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Density parameter and the anthropic principle
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In the context of open inflation, we calculate the probability distribution for the density parameterV. A large
class of two field models of open inflation do not lead to infinite open universes, but to an ensemble of inflating
islands of finite size, or ‘‘quasi-open’’ universes, where the density parameter takes a range of values. Assum-
ing we are typical observers, the models make definite predictions for the valueV we are most likely to
observe. When compared with observations, these predictions can be used to constrain the parameters of the
models. We also argue that observers should not be surprised to find themselves living at the time when
curvature is about to dominate.@S0556-2821~99!04712-8#
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I. INTRODUCTION

Anthropic considerations have often been used in orde
justify the ‘‘naturalness’’ of the values taken by certain co
stants of nature@1#. In these approaches, it is assumed t
the ‘‘constants’’ are really random variables whose ran
and ‘‘a priori’’ probabilities are determined by the laws o
physics. Knowledge of these ‘‘a priori’’ probabilities is cer-
tainly useful, but not sufficient to determine the probabil
for an observer to measure given values of the constants
instance, some values which are in the ‘‘a priori’’ allowed
range may be incompatible with the very existence of
servers, and in this case they will never be measured.
relevant question is then how to assign a weight to this
lection effect.

A natural framework where these ideas can be applie
inflation. There, the false-vacuum energy of the scalar fi
which drives the inflationary phase can thermalize in diff
ent local minima of its potential, and each local minimu
may have a different set of values for the constants of nat
Also, there may be different routes from a false vacuum t
given minimum. In this case all thermalized regions w
have the same low energy physics constants, but each r
will yield a hot universe with different large scale propertie
Here, we shall be concerned with this possibility, where
fundamental constants~such as the gauge couplings or t
cosmological constant! are fixed, but other cosmological pa
rameters such as the density parameter or the amplitud
cosmological perturbations are random variables whose
tribution is dynamically determined.

In this context, the most reasonable—and predictive
version of the anthropic principle seems to be the princi
of mediocrity @2–6#, according to which we are typical ob
servers who shall observe what the vast majority of obse
ers would. Thus, the measure of probability for a given se
constants is simply proportional to the total number of ci
lizations emerging with those values of the constants. In
0556-2821/99/60~2!/023501~16!/$15.00 60 0235
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paper we shall use this principle in order to calculate
probability distribution for the density parameterV.

Standard inflationary models predictV51 with ‘‘cer-
tainty.’’ What this means is that these models can explain
observed homogeneity and isotropy of the universe onl
the universe is flat. However, a class of ‘‘open inflation
models which lead toV,1 have received some attention
recent years@7–9#. In these models, inflation proceeds in tw
steps. One starts with a scalar fields trapped in a metastabl
minimum of its potentialV(s). The false vacuum energ
drives an initial period of exponential expansion, and dec
through quantum nucleation of highly symmetric bubbles
true vacuum. The interior of these bubbles has the geom
of an open Friedmann-Robertson-Walker universe. This
counts for the observed homogeneity and isotropy of
universe. In order to solve the flatness problem a sec
stage of slow roll inflation inside the bubble is necessary

In models with a single scalar fields, all bubbles have the
same value ofV which is determined by the number o
e-foldings in the second period of inflation. The potent
V(s) in such models is assumed to have a rather spe
form, with a sharp barrier next to a flat slow-roll regio
which requires a substantial amount of fine-tuning. Ad
tional tunning is needed to arrange the desired value ofV. A
more natural class of models includes two fields,s and f,
with s doing the tunneling andf the slow roll @9#. The
simplest example is

V~s,f!5Vt~s!1
g

2
s2f2, ~1!

whereV0(s) has a metastable false vacuum ats50. After
s tunnels to its true minimums5v, the fieldf would drive
a second period of slow roll inflation inside the bubble. D
pending on the value off at the time of nucleation, the
number ofe-foldings of the second stage of inflation wou
be different.
©1999 The American Physical Society01-1
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GARRIGA, TANAKA, AND VILENKIN PHYSICAL REVIEW D 60 023501
Initially, it was believed@9# that models such as Eq.~1!
would yield an ensemble of infinite open universes, one
side each nucleated bubble, and each one with a diffe
value of the density parameter. However, it has been rece
realized@10# that this picture is oversimplified. The two fiel
models which allow for variableV do not actually lead to
infinite open universes, but to an ensemble of inflating
lands of finite size inside of each bubble. These islands
called quasi-open universes. Within each island, the num
of e-foldings of inflation decreases as we move from t
center to the edges. Also, each island is characterized
different number ofe-foldings in its central region. As a
result, even within the same bubble, different observers
measure a range of values of the density parameter.
picture of the large scale structure of the universe in th
models is rather simple, because all bubbles have the s
statistical properties. We shall see that the quasiopen na
of inflation is of crucial importance for the calculation of th
probability distribution for the density parameter.

In models of quasiopen inflation, such as Eq.~1!, V takes
different values in different parts of the universe, while t
other constants of Nature and cosmological parameters
main fixed. More general models can be constructed wh
other parameters can change as well, and in Sec. VII we
an example of a model with a variable amplitude of dens
fluctuations. However, our main focus in this paper is on
models in which onlyV is allowed to vary.

In order to apply the principle of mediocrity to our mod
els, we will have to compare the number of civilizations
parts of the universe with different values ofV. Of course,
we cannot calculate the number of civilizations. Howev
since the value ofV does not affect the physical process
involved in the evolution of life, this number must be pr
portional to the number of habitable stars or, as a rou
approximation, to the number of galaxies. Hence, we s
set the probability for us to observe a certain value ofV to
be proportional to the number of galaxies formed in parts
the universe whereV takes the specified value.

The principle of mediocrity was applied to calculate t
probability distribution forV in an earlier paper@11#, which
assumed the old picture of homogeneous open universe
side bubbles. A serious difficulty encountered in that cal
lation was that open universes inside the bubbles have
nite volume and contain an infinite number of galaxies. Th
to find the relative probability for different values ofV, one
had to compare infinities, which is an inherently ambiguo
task. This problem was addressed in@11# by introducing a
cutoff and counting only galaxies formed prior to the cuto
Although the cutoff procedure employed in@11# has some
nice properties, it is not unique, and the resulting probabi
distribution is sensitive to the choice of cutoff@12#. This
cutoff dependence, which also appears in other model
eternal inflation@12,13#, has led some authors to doubt tha
meaningful definition of probabilities in such models is ev
in principle possible@12,14#.

However, this pessimistic conclusion may have been p
mature. According to the quasiopen picture,V takes all its
possible values within each bubble. Since all bubbles
statistically equivalent, it is sufficient to consider a sing
02350
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bubble. Moreover, we can restrict ourselves to a finite~but
very large! comoving volume within that bubble, provide
that its size is much greater than the characteristic scal
variation ofV. Thus, we no longer need to compare infin
ties, and the problem becomes well defined.

The possibility of unambiguous calculation of probabi
ties in the quasiopen model was our main motivation
revising the analysis of Ref.@11#. Also, we shall give a more
careful treatment of the astrophysical aspects of the prob
which were discussed rather sketchily in@11#.

The paper is organized as follows. In Sec. II we revie
the main features of quasi-open inflation. In Sec. III we
troduce the probability distribution forV. A basic ingredient
in this distribution will be the anthropic factorn(V), which
gives the number of civilizations that develop per unit th
malized volume in a region characterized by a certain va
of V. In Sec. IV we evaluaten(V) and calculate the prob
ability distribution for V in the model~1!. In Sec. V we
extend our results to more general models with arbitr
slow roll potentials for the fieldf. In Sec. VI we discuss
observational constraints on quasiopen models due to co
microwave background~CMB! anisotropies and how thes
constraints restrict the class of models that give a probab
distribution peaked at a non-trivial value ofV. In Sec. VII
we comment on the ‘‘cosmic age coincidence,’’ that is,
whether it would be surprising to find ourselves living at t
time when the curvature of the universe starts dominating
Sec. VIII we summarize our conclusions. Some side iss
and technical details are discussed in the appendices.

