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Quasiopen inflation
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We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open
universes, as was previously thought, but to an ensemble of very large but finite inflating ‘‘islands.’’ The
reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously
along both field directions and equal-time hypersurfaces in the open universe are not synchronized with
equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value
of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as
localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating
regions of comoving size of orderg21, whereg is the supercurvature eigenvalue, which depends on the
parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the
hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized
inside of a single bubble. We may happen to live in one of those patches of comoving sized&g21, where the
universe appears to be open. In particular, we consider the ‘‘supernatural’’ model proposed by Linde and
Mezhlumian. There, an approximateU(1) symmetry is broken by a tunneling field in a first order phase
transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find
that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the
bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.
@S0556-2821~98!01410-6#
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I. INTRODUCTION

In models of open inflation, which lead to a density p
rameterV0,1, the ‘‘horizon’’ and ‘‘flatness’’ problems are
solved by two very different mechanisms. Although op
inflation can be realized with a single scalar, realistic mod
look more natural when the task of solving each one of th
two problems is entrusted to a different scalar field. Nev
theless, models with two fields introduce a host of new
fects which should be carefully investigated. In particular,
we shall see in this paper, most of the two-field models t
have been recently proposed do not give rise to an infi
open universe but to a large inflating island of finite size
quasi-open universe.

The picture of open inflation is the following. The un
verse starts in a de Sitter phase driven by the potential en
of a scalar fields which is trapped in a false vacuum. Th
false vacuum decays through quantum tunneling, and sph
cal bubbles of true vacuum nucleate in the smooth de S
background. After nucleation, the bubbles expand with c
stant acceleration, following a ‘‘trajectory’’ which is invari
ant under Lorentz transformationsO(3,1); see Refs.@1,2#
and Fig. 1. Since this is also the symmetry of
open Friedmann-Robertson-Walker~FRW! universe, the
s5const surfaces in the interior of the bubble can be id
tified with the t5const sections of an open universe@3#. In
this way the symmetry of the bubble takes care of the ‘‘h
mogeneity’’ problem. A second period of ‘‘slow-roll’’ infla-
tion inside the bubble, lasting for approximately 6
e-foldings, would solve the ‘‘flatness’’ problem@4–7#.
570556-2821/98/57~8!/4669~17!/$15.00
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In open ~and in quasi-open! inflation, the dynamics of
bubble nucleation and subsequent expansion turns out t
very important in determining the spectrum of gravity wav
and density perturbations. The reason is that, unlike the c
of stardard inflation, the amount of slow-roll inflation
minimal and the ‘‘initial conditions’’ right after the bubble
nucleates are not washed out completely. Thus, for insta
quantum fluctuations of the slow-roll field generated outs
the bubble can penetrate to the interior@8#, causing pertur-
bations whose wavelength is larger than the curvature sc
These are the so-called supercurvature modes@9#. Also, the
scattering of tensor modes off the bubble wall determines
spectrum of very long wavelength gravitational wav

FIG. 1. Conformal diagram showing a bubble expanding in a
Sitter background. The bubble wall is represented as the thick g
line starting at the point P. It expands with constant accelera
along ah5const surface. The FRW open universe is inside
future light cone from the point O, which is the center of symme
of the bubble solution.
4669 © 1998 The American Physical Society
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4670 57GARCÍA-BELLIDO, GARRIGA, AND MONTES
@10,11#. In the limit of a weakly gravitating wall, this effec
can be alternatively described as a fluctuation of the bub
wall itself, which induces supercurvature anisotropies ins
the bubble@12–15#.

In principle, tunneling and slow-roll can be done by t
same scalar field@4#, but this requires a very special form o
the inflaton potentialV. Denoting byH[(8pGV/3)1/2 the
Hubble rate during inflation, a sharp barrier whereV9@H2 is
necessary1 for bubble nucleation@17#. But this barrier must
be right next to a flatter region whereV9!H2, which is
needed to make slow-roll possible. Moreover, the duration
slow-roll, which depends on the length of the plateau in
inflaton potential, has to be fine-tuned to some extent,
cause a fewe-foldings more or less can make the differen
between an almost flat universe and an almost empty on

As mentioned above, models with two fields were intr
duced in order to overcome these difficulties, one doing
tunneling and the other doing the slow-roll@5#. In this way,
the coexistence of two different mass scales seems m
natural. Also, it was argued that in some models the valu
the slow-roll field after bubble nucleation can be different
each nucleated bubble, and hence the duration of open i
tion would be different in each one. As a result, for a giv
temperature of the cosmic microwave background~CMB!,
one would obtain a different value of the density parame
in each universe, and there would always be some open
verses with a density parameter in the interesting range@18#.

The purpose of this paper is to show that in models of t
sort, with variableV, the picture is actually more compli
cated. Indeed, instead of an infinite open universe inside
each bubble, what we find is an infinite number of inflati
islands of finite size inside each bubble.

Quasi-open universes are not entirely new. The simp
two-field model of open inflation, where the tunneling fields
and the slow-roll fieldf are decoupled, is actually a quas
open one, as emphasized by the authors of Ref.@5#. Quasi-
openness is in principle not a desirable feature, since
typical observer, the universe looks anisotropic@19#. In the
simple ‘‘decoupled’’ model, this ‘‘classical’’ anisotropy i
large and, combined with the effect of quantum ‘‘superc
vature’’ fluctuations mentioned above@8#, it basically rules
out the model@19#.

To circumvent this problem, Linde and Mezhlumian i
troduced a class of two-field models where the slow-roll fi
is coupled to the tunneling field. As we shall see, these m
els are also quasi-open. This does not mean that they ar
good cosmological models. If the co-moving size of the
flating islands is sufficiently large, then the resulting classi
anisotropy may be unobservable. Even so, the fact that t
islands are finite leads to a dramatically different picture
the large scale structure of the universe in open models.

The plan of the paper is the following. In Sec. II w
briefly review the ‘‘supernatural’’ model of inflation, intro
duced in Ref.@5#. In this model, an approximateU(1) sym-
metry is broken by a tunneling field in a first order pha

1In the caseV9!H2 the phase transition can proceed via t
Hawking-Moss instanton@16#. However, this channel represen
tunneling to the top of the barrier of a region of sizeH21, and does
not lead to an open universe.
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transition, and slow-roll inflation inside the nucleate
bubbles is driven by the pseudo Goldstone boson. In Sec
we study the quantum fluctuations of the pseudo Goldst
boson in the bubble background. Section IV is the core of
paper, where we argue that after tunneling, we do not ob
an infinite open universe, but an infinite ensemble of qua
open universes inside a single bubble. Section V is devo
to more general models, like the ‘‘coupled’’ and ‘‘un
coupled’’ two-field models. In Sec. VI we briefly describ
the observational implications of our results and in Sec.
we summarize our conclusions.

II. SUPERNATURAL INFLATION

An attractive scenario for open inflation is the model o
complex scalar field with a slightly tilted mexican hat pote
tial, ~see Fig. 2!, where the radial component of the fie
does the tunneling and the pseudo Goldstone boson doe
slow-roll. This model was called ‘‘supernatural’’ inflation i
Ref. @5#, because the hierarchy between tunneling and sl
roll mass scales is protected by the approximate globalU(1)
symmetry.

The action is given by

S52E d4xA2g@]mF* ]mF1V~F,F* !#, ~1!

where we use the metric signature~2,1,1,1!. Expanding
the field in the formF5(s/&)exp(if/v), wherev is the
expectation value ofs in the broken phase, we consider
potential of the form

V5V0~s!1V1~s,f!,

whereV0 is U(1) invariant andV1 is a small perturbation
that breaks this invariance. It is asumed thatV has a local
minimum atF50 which makes the symmetric phase me
stable. We shall consider a ‘‘tilt’’ in the potential of the form
V15L4(s)G(f) whereL is a slowly varying function ofs
which vanishes ats50. For definiteness we can tak
G5(12cosf/v).

The idea is thats tunnels from the symmetric phas
s50 to the broken phase, landing at a certain value of
away from the minimum of the tilted bottom. Once in th
broken phase, the potentialV1 cannot be neglected, and th

FIG. 2. The inflaton potential for the supernatural model. A
approximate U~1! symmetry is broken through bubble nucleatio
We calls the tunneling direction andf the direction orthogonal to
it. The instantons0(t) interpolates between false vacuum
t→`, andsb at t50.
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57 4671QUASIOPEN INFLATION
field f slowly rolls down to its minimum, driving a secon
period of inflation inside the bubble. Another attractive fe
ture of this model is that, depending on the value off on
which we land after tunneling, the number ofe-foldings of
inflation will be different. Hence it appears that in princip
we can get a different value of the density parameter in e
nucleated bubble. As we shall see, however, this pictur
somewhat oversimplified.

We should point out that the supernatural model is
free from certain restrictions. Indeed, in order for the pseu
Goldstone boson to realize inflation as in the simple f
field ‘‘chaotic’’ scenario, we would needv*M p , whereM p
is the Planck mass. On the other hand, ifV0 is a typical
quartic potential, the bubble walls would undergo topolo
cal inflation @20# for v*M p , and this would spoil the open
scenario. Topological inflation occurs when the thickness
the walls is larger than the Hubble rate at the top of
potential barrier separating two local minima~degenerate or
not!. This is the same condition under which th
Coleman–de Luccia instantons@2# cease to exist, and w
have a Hawking-Moss@16# transition instead. Hence the con
dition v*M p also represents the regime where the transit
is not of the Coleman–de Luccia type, as would be neces
for a successful open universe. As emphasized in Ref.@5# in
the case of single-field open inflation, a transition of t
Hawking-Moss type would leave unacceptable anisotrop
in the CMB. These constraints can be made less sever
choosing a suitable form forV0 , with higher curvature at the
top of the potential between the two minima, or perhap
special form forG. In any case, we shall takev;M p in what
follows.

