired. However,
me=0 andm;=1.5H;. The self-gravity of the bubble has been €Xcept in the case where gravity is neglected so that
ignored and we have taketi;=Hp . The initial conditions forpat ~ He=0, their size is always finite and the large value of the
n= /2 are=const andp=0. In spite of the fact that the field is field at the time of nucleation ends up decaying at large
massless outside the bubble, it starts evolving everywhere inside tiffistances  from the origin.

light-cone from the point P. As a result, the surfaces of constant Hence, just as in the case of the supernatural model, the
separating regions with different shadings, are not well synchroinfinite t=const surfaces would be almost empty at large
nized with thet=const surfaces inside the bublfleee Fig. 1 In distances, if it were not for the occasional quantum fluctua-
the plot, the field decays by one tenth of its initial value betweentions which may initiate inflating islands here and there.
consecutivep= const lines.

MN3wa 4 L

2 2 . . . . A. Quantum fluctuations
wherey.~2mg/3HEg . Hence, the size of the inflating region

in this model is finite. We use the subindexo stress that
this result follows from purely classical evolution. The larger )
He is, the larger will be the inflating region. The reason jstors:
that the cosmological friction term in the equation of motion

for ¢ is proportional toHg, and so the largeH¢ is, the ¢>=2 ®pimdpim+ H.C. (47
slower the field¢ will roll down the potential outside the

bubble, and the better is the synchronization between |, the present case, the equation of motion for the modes is
=const ando=const surfaces. HoweveH cannot be iven by

taken to be too large because otherwise the quantum fluctua-

tions generated outside the bubble produce too large an am- D¢p|m—[m2+ ggg]%lm:o_

plitude for the supercurvature mode inside the buljBle

The combination of these two effects severely constrains thislere o, is the “background” bubble solution. Using the

As in the case of the supernatural model, we expand the
field operatorg in terms of creation and anihilation opera-

model[19]. ansatz(17),
In order to construct a truly open model, Linde and _
Mezhlumian suggested takimg=0 andg# 0. We shall call <pp,m=agl(T)Fp(r)yp,m(x'),

this the “coupled” two-field model. In this way, the mass of )

the slow-roll field vanishes in the false vacuum, and it wouldwe have the following Schainger equation fof , :

appear that the problem of classical evolution outside the )

bubble is circumvented. However, this is not exactly so, and _dFy

the whole class of model89) leads to quasi-open universes. d7?

The basic reason is that, as we shall see below(lthear)

equation of motion forp in the presence of the bubble does This equation determines the spectrum of allowed eigenval-

not admitO(3,1)-invariant solutions which are regular at the ues p2, which correspond to normalizable eigenfunctions

origin, except for the trivial onep=0. Thus, we are back to Fj. All of these eigenvalues have to be included in the ex-

a situation analogous to the supernatural inflation model. pansion of the field operat@él). As before, the harmonics
Even if the mass of the field in the false vacuum vanishes),m must satisfy Eq(19).

one must not expect that will not evolve at all outside the In the case of supernatural inflation, we saw that there

bubble. Figure 5 shows the result of a numerical evolution ofvas a discrete eigenstate wii#<0, which actually domi-

the field ¢ in the coupled model. The figure represents anated the rms fluctuations of the field ort-aconst hyper-

conformal diagram of a bubble expanding in de Sitter spacsurface. We shall see that a similar situation happens in this

(for simplicity, the gravitational field of the bubble has beencase.

neglected The bubble wall is indicated by the thick timelike  Since the Hubble rate inside the bubble is smaller than

hyperbola. As initial conditions, we have takér=const and the Hubble rate outsidé{, we need

2
+a
E 6

R
m?+go3— —}szszp. (42
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m?+ gu2<HZ<HZ (43  Here m2=m?+guv? is the mass of the slow-roll field in the

true vacuummz=m? is the mass in the false vacuuhiy is

in order to have slow-roll inflation inside the bubble. This the hubble rate in the false vacuum, aRgl is the intrinsic

condition suggests taking a perturbative approach. To lowestdius of the bubble at the time of nucleation.