II. QUASI-OPEN INFLATION

In this section we shall review the main features of qua
open models which will be relevant to our discussion.
begin with, we shall consider a model of the form~1!. In Sec.
V we shall consider more general slow-roll potentials.

As mentioned in the Introduction, the interior of a bubb
is isometric to an open Friedmann-Robertson-Walker u
verse, with line element

ds252dt21a2~ t !@dr21sinh2 r ~du21sin2 udw2!#.
~2!

The scale factora obeys the Friedmann equation

H2[S ȧ

a
D 2

5
8pG

3
r1

1

a2 . ~3!

At sufficiently early times (t→0), the curvature term in the
right-hand side~RHS! dominates over the energy densityr
of the scalar fields, and the scale factor behaves asa't.

For the second period of slow roll inflation inside th
bubble, the energy density of the scalar fields must be do
nated by the potential term

V~s,f!@ṡ2,ḟ2. ~4!

Inside the bubble, the fields quickly settles down to its
vacuum expectation value~VEV! s5v with Vt(v)50. This
1-2
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DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW D60 023501
happens on a time scale of ordert0;M 21, whereM is the
typical mass scale ofVt . After that,f becomes a free field
with constant mass

m25
g

2
v2,

and the condition for inflation becomesf*M p , whereM p
2

5G21.
An important feature of quasi-open models is the ex

tence of the so-called supercurvature modes for the slow
field f. These are modes which are not normalizable on
infinite t5const hyperboloids inside the bubble, but whi
nevertheless have to be included in the field expansion.
reason is that they are normalizable on the Cauchy sur
where equal time commutation relations are imposed. Su
curvature modes are characterized by their eigenvalue o
Laplacian on the 3-hyperboloid. For the model~1!, this ei-
genvalue is given by@10#

g5
1

8
HF

2R0
4m2!1. ~5!

Here,

HF
25

8pG

3
V0~0!

is the Hubble rate during the first stage of false vacu
dominated inflation andR0 is the size of the bubble at th
time of nucleation, which can be given in terms of the mo
parameters@15#. Typically, m2!HF

2,R0
22 , from where the

conditiong!1 follows.
Around the timet0 whens settles down to its VEV, the

field f will be in a homogeneous and isotropic quantum st
with mean squared amplitude given by@10#

f 2[^f2&'S HF

2p D 2 1

g
. ~6!

The presence of the factorg21 reflects the fact thatf is
dominated by the contribution of supercurvature modes.
troducingg from Eq. ~5!, we find

f '
A2

p

1

mR0
2 . ~7!

Up to numerical factors, this is basically the finite tempe
ture dispersion of a field of massm at the Rindler tempera
ture given byT5(2pR0)21. The correlation length off is
given by @10# r;g21. This means that at the timet;t0 we
can divide the space into regions of co-moving sizer
;g21@1 where the field is coherent. Notice that the size
these regions is much larger than the curvature scaler 51.

The parameters of the model can be chosen in such a
that f is close to the Planck scale, and in that case the s
roll field easily reaches inflating valuesf;M P . For in-
stance, if the potentialVt is such that the bubble walls ar
thick, then R0;M 21. Taking M;1016 GeV andm;1013
02350
-
ll
e

he
ce
r-

he

l

e

-

-

f

ay
w

GeV, we find f ;M p . In this case, inflating regions of co
moving sizer;g21 where the field is large and positive wi
be next to inflating regions where the field is large and ne
tive. These two inflating regions will be separated by regio
where the field is small and the universe does not inflate

The parameters can also be such thatf !M p , and in that
case most of the regions will not attain an inflating value
f. Inflation will only happen in those regions where, as
result of a statistical fluctuation, the field happens to be
above its rms value. Since the volume of the hyperboloid
infinite, there will be a small but finite density of these i
flating islands inside of each bubble. Those rare ‘‘hi
peaks’’ will have spherical symmetry. If we take the inflatin
patch to be centered atr 50, the radial profile of the field is
given by

f~ t0 ,r !'f0

sinh@~12g!1/2r #

~12g!1/2 sinhr
, ~8!

wheref0[f(t0,0) is a constant. The probability distributio
for f0 is given by

P~f0!} expF2f0
2

2 f 2 G . ~9!

The variation off0 within the bubble results in a position
dependent number of inflationary e-foldings, and thus in
variable density parameterV. Note that all other cosmologi
cal parameters, such as the amplitude of the density fluc
tions, remain fixed throughout the bubble~and are the same
for all bubbles!. The probability~9! is one of the basic in-
gredients from which the most probable value ofV is calcu-
lated.

It should be mentioned that the size of an inflating reg
can be much larger than the size of the actual ‘‘populate
region within it,r p , where matter will cluster efficiently into
galaxies. The size of the populated region is calculated
Appendix A. This size should be larger than the present
rizon, since otherwise we would observe large anisotrop
in the galaxy distribution. ForV not too close to 1, the
horizon distance is comparable to the curvature scale,r 51,
and we have to require thatr p.1. The corresponding con
straint ong is obtained in Appendix A.

Equation~9! can be understood from a different perspe
tive, by using the Euclidean approach to the calculation
the nucleation rate. The strategy is to study how this rat
affected by the local value off at the place where the bubbl
nucleates. This is simple because we only need this Euc
ean action to quadratic order. Takingf50, we denote by
s0(t) the O(4) symmetric instanton@16# responsible for
vacuum decay. Here,t5 i t is the Euclidean time, the ‘‘ra-
dial’’ coordinate on which the instanton depends. Expand
the Euclidean actionSE to second order in perturbations ofs
and of f, the perturbations ins and f will decouple to
quadratic order. Takingf5f05const the change in the Eu
clidean action will simply be

DSE5E ~g/2!s0
2~t!f0

2d4x. ~10!
1-3
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GARRIGA, TANAKA, AND VILENKIN PHYSICAL REVIEW D 60 023501
We can approximate the integral by takinggs0
25m2 inside

the volume of the bubble ands050 outside. Then we have

DSE5
p2

2
m2R0

4
f0

2

2
.

From the formulaP; exp(2SE), we essentially recover Eq
~9!. Even though we have used the thin wall approximati
we should stress that the coincidence of this ‘‘adiabat
result ~where the fieldf is taken as constant! with the field
theoretic one~where f is quantized in the bubble back
ground and its r.m.s. is evaluated right after bubble nuc
ation! is also valid for thick walls@10#.

As emphasized in@10#, the adiabatic approach to the ca
culation of the distribution off0 should be interpreted with
caution. It does not mean that the surfacet5t0 inside the
bubble will have a constant value of the fieldf. It only gives
the probability that a bubble will nucleate with the value
f5f0 nearr 50. We know, however, that the quantum sta
of a nucleating bubble is homogeneous, and therefore in
ensemble of bubbles there is nothing special about the p
r 50. Therefore, this also gives the probability distributi
for f around any point inside the bubble.

III. PROBABILITY DISTRIBUTION FOR V

In this section we shall follow some of the steps used
Ref. @11# for the calculation of the probability distributio
for V, although the present case will actually be simpler.
the case of Ref.@11#, one had to deal with an infinite numbe
of bubbles, each one containing an infinite open unive
with a different density parameter. Since the probability fo
given set of parameters is roughly proportional to the to
volume that ends up having those values of the parame
one had to face the difficulty of comparing infinite volum
in an eternal inflationary universe@13#.

In our case, all bubbles are statistically equivalent. All
them are described by a homogeneous and isotropic qua
state, with^f2& given by Eq.~6!. Hence, in order to find the
probability distribution forV it is sufficient to look at the
interior of a single bubble. Also, since the quantum state
homogeneous, we only need to consider the evolution o
patch of finite co-moving size around an arbitrary point
the t;M 21 hyperboloid. The patch should be sufficient
large that it contains regions with all possible values off,
distributed according to Eq.~9!. Since inflation inside the
bubble is not eternal, the number of civilizations resulti
from this co-moving patch is finite and there is no need
regularization.