III. QUANTUM FLUCTUATIONS

In this section, we compute the amplitude of quantu
fluctuations of the pseudo Goldstone field in the supernat
inflation model. For this, we need to review the formalis
for quantizing fields in the background of a bubble.

The field equation forF is

hF2
]V~F!

]F*
50, ~2!

where V5V01V1 . In terms of the moduluss and phase
f/v, we have

h~seif/v!2F]V~s,f!

]s
1 i

v
s

]V~s,f!

]f Geif/v50. ~3!

It should be noted that classical solutions withf5f̃

5const exist only iff̃ is an extremum ofG, so that

]V

]fU
f5f̃

50.

This is true also for the Euclidean solutions~instantons! de-
scribing the tunneling, and so strictly speaking these ins
tons can only take us from the false vacuum to the extre
of V1 in the broken phase. Even if we relax the condition th
f should be constant, there may not be any instantons w
can take us to non-extremum values. Of course, this non
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istence of the corresponding instanton does not mean tha
field cannot tunnel to a non-extremum value off; it simply
means that tunneling away from the extremum will be som
what suppressed. This question will be addressed in Sec

Since the effect we are studying is not due to gravity,
shall start with the case of a bubble in flat spacetime. Incl
ing gravity is quite straightforward and will be done below
According to the theory of vacuum decay@1#, the tunneling
rate is dominated by theO(4) symmetric solution of the
Euclideanized equations of motion~3! with appropriate
boundary conditions, which is called the instanton or boun
and which we shall write as

s5s0~t!, f5f̃5const. ~4!

Here, we have introduced the Euclidean radial coordin
t[(X21TE

2)1/2, where (TE ,X) are Cartesian coordinates i
Euclidean space. As we move from spatial infinity to t
origin, the bounce interpolates between false vacu
s0(t→`)50 and a certain value of the field in the basin
the true vacuum~see Fig. 2!, s0(0)[sb . In addition, the
bounce has to satisfy the boundary conditionṡ0(0)50. The
solution describing the bubble after nucleation is given
the analytic continuation of the instanton to Minkowski tim
T through the substitutionTE52 iT. Then, the bubble solu
tion depends only on the Lorentz invariant ‘‘distance’’ to th
origin (X22T2)1/2, where (T,X) are the usual Minkowski
coordinates.

It is useful to change to the new coordinates

t5~X22T2!1/2, r[tanh21~T/uXu!, ~5!

in terms of which the line element reads

ds25dt21aE
2~t!dVdS3. ~6!

HeredVdS352dr21cosh2 r(du21sin2 udw2) is the line el-
ement of a (211)-dimensional de Sitter space of unit ‘‘ra
dius,’’ and in flat spaceaE(t)5t. Including gravity,aE has
to satisfy the~Euclideanized! Friedmann equation, as de
scribed below. This (211)-dimensional de Sitter space ca
be thought as the hyperboloid swept by the bubble wall d
ing its time evolution~suitably rescaled!. In spite of its name,
the coordinater is timelike, whereast is a ‘‘radial’’ space-
like coordinate.

The above coordinates cover only the exterior of the lig
cone from the origin. In order to cover the interior, which
where the open universe sits, we use the coordinates

t5~T22X2!1/2, r[tanh21~ uXu/T!. ~7!

In terms of these the metric reads

ds252dt21a2~ t !dVH3, ~8!

wheredVH35dr21sinh2 r(du21sin2 udw2) is the metric on
the unit 3-dimensional hyperboloid and~in flat space! the
scale factor is given bya(t)5t.

Notice that Eq.~8! is the metric of an open FRW. Whe
gravity is included, the scale factora(t) will no longer be
proportional to the cosmological timet but it will be given
by the solution of the Friedmann equation
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~12V!5~aH!22.

In the general case, the metrics~6! and~8! are related by the
analytic continuation of coordinates and scale factor in
following way:

t52 i t, r 5r1 i
p

2
, a~ t !52 iaE~ i t !. ~9!

These relations can be used to analytically continue solut
from the outside to the inside of the light-cone from t
origin.

In what follows, we shall assume that tunneling occu
along the real direction forF, i.e. f̃50 in Eq. ~4!, and we
shall consider perturbations around the classical solution
the form

&F5s0~t!1w11 iw2 . ~10!

Note that

f.v
w2

s0
. ~11!

We could also have considered tunneling in the direct
f̃5vp. However, it is easy to show that the action for t
corresponding instanton is larger than the one correspon
to tunneling to the minimum atf̃50.2 Substituting into the
action ~1! we obtain the second order action for lineariz
perturbations:

S~2!5S0@s0#1E d4xA2g@hs02V08~s0!#w11S1@w1#

1S2@w2#, ~12!

where

S152
1

2 E d4xA2g@]mw1]mw11V09~s0!w1
2#, ~13!

S252
1

2 E d4xA2gS ]mw2]mw21FV08~s0!

s0
1m2~s0!Gw2

2D .

~14!

Here

m2~s0!5
v2

s0
2 L4~s0!G9~0!5

L4~s0!

s0
2 ~15!

is a smallt-dependent ‘‘squared mass’’ due to the poten
V1 . In the last equality we have usedG of the form G5
(12cosf/v). When the fields is in the broken phase, the

2In the thin-wall limit and ignoring the backreaction, the tunneli
action is given bySE5(27p2/2)S1

4/(DV)3. HereS1 is the domain
wall tension, which in the thin wall case is roughly independent
the tunneling direction, andDV is the gap in energy density be
tween the false vacuum and true vacuum. Clearly, the smaller
gap is, the larger the action will be, and the lower the tunnel
probability P;exp(2SE).
e

ns

s

of

n

ng

l

m is the mass of the pseudo Goldstone boson. Of cou
using the unperturbed equations of motion the linear term
Eq. ~12! drops out.

The action~13! has been studied in some detail in the p
@21,13# because it is the same as the one for a one-fi
model. In particular, it describes the fluctuations of t
bubble wall itself. Here, we shall concentrate onS2@w2#,
which describes fluctuations in the direction transverse
tunneling.

In order to study quantum fluctuations, the fieldw2 is
expanded as a sum over modes times the corresponding
ation and annihilation operators:

w25( wplmaplm1H.c. ~16!

The equation of motion satisfied by the modes is

hwplm2FV08~s0!

s0
1m2~s0!Gwplm50.

Following @21,13#, we take the ansatz

wplm5aE
21~t!Fp~t!Yplm~xi !, ~17!

where xi5(r,u,w) are coordinates on the~211! de Sitter
space spanned by the motion of the bubble wall. Introduc
the conformal coordinateh defined through the relation
aE(t)dh5dt, the equation of motion separates into
Schrödinger equation

2
d2Fp

dh2 1aE
2FV08~s0!

s0
1m2~s0!2

R
6 GFp5p2Fp , ~18!

where the separation constantp2 plays the role of an energy
eigenvalue, and a Klein-Gordon equation for the modes o
scalar field of massp211 defined on the~211!-dimensional
de Sitter space:

~3!hYplm5~p211!Yplm . ~19!

Here (3)h is the covariant d’Alembertian in this lower di
mensional space, andR is the four-dimensional Ricci scalar
which from the unperturbed Einstein’s equations can be w
ten asR58pG@4V(s0)1(s08/aE)2#.

The modeswplm should be Klein-Gordon normalized on
Cauchy surface such asr50. This amounts to Klein-Gordon
normalizing the lower dimensional modesYplm in the
~211!-dimensional sense, and then normalizingFp as in the
Schrödinger problem@21#:

E
2`

`

FpFp8dh5dpp8 , ~20!

where the delta function will be discrete or continuous d
pending on whether we are considering discrete or cont
ous eigenstates of the Schro¨dinger equation. In flat space
aE5R0eh, whereR0 is an arbitrary constant which can b
conveniently taken to be of order of the radius of the bub
at the time of nucleation. Therefore, the effective potentia
the Schro¨dinger equation

f

is
g
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57 4673QUASIOPEN INFLATION
Veff~h![aE
2FV08~s0!

s0
1m2~s0!2

R
6 G ~21!

tends to zero ath→2` ~center of the bubble! and to infinity
at h→1` ~false vacuum!; see Fig. 3. In curved space, it ca
be shown@2# that aE(h→6`)→0, and soVeff vanishes at
both ends. Therefore, in both cases, the spectrum will
continuous forp2.0, and there may be a discrete spectru
for p2,0.

A. Quantum state of a nucleating bubble

In a time-dependent background, the choice of a vacu
state is always somewhat ambiguous@22#. Here, this ambi-
guity corresponds to the freedom of choosing the ‘‘posit
frequency’’ modesYplm on the hyperboloid. In principle, the
ambiguity can be resolved dynamically if the initial quantu
state before the bubble nucleates is given.

The quantum state of a nucleating bubble has been ex
sively studied both in flat and in curved space@23#. In our
model, w2 is treated as a free field which couples to t
bubble via as-dependent mass term. For this type of mod
it has been shown that if the initial quantum state is de Si
invariant before the bubble nucleates, then right after bub
nucleation the fieldw2 will be in anO(3,1) symmetric state
This is perhaps not too surprising: the appearance of
bubble breaks theO(4,1) de Sitter symmetry by selecting
‘‘nucleation point’’ in spacetime, but otherwise the bubb
solution respects anO(3,1) subgroup of isometries.

What this means is that the positive frequency mo
Yplm must be taken as the Bunch-Davies modes, which g
antee the desired symmetry. These are given by

Yplm5FG~ l 112 ip !G~ l 111 ip !

2 G1/2

3
Pip21/2

2 l 21/2~ i sinh r!