order, we can neglect the mass term @and the gravita- The origin of the different terms in Eq48) is easy to

tional backreaction of the bubble, so thats just a massless understand. The first one is independent of the existence of

field in de Sitter space. In this case, E42) has the well- the bubble, and comes from the fact that the slow-roll field

known supercurvature mode with®=—1, which corre- has a mass? in the false vacuunithe HZ in the denomi-

sponds td9] nator can be understood from simple dimensional consider-
ationg. The second term is due to the perturbations of the

_ 1 a4 effective potential in the Schdinger equation(42) caused

17 coshy’ (44 by the bubble solution. In the bubble, the scale faajois of

orderRy, and so the factoag in the integrand of Eq(45)
The field configurations corresponding to thig are  will yield the factor Rg in front of the second term of Eq.
p=consX ;. As mentioned before, fof=0 the har-  (48).
monic Y oo is not Klein-Gordon normalizable in the (2
+1)-dimensional sense. This is because, for a massless field B. Inflating islands
in de Sitter space, the zero mode corresponding to the trans- )
lations ¢— ¢+ const has to be treated as a collective coor- Even though the decoupled modg/<0) is not a very
dinate and not as an oscillator. When the masgbaé in-  900d candidate to an open cosmological maded], it is

cluded. the mode becomes normalizable. Indeed. the boud’astructive to consider it as a first step. In this model, infla-
state V\;i“ shift to a perturbed eigenvalpé=—1+ y \;vhich tion inside the bubble can be initiated because of the large

as before, can be calculated perturbatively: “classical” value of ¢ at the time of nucleation, but at very
’ large distances from the origin=>vy~!, the classical field

) 1 1 , , R\, dies off, and only the quantum fluctuations remain.
y=p+l=5 f cosk 1M +g9o5— = |ag Let us consider the amplitude of quantum fluctuations.
2 cosit 7 6 From Eq.(48) we obtain (np=my)
+ 2 d 45 2mg
cosit 7 7. (45 F

Y=a342-
3HE
The normalized modes corresponding to the discrete eigen-
value take the formp},~(Hg/v2) Yy im(X'), and in particu- ~ Accordingly, from Eq.(47), the rms quantum fluctuations of

lar, for thel =0 mode, the field on thet=t, surfaces will be of order
He 1 sinf(1—vy)Y%] 31 H2
Y o e — ~ _ _F
#0552 sinhr 1T O] (40 A~ \357m (49

The uncertainty of ordey comes from the fact that we have
not evaluated the correction to the “wave functiof’_;
which gives the temporal dependence of the field. This cal .
be done in principle, but it is not really necessary for our? completely different approz_ach. .
purposes. It is clear that the mass term will cause the field to In the decoupled modehy. is the same amr, andH. is

have the temporal dependence corresponding to slow-roll irEOt too much larger thahiy [5,8,19. S.inceHT~ My, we
side the bubble. ave A¢p)<M, and quantum fluctuations on that surface

Near the originr =0 the rms fluctuation of the field ¢ W(.)UId typically not reach "inflating” values .Of ordek,

will be dominated by the modet6), and fort=t, ~H: " it Still, as in the supernatural model, an occasional large quan-
will be given b ' * F tum fluctuation can initiate inflation on a patch of sige?.
9 y Let us reflect upon the meaning of E@9). This rms

and the comoving correlation length will be of order?!
v ygl, the same as we found in the classical c@€® from

He 1 amplitude is actually the same as the Bunch-Davies one for
Adwim. (47)  fluctuations of the slow-roll field outside the bubHI27].

Hence, the correct interpretation of the red®) seems to

be the following. Inflation inside and near the bubble wall
fmay start because the field is large at the point where the
bubble nucleates. However, even after bubble nucleation, the
field will continue its random walk outside the bubble, and it
may occasionally become large. If the bubble wall hits a
patch where the field is large, then this will generate a local
inflating patch inside the bubble, and we might inhabit one of

As mentioned in Sec. Ill, because of th¥3,1) invariance
of the quantum state, this will also be the rms fluctuation o
the field at any point on the=t, hypersurfacdsee Appen-
dix B).