As mentioned in the previous section, at early times
scale factor behaves asa't. By the time t;H21(f0),
where

H~f0!5~4pG/3!1/2mf0 ,

the energy density in the scalar fieldf starts dominating
over the curvature term. If the condition for slow roll infla
tion
02350
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M p

A4p
~11!

is satisfied, then using Eq.~3! the scale factor will subse
quently evolve as

a~ t !'H0
21eN(t),

whereH0[H(f0) and

N~ t !5E
f0

f(t)H~f!

ḟ
df.

Using the slow-roll equation of motion forf

ḟ5
2m2

3H
f,

we haveN(t)'2pG@f0
22f2(t)#. Since f0 is actually a

slowly varying function of position, the scale factor is a loc
one, and should be understood asa(t,xi). Notice that the
comoving scale over whicha changes is comparable tog21

and hence it is much larger than the curvature scale, so
meaningful to use the Friedmann equation~3!.

The number ofe-foldings of inflation depends on the loca
value off0:

ath~f0![H0
21eNth(f0)'H0

21e2pG(f0
2
2f th

2 ), ~12!

wheref th is defined in Eq.~11!. It will be convenient, as a
first step, to find the probability distribution for a rando
‘‘civilization’’ to live in a region which had a value of the
slow roll field equal tof0 at the beginning of inflation. This
is given by

dP~f0!5P~f0!ath
3 ~f0!n~f0!df0 . ~13!

Here

P~f0!}e2f0
2/2f 2

~14!

is the probability that a given point on thet;M 21 hyperbo-
loid will have the valuef0 right after nucleation. Becaus
the number of civilizations is proportional to the volume, w
have inserted the total expansion factor during inflat
ath

3 (f0). Finally, n(f0) is the ‘‘human factor,’’ which rep-
resents the number density of civilizations that will devel
per unit thermalized volume as a function off0.

Factoring out the dependence onn,

dP5n~f0!dP̃, ~15!

the leading exponential behavior ofdP̃ is

expS 6pG2
1

2 f 2Df0
2 ,
1-4
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DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW D60 023501
where we have used Eqs.~12! and ~13!. The behavior ofP̃
depends on whetherf is large or small compared withM p .
Defining

m[
1

24pG f2 , ~16!

it is clear that form,1/2 large values off0 are favored due
to the gain in volume factor, and we may expect the unive
to be very flat. Form.1/2, the volume factor alone is no
sufficient to compensate for the exponential suppressio
high peaks. We shall see that the human factor may play
important role in this case.

It is convenient to express the above distribution in ter
of the density parameter. Following@8,11#, we have

@H~f th!ath~f0!#2511B
V

12V
'B

V

12V
. ~17!

Here

B'
Tth

2

TeqTCMB
,

Teq is the temperature at equal matter and radiation den
Tth is the thermalization temperature andTCMB is the tem-
perature of the cosmic microwave background, measure
the same time asV. Typically, B is exponentially large, with
(ln B);102. From Eqs.~13! and ~17! we find

dP̃~V!5P~f0!ath
3 S d ln ath

df0
D 21 dV

2V~12V!
. ~18!

Using Eqs.~12!, and disregarding the logarithmic depe
dence onV, we find

dP̃~V!}V1/223m~12V!3m25/2dV, ~19!

where m is given by Eq.~16!. For m.5/6 the probability
distribution is peaked atV50, for m,1/6 it is peaked at
V51, and for the intermediate range 1/6,m,5/6 it has two
peaks, one atV50 and one atV51. However, it is easily
seen that form.1/2 the highest peak will be atV50
whereas form,1/2 it will be atV51.1 Note that all depen-
dence on the particle physics model in Eq.~19! has been
compressed into a single parameterm.

Equation~19! is the same expression that was found
Ref. @11# by considering an ensemble of bubbles with diffe
ent values ofV and using the prescription introduced in@13#
for the regularization of infinite volumes. We regard t
agreement between the two approaches as a validation o
regularization prescription~in models where regularization i

1Strictly speaking, the peak would not be exactly atV51 because
the Gaussian distribution~14! is only an approximation which ig-
nores the back reaction of the slow roll field on the bubble ba
ground. We shall return to this issue in Sec. V.
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needed!. Alternative regularizations proposed in@12# give
different results and are therefore disfavored.

Let us now include the human factorn(V). As mentioned
above, this will play a role form.1/2, when the expansion
alone is not sufficient to compensate for the exponential s
pression inf0 due to tunneling. Since the probability distr
bution P̃ tends to peak near the extremes, it is convenien
work with a logarithmic variable which gives equal measu
to each decade in the vicinity ofV50 or V51. One such
variable is lnx, where

x[
12V

V
. ~20!

Hence, we shall be interested in the probability density

W~V!5
dP

d ln x
}n~x!x3(m21/2). ~21!

The peak of this distribution will give the most probab
value ofV.

It should be noted that, since the density parame
changes with time, bothn(V) and W(V) are in principle
time dependent. However, this time dependence is somew
trivial, entering Eq.~21! through the parameterTCMB , the
temperature at which the density parameter is equal toV.
What we are actually interested in is the probability distrib
tion for different types of thermalized regions, which is i
trinsically time independent. We could, for instance, s
TCMB equal to the temperature at recombination, and th
the probability distribution would be expressed in terms
V rec , which completely characterizes the history of a giv
thermalized region. Noting that Friedmann’s equation can
rewritten asx215(8pG/3)ra2, in the matter era we have

x}a~ t !}TCMB
21 , ~22!

wherea indicates the scale factor. Hence, in practice, we c
use a ‘‘gauge invariant’’ approach: we shall writeW(V) as a
function of the productxTCMB , which is time independent in
the matter era.

IV. THE ANTHROPIC FACTOR n„V…

In previous work@17–19,11,20#, n(V) was taken to be
proportional to the fraction of clustered matterf c on a rel-
evant mass scaleMg . This scale can be chosen as the typic
mass of anL* galaxy,Mg;1012M ( @17,20#, given that most
of the observed luminous matter is in this form. Also, gala
ies much smaller than 1012M ( may not be suitable for life,
because their gravitational potential would not be able
hold the heavy elements produced in supernovae explosi
Matter will only cluster when the density contrastd(Mg)
extrapolated from linear perturbation theory exceeds a
tain thresholddc . Hencef c can be estimated as@21,22#

f c~Mg ,t !5erfcS dc

A2s
D . ~23!-
1-5
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GARRIGA, TANAKA, AND VILENKIN PHYSICAL REVIEW D 60 023501
Here erfc is the complementary error function ands(Mg ,t)
is the dispersion in the density contrast, also evolved acc
ing to linear theory2 @23#

s~Mg ,t !5
5s rec~Mg!

2xrec
f ~x!, ~24!

wherex is given by Eq.~20! and

f ~x!511
3

x
1

3~11x!1/2

x3/2
ln@~11x!1/22x1/2#. ~25!

The subindexrec denotes quantities evaluated at the time
recombination. In an open universe, perturbations stop gr
ing after the universe becomes curvature dominated. S
we are interested in the total fraction of clustered matte
the entire history of a given region, we should use in Eq.~23!
the asymptotic value ofs at large times (x→`), which ap-
proaches a constant.

In a flat universe, the critical density contrast takes
value dc'1.7. However, it is known thatdc should be
slightly V-dependent@24#. The variation is rather small, an
dc changes by no more than 5% asV varies from 0.1 to 1.
Here we adopt the value ofdc estimated in the spherica
collapse model as@25,26#

dc~x!5
3

2
f ~x!g~x!, ~26!

where

g~x![11S p

x1/2~11x!1/22sinh21x1/2D 2/3

. ~27!

For x→0, we havedc5(3/5)(3p/2)2/3'1.69, as in the case
of a flat universe, and forx→` we havedc53/2.

Substituting Eqs.~24! and~26! in Eq. ~23! and taking the
limit x→` we obtain

n5erfcS 3xrec

5A2s rec
D [erfc~y!. ~28!

The distribution~28! is given as a function of the densit
parameter at the time of recombination. As mentioned at
end of the last section, in order to compare predictions w
observations, it is convenient to express the distribution a
function of x at any temperatureTCMB . Using Eq.~22! we
have

2This expression for the growth of perturbations is different fro
the one used in@11#. There, the growth factor from the time o
equilibrium of matter and radiation was considered, and a spur
factor ofV was included, which was actually due to the uncertai
in the value of the redshift at the time of equilibrium. This fact
should actually not be present in the probability distribution forV,
since the time of equilibrium is the same in all thermalized regio
02350
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3

5A2s rec

TCMB

Trec
x. ~29!