Ai coshr
Ylm~u,f!, ~22!

wherePn
m are the Legendre functions andYlm are the usual

spherical harmonics. When analytically continued to the
side of the light-cone, through the relations~9!, they become

FIG. 3. The effective potential in Eq.~21!. In flat space~dashed
line! the potential grows without bound at largeh, whereas includ-
ing gravity it tends to zero. Ath→2`, which corresponds to the
center of the bubble,Veff tends to zero.
e
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Yplm5FG~ l 112 ip !G~ l 111 ip !

2 G1/2Pip21/2
2 l 21/2~coshr !

Asinh r
Ylm .

~23!

These are proportional to the often used harmonicsYplm
which are normalized on the hyperboloidH3 @9#:

Yplm5
G~ ip !

&
AG~ l 112 ip !

G~ l 111 ip !
Yplm .

These analytically continued modes are normalizable
H3 only for p2>0. Since the mode withp250 has a wave-
length comparable to the curvature scale, the n
normalizable modes withp2,0 have been dubbed ‘‘super
curvature’’ modes@9#. Writing p52 iL, the supercurvature
modes are given by

YL,lm5FG~L1 l 11!G~2L1 l 11!

2 G1/2

3
PL21/2

2 l 21/2~coshr !

Asinh r
Ylm . ~24!

~We have added a comma after the subindexL to indicate
that it is the value ofip rather thanp.! We repeat, however
that if the corresponding bound state exists in the Sch¨-
dinger equation~18!, then these modes are perfectly norm
izable on the Cauchy surface, and hence they must be
cluded in the expansion of the field operator~16!.

B. Degenerate case

To begin with, let us neglect the mass termm2, Eq. ~15!,
which comes from the tilt in the potential,V1 .3 Then, using
the equation of motion satisfied bys0 , it is straightforward
to show that

F15NaEs0 ~25!

is a solution of Eq.~18! with eigenvaluep2521 or L51.
Moreover, this solution is normalizable and it belongs to t
discrete spectrum. The normalization constantN is found
from Eq. ~20!:

N5S E
0

tmax
aEs0

2~t!dt D 21/2

. ~26!

Here, we have changed back to the physical coordinatt,
which measures the physical distance to the center of
bubble. In flat spacetmax is actually infinite, but the integra
is finite becauses0 vanishes exponentially fast outside th
bubble. Including gravitytmax becomes a finite value, and s
the integral is also finite. The explicit value ofN can be
calculated numerically for any given model. IfR0 is the size
of the bubble andsb is the value of the field at the center o
the bubble~see Fig. 1! at the time of nucleation, then we ca
estimate

3Tunneling rates in the case when there is an exact internal s
metry have been recently investigated in@24#.



ed

an

he
re

p

le
.
he

t-

od

t
b

In
he

va

th
I.
s

s
ac

n-
os-
of
the

e in

e

ar

s
n-

e
c-
o
e

t on
are

a

e

w-

ld

ow
ra
s

rta
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N'
&

R0sb
.

The above estimate is for bubbles such thatR0 is small com-
pared with the Hubble radius, so thataE't. Also, we have
substituteds0 by sb in the integrand, and we have integrat
t from zero up toR0 . Becauses0<sb , our estimate is
actually a lower bound onN, and in some thick wall models
the effect can be somewhat higher.

If we asume a large energy difference between false
true vacua, then we are in the thick wall regime andR0 is of
the order of the thickness of the bubble wall:

R0;M 21.

HereM is the mass of the field in the false vacuum. If, on t
contrary, the vacua are sufficiently degenerate, then we a
the thin wall regime, and the expression forR0 can be found
e.g. in Appendix C and Ref.@25#.

The normalized mode has an amplitude

w1,lm'
&

R0

s0~t!

sb
Y1,lm~xi !. ~27!

Physically, what happens is that the field does not sim
tunnel to a sharply defined value off, but a distribution of
values. Taking into account that the phase of our comp
scalar fieldF is given by Eq.~11!, thexi dependence in Eq
~27! shows that, after nucleation, different points on t
bubble have different values of the anglef.

When analytically continued to the interior of the ligh
cone from the origin, through the relations~9!, t is replaced
with the cosmological time ands0(t) quickly follows its
evolution towards its expectation values0'v.sb . Hence,
inside the light-cone, the normalized supercurvature m
will take the form

w1,lm~ t,r ,u,w!5
&

R0

v
sb
Y1,lm~r ,u,f!, ~28!

which is time independent. In order for the bubble solution
exist, the mass of the field in the false vacuum should
M@HF , whereHF is the Hubble rate in the false vacuum.
our model,HF is considered to be much greater than t
Hubble rate in the true vacuumHT .4 Therefore, the ampli-
tude of supercurvature perturbations is of order (v/sb)M .
This exceeds by far the amplitude of the usual ‘‘subcur
ture’’ fluctuations, which is only of orderHT . The corre-
sponding effect in the CMB places severe constraints on
model @8#. We shall come back to this question in Sec. V

Note that forL51 the amplitude of the homogeneou
model 50 diverges because one of the gamma function
Eq. ~24! has a vanishing argument. This is related to the f

4We are considering here strongly non-degenerate minima. H
ever, in Ref.@5# they also consider various depths of the cent
minimum, depending on radiative corrections, and in some ca
(g4532p2l) the two minima become degenerate,HT5HF . This
weakens the constraints and makes the model viable in ce
range of parameters.
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that, strictly speaking, thel 50 mode should have been qua
tized as a collective coordinate instead of as a harmonic
cillator @26#. The divergence simply means that all values
f are equally probable after nucleation. When we include
effect of V1 , the degeneracy will be broken and thel 50
mode will have a finite amplitude.

C. Non-degenerate case

When the tiltV1 in the potential is included,p2521 is
no longer an eigenvalue of the Schro¨dinger operator~18!.
However, it is clear that for smallm2 there will still be a
discrete eigenmode whose eigenvalue we can calculat
perturbation theory. Denoting byu21& the unperturbed
bound state~25!, the perturbation to the eigenvalue will b
given by

g[p2115^21uaE
2m2u21&5N2E aE

4s0
2m2~s0!dh.

~29!

Again, g can be computed numerically for any particul
model, but we can estimate it as being of order

g5
*aE

3s0
2m2~s0!dt

*aEs0
2~t!dt

;
1

2
R0

2mb
2 , ~30!

where mb
2[L4(sb)/sb

2 ; see Eq.~15!. The above estimate
uses the same approximations as the estimate forN after Eq.
~26!.

The normalizedl 50 mode will now be given by

w l 50
g 'Ns0Yp,00'

1

pR0

s0~ t !

sb

1

g1/2

sinh@~12g!1/2r #

sinh r
,

~31!

where, from now on, we shall use the notationw l
g to denote

the modes withp25211g. In this expression, and the one
that will follow, we give only the unperturbed time depe
dence, without including the first order correction ing. The
field s0(t) quickly rolls down fromsb and settles down to
its minimum ats05v. It is understood that, after that, th
time derivative of the mode will be dominated by the corre
tions of orderg, which slowly drive the Goldstone modes t
the minimum of the tilted potential. The amplitude of th
higher-l excitations will also suffer corrections of orderg,
but since these amplitudes were already finite, the effec
those is not so dramatic. To leading order, the amplitudes
the ones calculated in the previous subsection.

It is interesting to look at the distribution of the field on
hyperboloid t5const. Note that the amplitude of thel 50
mode near the originr 50 is of order

w l 50
g ~r !g21!'

1

&p
N

s0

g1/2'
1

pR0g1/2

s0

sb
, ~32!

which is a factor ofg21/2 larger than the amplitude of th
individual l .1 modes found in Eq.~28!. But the amplitude
of the l 50 mode decays exponentially forr @g21, which
means that at large distances it will become negligible. Ho
ever, the quantum state that we have chosen isO(3,1) sym-
metric, which means that the rms fluctuation of the fie
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cannot depend onr . Therefore, the loss in amplitude of th
l 50 mode as we move away from the origin has to be m
up for by the joint contribution of thel .0 modes, smeared
over a suitable length scale. This is analogous to what h
pens for a massive field in de Sitter space, except that
we are considering a spacelike manifoldt5const rather than
a spacetime. In the Appendix B we show that forr @g21 we
have

~Dwg!2[(
l 51

l
*

~2l 11!~w l
g!2'

N 2s0
2

2p2g
l
*
g e2gr ,

where l * @1 is a certain cutoff. If we smear over a fixe
comoving lengthj, as we move away from the origin w
have to include more and more modes in the sum. Since
l th multipole has wavelength proportional to (sinhr)/l, we
take l * 5sinhr/j. With this, we find (Dwg)2

'(N 2s0
2/2p2g)(2j)2g. Notice that the result is rather in

sensitive to the choice ofj. As long asu ln ju!g21, the added
contribution of all relevant modes at larger is the same as
the contribution of thel 50 mode near the origin, given b
Eq. ~32!. We also show in Appendix A that the two-poin
correlations on at5const surface die off with comoving dis
tanced ase2gd/2.

Hence, around the timet* when the fields0 settles down
to its minimums0;v the supercurvature fluctuations of th
field are of order

~Dwg!'
&

p S v
sb

D 1

mbR0
2 5
&

p

L2~v !

L2~sb!

1

mR0
2 ;

M2

m
.

~33!

Here,m5L2(v)/v is the mass of the pseudo Goldstone b
son in the true vacuum. In the last step we have asumed
L~s! is a slowly varying function ofs, and setR0;M 21.
Note that the fluctuation inw2 can easily reach Planckia
values. It suffices to takeM;1016 GeV andm;1013 GeV.
With these values, the field is displaced enough from
minimum that it can drive inflation~recall that we are asum
ing v'M p!.