In the case of thin walls, the value gfcan be calculated
explicitly (see Appendix €

om2 1 those inflating patches. However, this model is not a very
y== —Z + HZRY(m2—md). (48) good open model, and it would only agree with observations
3Hg 8 if Qo were very close to 1.
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Let us now consider the “coupled” model, where the islands are just as classical here as they were in [Réf.
fields are coupled bun=m=0. In this case Hence, we shall use the same name for this type of anisotro-
pies.

To proceed, it will be important to distinguish between
two different cases. The first case arises when the rms fluc-

Clearly, by choosing parameters such that the size of tht?uation of the slow-roll field¢ on the spacelike surfaces
y, by i u iz T ; : i
bubble is much smaller than the Hubble rate outside the t ~Hg " is small compared with,,.. In this case, "high

bubble, or such that the mass of the field in the true vacuurfn)e%kts -waetr.e the f!eld |sfcompar.able_ltmp agclj>wlr1|cr_1llvglll
is sufficiently small,y can be made as small as desired. ead o Inflating regions ot comoving sSizé-‘y wilt be

Hence the size of inflating regions can be made as large Agry “rare” on that hypersurface. Hergis the correction to
desired. In this case, the field is massless outside the bubbia€ Supercurvature eigenvalue, calculated in Sec. Il C for the
and quantum fluctuations ab pile up to arbitrarily large supernatural model and in Sec. V A for the more general

values far from the bubble. However, from Ed7), we find models. High peaks of a homogeneous Gaussian random

1
y~§m$H§Rg.

a finite answer for the fluctuations inside the bubble: field tend to be spherical, and so our inflating islands will
have approximate spherical symmetry. In the opposite case,
v2 1 when the rms fluctuation of the slow-roll field is comparable
(Ad’)%? mTRS' (50 to M,, we will have a patchy mosaic of “overlapping”

inflating islands, as described in the second paragraph of Sec.

The first interesting thing to note about this result is that itlV. It is easy to check that in the second case the “classical”
does not depend explicitly on the Hubble rate inside or outeffect is small compared with the effect of quantum fluctua-
side the bubblgthe only dependence is throud®y). The  tions which we shall consider in the next subsection, and so
second observation is that it is very similar to the expressiomere we shall only consider the first case.
(33) we had for the supernatural case, and so a connection Let us begin with the supernatural model. The quantum
between the physics of both models can be anticipated. Thetate we are considering leads to a Gaussian distribution for
finiteness of Eq(50) is not surprising, since the slow-roll the random fieldp that isO(3,1) symmetric. Hence, to com-
field is coupled to the bubble, and piling of modes in thepute the probabilities for the field distribution around any
vicinity of the bubble is suppressed by the mass term. Alsopoint it suffices to study them around the origis 0. Here
nucleation of bubbles at high values ¢éfis suppressed be- we shall only be concerned with fluctuations due to the su-
cause the degeneracy between the true and false vacuumspsrcurvature modes, which have a long range. The effect of
lower. As we discussed in Sec. IV, the quantum state alreadgubcurvature modes can be incorporated in the usual’way.
encodes the information that tunneling to a large value of thé&ote that the rms amplitude for thle=0 supercurvature
field is suppressed. mode is a factor ofy” 2 larger than the amplitude for

A difference with the supernatural inflation case is thatl>0 modegrecall thaty<1). Hence, even if the rms ap is
now the amplitude of the supercurvature modes Witt® is  far belowM,, there is a certain probability fop to reach
of orderHg rather than R,, and hence the constraints on M in a certain region near the origin. The spherically sym-
this model from microwave background anisotropies will bemetric mode is the one that is most likely to contribute to this

easier to accommodate. possibility. Even though there is a small probability for this
to happen, it is clear that only those rare regions with
VI. OBSERVATIONAL CONSEQUENCES ¢~M,, will undergo a second stage of inflation; so they will

) ) . be the only ones that matter. The value of the field on those
Our results from the previous sections have importaninflating islands will have the radial dependence of the

consequences for two-field models of open inflation. First of — g mode, which decays as expfr/2) at large distances,
all, our models are quasi-open, rather than open, which leads. 1

to classical anisotropiefl9]. Second, we saw that in the | ¢t ys now discuss the more general models where the
supernatural model, the amplitude of supercurvature excitasiow-roll field has a small mass or it is massless outside the
tions is quite large. In this section, we shall give order ofy pple. In this case, one may ask what happens when a
magnitude estimates for the expected CMB anisotropiegpple nucleates in a place where the slow-roll field already
from these effects. A detailed investigation of the powerpsq a large(classical value. This may occur, for instance, if

spectrum will be presented elsewh¢g]. the whole universe was created at a large value,aind at
the time when the bubble nucleatésis still rolling down
A. Classical anisotropies from large values. This possibility would in principle be rel-