In order to evaluate the coefficientk, we need to knows rec .
It is clear thats rec has nearly the same value in all regio
where curvature dominates only well after the time of reco
bination. In principle this value is given in terms of the p
rameters of our theory of initial conditions.

In practice, we can adjust the parameters of the theor
fit CMB observations. Our ability to infers rec from CMB
observations is, however, limited by the fact that it depen
on the values ofV0 andh in our visible universe, which are
not very well determined. As noted in@20#, this limitation
also arises in attempts to find the probability distribution
the cosmological constant. Therefore, until determinations
s rec become more precise, the best one can do is to ass
certain values ofV0 andh and check whether the assume
values fall within the range favored by the resulting probab
ity distribution for V. The value ofk for TCMB52.7K is
estimated in Appendix B and plotted in Fig. 1 as a functi
of V0. For each value ofV0 , h has been chosen so that th
‘‘shape parameter’’G'V0h'.25 ~see Appendix B!. Also,
there is some uncertainty in the relevant co-moving sc
Rgal corresponding toMgal @20#. In the figure we consider
two possibilities, Rgal51 h21 Mpc and Rgal
52 h21 Mpc. For V0 in the range 0.1,V0,0.7 we find
that k;0.1.

The fraction of clustered mattern is shown by a solid
curve in Fig. 2 as a function ofy. In our universe, the density
of matter presently clustered in giant galaxies satisfiesVgal
.0.05 @27#, which impliesn(y).0.05V21. The asymptotic
value n(y) should be even larger. Solving fory, we obtain
the observational constraint

s

.

FIG. 1. The coefficientk which relates the variabley to the
density parametery5kx5k(12V)/V, depends ons rec , the
value of the density contrast at the time of recombination. O
ability to infer s rec from CMB observations is limited by the fac
that V0 in our observable ‘‘subuniverse’’ is not known very pre
cisely. In the figure we plot the inferred value ofk for various
assumed values ofV0. The value ofs rec depends moreover on th
scaleRgal corresponding to objects of galactic mass. The curve
plotted for two different values of this scale~see Appendix B!. The
parameterk depends on the temperature at which we observeV.
Here we have takenTCMB52.7 K.
1-6
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y,0.9. ~30!

The distribution

W~V!5
dP

d ln y
}erfc~y!y3(m21/2) ~31!

gives the probability that a randomly selected civilization
located in a region which had a specified value ofV at a
given temperatureTCMB . It is represented in Fig. 2, as
function of lny, for different values of the parameterm. The
peak valueypeak, found fromdW/dy50 is plotted in Fig. 3
as a function ofm ~curvea).

For y*1, the error function can be approximated by

erfc~y!'
1

Apy
e2y2

, ~32!

and the peak value can be expressed analytically,

ypeak
2 '

3

2
m2

5

4
. ~33!

FIG. 2. The probability distribution~31! as a function ofy, for
various values ofm. Also represented is the fraction of clustere
mattern(y) as a function ofy.

FIG. 3. Peak of the probability distribution~31! ~curvea). The
approximate value ofypeak given by Eq.~33! is represented by the
curveb. Curvec represents the possible effect of helium line co
ing failure, as discussed in Appendix C.
02350
This curve is also shown in Fig. 3~curveb). Equation~33!
can be rewritten as

S 12V

V D
peak

5k21S 3

2
m2

5

4D 1/2

, ~34!

which gives the peak value for the density parameter at
temperatureTCMB . To estimate the width of the distributio
~31! we expand lnW to quadratic order inD ln y around
ypeak,

W'Wpeak exp@2~3m25/2!~D ln y!2#.

Hence, the root mean squared dispersion inV around its
peak value will be given by~for m*3/2)

D lnS 12V

V D;~6m25!21/2, ~35!

while the dispersion iny is independent ofm, Dy;1/2.
From Fig. 2, we see that asm is increased, the probability

distribution is sharper and displaced towards larger value
y, in agreement with Eqs.~33! and ~35!. For m51, the dis-
tribution has a substantial overlap with the region where
~30! is satisfied and the fraction of clustered matter is co
patible with observations. Form55/2 this overlap is smaller
but still non-negligible. However, form511/2, the probabil-
ity density at the pointy'0.9 is more than two orders o
magnitude smaller than at its peak value. Particle phys
models which give such high values ofm are therefore dis-
favored by observations. As we discussed in Sec. III,
probability distribution is peaked atV51 for m,0.5. Hence
the range ofm that is of interest to us in this paper is

0.5,m&3. ~36!

This corresponds to

0,ypeak&2. ~37!

It should be noted that the peak value for the fraction
clustered mattern(ypeak), depends only onm, and not on the
primordial spectrum of density fluctuations.

So far we assumed that all galactic-size objects collaps
at any time will form luminous galaxies. However, this is n
necessarily the case. Galaxies forming at later times h
lower density and shallower potential wells. They are vuln
able to losing all their gas due to supernova explosions@28#.
Moreover, a collapsing cloud will fragment into stars only
the cooling timescale of the cloudtcool is smaller than the
collapse timescaletgrav , otherwise the cloud would stabiliz
into a pressure supported configuration@29,28#. The cooling
rate of such pressure supported clouds is exceedingly
and it is possible that star formation in the relevant m
range will be suppressed in these clouds even when
eventually cool. Hence, it is conceivable that galaxies t
fail to cool during the initial collapse give a negligible con
tribution ton(V) @28#. The possible effect of cooling failure
and related phenomena on the probability distribution forV
is discussed in Appendix C, where we show that the effec
1-7



o
n

a-
i-
he
he

e
i

Se

e-

a

.
r

a-

-
all

d

d in
s-

take
the

al
on-
le

ote
d-
m

r

d to
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to shift the peak of the distribution towards larger values
V. These effects may be significant, but not dramatic, a
Eq. ~34! remains valid by order of magnitude. As an illustr
tion, curvec of Fig. 3 shows the peak of the modified distr
bution when matter which clusters after the time when
lium line cooling becomes inefficient is excluded from t
anthropic factorn(V).

V. MORE GENERAL MODELS

In this section, we shall generalize our results to mod
where the slow roll potential is not necessarily quadratic
f. In this case, the factorP(f0) in Eq. ~13! can be estimated
in the adiabatic approximation, where the fieldf is treated as
a constant during tunneling, as described at the end of
II. In this approximation we have

P~f0!}e2SE(f0)

whereSE(f0) is the action of the instanton for bubble nucl
ation, with the slow roll field frozen to the valuef0.

From Eq.~13!, we have

W5
dP

d ln y
}erfc~y!y23/2P~f0!J21, ~38!

where, as before

y5
dc

A2s rec

2

5

TCMB

Trec

12V

V
,

and we have used Eq.~17! to express the scale factor as
function of y. The JacobianJ is given by

J[Ud ln y

df0
U52

d ln ath

df0
52

V8

V
116pG

V

V8
, ~39!

where we have usedath5H(f0)eN, and the relation be-
tween the hubble rateH(f0) and the slow roll potentialV in
true vacuum

HT
2[H2~f0!'

8pG

3
V~sT ,f0!.

Here sT is the value of the tunneling field in true vacuum
We have also used the slow roll expression for the numbe
e-foldings

N~f0!58pGEf0 V

V8
df.

Here, as in Eq.~39!, V8 stands for the derivative ofV with
respect to the slow roll field. Introducing the slow roll p
rameter

e[
2ḢT

HT
2

'
1

16pG S V8

V D 2

!1, ~40!

we have
02350
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J'S 16pG

e D 1/2

.

In many models, the parametere hardly changes in the rel
evant range off0, and hence we shall treat it as a sm
constant parameter.

Extremizing Eq.~38!, we find that the peak value off0 is
given by the condition

m~f0!upeak5
1

2
2

1

3

d ln erfc~y!

d ln y U
peak

, ~41!

where

m~f0![
1

3

dSE~f0!

df
J21. ~42!