IV. QUASI-OPEN UNIVERSE

Tunneling to a large value of the field is usually unde
stood in an ‘‘adiabatic’’ sense. The idea is that since
motion of the phase is dictaded by the explicit symme
breaking potentialV1 , it will be much slower than the mo
tion of the radial component of the field dictated by the lar
U(1) symmetric part of the potential. Hence, one can e
mate the rate for tunneling at anyf by solving the Euclidean
equations of motion fors while f is kept as a frozen param
eter. This frozen parameter is then used as the initial valu
the slow-roll field on thet5t* hypersurface. Here, as abov
t* is the time at whichs0 reaches its expectation valuev.

However, it is clear that when the spread of the pseu
Goldstone field on thet5t* hyperboloid is comparable to it
range, (Dwg)*pv, the picture that each bubble nucleat
with a different value ofw2 is not adequate. Instead, all o
the ‘‘vacuum’’ manifold is pretty much sampledinside a
single bubble. In this case, inflation does not take place c
herently on thet5const hyperboloids. As mentioned in th
e
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previous section, the comoving correlation length for qua
tum fluctuations ~in units of the curvature scale! is
d;g21. Thus, patches of comoving sized;g21 wherew2
is large and positive would be right next to patches wherew2
is large and negative. These patches would be separate
regions wherew2 is small and the universe does not inflat
Patches with positive and negative values can also be s
rated by ‘‘walls’’ where w2 is close topv. In the case
v'M p these domain walls of the pseudo Goldstone poten
would be topologically inflating@20#. Hence, instead of a
smooth inflating hyperboloid, we have a patchy mosaic
inflating regions, as depicted in Fig. 4. In principle, ea
patch can give rise to a successful cosmology, but this c
mology will not be an open universe in the traditional sen
At best it will be a ‘‘quasi-open’’ one, i.e. one which locall
resembles an open FRW.

When (Dwg)!pv the spread in the distribution of th
pseudo Goldstone field in at5t* section is small. What this
means is that if the nucleated bubble is described by
O(3,1) symmetric quantum state, then most of the surf
t5t* has a non-inflating value of the field. However, in a
infinite hypersurface, there will be a certain density of occ
sional large fluctuations which will lead to inflating island
of comoving sized;g21. Each one of these islands will b
a quasi-open universe.

This is in clear opposition with the conventional adiaba
picture described in the first paragraph. It is interesting
pursue the adiabatic picture for a moment, in order to se
which sense it is adequate or not. To keep the discus
simple, let us consider tunneling to a range of values off for
which the linearized expression~12! is still valid, but suffi-
ciently large that it can be distinguished from tunneling
the bottomf50. This will be the case ifw2 @see Eq.~11!# is
in the range

~Dw2!!w2!v, ~34!

where (Dw2)25(N 2s0
2/2p2g) was computed in the previ

ous section.
Sincew1 andw2 decouple, we may take anapproximate

Euclidean solution of the formF5(11 if/v)s0(t)/&,
wheref is taken as constant in the adiabatic approximati
Substituting this configuration in the Euclideanized vers
of Eq. ~12! we find, after straightforward algebra,

FIG. 4. On at5const hypersurface inside the bubble, the c
moving coherence length of the slow-roll field isr;g21. If the rms
fluctuations of the field are large, then regions where the field
large and positive will be next to regions where the field is lar
and negative. These will be separated by regions where the fie
small and there is no second stage of inflation.



-
n
a
-
en
e

ge
m
le
a
b
ld

a
a

le
n
e
e
rs

on
n
s

so

io

h
in
ar

lly

ay
-

a

fo
bu

r
on
r to
st
tes

ply

the

d

total
ion
n
at
at
-
le

ng

hing

is a

ex-
der

ould
ulti-
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SE@f#5SE@s0#1
1

2 E d4xA2gm2w2
25SE@s0#

1
gp2

N 2v2 f2.

If the decay rate is proportional toe2SE, the relative prob-
ability of having a bubble with a certain value ofw2 at nucle-
ation will be

P~w2!;expF 2w2
2

2~Dw2!2G , ~35!

where we have used Eq.~11! and, perhaps not too surpris
ingly, found (Dw2)25(N 2s0

2/2p2g), the same expressio
obtained in the previous section from considerations of qu
tum fluctuations in theO(3,1) invariant state. Thus, two ap
proaches which in principle are aimed at answering differ
questions end up giving the same answer. Here, we w
asking how likely is it for a bubble to nucleate at a lar
value of f, whereas in the previous section we were co
puting the amplitude of fluctuations inside a given bubb
Undoubtedly, both questions are related, since at least loc
we cannot distinguish a large value of the field induced
the nucleation of the bubble from a fluctuation of the fie
inside the bubble.

However, even though the adiabatic approximation m
give the right answer for the probability of tunneling to
large value off, it suggests the wrong picture for bubb
nucleation. Sincef5const is used in the above estimate, o
might imagine that an infinite open universe with homog
neousw2 in the range~34! can be created. We shall argu
that the probability for this to happen is actually zero. Fi
of all, the formulaP;exp@2SE# is only justified when the
Euclidean action is evaluated on a solution of the equati
of motion. Butf5const is only a solution in the case whe
V1 is neglected. We can try and correct this configuration
that it will be a solution, while still keepingO(4) symmetry.
In the linear regime, what this means is that we want a
lution of Eq. ~18! with p2521, so that Eq.~19! is satisfied
by Yplm(xi)5const and we have a homogeneous solut
inside the bubble. However, form2.0 the lowest eigenvalue
is p25211g.21, which means that the solution wit
p2521 is not normalizable. As a result, the correspond
Euclidean action is badly divergent. If the action is regul
ized with a cutoff and if we take thep2521 solution to be
well behaved at the center of the bubblet50, then it is easy
to show that the action starts growing exponentia
SE;exp@2M(tc2R0)#, as the cutofftc in the radial direction
t becomes larger than the size of the bubble. HereM is the
mass ofF outside the bubble. Hence it is not justified to s
that the estimate~35! gives the nucleation rate for a homo
geneous bubble. Rather, using a homogeneous solution
would get a divergent action and hence a vanishing prob
lility.

A. Creation of a quasi-open universe

To compare, we can now ask what is the amplitude
tunneling from a false vacuum to a spherically symmetric
inhomogeneous configuration with a large value ofw2 inside
n-
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the bubble. This is what we call an ‘‘inflating island’’ o
quasi-open universe. Again, this amplitude will depend
the action of a semiclassical Euclidean trajectory. In orde
make the metric~8! into one of Euclidean signature, we mu
consider the analytic continuation of the coordina
t52 i t and r 5 ir E . With this we have

ds25dt21aE
2~t!dVS3, ~36!

wheredVS35drE
21sin2 rE(du21sin2 udf2) is the metric on

the three-sphere, and the range ofr E is from 0 top.
The semiclassical trajectory we shall consider is sim

the analytic continuation of thel 50 supercurvature mode5

~31!:

w25A f~t!g~r E!, ~37!

where f (t)5s0(t)1O(g) and

g~r E!5
sin@~12g!1/2r E#

sin r E
.

Note that this solution is not regular at one of the poles of
three-sphere,r E5p. This is of course expected, sinceg is an
eigenfunction of the Laplacian with eigenvalueg, which is
not in the spectrum. Hence, Eq.~37! is not a regular
‘‘bounce’’ around which we should expand in order to fin
the false vacuum persistence amplitude@1#.6 This is not a
problem for us here, because we are not estimating the
decay rate of the false vacuum but a particular transit
amplitude. For this, we only need ‘‘half’’ of the Euclidea
solution, which interpolates between false vacuum
t→`, r E'0 and an inhomogeneous configuration
r E5p/2. At r E5p/2 this solution is matched to a Lorentz
ian solution atr50 ~the spacelike surface where the bubb
nucleation takes place! simply by the analytic continuation
t52 i t and r5 i (r E2p/2) @see Eqs.~9!#. The solution is
then propagated to the interior of the bubble~the ‘‘open’’
universe! through Eqs.~9!.

The transition amplitudeC is WKB suppressed only in
the Euclidean regime; the Lorentzian evolution contributi
an oscillatory phase. Therefore

uCu;e2SE,

where

5The semiclassical trajectory we consider does not have vanis
‘‘temporal’’ derivative at the bounce pointr E5p/2 where we
match the Euclidean solution to the Lorentzian one. Hence it
complex trajectory which has a small imaginary part~of orderg! in
the classically forbidden region. The imaginary part decreases
ponentially fast in the Lorentzian section on a time scale of or

R0
21.
6This is a blessing, because an inhomogeneous instanton w

cause the well-known problem that the decay rate should be m
plied by the infinite volume of the Lorentz group.
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SE52pE
0

`

dtaE
3~t!E

0

p/2

drE sin2

3r EF ẇ2
21

1

aE
2 S ]w2

]r E
D 2

1S V08

s0
1m2Dw2

2G .
It is easy to show that sincew2 is a solution of the equation
of motion, after integration by parts the only contribution
the integral comes from the boundary term atr E5p/2. A
straightforward calculation gives

SE5A2
gp2

2 E aE
2s0

2dh 'A2
gp2

2N 2 ,

whereA is the constant introduced in Eq.~37!. After analytic
continuation to the interior of the bubble, we ha
w2(r !g21)'As0 . Hence, the relative probability fo
nucleating through the inhomogeneous trajectory~37! is
again given by

P5uCu2;expF 2w2
2

2~Dw2!2G . ~38!

Although this is in perfect agreement with Eq.~35!, it is now
clear that it does not mean that the whole open universe
have the valuew2 , but only a patch of comoving size;g21

will have this value.
Thus, tunneling to a value of the field which is far fro

the one indicated by theO(4) symmetric instanton is per
fectly possible, with a somewhat suppressed probabi
However, the resulting universe is not an infinite open u
verse but just a quasi-open one.