Quasi-open universes are finite, and hence they look arfVant for bubbles nucleated at early times, and is the one
considered if19]. However, as time goes by, the initially

isotropic to a typical observer. This effect was studied in . S
Ref. [19] for the uncoupled model, and was called a “clas- large classical value of the slow-roll field in the false vacuum
' will decrease, and all that will remain are the quantum fluc-

sical anisotropy.” The name was given because the finite-"" > X
ness of inflating islands was due to the classical motion ofu@tions which should be well described by é4,1) or de
the slow-roll field outside of the bubble. Clearly, the same

effect arises in all quasi-open universes we have considered.

In some cases the appearance of the inflating island is betterSubcurvature fluctuations cannot by themselves give rise to in-
described as a semiclassical effect, but the resulting inflatinflating islands since their size is smaller than the curvature scale.
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Sitter invariant quantum state. Note that if the universe is sufficiently flat, the factor
Occasionally, fluctuations of the slow-roll field in the (1—-Q,) may completely erase the effect. Otherwise, for a

false vacuum may create a localized region with a higheuniverse with appreciable curvature, we obtain a constraint

value of the field. The nucleation of a bubble on top of oneon 1y,

of these regions will not be very different from the case

discussed in the previous paragraph. Whether the bubble 2 m%

nucleates on one of these high peaks or not, the field outside = 3(1- Q) A2 1074, (53
the bubble will continue to fluctuate, and the bubble walls T

will from time to time bump into regions with a higher value \yhere we have usedT/T<105. from the requirement that
of the field, as discussed in Sec. V B. Hence, also in thighjs effect does not dominate the temperature anisotropies on

case, there will be an ensemble of inflating regions Withlarge scales, as seen by COBH)]. SinceH is larger than
some distribution inside the bubble. From a formal point OfmT, it is clear thaty has to be very small in order to avoid

view, notice that the appearance of the bubble has selecteqaﬁyge temperature fluctuations.
point in spacetime, thus breaking ti€4,1) invariance, but
otherwise respects a residua(3,1) symmetry. Therefore it lies
seems reasonable to expect that, at least in a statistical senge,

the field inside the bubble will be well described by the R052X1072(1_QO)71/2H_F1'
0(3,1) invariant Gaussian distribution, corresponding to the

quantum state we have studied. Just as in the case of thenich is not difficult to accommodate. Note that the size of

supernatural model, here we also expect that the high peale pyppleRr, is necessarily less than the Hubble radius in
which lead to inflating islands will have spherical symmetry, ipa false vacuum and hence can easily be much less than the
and the value of the field on those islands will have the radia ubble radius in the true vacuum. However. in the decou-

dependence of the=0 mode, which decays as exp#/2)  pled model discussed [19] the constraint53) forcesH to
at large distances from the center of the island. be quite large, and this causes a problem of large quantum
The comoving size of the inflating islandsris-y™">1.  q,ctuations in the supercurvature modés
Si_nce the_ volume on the_h_yperbol_oid grows exponentially |, the class of model€9), the size ofy is determined by
with the distance to the origin, as sfitr, most of the vol- £ (48). Clearly, the effect can be made small by choosing
ume in an inflating island is at>1, where Fhe scalar field parameters such that- and the size of the bubble are suf-
behaves agxexp(—y/2). Up to exponentially small cor-  ficiently small. This is not always straightforward to imple-
rections, this is the same radial dependence that was consigent. For instance, the “hybrid” open inflation model con-
ered ;”[192]- In that case, the fields were uncoupled and  sjgered in Ref[7] turns out to be quasi-open and suffers
=2mg/3HE. The arguments used ifl9] to estimate the  from too large semiclassical anisotropies. However, it is pos-
temperature anisotropies measured by a typical observer cafple to write an open hybrid model, with a massless inflaton