Equation~41! is the same condition we found in Sec. IV, an
which is plotted in Fig. 3, except that nowm is a function of
f0, and hence ofy.

Before we proceed, let us go back to the case discusse
Sec. III of a free slow roll field. Strictly speaking, the expre
sion ~14! for P(f0) is just an approximation which is valid
only for sufficiently lowf0, when the backreaction off on
the bubble background can be neglected. Now we can
this effect into account. For definiteness, let us consider
case wherem;1013 GeV, and where the tunneling potenti
Vt(s) is such that false and true vacuum are strongly n
degenerate whenf50. In this case, the radius of the bubb
is R0;M 21 ~thick wall bubble!, whereM;1016 GeV is a
typical mass scale in the tunneling potential. Let us den
by fdeg the value for which the energy density correspon
ing to the slow roll potential is equal to the false vacuu
energy in the unbroken phaseVF[Vt(s50),

1

2
m2fdeg

2 5VF;
M4

l
,

where l is a self-coupling of the tunneling potential. Fo
f0!fdeg, the value ofm is almost independent off0 ~this
is the situation considered in Sec. III!

m~f0!fdeg!'m0[
p

48G

m2

M4 .

The massesM and m can be easily adjusted so thatm0
!1/2. However, forf0;fdeg, the Euclidean actionSE(f0)
increases very steeply withf0, and so doesm.3 In this case,
the condition ~41! will be satisfied for f0;fdeg
;M p(lm0)21/2, whereM p5G21/2 is the Planck mass. The
corresponding number ofe-foldings of inflation is given by
N(f0)'2pGfdeg

2 '(p2/12)(lm0)21.
Therefore, form0!1/2, and with a suitable choice ofl,

the peak in the distribution may be adjusted to correspon

3Indeed, asf0 approachesfdeg, the thin wall approximation
starts to apply. Then, from Eqs.~43! and ~44! below, we find that
the action blows up as we approach degeneracy.
1-8
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DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW D60 023501
N'(1/2)lnB'60, whereB is defined in Eq.~17!. This is
compatible with an open universe. However, this case
somewhat trivial, in the sense that the universe can be o
only if the maximum allowed value of the slow roll fiel
after tunneling,f05fdeg, does not drive a long enoug
period of inflation to make it flat.

Turning to the general case, a more interesting situa
arises whenm(f0).1/2 throughout the range off0 ~see
Sec. III!. In this case the product of tunneling and volum
factors would peak atf050, where the resulting univers
would be almost empty, and the anthropic factorn(V) is
crucial in determining the probability distribution forV. For
large m, and using the approximate expression~32! for the
error function in Eq.~41! we have

ypeak
2 '

3

2
m~f0!2

5

4
,

which is formally the same expression as Eq.~33!.
In the thin wall approximation, we can estimatem in

terms ofV and the bubble radius. For simplicity, we sha
also neglect gravitational backreaction. Denoting byS1 the
tension of the bubble wall, the radius of the bubble at
time of nucleation is given by@16#

R05
3S1

DV~f0!
, ~43!

whereDV[VF2V(sT ,f0). HereVF is the potential in false
vacuum. For our approximation to be valid,R0 should be
larger than the thickness of the bubble wall and smaller t
the Hubble radius in false vacuum. Under these assumpti
the Euclidean action is given by@16#

SE'
p2

2
S1R0

3 . ~44!

The derivative ofSE can be expressed in terms of the slo
roll parameter

dSE

df
53SE

V8

DV~f0!
5

p2

2
R0

4V85
p2

2
R0

4V~16pGe!1/2,

and finally, from Eq.~41!, we have

m5
p2

6
R0

4Ve. ~45!

Taking one more derivative of lnW with respect to lny, we
find

d2ln W

d~ ln y!2 '24y22
p2

2
R0

4Ve2S 114
V

VF2VD .

Near y5ypeak we have, setting the first derivative ofW to
zero and usinge!1,

d2 ln W

d~ ln y!2 U
peak

&24ypeak
2 .
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From this we can estimate the dispersion in the distribut
of V, which is again approximately given by Eq.~35!.

VI. CONSTRAINTS FROM CMB ANISOTROPIES

As we have shown, given a particle physics model wh
leads to quasi-open inflation, we can predict the probabi
distribution P(V). Of course, the model also makes pred
tions for the CMB anisotropies. Comparison of all pred
tions with observations can be used to constrain the par
eters of the particle physics model.

In an open~or quasi-open! universe, CMB anisotropies
which are generated during inflation come in three differ
types. The first type corresponds to scalar fluctuations g
erated during slow roll inside the bubble, and it affects wa
lengths smaller than the curvature scale. These are ca
subcurvature modes. The corresponding spectrum of t
perature fluctuation, characterized by the multipole coe
cientsl ( l 11)Cl as a function ofl, is nearly flat forl &100.
This type of fluctuations is usually believed to give the dom
nant contribution to the observed plateau in the CMB sp
trum.

The second type of anisotropy corresponds to excitati
of f generated outside the bubble or during the proces
tunneling and expansion of the bubble into the false vacu
These are accounted for by the supercurvature modes
cussed in Sec. II~see also@10#!. For the models we have
considered, the amplitude of temperature anisotropies ca
by supercurvature modes is a factor of orderHF/10H(f0)
relative to the subcurvature ones@30#. However, supercurva
ture modes affect only the very few first multipoles, a
hence they cannot explain the observed flat spectrum.
that reason, the constraintHF&10H(f0) is usually imposed.

Finally, there are CMB anisotropies caused by grav
waves, which can in turn be decomposed into the ones g
erated during slow-roll and the ones caused by fluctuati
of the bubble wall itself@30,31#. Wall fluctuations give the
dominant contribution for the few first multipoles, but the
contribution decays rapidly withl. The waves generated du
ing slow roll give an approximately flat spectrum, who
amplitude is much smaller than that of scalar modes.

The multipole coefficients Cl for the temperature
anisotropies due to subcurvature modes are given by@30,32#

Dl
S[

l ~ l 11!Cl
S

2p
5

4pG

25 S HT

2p D 2 1

e
bl~V! ~ l &100!.

~46!

Here, we have used the notationHT[H(f0) and the slow
roll parametere given in Eq. ~40!. The coefficientbl is a
slowly varying function ofV which can be bounded as
&bl&6 in the range 1,V,1.

Supercurvature modes induce temperature anisotro
which for the lowest multipoles can be estimated as@30,32#

Dl
SC[

l ~ l 11!Cl
SC

2p
;dl S HF

HT
D 2

Dl
S ~47!

wheredl(V);1022.
1-9
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Let us now consider the contribution to CMB anisotrop
from tensor modes. As mentioned above, for the lowest m
tipoles this is dominated by the domain wall fluctuatio
@33,30,32#. For simplicity, we shall consider the case of
weakly gravitating domain wall, satisfyingGS1R0!1,
whereS1 is the wall tension. Also, we shall restrict attentio
to the thin wall case. Then, the anisotropies caused by
wall fluctuations are given by@32,33,30#

Dl
W'

2HT
2

pS1R0
cl~V!. ~48!

For the first few multipoles, andV in the range .1 to .5, the
coefficientcl(V) is of order 1022 @for higher multipoles,cl
decays very fast, scaling roughly as (12V) l ].

Since HF
2.(8pG/3)DV, where DV was introduced in

Eq. ~43!, we have

HF
2R0

2.24pG
S1

2

DV
'16GHT

2S cl

Dl
WD . ~49!

From Eq.~45!, and using Eqs.~46!, ~47! and ~49!, we find

m*e2KlS D10
S

Dl
SCD 2S D10

S

Dl
WD 2

1

D10
S

, ~50!

where the coefficientKl[400p2cl
2dl

2bl
2/b10

3 is plotted in Fig.
4 for various values ofl andV. The inequality~50! turns out
to be somewhat restrictive.