B. Many universes in one bubble

The arguments used in the previous subsection leadin
Eq. ~38! are somewhat heuristic. In particular, we have n
attempted to justify why semiclassical trajectories of t
form ~37! should be the only relevant ones. Note, howev
that the probability distribution~38! for nucleating at a high
value of the fieldw2 nearr 50 is the same as the Gaussi
distribution for the amplitude of thel 50, p25211g mode
in theO(3,1) invariant state. In fact, the possibility of nucl
ating at different values of the field is already accounted
by this quantum state and need not be considered separa
The analysis of Refs.@23#, whose result we described in Se
III A, takes into account all paths inf-field space, not just
the semiclassical one used above. That analysis shoul
regarded as a more rigorous derivation of the result~38!.

Because of the invariance of the quantum state, it is c
that there is nothing particular about the pointr 50, and an
inflating ‘‘blob’’ is equally likely to develop around any
point on thet5t* hyperboloid. Therefore we are led to th
picture where in each comoving volume of size compara
to the correlation lenghtg21, the probability distribution for
w2 , is given by Eq.~38!. Clearly, since the volume of th
hyperboloid is infinite, inflating islands with all possible va
ues of the field at their center will be realized inside of
single bubble. We may happen to live in one of those patc
of comoving sized&g21, where the universeappearsto be
open.
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Also, in the supernatural model, it is possible to mod
the shape of the potential near the false vacuum so that t
is a misalignment between the preferred direction for tunn
ing @5# and the direction of the minimum of the pseudo Go
stone potential in the broken phase. In this case, we ex
that thet5t* surfaces inside the bubble will have a me
value off5fcÞ0, determined by the most probable esca
path ~i.e., the instanton, which in this case will not land o
f50!. This value of fc will determine the number of
e-foldings of inflation and hence the mean value of the d
sity parameterV0 on the hyperboloid. Let us call this valu
Vc . If the tunneling path is not too narrow, there will still b
a supercurvature mode which will cause fluctuations in
density parameter on comoving scales of orderg21, which
are of course much larger than the Hubble radius. The
ture is then that we have an ensemble of large patches
different values of the density parameter. This is an intere
ing situation which deserves further study. However, sin
this model involves more parameters, for the remainder
this paper we shall concentrate on the simplest case
cussed above, where the preferred tunneling direction
the minimum of the pseudo Goldstone potential are align

V. MORE GENERAL MODELS

In this section we shall consider the class of two-fie
models with a potential of the form

V~s,f!5V0~s!1
1

2
m2f21

1

2
gs2f2. ~39!

Models of this type were introduced in Ref.@5#. HereV0 is a
non-degenerate double well potential, with a false vacuum
s50 and a true vacuum ats5v. When s is in the false
vacuum,V0 dominates the energy density and we have
initial de Sitter phase with expansion rate given byHF

2

'(8pG/3)V0(0). Once a bubble of true vacuums5v
forms, the energy density of the slow-roll fieldf may drive
a second period of inflation.

As pointed out in Ref.@5#, the simplest two-field model o
open inflation, given by Eq.~39! with g50 and mÞ0, is
actually a quasi-open one. Since there is no coupling
tween the two fields except for the gravitational one, we sh
call this the ‘‘decoupled’’ two-field model. In this mode
inflation starts chaotically at large values ofV(s,f)&M p

4 .
In some regions of the universe, the fields will be trapped in
the false vacuum, whilef rolls down from large values. If a
bubble nucleates at a point wheref;M p , the value of the
slow-roll field will be large enough to drive a short seco
period of inflation inside the bubble. One problem with th
model is that the slow-roll field moves also outside t
bubble, and so the synchronization of thef5const and
s5const surfaces inside the bubble is not perfect, as poin
out in Ref.@5#.

In Ref. @19#, the classical evolution of the slow-roll field
from the outside to the inside of the bubble was studied,
it was found that on the hypersurfacet;HF

21 the high value
f;M p decays exponentially with the distance to the orig
as

f}exp@2gcr /2#, ~40!
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wheregc'2mF
2/3HF

2 . Hence, the size of the inflating regio
in this model is finite. We use the subindexc to stress that
this result follows from purely classical evolution. The larg
HF is, the larger will be the inflating region. The reason
that the cosmological friction term in the equation of moti
for f is proportional toHF , and so the largerHF is, the
slower the fieldf will roll down the potential outside the
bubble, and the better is the synchronization betweenf
5const ands5const surfaces. However,HF cannot be
taken to be too large because otherwise the quantum fluc
tions generated outside the bubble produce too large an
plitude for the supercurvature mode inside the bubble@8#.
The combination of these two effects severely constrains
model @19#.

In order to construct a truly open model, Linde a
Mezhlumian suggested takingm50 andgÞ0. We shall call
this the ‘‘coupled’’ two-field model. In this way, the mass
the slow-roll field vanishes in the false vacuum, and it wou
appear that the problem of classical evolution outside
bubble is circumvented. However, this is not exactly so, a
the whole class of models~39! leads to quasi-open universe
The basic reason is that, as we shall see below, the~linear!
equation of motion forf in the presence of the bubble do
not admitO(3,1)-invariant solutions which are regular at th
origin, except for the trivial one,f50. Thus, we are back to
a situation analogous to the supernatural inflation model

Even if the mass of the field in the false vacuum vanish
one must not expect thatf will not evolve at all outside the
bubble. Figure 5 shows the result of a numerical evolution
the field f in the coupled model. The figure represents
conformal diagram of a bubble expanding in de Sitter sp
~for simplicity, the gravitational field of the bubble has be
neglected!. The bubble wall is indicated by the thick timelik
hyperbola. As initial conditions, we have takenf5const and

FIG. 5. Conformal diagram of de Sitter space with a bub
expanding in it. Hereh andr are the usual conformal coordinates
theclosedchart. The bubble wall is represented by the curved th
line starting at the point P. The figure shows the result of a num
cal evolution of the slow-roll fieldf in the coupled model~39! with
mF50 and mT51.5HT . The self-gravity of the bubble has bee
ignored and we have takenHT5HF . The initial conditions forf at

h5p/2 aref5const andḟ50. In spite of the fact that the field is
massless outside the bubble, it starts evolving everywhere insid
light-cone from the point P. As a result, the surfaces of constanf,
separating regions with different shadings, are not well synch
nized with thet5const surfaces inside the bubble~see Fig. 1!. In
the plot, the field decays by one tenth of its initial value betwe
consecutivef5const lines.
r
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e
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ḟ50. Surfaces of constantf are indicated by different shad
ings. Even though the field is massless outside the bub
we find that it does not stay exactly constant there. A
result of the finite size of the bubble at the time of nuc
ation, the fieldf feels the presence of the bubble everywhe
inside the light-cone from the ‘‘point’’ P. As a result, insid
the bubble, the hypersurfacesf5const are not perfectly syn
chronized with thes5const hypersurfaces. Thus, we a
back to a situation where the inflating region inside t
bubble has a finite size, as in the decoupled model~note that
the f5const lines cross the bubble wall trajectory!.

Note that this effect is due to the finite size of the bubb
We shall see below that the effect is of order (HFR0)4. In
Fig. 5, the parameters have been chosen so that the effe
very dramatic and the size of the inflating islands is com
rable to the curvature scale, but one can choose param
so that the inflating islands are as large as desired. Howe
except in the case where gravity is neglected so t
HF50, their size is always finite and the large value of t
field at the time of nucleation ends up decaying at la
distancesr from the origin.

Hence, just as in the case of the supernatural model,
infinite t5const surfaces would be almost empty at lar
distances, if it were not for the occasional quantum fluct
tions which may initiate inflating islands here and there.

A. Quantum fluctuations

As in the case of the supernatural model, we expand
field operatorf in terms of creation and anihilation opera
tors:

f5( wplmaplm1H.c. ~41!

In the present case, the equation of motion for the mode
given by

hwplm2@m21gs0
2#wplm50.

Here s0 is the ‘‘background’’ bubble solution. Using th
ansatz~17!,

wplm5aE
21~t!Fp~t!Yplm~xi !,

we have the following Schro¨dinger equation forFp :

2
d2Fp

dh2 1aE
2Fm21gs0

22
R
6 GFp5p2Fp . ~42!

This equation determines the spectrum of allowed eigen
ues p2, which correspond to normalizable eigenfunctio
Fp . All of these eigenvalues have to be included in the e
pansion of the field operator~41!. As before, the harmonics
Yplm must satisfy Eq.~19!.

In the case of supernatural inflation, we saw that th
was a discrete eigenstate withp2,0, which actually domi-
nated the rms fluctuations of the field on at5const hyper-
surface. We shall see that a similar situation happens in
case.

Since the Hubble rate inside the bubbleHT is smaller than
the Hubble rate outside,HF , we need
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m21gv2!HT
2,HF

2 ~43!

in order to have slow-roll inflation inside the bubble. Th
condition suggests taking a perturbative approach. To low
order, we can neglect the mass term forf and the gravita-
tional backreaction of the bubble, so thatf is just a massless
field in de Sitter space. In this case, Eq.~42! has the well-
known supercurvature mode withp2521, which corre-
sponds to@9#

F215
1

& coshh
. ~44!

The field configurations corresponding to thisp are
f5const3Y1,lm . As mentioned before, forl 50 the har-
monic Y1,00 is not Klein-Gordon normalizable in the (2
11)-dimensional sense. This is because, for a massless
in de Sitter space, the zero mode corresponding to the tr
lations f→f1const has to be treated as a collective co
dinate and not as an oscillator. When the mass off is in-
cluded, the mode becomes normalizable. Indeed, the bo
state will shift to a perturbed eigenvaluep25211g which,
as before, can be calculated perturbatively:

g[p2115
1

2 E 1

cosh2 h F S m21gs0
22
R
6 DaE

2

1
2

cosh2 hGdh. ~45!