be directly applied to the models discussed here. Changing, the false vacuum, that satisfies the constrgiagj.
from the coordinatesr( 8, ®) to a new seti(’,6’,¢’') such

that the pointr=rg, 6=0 (with rg>1) is the new origin
of coordinates, one finds that the perturbation of the field ] ) )
¢ around r'=0 can be described as[19] &¢ In the previous subsection we have considered the case
= o(t)(y/2)In f, wheref=(coshr’ +sinhr’ cos#') and¢, Where thd =0 mode was “oversized,” meaning that it took

is the value of the field at the point=0. The corresponding &n amplitude much larger than its expected rms. Because of
gauge invariant potential at horizon crossing is this, an observer far from the center of the inflating region

would see the anisotrop{pl). In this section we shall esti-

In the supernatural modej;~ R§m2/2, this constraint im-

B. Supercurvature anisotropies

3 Hée 9 % y mate the anisotropies caused by theO supercurvature
O~—— =———Inf(r',6’). (51)  modes. Here we are not thinking that these higher modes are
> ¢ t~H- 1 Smy2 “oversized”; they simply take random values of the order of

their rms. For simplicity, we shall consider an observer lo-
cated atr =0, but the effect should not be much different for
The effect on the microwave background temperature flucan observer located elsewhere.
tuations can be computed by integrating the Sachs-Wolfe The size of CMB anisotropies caused by the0 super-
effect along the line of sighHt29]. The dominant effect is in curvature modes has been estimatefBig]. For the class of
the quadrupol¢19], and it is of order models(39), where the supercurvature mode is normalized
as in Eq.(44), the quadrupole CMB anisotropies are of order

b
5T H_zr ’y (ST sup HF 5T su
—| ~3X10'—= = (1-Qy). 52 - ~(1-Q¢) 7= - (54)
T, m$2( o) (52 T, Hr T,

Here (ST/T)SU? are the temperature anisotropies caused by
This is just a very rough order of magnitude estimate, whictthe subcurvature modéwith p?>0). The supercurvatre ef-
works well for,=0.3. A more detailed study of the power fect decreases very fast with multipole number, basically as
spectrum of temperature anisotropies will be presented elsél—0p)'""2. If the fluctuations we observe in the CMB are
where[28]. due to inflation, then we needT/T)“*~1075, and from
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Eq. (54) we have thatH cannot be too much larger than fluctuations are caused by modes whose wavelength is larger
Ht, unless the universe is almost flat. than the curvature scale. Denoting pyhe eigenvalue of the
For the supernatural model, the supercurvature ni2éle  Laplacian on the unit hyperboloigvith y<<1), the comoving
has a normalization 2{zR,) times larger than its counter- size of the inflating islands is given i~y ! (the param-
part (44) [we are ignoring the mild enhancement due to theeter y can be determined in terms of the parameters of the

factor (v/oy,)]. Hence, the analogue of E(p4) is model[see Eqs(30) and(48)], and it is important in deriv-
ing observational constraintsEach one of the inflating is-
ST|SuP 2 ST|swP lands will be a quasi-open universe. Since the volume of the
T AT g (59 hyperboloid is infinite, inflating islands with all possible val-

=2 ues of the field at their center will be realized inside of a

smaller thanH=1, we have a two-fold restriction. On the Where the universe appears to be open. The fact that the
one hand,R,~Hg, and on the otherHr~Hg. Thus, it inflating regions are finite gives rise to classical anisotropies

seems fair to say that the model is not as natural as it Waléke those_ discussed in Re[f19].. .
thought to be5]: the difference in energy density between In parUcuIay, we have stud|eq the supernatural model in-
the true and the false vacuums cannot span many orders deu_ced by Linde and Mezhlumlaiﬁ]. We haye sr_]own that
magnitude. The reason is the following: In spite of the factl SPite Of the large mass of the inflaton field in the false
that the field is massive in the false vacuum, a supercurvaturCuUm, there is a supercurvature mode. Its amplitude is
mode exists. Its normalization is not proportionaHg as in ~ Proportional toR, °, rather than the usuddg. HereR, is

the usual cas€39), but to Ral, which is even larger. The the radius of the bubble at the time of nucleation &hdis