In the model given in Eq. ~1!, the parametere
5@2N(f0)#21 is of order 1022. From Fig. 4, the coefficien
Kl is never smaller than 1024 for V in the range .1 to .7.
Hence, we find

m*100S DS

DSCD 2S DS

DWD 2S 10210

DS D . ~51!

As discussed in Sec. IV, constraints from the observed f
tion of clustered matter implym&3. On the other hand, ob
servations of CMB anisotropies requireCl

i,10210. Hence,
we conclude that this model can only satisfy all obser

FIG. 4. The coefficientKl for various values of the densit
parameter.
02350
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tional constraints if CMB anisotropies are not complete
dominated by scalar subcurvature modes.

If the observed CMB anisotropies are due to inflatio
then we should haveDSC,DW&DS;10210, and Eq. ~51!
gives m*100. For such values ofm, the peak of the prob-
ability distribution is at very low values ofV, and the cor-
responding fraction of clustered matter is unaccepta
small. It is therefore unlikely that the two-field potential~1!
can give a realistic model of open inflation which will ex
plain both a nontrivial value ofV and the observed spectrum
of CMB fluctuations.

This problem disappears if the observed CMB anisot
pies are due to a different source, such as cosmic string
other topological defects forming at the end of inflatio
which would also be responsible for structure formatio
Also, the restriction~50! will be less severe if the observe
value ofV is larger than .7, since the coefficientKl is then
much smaller, or in models with a smaller slow roll param
etere&1023.

VII. THE COSMIC AGE COINCIDENCE

The usual objection against models withV,1 is that it is
hard to explain why we happen to live at the epoch when
curvature is about to dominate. That is, why

t0;tc ,

where t0 is the present time andtc is the time of curvature
domination. Observers att!tc would find V'1, while ob-
servers att@tc would find V!1. It appears that one need
to be lucky to live at the time whenV&1. There is another
coincidence which is required in open-universe models
which also calls for an explanation. Observationally the e
och of structure formation, when giant galaxies were
sembled, is atz;123, or tG;t0/32t0/8. On the other hand
the interesting range ofV for open universe models is 0.
,V,0.9, which corresponds tozc;0.122, or tc;0.3t0
20.9t0. We see thattG and tc are within one order of mag
nitude of one another. It is not clear why these seemin
unrelated times should be comparable. We could have
exampletG!tc . In this section, we shall argue that the c
incidence

tG;tc;t0

may be not as surprising as it first appears.
Let us begin with the coindidencetG;tc . In models we

are considering here, most of the volume in each quasi-o
bubble is occupied by regions with small values ofV, cor-
responding to small values oftc . Mathematically this is ex-
pressed by the fact that the ‘‘dehumanized’’ probability d
tribution dP̃(V) in Eq. ~14! is peaked atV50 ~for m
.1/2). On the other hand, the ‘‘human factor’’n(V) sup-
presses all values ofV for which tc,tG , so that curvature
domination interferes with structure formation. As a resu
the peak of the full probability distributiondP(V)
1-10
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DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW D60 023501
5n(V)dP̃(V) is shifted to a value ofV corresponding to
tc;tG . Hence, we should not be surprised thattc;tG in our
universe.

It remains to be explained why we live at a timet0

;tG . Clearly,t0 could not be much less thantG , so we need
to explain why we do not havet0@tG . We now recall
Dicke’s observation@34# that the timet0 is unlikely to be
much greater thantG1t!, wheret!;1010 yrs is the lifetime
of a typical main sequence star. Noticing thatt!;tG , we
conclude that the expected value oft0 is ;tG .

The value oft! and tG depend only on fundamental con
stants and on the amplitude of the cosmological density fl
tuations. In the models we have considered in this pa
whereV is the only variable parameter, these timescales
fixed and one cannot address the question of why they
similar.

If cooling failure ~discussed at the end of Sec. IV and
Appendix C! indeed represents a barrier for effective s
formation, then it adds yet another timescale which is co
parable to the other four we have encountered in this sec
This is the timetc f after which collapsing gas clouds o
galactic mass cannot fragment and remain pressure
ported. This timescale is also determined by fundame
constants, so the coincidence of this scale withtG cannot be
explained within our simple model. However, it is easy
generalize the model so that bothV and s rec are variable.
For instance, instead of just one slow roll scalar field, we
consider two of them,

V~s,f1 ,f2!5Vt~s!1
s2

2
~g1f1

21g2f2
2!.

In this case, the two slow roll fields will have different ma
inside the bubble. The duration of inflation and the amplitu
of density perturbations are determined by the point in
plane (f1 ,f2) where the fields land after tunneling. Chan
ing to polar coordinates on that plane, the number
e-foldings of inflation depends basically on the radial co
dinateR ~how far we are from the bottom of the potentia!.
On the other hand, the amplitude of density perturbati
depends on the effective mass along the curve describe
the inflaton, which is determined by the angular coordin
Q.

The volume factor in the probability distribution will b
the same onR5const surfaces, whereas the tunneling fac
will choose the directionQ in which the massm2(Q)
}g1cos2Q1g2sin2Q is the lowest. In our model,s rec

}m(Q)N(R)M P
21 , where N(R);GR2 is the number of

e-foldings of inflation andM p is the Planck mass. Lowm
means largetG , because the smaller iss rec , the longer it
takes for a perturbation to go nonlinear. Hence, volume
tunneling factors would choose the largest possibletG . On
the other hand,tG cannot be larger than the cooling bounda
tc f . Therefore,tG;tc f could also be explained in this mode
This argument can be regarded as an explanation for
observed amplitude of density fluctuationsQ in our universe:
02350
c-
r,
re
re

r
-
n.

p-
al

n

e
e

f
-

s
by
e

r

d

he

the valueQ;1025 is selected by the conditiontG;tc f .4 A
detailed analysis is left for further research.

VIII. SUMMARY AND CONCLUSIONS

We have calculated the probability distribution for th
density parameter in models of open inflation with variab
V. This probability is basically the product of three factor
the ‘‘tunneling’’ factor, which is related to the microphysic
of bubble nucleation and subsequent expansion; the vol
factor, related to the amount of slow roll inflation undergo
in different regions of the universe; and the ‘‘anthropic fa
tor,’’ which determines the number of galaxies that will d
velop per unit thermalized volume. It is interesting that t
expression for the probability~31! depends on the underlyin
particle physics model through a single dimensionless
rameterm, defined in Eq.~42!.

Taking the minimum of the slow roll potential to be a
f50, the tunneling factor tends to suppress large initial v
ues of f, favoring low values ofV. However, only those
regions for whichf is large enough will inflate. Hence, ther
will be a competition between volume enhancement a
‘‘tunneling’’ suppression.

The most interesting situation occurs when the tunnel
suppression dominates over the volume factor. In this c
the product of both would peak atV50, and the anthropic
factorn(V) becomes essential in determining the probabi
distribution. In an open universe, cosmological perturbatio
stop growing when the universe becomes curvature do
nated, and for low values ofV structure formation is sup
pressed. The effect of the anthropic factor is, therefore
shift the peak of the distribution fromV50 to a nonzero
value ofV.

As a first approximation@11,20#, we have takenn(V) to
be proportional to the fraction of matter that clusters on
galactic mass scale in the entire history of a certain reg
We have found that the peak of the distribution is given
the condition

kS 12V

V D
peak

'S 3

2
m2

5

4D 1/2

, ~52!

where the coefficientk;1021 is defined in Eq.~29!. For
models with m;1 ~which can be easily constructed!, the

4Anthropic bounds onQ have been previously discussed in Re
@28#. Tegmark and Rees@28# used the inequalitytG,tc f to impose
a lower bound onQ. To obtain an upper bound, it has been argu
@35,28# that for large values ofQ galaxies would be too dense an
frequent stellar encounters would disrupt planetary orbits. To e
mate the rate of encounters, the relative stellar velocity was take
be the virial velocity vv ir ;200 km/s, resulting in a boundQ
.1024. However, Silk@36# has pointed out that the local velocit
dispersion of stars in our galaxy is an order of magnitude sma
thanvv ir . This givesQ.1023, which is a rather weak constrain
This issue does not arise in the approach outlined in the text ab
since in our case large values ofQ are suppressed by the tunnelin
and volume factors in the probability.
1-11
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probablility distribution for the density parameterP(V) can
peak at values ofV such thatx5(12V)/V;1 ~see Fig. 1!.
The peaks are not too sharp, with amplitudeDy'1/2, or
Dx'5, so a range of values ofV would be measured by
typical observers.