The normalized modes corresponding to the discrete eig
value take the formw lm

g '(HF /&)Yplm(xi), and in particu-
lar, for the l 50 mode,

w l 50
g '

HF

2p

1

g1/2

sinh@~12g!1/2r #

sinh r
@11O~g!#. ~46!

The uncertainty of orderg comes from the fact that we hav
not evaluated the correction to the ‘‘wave function’’F21
which gives the temporal dependence of the field. This
be done in principle, but it is not really necessary for o
purposes. It is clear that the mass term will cause the fiel
have the temporal dependence corresponding to slow-rol
side the bubble.

Near the originr 50 the rms fluctuation of the fieldDf
will be dominated by the mode~46!, and for t5t* ;HF

21 it
will be given by

Df'
HF

2p

1

g1/2. ~47!

As mentioned in Sec. III, because of theO(3,1) invariance
of the quantum state, this will also be the rms fluctuation
the field at any point on thet5t* hypersurface~see Appen-
dix B!.

In the case of thin walls, the value ofg can be calculated
explicitly ~see Appendix C!:

g5
2

3

mF
2

HF
2 1

1

8
HF

2R0
4~mT

22mF
2 !. ~48!
st

eld
s-
-

nd

n-

n
r
to
n-

f

HeremT
25m21gv2 is the mass of the slow-roll field in the

true vacuum,mF
25m2 is the mass in the false vacuum,HF is

the hubble rate in the false vacuum, andR0 is the intrinsic
radius of the bubble at the time of nucleation.

The origin of the different terms in Eq.~48! is easy to
understand. The first one is independent of the existenc
the bubble, and comes from the fact that the slow-roll fie
has a massmF

2 in the false vacuum~the HF
2 in the denomi-

nator can be understood from simple dimensional consid
ations!. The second term is due to the perturbations of
effective potential in the Schro¨dinger equation~42! caused
by the bubble solution. In the bubble, the scale factoraE is of
order R0 , and so the factoraE

4 in the integrand of Eq.~45!
will yield the factor R0

4 in front of the second term of Eq
~48!.

B. Inflating islands

Even though the decoupled model (g50) is not a very
good candidate to an open cosmological model@19#, it is
instructive to consider it as a first step. In this model, infl
tion inside the bubble can be initiated because of the la
‘‘classical’’ value of f at the time of nucleation, but at ver
large distances from the originr @g21, the classical field
dies off, and only the quantum fluctuations remain.

Let us consider the amplitude of quantum fluctuatio
From Eq.~48! we obtain (mF5mT)

g5
2mF

2

3HF
2 .

Accordingly, from Eq.~47!, the rms quantum fluctuations o
the field on thet5t* surfaces will be of order

~Df!'A3

2

1

2p

HF
2

mF
, ~49!

and the comoving correlation length will be of orderg21

5gc
21 , the same as we found in the classical case~40! from

a completely different approach.
In the decoupled modelmF is the same asmT , andHF is

not too much larger thanHT @5,8,19#. SinceHT;mT , we
have (Df)!M p and quantum fluctuations on that surfa
would typically not reach ‘‘inflating’’ values of orderM p .
Still, as in the supernatural model, an occasional large qu
tum fluctuation can initiate inflation on a patch of sizeg21.

Let us reflect upon the meaning of Eq.~49!. This rms
amplitude is actually the same as the Bunch-Davies one
fluctuations of the slow-roll field outside the bubble@27#.
Hence, the correct interpretation of the result~49! seems to
be the following. Inflation inside and near the bubble w
may start because the field is large at the point where
bubble nucleates. However, even after bubble nucleation,
field will continue its random walk outside the bubble, and
may occasionally become large. If the bubble wall hits
patch where the field is large, then this will generate a lo
inflating patch inside the bubble, and we might inhabit one
those inflating patches. However, this model is not a v
good open model, and it would only agree with observatio
if V0 were very close to 1.
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Let us now consider the ‘‘coupled’’ model, where th
fields are coupled butmF5m50. In this case

g'
1

8
mT

2HF
2R0

4 .

Clearly, by choosing parameters such that the size of
bubble is much smaller than the Hubble rate outside
bubble, or such that the mass of the field in the true vacu
is sufficiently small,g can be made as small as desire
Hence the size of inflating regions can be made as larg
desired. In this case, the field is massless outside the bu
and quantum fluctuations off pile up to arbitrarily large
values far from the bubble. However, from Eq.~47!, we find
a finite answer for the fluctuations inside the bubble:

~Df!'
&

p

1

mTR0
2 . ~50!

The first interesting thing to note about this result is tha
does not depend explicitly on the Hubble rate inside or o
side the bubble~the only dependence is throughR0!. The
second observation is that it is very similar to the express
~33! we had for the supernatural case, and so a connec
between the physics of both models can be anticipated.
finiteness of Eq.~50! is not surprising, since the slow-ro
field is coupled to the bubble, and piling of modes in t
vicinity of the bubble is suppressed by the mass term. A
nucleation of bubbles at high values off is suppressed be
cause the degeneracy between the true and false vacuu
lower. As we discussed in Sec. IV, the quantum state alre
encodes the information that tunneling to a large value of
field is suppressed.

A difference with the supernatural inflation case is th
now the amplitude of the supercurvature modes withlÞ0 is
of order HF rather than 1/R0 , and hence the constraints o
this model from microwave background anisotropies will
easier to accommodate.

VI. OBSERVATIONAL CONSEQUENCES

Our results from the previous sections have import
consequences for two-field models of open inflation. Firs
all, our models are quasi-open, rather than open, which le
to classical anisotropies@19#. Second, we saw that in th
supernatural model, the amplitude of supercurvature exc
tions is quite large. In this section, we shall give order
magnitude estimates for the expected CMB anisotrop
from these effects. A detailed investigation of the pow
spectrum will be presented elsewhere@28#.

A. Classical anisotropies

Quasi-open universes are finite, and hence they look
isotropic to a typical observer. This effect was studied
Ref. @19# for the uncoupled model, and was called a ‘‘cla
sical anisotropy.’’ The name was given because the fin
ness of inflating islands was due to the classical motion
the slow-roll field outside of the bubble. Clearly, the sam
effect arises in all quasi-open universes we have conside
In some cases the appearance of the inflating island is b
described as a semiclassical effect, but the resulting infla
e
e
m
.
as
ble
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islands are just as classical here as they were in Ref.@19#.
Hence, we shall use the same name for this type of aniso
pies.

To proceed, it will be important to distinguish betwee
two different cases. The first case arises when the rms fl
tuation of the slow-roll fieldf on the spacelike surface
t5t* ;HF

21 is small compared withM p . In this case, ‘‘high
peaks’’ where the field is comparable toM p and which will
lead to inflating regions of comoving sizer;g21@1 will be
very ‘‘rare’’ on that hypersurface. Here,g is the correction to
the supercurvature eigenvalue, calculated in Sec. III C for
supernatural model and in Sec. V A for the more gene
models. High peaks of a homogeneous Gaussian ran
field tend to be spherical, and so our inflating islands w
have approximate spherical symmetry. In the opposite c
when the rms fluctuation of the slow-roll field is comparab
to M p , we will have a patchy mosaic of ‘‘overlapping’
inflating islands, as described in the second paragraph of
IV. It is easy to check that in the second case the ‘‘classic
effect is small compared with the effect of quantum fluctu
tions which we shall consider in the next subsection, and
here we shall only consider the first case.

Let us begin with the supernatural model. The quant
state we are considering leads to a Gaussian distribution
the random fieldf that isO(3,1) symmetric. Hence, to com
pute the probabilities for the field distribution around a
point it suffices to study them around the originr 50. Here
we shall only be concerned with fluctuations due to the
percurvature modes, which have a long range. The effec
subcurvature modes can be incorporated in the usual w7

Note that the rms amplitude for thel 50 supercurvature
mode is a factor ofg21/2 larger than the amplitude fo
l .0 modes~recall thatg!1!. Hence, even if the rms off is
far below M p , there is a certain probability forf to reach
M p in a certain region near the origin. The spherically sy
metric mode is the one that is most likely to contribute to t
possibility. Even though there is a small probability for th
to happen, it is clear that only those rare regions w
f;M p will undergo a second stage of inflation; so they w
be the only ones that matter. The value of the field on th
inflating islands will have the radial dependence of t
l 50 mode, which decays as exp(2gr/2) at large distances
r @1.

Let us now discuss the more general models where
slow-roll field has a small mass or it is massless outside
bubble. In this case, one may ask what happens whe
bubble nucleates in a place where the slow-roll field alrea
had a large~classical! value. This may occur, for instance,
the whole universe was created at a large value off, and at
the time when the bubble nucleatesf is still rolling down
from large values. This possibility would in principle be re
evant for bubbles nucleated at early times, and is the
considered in@19#. However, as time goes by, the initiall
large classical value of the slow-roll field in the false vacuu
will decrease, and all that will remain are the quantum flu
tuations which should be well described by theO(4,1) or de

7Subcurvature fluctuations cannot by themselves give rise to
flating islands since their size is smaller than the curvature sca
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Sitter invariant quantum state.
Occasionally, fluctuations of the slow-roll field in th

false vacuum may create a localized region with a hig
value of the field. The nucleation of a bubble on top of o
of these regions will not be very different from the ca
discussed in the previous paragraph. Whether the bu
nucleates on one of these high peaks or not, the field out
the bubble will continue to fluctuate, and the bubble wa
will from time to time bump into regions with a higher valu
of the field, as discussed in Sec. V B. Hence, also in
case, there will be an ensemble of inflating regions w
some distribution inside the bubble. From a formal point
view, notice that the appearance of the bubble has selec
point in spacetime, thus breaking theO(4,1) invariance, but
otherwise respects a residualO(3,1) symmetry. Therefore i
seems reasonable to expect that, at least in a statistical s
the field inside the bubble will be well described by t
O(3,1) invariant Gaussian distribution, corresponding to
quantum state we have studied. Just as in the case o
supernatural model, here we also expect that the high p
which lead to inflating islands will have spherical symmet
and the value of the field on those islands will have the ra
dependence of thel 50 mode, which decays as exp(2gr/2)
at large distances from the center of the island.