. . _l .
effect can be thought as the excitation of the pseudo Goldth€ Hubble rate in the false vacuum. SirRg">Hg, this
stone modes due to the acceleration of the domain wafff€Ct is quite important. In order to make the model com-
“boundary.” The model may still be viable in a certain patible with observations, it is required that the energy den-

range of parameters. Determining this range requires detailellty in the false vacuum should not be much larger than in
analysis, which is left for future researgds]. the true vacuum. This means thaf /H+ cannot span many

orders of magnitude, as was previously beliey&{ The
supercurvature mode can be understood as the pseudo Gold-
stone mode associated with the choice of a tunneling direc-

Open inflation is an appealing way of reconciling an infi- tion in field space. Combining the supercurvature anisotro-
nite open universe with the inflationary paradigm. In thispies with the classical ones we find that the rang€ gfwill
scenario, a symmetric bubble nucleates in de Sitter spacé@lso be restricted. Detailed analysis is required in order to
and its interior undergoes a second stage of slow-roll infladetermine the range of parameters in which the model may
tion to almost flatness. Single-field models of open inflationstill be viable[28].
can in principle be constructed, but it does not seem possible For the more general class of modéd®), the size of the
to do so without a certain amount of fine-tunifi§]. The  inflating islands can be chosen to be comfortably large by an
basic problem is that there is a hierarchy between the largappropriate choice of parameters. In this way, the classical
mass needed for successful tunneling and the small mag#isotropy will be unobservably small. By an order of mag-
required for successful slow-roll. For that reason, it seemgitude, the constraint is given by E(3), wherey is given
natural to consider two-field models of open inflatiff] in Eq. (48). The constraint will be satisfied if the mass of the
where one field does the tunneling and the other drives slowslow-roll field is sufficiently small in the false vacuuand
roll inflation inside the bubble. Ry is much smaller tharH;l. In a future publicatior{28]

In this paper we show that a large class of two-field mod-we will give more precise constraints from the observed
els of open inflation does not lead to infinite open universespower spectrum of temperature anisotropies of the CMB.
as was previous thought, but to an ensemble of inflating is- Finally, there are some two-field models of open inflation,
lands of finite size. The reason is that the quantum tunnelinguch as the one introduced by Green and Lidélein the
does not occur simultaneously along both field directionsgontext of induced gravity, which need not be affected in
and the equal-time hypersurfaces in the open universe are nptinciple by the classical anisotropies mentioned above. In
synchronized with equal-density or fixed-field hypersurfacesthese models, the value £f; is not variable; it is determined
Technically, one finds that there are @{4) invariant in-  in terms of the parameters in the potential. It would be inter-
stantons for the two-field system which would describe theesting to check whethed(4) symmetric instantons do in-
formation of a bubble with “large” values of the slow-roll deed exist in this model.
field in its interior. Large values of the inflaton field, needed
for the second period of inflation inside the bubble, only
arise as localized fluctuations. The interior of each nucleated
bubble will contain an infinite number of such inflating re- J.G.B. and J.G. thank Andrei Linde for very stimulating
gions, giving rise to a rather unexpected form of the largadiscussions. J.G. also thanks Alex Vilenkin for very useful
scale structure of the universe in these models. conversations, Takahiro Tanaka for interesting comments on

The picture is the following. Right after the bubble hasthe manuscript and the Theory Division at CERN for their
nucleated there will be, on the= const hypersurfaces inside hospitality during part of this work. J.G. and X.M. acknowl-
the bubble, a certain density of occasional large fluctuationsdge financial support from CICYT under contract AEN95-
of the slow-roll field that lead to inflating islands. These 0882 and from European Project Cl1-CT94-0004.
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APPENDIX A

We will show in this appendix that the two-point function

on at=const surface for the statg” dies off ase™ 79?2,

whered is the comoving distance between the points. We
will compute the two-point function ouside the light-cone,

and then continue it to the inside.
To compute the two-point function fop,, hereafter
G%(x,x’), we will use the fact that the modey,, are

4683

Now we have to analytically continue E¢A3) to the
inside of the light-cone by means of E(). This amounts
only to analytically continuing the scalar produtt