The analysis we presented here demonstrates that, giv
particle physics model, the probability distribution forV can
be unambiguously calculated from first principles. We c
also invert this approach and use our results to exclude
ticle physics models which give the peak of the distributi
at unacceptably low values ofV. This gives the constrain
m&3.

An independent constraint on the model parameters
be obtained from CMB observations. If the observed CM
anisotropies are to be explained within the same two-fi
model of open inflation, without adding any extra fields, th
we have shown in Sec. IV that the corresponding constr
~if the observed value ofV lies in the range .1 to .7) ism
*106e2, wheree is the slow roll parameter defined in Eq
~40!. Combining both constraints, we obtain a bound on
slow roll parameter

e&1023.

This bound is somewhat restrictive. For instance, for
simple free field model~1!, the slow roll parameter is o
order 1022, and so this model would contradict observatio
It is easy, however, to generalize the slow roll potential
order to makee sufficiently small. If one allows some othe
source for CMB fluctuations~e.g., topological defects!, then
the CMB constraint is much less restrictive, and simple m
els of the form~1! are still viable.

We have advanced anthropic arguments towards exp
ing the ‘‘cosmic age coincidence,’’ that is, whether it wou
be surprising to find that we live at the time when the c
vature is about to dominate. We have argued that this is
unexpected. We have also discussed a three-field mod
which the amplitude of density fluctuationsQ becomes a
random variable. We have outlined an argument explain
the observed valueQ;1025 in the framework of this model

While this work was being completed, Hawking an
Turok @37#, have suggested the possibility of creation of
open universe from nothing~see also@38#!. The validity of
the instantons describing this process@39#, and also their
ability to successfully reproduce a sufficiently homogene
universe, is still a matter of debate and needs further inv
tigation. Clearly, the analysis presented in this paper can
easily adapted to this new framework.
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APPENDIX A: SIZE OF THE POPULATED UNIVERSE
AND CLASSICAL ANISOTROPIES

As mentioned in Sec. II, a quasi-open universe is form
by an ensemble of inflating regions of very large size co
pared to the curvature scale. Clearly, the central parts of e
region will inflate longer and, will have a larger density p
rameter than the peripheric regions. Hence, the fraction
clustered matter will decrease as we move away from
center. Here we shall estimate the size of the populated
gion, which, as we shall see, is much smaller than the siz
the inflating region.

From Eqs.~21!, ~17! and ~12! we have

d ln nupeak52pG~6m23!df0
2;

f0
2

f 2 d ln f0 . ~A1!

This equation gives the variation ofn due to the gradients in
f as we move away from a typical civilization which me
sures the peak value ofV. @The estimate in Eq.~A1! holds
provided thatm is not too close to 1/2, saym>.6.]

Taking this civilization to be located atr 50, the gradi-
ents can be decomposed in multipoles. Forl 50, df0 can be
found from Eq. ~8!. For r;1 ~which for low V roughly
corresponds to the present Hubble distance! we have
d ln f0;g. Combining with Eq.~A1! we find thatn changes
by

d ln n;
g~f0

peak!2

f 2
[X ~A2!

over the Hubble distance.
For X!1, n would not change appreciably on cosmolog

cal scales. Using Eq.~8!, the co-moving size of the populate
universe can be estimated as the distance at whichn drops by
an order of magnitude,

r p;X21.

For m.1/2 we needf0
2@ f 2 in order to have sufficiently

long inflation. Hence we find that the size of the populat
region is larger than the curvature scale but still mu
smaller than the size of the quasi-open island, 1!r p!g21.

For X@1 we can use Eq.~8! for small r to obtain

d ln f0'g
r 2

6
. ~A3!

In that case, the size of the populated universe can be
mated as

r p;X21/2!1, ~A4!

and the human factor would drop by several orders of m
nitude within our Hubble radius. Clearly, we should not e
pect to lie precisely at the center of the hospitable region,
rather at the outskirts, and then we would observe a la
anisotropy inn around us. This can be confirmed by analy
ing the l .0 supercurvature modes. The amplitude ofl .0
modes is of order@10#
1-12
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df0;g1/2f r l . ~A5!

Combining with Eq.~A1! we have

d ln n;X1/2r l .

For largeX, thel 51 anisotropy inn becomes of order one a
the distancer p , as expected.

If n is proportional to the fraction of clustered matter,
we have assumed in the preceding section, a large dro
this quantity is already excluded by observations@40#, so the
constraint

X[
g~f0

peak!2

f 2
&1 ~A6!

must be imposed on our model.
This constraint is relevant to the question of classi

anisotropies in a quasi-open universe, discussed in Ref.@41#.
To an observer living at large distances from the cente
the islandr @1 the universe would look anisotropic, wit
df0;gf0 over the curvature scale around that point. F
X.1 this anisotropy would be larger than thel .0 quantum
fluctuations from supercurvature modes~A5!. However, as
shown above, forX.1 the typical observer must be at
distancer;X21&1 from the center of the island, and th
arguments of Ref.@41# do not apply. Hence, even though th
constraint~A6! coincides with the one derived in@41# ~where
a single island was considered and the universe was
taken to be homogeneous on very large scales!, its interpre-
tation is very different. It does not arise from requiring th
the classical CMB anisotropy should be smaller than thl
.1 supercurvature anisotropy but from demanding that
factor n determining the density of civilizations should b
isotropic around us.

On the other hand, for the simple model~1!, one can find
a much stronger constraint onX by combining the bounds
from the observed isotropy of the CMB discussed in Sec.
with the bounds on the observed fraction of clustered ma
Indeed, the supercurvature anisotropy can be expressed

Dl
SC;1026m22X, ~A7!

whereX was defined in Eq.~A2!. Using the constraints from
the observed fraction of clustered matterm&3 @see Eq.~36!#
and requiringDl

SC&10210, this results in

X&1024m2&1023, ~A8!

a much stronger constraint than Eq.~A6!. Hence, the size o
the populated universe should be at least 103 times larger
than the curvature scale in this model.

APPENDIX B: EVALUATION OF k

As mentioned at the end of Sec. VI, in order to predict
expected values ofV at TCMB52.7 K in our part of the
universe, we need to knowm, as well as the coefficient
02350
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k5
3

5A2s rec

TCMB

Trec

that relatesx to y. For the temperatures we takeTCMB'2.7 K
andTrec51100TCMB . The main unknown in this coefficien
is s rec .

The value ofs rec is, to a very good approximation, th
same in all thermalized regions. Hence it can be infer
from measurements of CMB anisotropies on large angu
scales in our observable region. Since we are intereste
relatively small scales, we also need to make some assu
tions about the power spectrum of density fluctuations.
shall take a scale invariant cold dark matter~CDM! adiabatic
spectrum. As we shall see, our ability to infer the prec
value of s rec will be limited by the fact that the density
parameterV0 in the observable part of our universe is n
known very precisely. Hence, we shall leave it as a f
parameter. We emphasize thatV0 is the value of the density
which is actually realized in our universe today, and who
precise value we do not know yet. This should not be c
fused with the random variableV which appears in the prob
ability distributions, and which takes different values in d
ferent regions.

In order to determines rec , we note that

s rec~R!5A21~V0!s0~R!, ~B1!

wheres0(R) is the present density contrast on the relev
scaleR andA(V0) is the factor by which linear perturbation
have grown from the time of recombination until the prese
time. In an open universe, this factor is given by@23#

A~V0!5
5

2

f ~x0!

xrec
,

wherex0 andxrec are the values of (12V)/V in our observ-
able universe at present and at recombination respectiv
The functionf is given in Eq.~25!.

With this, we have

k5
3

2A2s0

f ~x0!

x0
,

where we have used the fact thatxT5const in the matter era
The present linear density contrasts0 is given by@22,20#

s0~Rgal!5~c100G!2dHK1/2~Rgal!. ~B2!