The comoving size of the inflating islands isr;g21@1.
Since the volume on the hyperboloid grows exponentia
with the distance to the origin, as sinh2 rdr, most of the vol-
ume in an inflating island is atr @1, where the scalar field
behaves asf}exp(2gr/2). Up to exponentially small cor
rections, this is the same radial dependence that was co
ered in @19#. In that case, the fields were uncoupled andg
52mF

2/3HF
2 . The arguments used in@19# to estimate the

temperature anisotropies measured by a typical observer
be directly applied to the models discussed here. Chan
from the coordinates (r ,u,f) to a new set (r 8,u8,f8) such
that the pointr 5r 0 , u50 ~with r 0@1! is the new origin
of coordinates, one finds that the perturbation of the fi
f around r 850 can be described as@19# df
5f0(t)(g/2)ln f, wheref [(coshr81sinhr8 cosu8) andf0
is the value of the field at the pointr 850. The corresponding
gauge invariant potential at horizon crossing is

F'
3

5

HTdf

ḟ0
U

t'H
T
21

5
9

5

HT
2

mT
2

g

2
ln f ~r 8,u8!. ~51!

The effect on the microwave background temperature fl
tuations can be computed by integrating the Sachs-W
effect along the line of sight@29#. The dominant effect is in
the quadrupole@19#, and it is of order

dT

T U
l 52

;331021
HT

2

mT
2

g

2
~12V0!. ~52!

This is just a very rough order of magnitude estimate, wh
works well forV0*0.3. A more detailed study of the powe
spectrum of temperature anisotropies will be presented e
where@28#.
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Note that if the universe is sufficiently flat, the facto
(12V0) may completely erase the effect. Otherwise, fo
universe with appreciable curvature, we obtain a constr
on g,

g&
2

3~12V0!

mT
2

HT
2 1024, ~53!

where we have useddT/T&1025, from the requirement tha
this effect does not dominate the temperature anisotropie
large scales, as seen by COBE@30#. SinceHT is larger than
mT , it is clear thatg has to be very small in order to avoi
large temperature fluctuations.

In the supernatural model,g;R0
2m2/2, this constraint im-

plies

R0&231022~12V0!21/2HT
21,

which is not difficult to accommodate. Note that the size
the bubbleR0 is necessarily less than the Hubble radius
the false vacuum and hence can easily be much less tha
Hubble radius in the true vacuum. However, in the dec
pled model discussed in@19# the constraint~53! forcesHT to
be quite large, and this causes a problem of large quan
fluctuations in the supercurvature modes@8#.

In the class of models~39!, the size ofg is determined by
Eq. ~48!. Clearly, the effect can be made small by choos
parameters such thatmF and the size of the bubble are su
ficiently small. This is not always straightforward to imple
ment. For instance, the ‘‘hybrid’’ open inflation model co
sidered in Ref.@7# turns out to be quasi-open and suffe
from too large semiclassical anisotropies. However, it is p
sible to write an open hybrid model, with a massless infla
in the false vacuum, that satisfies the constraints@28#.

B. Supercurvature anisotropies

In the previous subsection we have considered the c
where thel 50 mode was ‘‘oversized,’’ meaning that it too
an amplitude much larger than its expected rms. Becaus
this, an observer far from the center of the inflating regi
would see the anisotropy~51!. In this section we shall esti
mate the anisotropies caused by thel .0 supercurvature
modes. Here we are not thinking that these higher modes
‘‘oversized’’; they simply take random values of the order
their rms. For simplicity, we shall consider an observer
cated atr 50, but the effect should not be much different f
an observer located elsewhere.

The size of CMB anisotropies caused by thel .0 super-
curvature modes has been estimated in@9,8#. For the class of
models~39!, where the supercurvature mode is normaliz
as in Eq.~44!, the quadrupole CMB anisotropies are of ord

dT

T U
l 52

sup

;~12V0!
HF

HT

dT

T U
l 52

sub

. ~54!

Here (dT/T)sub are the temperature anisotropies caused
the subcurvature modes~with p2.0!. The supercurvatre ef
fect decreases very fast with multipole number, basically
(12V0) l /2. If the fluctuations we observe in the CMB ar
due to inflation, then we need (dT/T)sub;1025, and from
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Eq. ~54! we have thatHF cannot be too much larger tha
HT , unless the universe is almost flat.

For the supernatural model, the supercurvature mode~28!
has a normalization 2/(HFR0) times larger than its counter
part ~44! @we are ignoring the mild enhancement due to
factor (v/sb)#. Hence, the analogue of Eq.~54! is

dT

T U
l 52

sup

;~12V0!
2

HTR0

dT

T U
l 52

sub

. ~55!

Therefore we needR0*HT
21 . SinceR0 has to be necessaril

smaller thanHF
21 , we have a two-fold restriction. On th

one hand,R0;HF , and on the other,HT;HF . Thus, it
seems fair to say that the model is not as natural as it
thought to be@5#: the difference in energy density betwee
the true and the false vacuums cannot span many orde
magnitude. The reason is the following: In spite of the fa
that the field is massive in the false vacuum, a supercurva
mode exists. Its normalization is not proportional toHF as in
the usual case~39!, but to R0

21, which is even larger. The
effect can be thought as the excitation of the pseudo G
stone modes due to the acceleration of the domain w
‘‘boundary.’’ The model may still be viable in a certai
range of parameters. Determining this range requires deta
analysis, which is left for future research@28#.

VII. CONCLUSIONS

Open inflation is an appealing way of reconciling an in
nite open universe with the inflationary paradigm. In th
scenario, a symmetric bubble nucleates in de Sitter sp
and its interior undergoes a second stage of slow-roll in
tion to almost flatness. Single-field models of open inflat
can in principle be constructed, but it does not seem poss
to do so without a certain amount of fine-tuning@5#. The
basic problem is that there is a hierarchy between the la
mass needed for successful tunneling and the small m
required for successful slow-roll. For that reason, it see
natural to consider two-field models of open inflation@5#
where one field does the tunneling and the other drives sl
roll inflation inside the bubble.

In this paper we show that a large class of two-field mo
els of open inflation does not lead to infinite open univers
as was previous thought, but to an ensemble of inflating
lands of finite size. The reason is that the quantum tunne
does not occur simultaneously along both field directio
and the equal-time hypersurfaces in the open universe are
synchronized with equal-density or fixed-field hypersurfac
Technically, one finds that there are noO(4) invariant in-
stantons for the two-field system which would describe
formation of a bubble with ‘‘large’’ values of the slow-ro
field in its interior. Large values of the inflaton field, need
for the second period of inflation inside the bubble, on
arise as localized fluctuations. The interior of each nuclea
bubble will contain an infinite number of such inflating r
gions, giving rise to a rather unexpected form of the la
scale structure of the universe in these models.

The picture is the following. Right after the bubble h
nucleated there will be, on thet5const hypersurfaces insid
the bubble, a certain density of occasional large fluctuati
of the slow-roll field that lead to inflating islands. The
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fluctuations are caused by modes whose wavelength is la
than the curvature scale. Denoting byg the eigenvalue of the
Laplacian on the unit hyperboloid~with g,1!, the comoving
size of the inflating islands is given byd;g21

„the param-
eter g can be determined in terms of the parameters of
model @see Eqs.~30! and ~48!#, and it is important in deriv-
ing observational constraints…. Each one of the inflating is-
lands will be a quasi-open universe. Since the volume of
hyperboloid is infinite, inflating islands with all possible va
ues of the field at their center will be realized inside of
single bubble. We may happen to live in one of those patc
where the universe appears to be open. The fact that
inflating regions are finite gives rise to classical anisotrop
like those discussed in Ref.@19#.

In particular, we have studied the supernatural model
troduced by Linde and Mezhlumian@5#. We have shown tha
in spite of the large mass of the inflaton field in the fal
vaccuum, there is a supercurvature mode. Its amplitud
proportional toR0

21, rather than the usualHF . Here R0 is
the radius of the bubble at the time of nucleation andHF is
the Hubble rate in the false vacuum. SinceR0

21.HF , this
effect is quite important. In order to make the model co
patible with observations, it is required that the energy d
sity in the false vacuum should not be much larger than
the true vacuum. This means thatHF /HT cannot span many
orders of magnitude, as was previously believed@5#. The
supercurvature mode can be understood as the pseudo G
stone mode associated with the choice of a tunneling di
tion in field space. Combining the supercurvature aniso
pies with the classical ones we find that the range ofV0 will
also be restricted. Detailed analysis is required in orde
determine the range of parameters in which the model m
still be viable@28#.

For the more general class of models~39!, the size of the
inflating islands can be chosen to be comfortably large by
appropriate choice of parameters. In this way, the class
anisotropy will be unobservably small. By an order of ma
nitude, the constraint is given by Eq.~53!, whereg is given
in Eq. ~48!. The constraint will be satisfied if the mass of th
slow-roll field is sufficiently small in the false vacuumand
R0 is much smaller thanHF

21 . In a future publication@28#
we will give more precise constraints from the observ
power spectrum of temperature anisotropies of the CMB

Finally, there are some two-field models of open inflatio
such as the one introduced by Green and Liddle@6# in the
context of induced gravity, which need not be affected
principle by the classical anisotropies mentioned above
these models, the value ofV0 is not variable; it is determined
in terms of the parameters in the potential. It would be int
esting to check whetherO(4) symmetric instantons do in
deed exist in this model.
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APPENDIX A

We will show in this appendix that the two-point functio
on a t5const surface for the statewg dies off ase2gd/2,
where d is the comoving distance between the points. W
will compute the two-point function ouside the light-con
and then continue it to the inside.