Z(x',x'")—cosy sinhr sinhr’—coshr coshr’.
(AS)

Takingr’'=0 andr=d, so Z=—coshd, and using Eq.
(9.131.2 in Ref.[32], we find that inside the light-cone the

properly normalized as Klein-Gordon modes of masstwo-point function between points separated a comoving dis-
p?+1 defined on ther=const (2+1) de Sitter hypersur- tanced can be written as
faces of the outside light-cone metric. Thus we can define the

fields
Yo=2 Vont%alP) +H.c., (A1)
Im

and the de Sitter invariant vaccuufd){® anihilated by

1 T(2-y/2)T(yl2)

GY(d)=

1+coshd>7’2

(4)%? ['(3/2) 2
y y—1 3 coshd—-1
xF 2' 2 '2'coshd+1/ (AG)

dS3(P) . Notice thatdQys in Eq. (6) corresponds to the line AS d—, the hypergeometric function in EGAG) tends to a

element of a closed coordenatization of aH2) de Sitter

space, for which the two-point functions can be found in Ref.

[31].
We can now write the two-point functio@% in terms of
the two-point functionss,(x',x"") for Y,

G(pz(x,x’)

= (0] @2(x) @2(x")|0)

:aEl(T)agl(T,)gn Fp(T)Fp('T,)yplm(xi)yplm(xri)

=agl<r>agl<r'>§ Fo(DFp(7)Gp(x'\ XD,  (A2)

constant, and the assymptotic behavioi&f is given by

1 T(y2T(2—7y) (1) 7? e
4R T@l2—y2) \al &

G"(d)—
(AT)
which dies off exponentially withd.
Here, we have only computed the first term in the sum

(A2). The terms withp?>>0 decay a® ", and hence they
are subdominant at large distance.

APPENDIX B

To compute QA¢})? for large r, we will need the
asymptotic expressions for the hyperbolic harmordgsy,
for r>y~1. The Legendre functions are given ksee e.g.

where the sum ovep has to be understood as a sum over theRef. [33))

discrete eigenvalugs® of the Schrdinger equatior{18) and
as an integration over its continuum spectrpf®>0. On a
given = const hypersurface, thedependence d’E@Z(x,x’)

will be given by G,(x',x""), weighted for eachp by
ag2||Fp||2. The two-point functionG, can be found irf31]:

.1 T@-ipl(1+ip)
Gp(gig )_ (477)3/2 1'*(3/2)

) 3 1+Z
XF 1+|p,1—|p;§;— )

5 (A3)

whereF is the hypergeometric function artlis the scalar
product of the position vectors at points and x’' in the
embedding (3 1) Minkowski space,

Z(x' ") = EH(X)E,(x')
=cosy coshp coshp’ —sinhp sinhp’.
(A4)

Here'y is the angle on the 2-sphere between the two points.
We recall that for the lowest discrete eigenmode to first order

in the shifty, ip=1— /2, and so we will denote b?” the
two-point function for this eigenmode.

(B1)

P 2 (coshr)= \E—sinh "
v T py/sinhr

From Eq.(23), the supercurvature mod@g, o is given by

1[T(1-A)T(1+A)]¥?sinhAr
A007 7 4 Asinr: (B2
where A =1- y/2. For larger, we have
e Y2
y(l—y/Z),OO‘}WZ—,y[l'i_ O(y)]. (B3)

Forl>0, we can expresB, '~ *?in terms ofP, ! using the
recursion formula

1 1
PU2)= 5,1 Tzl Pi(@-PITi(@]. (B4

The Legendre functio® 'Y then acquires the form

1 |

P kE Cu(v)P, 12,
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whereC,(v) are some functions depending enin fact, for  realizing that the wavelength of théh multipole is propor-
larger, we do not need to compute dll(v). We have to tional to (sinhr)/l, we can takd, =sinhr/¢. Finally, we ob-
take into account that for a supercurvature modetain
P;l’z(coshr) behaves for large as el’" [as can be seen
from Eg. (B1)]. Thus, for the supercurvature mode
v=(1-1%)/2, the termk=1I in Eq. (B5) grows exponentially
faster than the rest of terms in the sum, and so the main
contribution for larger will be given by this term. The co- ~(¢7-0)%lr=0(1—y In 2¢). (B12)
efficiency C,(v) can be easily read from E¢B4):

2
(AgY)?— (‘;—‘)b)(zg)-’

772R(2)'y

As we can see, as long Ha 2¢|<y~1, the added contribu-

I'(v+1/2 tion of the relevant modes is the same as the one given by the

Cir)=35 T+ 12+ (B6)  |=0 mode near the origin.