Here c100'2997.9 is the speed of light in units o
100 km s21, dH is the dimensionless amplitude at horizo
crossing~which can be inferred from COBE measurement!,
G5V0h is the ‘‘shape parameter,’’ withh the present hubble
rate in units of 100 km s21 Mpc21 ~we ignore the effect of
baryon density in this expression forG), andK contains the
information on the power spectrum and the length scaleRgal
we are considering.

For a scale invariant spectrum,K is given by@20#
1-13
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K~R![E
0

`

q3T2~q!W2~qRhG Mpc21!dq,

where the transfer functionT in the CDM model can be
approximated as@42#

T~q!5
ln~112.34q!

2.34q
@113.98q1~16.1q!2

1~5.46q!31~6.71q!4#21/4,

and the top-hat window functionW in momentum space is
given by

W~u!5
3

u3 ~sinu2u cosu!.

In order to find numerical estimates, we shall consider@20#
Rgal5122 h21 Mpc. Roughly speaking, this correspon
to the scale whose baryon content collapses to form a ga
with a mass comparable to that of the Milky Way. Also,
requiring that CDM predictions correctly reproduce the s
tistics for galaxy distribution on scales of tens of megap
secs@43#, the shape parameter is constrained to be in
range

G'0.2560.05.

For our estimates, we shall takeG5.25. With this, we find

K~1 h21 Mpc!'0.049, K~2 h21 Mpc!'0.026.

For the dimensionless amplitudedH we shall use the fit-
ting function given by Liddleet al. @22#

dH~V!5~4.1018.83V28.50V2!1/231025. ~B3!

Hence, the coefficient

k5
3

2A2~c100G!2K1/2

f ~x0!

dH~V0!x0
~B4!

will be sensitive to our ignorance of the value ofV0 in our
universe, as mentioned above.

In Fig. 1 we plotk as a function ofV0 for the two chosen
values of the scaleRgal .

APPENDIX C: EFFECTS OF COOLING FAILURE

As mentioned at the end of Sec. IV, fragmentation of g
clouds will only occur if the cooling timescaletcool is
smaller than the timescale needed for gravitational colla
tgrav . Because of this, fragmentation will be suppressed
ter a certain critical timet* . Here we shall investigate th
possibility @28# that clouds collapsing att.t* do not effec-
tively form stars even after they eventually cool. We sh
see that, as a consequence, the peak of the distribution
be shifted to somewhat larger values ofV.

The density of the virialized collapsing cloudrv ir is given
by @28,25#
02350
xy
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-
e
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ill

rv ir ;102~Gtv ir
2 !21,

wheretv ir is the time at which the collapse occurs. The vi
alization temperature can be estimated asTv ir ;mpvv ir

2

;mp(G3rv ir Mg
2)1/3. Heremp is the proton mass, andvv ir is

the virial velocityvv ir ;(GMg /L)1/2, whereL is the size of
the collapsed object. The later an object collapses, the co
and rarer it will be.

The cooling ratetcool
21 of a gas cloud of fixed mass de

pends only on its density and temperature, but as sho
above both of these quantities are determined bytv ir .5 The
timescale needed for gravitational collapse istgrav;tv ir .
Therefore, the conditiontcool,tgrav gives an upper bound
t* on the time at which collapse occurs. Matter that clust
after that time should not contribute to the anthropic fac
n(V).

Various cooling processes such as bremsstrahlung
line cooling in neutral hydrogen and helium were conside
in Ref. @28#. For a cloud of massMg'1012M ( , cooling
turns out to be efficient6 for

t,t* '331010 yr. ~C1!

This value oft* should be taken only as indicative, since t
present status of the theory does not allow for very prec
estimates.

From the time of recombination to the timet* fluctua-
tions will grow by the factor@23#

G* ~V!5
5

2xrec
f ~x* !,

whereas the critical density contrast is given by

dc5
3

2
f ~x* !g~x* !,

where f (x) and g(x) are given in Eqs.~25! and ~27!. Fol-
lowing the steps that lead to Eq.~28! we now find

n5erfc@kxg~x* !#. ~C2!

Noting that in the matter era@23#

t5t rec

x1/2~11x!1/22sinh21x1/2

xrec
1/2~11xrec!

1/22sinh21xrec
1/2

and usingxrec!1 we have

5Actually, the fraction of baryonic matterXb is also relevant for
cooling. Following@28# we shall takeXb;0.1.

6This upper bound ont is determined by line cooling in helium
For Mg'1012M ( there is also a narrow range of time ne
t'331011 yr where cooling is again efficient due to hydrogen lin
cooling. However, the range is very narrow and we shall disreg
the galaxies which may form during this short late period.
1-14



e
in

ly
e
r
a

he
he

ce
m
at
ic

ha
cy
rm

d
ime
is
ift
f

the
ic,

ity,
ec-

e

f
ry of
s
hat
. Fi-
t
y

DENSITY PARAMETER AND THE ANTHROPIC PRINCIPLE PHYSICAL REVIEW D60 023501
g~x* !'11S 3pt rec

2t*
D 2/3 1

xrec
511

D*
x

where

D* 5
Trec

TCMB
S 3pt rec

2t*
D 2/3

. ~C3!

Therefore, the fraction of matter that clusters on a giv
scale before the critical time is basically obtained by shift
y in Eq. ~28! by the constantkD*

n5erfc~y1kD* !. ~C4!

Using the valuesV05.5 andh5.5 for our observable uni-
verse in order to infer k ~see Fig. 1! and t rec
'5.631012(V0h2)21/2 s, we havekD* '0.2 ~as in Appen-
dix B, we have usedTrec51100TCMB). The peak of the
modified probability distribution is plotted in Fig. 3~curvec)
as a function ofm, next to the original curvea where cooling
failure is neglected. Asymptotically both curves differ on
by Dypeak'kD* /250.1. This is much smaller than th
width of the distributionDy;0.5, so the effect is rathe
small. In Fig. 5~a! we plot the probability distribution as
function ofx5(12V)/V ~at the temperatureTCMB52.7 K!
for three different values ofm, without taking into account
cooling effects. For comparison, in Fig. 5~b! we show the
modified distribution when matter that clumps after timet*
is disregarded.

We note that even if cooling is efficient, the density of t
protogalactic cloud is likely to affect the number and t
mass distribution of stars in the resulting galaxy. Masses
suitable stars should be large enough to provide the ne
sary luminosity and small enough so that the stellar lifeti
is sufficient to evolve intelligent life. It is conceivable th
the number of such stars drops with the density, in wh
case the upper bound ont should be stronger than Eq.~C1!.
Again, galaxy formation is not understood to the extent t
would allow us to estimate this upper bound with accura
However, since we do not observe many giant galaxies fo
,

y

ot
nd
is
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ing at redshifts lower thanz52, we may consider as a thir
possibility the case where matter that clumps after the t
t* '33109 yr is excluded from the anthropic factor. Th
corresponds tokD* '1. Even in this extreme case the sh
in the peakuDypeaku<kD* /2'0.5 is of the same order o
magnitude as the width of the distributionDy;0.5 @see Eq.
~35!#. The new distribution as a function ofx is plotted in
Fig. 5~c!.

Therefore, we find that the impact of these effects on
probability distribution may be significant, but not dramat
and Eq.~34! is still valid by order of magnitude.

FIG. 5. The probability distribution forV is sensitive to the fact
that objects which collapse at very late times have very low dens
and therefore may be unsuitable for life. Neglecting these ‘‘sel
tion’’ effects, frame~a! shows the probability distribution forV for
various values ofm ~the value ofV is the one measured at th
temperatureTCMB52.7 K!. In this case, the anthropic factorn(V)
~also shown in the plot! is just proportional to the total fraction o
matter that clusters on the galactic mass scale in the entire histo
a particular region. In frame~b! we disregard matter which cluster
after the time when helium line cooling becomes inefficient, so t
the collapsed galactic mass objects cannot fragment into stars
nally, as a more extreme case, in frame~c! we disregard matter tha
clumps after the timet* '33109 yr, since we do not see man
giant galaxies forming at redshifts lower thanz52.
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