To compute the two-point function forw2 , hereafter
Gw2

(x,x8), we will use the fact that the modesYplm are
properly normalized as Klein-Gordon modes of ma
p211 defined on thet5const (211) de Sitter hypersur-
faces of the outside light-cone metric. Thus we can define
fields

Yp5(
lm
Yplm

dSalm
~p!1H.c., ~A1!

and the de Sitter invariant vaccuumu0&dS
(p) anihilated by

dSalm
(p) . Notice thatdVdS in Eq. ~6! corresponds to the line

element of a closed coordenatization of a (211) de Sitter
space, for which the two-point functions can be found in R
@31#.

We can now write the two-point functionGw2
in terms of

the two-point functionsGp(xi ,x8 i) for Yp :

Gw2
~x,x8!

5^0uw2~x!w2~x8!u0&

5aE
21~t!aE

21~t8!(
plm

Fp~t!Fp~t8!Yplm~xi !Yplm~x8 i !

5aE
21~t!aE

21~t8!(
p

Fp~t!Fp~t8!Gp~xi ,x8 i !, ~A2!

where the sum overp has to be understood as a sum over
discrete eigenvaluesp2 of the Schro¨dinger equation~18! and
as an integration over its continuum spectrump2.0. On a
givent5const hypersurface, ther dependence ofGw2

(x,x8)

will be given by Gp(xi ,x8 i), weighted for eachp by
aE

22iFpi2. The two-point functionGp can be found in@31#:

Gp~j,j8!5
1

~4p!3/2

G~12 ip !G~11 ip !

G~3/2!

3FS 11 ip,12 ip;
3

2
;
11Z

2 D , ~A3!

whereF is the hypergeometric function andZ is the scalar
product of the position vectors at pointsxi and x8 i in the
embedding (311) Minkowski space,

Z~xi ,x8 i !5jm~xi !jm~x8 i !

5cos g̃ coshr coshr82sinh r sinh r8.

~A4!

Here g̃ is the angle on the 2-sphere between the two poi
We recall that for the lowest discrete eigenmode to first or
in the shiftg, ip512g/2, and so we will denote byGg the
two-point function for this eigenmode.
e

s

e

f.

e

s.
r

Now we have to analytically continue Eq.~A3! to the
inside of the light-cone by means of Eq.~9!. This amounts
only to analytically continuing the scalar productZ:

Z~xi ,x8 i !→cos g̃ sinh r sinh r 82coshr coshr 8.
~A5!

Taking r 850 and r 5d, so Z52coshd, and using Eq.
~9.131.1! in Ref. @32#, we find that inside the light-cone th
two-point function between points separated a comoving
tanced can be written as

Gg~d!5
1

~4p!3/2

G~22g/2!G~g/2!

G~3/2! S 11coshd

2 D 2g/2

3FS g

2
,
g21

2
;
3

2
;

coshd21

coshd11D . ~A6!

As d→`, the hypergeometric function in Eq.~A6! tends to a
constant, and the assymptotic behavior ofGg is given by

Gg~d!→
1

~4p!3/2

G~g/2!G~22g!

G~3/22g/2! S 1

4D 2g/2

e2gd/2,

~A7!

which dies off exponentially withd.
Here, we have only computed the first term in the su

~A2!. The terms withp2.0 decay ase2r /2, and hence they
are subdominant at large distance.

APPENDIX B

To compute (Dw2
g)2 for large r , we will need the

asymptotic expressions for the hyperbolic harmonicsYL,lm
for r @g21. The Legendre functions are given by~see e.g.
Ref. @33#!

Pn21/2
21/2 ~coshr !5A2

p

sinh nr

nAsinh r
. ~B1!

From Eq.~23!, the supercurvature modeYL,00 is given by

YL,005
1

p FG~12L!G~11L!

4 G1/2 sinh Lr

L sinh r
, ~B2!

whereL512g/2. For larger , we have

Y~12g/2!,00→
e2rg/2

pA2g
@11O~g!#. ~B3!

For l .0, we can expressPn
2 l 21/2 in terms ofPn1k

21/2 using the
recursion formula

Pn
m~z!5

1

2n11

1

Az221
@Pn11

m11~z!2Pn21
m11~z!#. ~B4!

The Legendre functionPn
2 l 21/2 then acquires the form

Pn
2 l 21/25

1

sinhl r (
k52 l

l

Ck~n!Pn1k
21/2, ~B5!
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whereCk(n) are some functions depending onn. In fact, for
large r , we do not need to compute allCk(n). We have to
take into account that for a supercurvature mo
Pn

21/2(coshr) behaves for larger as eunur @as can be seen
from Eq. ~B1!#. Thus, for the supercurvature mod
n5(12g)/2, the termk5 l in Eq. ~B5! grows exponentially
faster than the rest of terms in the sum, and so the m
contribution for larger will be given by this term. The co-
efficiencyCl(n) can be easily read from Eq.~B4!:

Cl~n!5
G~n11/2!

2lG~n11/21 l !
. ~B6!

For larger , using Eqs.~B5!, ~B6! and ~23!, we obtain

Y~12g/2!,lm→F G~ l 1g/2!

p~12g/21 l !~ l 2g/2!G~ l 2g/2!G
1/2

3G~12g/2!e2gr /2Ylm~V!. ~B7!

Finally, using limx→`G(x1a)/G(x)5xa, we can write
Y(12g/2),lm for large l , to orderg, as

Y~12g/2!,lm'
l g/221

Ap
e2rg/2Ylm~V!@11O~g!#. ~B8!

Using the results derived above, we can compute the
plitude of thel 50 mode near the origin,

~w l 50
g !2ur 505~Ns0!2YL,00YL,00ur 50

'
1

p2R0
2g S s0

sb
D 2

@11O~g!#, ~B9!

and for larger ,

~w l 50
g !2→

1

p2R0
2g S s0

sb
D 2

e2rg5~w l 50
g !2ur 50e2rg.

~B10!

As we can see, the amplitude of the model 50 decays ex-
ponentially for r @g21. Taking into account that we hav
chosen anO(3,1) symmetric vacuum, this decrease in a
plitude for larger must be compensated by the joint cont
bution of the l .0 modes, smeared over a suitable leng
scale, in such a way that the rms fluctuations of the field
independent ofr . Let us check it. We need to compute

~Dw2
g!2[(

l 51

l
*

(
m52 l

l

w iL,lm
g w iL,lm

g

→~Ns0!2 (
l 51

l 5 l
* ~2l 11!

4p

l g22

p
e2gr

'~Ns0!2
e2gr

2p2 E
0

l
* l g21dl'~Ns0!2

e2gr

2p2

l
*
g

g
,

~B11!

wherel * is a certain cutoff, which has to grow as we mo
away from the origin to include more and more modes in
sum. If we smear the field over a fixed comoving lengthj,
,

in

-

-

h
re

e

realizing that the wavelength of thel th multipole is propor-
tional to (sinhr)/l, we can takel * 5sinhr/j. Finally, we ob-
tain

~Dw2
g!2→

1

p2R0
2g S s0

2

sb
D ~2j!2g

'~w l 50
g !2ur 50~12g ln 2j!. ~B12!

As we can see, as long asu ln 2ju!g21, the added contribu-
tion of the relevant modes is the same as the one given by
l 50 mode near the origin.

APPENDIX C

In the thin-wall approximation, including the gravitation
backreaction, the background geometry is found@25# to be
described by two de Sitter pieces with a different Hubb
constant glued together at somehW . The scale factor is
given by

aE~h!5aF~h!u~h2hW!1aT~h!u~hW2h!, ~C1!

whereaF andaT are the scale factors in the false and in t
true vacuum:

aF~h!5
1

HF coshh
,

aT~h!5
1

HT cosh~h2d!
.

Continuity of aE at the wall implies

a~hW!5
1

HF coshhW
5

1

HT cosh~hW2d!
5R0 , ~C2!

whereR0 is the radius of the wall, andd is given by

ed5
~11A12HT

2R0
2!~12A12HF

2R0
2!

HFHTR0
2 . ~C3!

To complete the description, we need to know the value
R0 . It can be found in Ref.@25#:

R05
kS1

A@HF
22HT

21~kS1/2!2#21k2HT
2S1

2
, ~C4!

wherek58pG andS1 is the wall tension.
We want to find the lowest eigenvalue of the Schro¨dinger

equation~18! in the background given above. The effectiv
potential is given in this case by

U5aE
2$m21gs0

222@HF
2u~h2hW!1HT

2u~hW2h!#%

1~HF2HT!d~h2hW!, ~C5!

whereHF5aF8 /aF and similarly forHT .
We will take a perturbative approach. We will divide th

effective potentialU into an unperturbed one,U0 , plus a
small perturbation,lU1 :
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U0522aFHF
2, ~C6!

lU15aE
2@m21gs0

222HT
2u~hW2h!#

1~HF2HT!d~h2hW!12HF
2aF

2u~hW2h!.

~C7!

The unperturbedU0 corresponds to the effective potential
a massless scalar field in de Sitter space, which has
y
.

a

ground state a supercurvature mode with energyp0
2521

and wave function@9#

F215
HF

&
aF~h!. ~C8!

To first order in perturbation theory, the shift of the ener
p0

2521 is given by

g5^21ulU1u21&5
2

3

mF
2

HF
2 1

HF
2R0

4

8
~mT

22mF
2 !, ~C9!

wheremF is the efective mass of the slow-roll field in th
false vacuum, andmT the effective mass in the true vacuum
In this case,mF

25m2 andmT
25m21gv2.
d,
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