For larger, using Egs(B5), (B6) and(23), we obtain APPENDIX C
'+ y/2) 12 In the thin-wall approximation, including the gravitational
V=12, im= (1= yi2+1)(I— y2)T(1— y/2) backreaction, the background geometry is fo(iafl] to be
described by two de Sitter pieces with a different Hubble
XT(1—y/2)e”""2Y,(Q). (B7) constant glued together at somg,. The scale factor is
iven b
Finally, using lim_.I'(x+a)/I'(x)=x3% we can write g y
Y1~ yi2)m for largel, to ordery, as ag(n)=ar(n) 6(n—nw)+ar(n) 8(npw—mn), (Cl)
I yl2—1

wherear andag are the scale factors in the false and in the
true vacuum:

Y- yi2) im=~ Tre_W/ZYm(Q)[lWLO(V)]- (B8)

Using the results derived above, we can compute the am- ac(n)= 1
plitude of thel =0 mode near the origin, A7 Hg coshy’

(¢7-0)%r=0=(NT0)2Vs 0Va odr=0 3
T iy cosfin )

2
[1+O(»]. (B9

0
~ o2 <_ . L
T Ryy \ 0p Continuity ofag at the wall implies

and for larger,

a = = =Ry, (C2
To (7w) He coshny Hp cosipy—3)  ° (€2

Op

1 2
(¢l_0)’— ?2R2 ( ) e ""=(¢_0) =08 "
™ RoY whereR, is the radius of the wall, and is given by

(B10)
752 752
As we can see, the amplitude of the mdde0 decays ex- e5=(1+ V1-HIR))(1- V1-HERY) 3
ponentially forr>+~1. Taking into account that we have HFHTRS '

chosen arD(3,1) symmetric vacuum, this decrease in am-

plitude for larger must be compensated by the joint contri- To complete the description, we need to know the value of
bution of thel>0 modes, smeared over a suitable lengthRy. It can be found in Ref(25]:

scale, in such a way that the rms fluctuations of the field are

independent of . Let us check it. We need to compute kSy

R = 1
o ® VIHZ—HZ+ (xS,/2)27 + K?HIS,
(Acp%)zzlgl m;I (PiyA,Im(PiyA,lm

(C4

wherexk=87G andS; is the wall tension.

L o111 172 We want to find the lowest eigenvalue of the Salinger
* + -

2 o equation(18) in the background given above. The effective
—(Noo) .21 A1 _— potential is given in this case by
e [l e 712 U=ag{m’+gog—2[HE0(7— nw) +HT6(pw— )1}
~ oo [ T = (N
2m% Jo 2y + (e = Hr) 80— mw), (C5)
(B11)

whereHg=af/ar and similarly forHy.
wherel, is a certain cutoff, which has to grow as we move We will take a perturbative approach. We will divide the
away from the origin to include more and more modes in theffective potentiall/ into an unperturbed oné{,, plus a
sum. If we smear the field over a fixed comoving length small perturbation)\4; :
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Z/{O: _ZaFsz (C6)
NUy=ag[m*+gog—2HT0(nw—7)]
+(He—Hr) 8(n— nw) +2HZaZ0( nw— 7).
(C7)
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ground state a supercurvature mode with enepéyt—l
and wave functior9]

He

—ag(n).

F_,=
)

(C8)

To first order in perturbation theory, the shift of the energy
p5=—1 is given by
2 2p4
F F™o

y=(—1\h|-1)= (mé—mg), (C9

32 T8

wheremg is the efective mass of the slow-roll field in the

The unperturbed{, corresponds to the effective potential of false vacuum, anth; the effective mass in the true vacuum.
a massless scalar field in de Sitter space, which has asla this casemZ=m? andmé=m?+gv?.
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