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Open inflation and the singular boundary
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The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the
fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the
Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and
scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of
a family of ‘‘no-boundary’’ solutions where both the geometry and the scalar field are regular. Using this
procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term.
Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturba-
tions and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in
this background.

PACS number~s!: 98.80.Cq
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Recently, Hawking and Turok@1,2# have suggested tha
an open universe can be created from nothing. This is
attractive possibility because it would allow one to constr
open models of inflation with very simple inflationary pote
tials ~see also@3–6#!.

The new ingredient that makes their construction poss
is that they allow their instanton solution to be singul
There may be some justification for this, since the Euclide
action is integrable. Moreover, if we think of the singulari
as the boundary of spacetime, the Gibbons-Hawking bou
ary term@7# is nonvanishing and finite. This is rather coi
cidental, since it requires the extrinsic curvature of t
boundary to increase just at the same rate as the inverse
volume as the singularity is approached.

On the other hand, the very existence of a boundary m
be considered a disturbing feature~particularly in the context
of the no-boundary proposal for the wave function!, and one
may conjecture that the singularity is just an effective d
scription at low energies whose structure is resolved in
framework of a better theory. Here we shall consider
possibility of regularizing the singularity with matter, so th
the instanton can be obtained as the limit of a family
nonsingular geometries where the scalar field is also w
behaved. As we shall see, by using this limiting procedu
the contribution of the ‘‘singularity’’ to the Euclidean actio
is different from the Gibbons-Hawking term.

The simplest way to regularize the solutions is to int
duce a membrane coupled to the scalar field. The Euclid
action is given by

SE5E d4xAgF1

2
~]f!21V~f!2

R
16pGG1E d3jAhm~f!,

~1!

where

m~f!5m02aekf, ~2!
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andh is the determinant of the metric on the world sheet
the membrane. The parameterm0.0 is a positive tension
which stabilizes the vacuum atf50, anda is a small cou-
pling. These parameters will not play a role once the ‘‘s
gular’’ limit is taken, but for the time being there is no har
in thinking of them as physical. The parameterk will be
specified below. We have not written a boundary term, si
our geometries will not have a boundary.

Following @1# we take an O~4!-symmetric ansatz for the
metric and the scalar field:

ds25ds21b2~s!~dc21sin2cdV2
2!. ~3!

In the absence of a membrane, the field equations forb(s)
andf(s) are

f913
b8

b
f85V,f , ~4!

S b8

b D 2

5
8pG

3 F1

2
f822VG1

1

b2 , ~5!

where primes stand for derivatives with respect tos.
The Hawking-Turok instanton is depicted in Fig. 1. Th

FIG. 1. Hawking-Turok singular instanton. The solution is reg
lar ats50, whereb's andf850. As s is increased,b grows to
a maximum value and then decreases again, reaching a second
at somes5s f , where the solution is singular. To the left ofb0 the
solution is very similar to the Euclidean–de Sitter solution, but
the right it has the behavior given in Eqs.~6! and ~7!. The singu-
larity can be removed by introducing a membrane coupled to
scalar field ats5sm .
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solution is regular ats50, whereb's andf850. As s is
increased,b grows to a maximum value and then decrea
again, reaching a second zero at somes5s f . However, this
second zero is singular. Near the singularity the scale fa
behaves as@1,4#

b3'C~12pG!1/2~s f2s!, ~6!

and the scalar field as

f'2~12pG!21/2 ln~s f2s!1const. ~7!

These asymptotic expressions are valid for

b!b0[C1/2G1/4. ~8!

In spite of the singular behavior of the scalar field and
geometry, the Euclidean action is integrable.

Here, we shall take the approach of modifying the so
tion so that it will be everywhere regular. The idea is
surround the singularity with a spherical membrane wh
will act as a source for the scalar field. The interior of t
membrane is replaced with a ball of~nearly! flat space. At
the center of the ball,s5sc , we takef850, b8521, and
f(sc) is chosen so that it matches the value off at the
membrane. The membrane will also provide the energy m
mentum source necessary to match both geometries.

Substituting the O~4!-symmetric ansatz into the Euclidea
action and varying with respect tof, one easily finds match
ing conditions for the scalar field at the membrane. The d
continuity in the first derivative is given by

@f8~sm!#52akekf(sm), ~9!

where the square brackets indicate the difference betwee
values inside and outside, andsm is the location of the mem
brane. Given thatf8'0 inside the membrane and using t
asymptotic form off8 near the external face we have

C

~12pG!1/2
'ab3~sm!ekf(sm). ~10!

The left hand side of this equation is constant. In order
obtain a nontrivial limit assm→s f while keepinga finite
we take

k[~12pG!1/2. ~11!

Let us now consider the back reaction of this membra
on the geometry. Einstein’s equations imply the match
condition @8#

Fb8

b G524pGm~f!524pG~m02aekf(sm)!. ~12!

Inside the membrane, the geometry is basically flat, and
have (b8/b)'b21. Outside the membrane, we have

b8

b
'

2kC

3b3 . ~13!
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Using Eq.~10! we find that the leadingO(b23) terms in Eq.
~12! cancel out. The subleading terms are unimportant; t
will not contribute once the size of the membrane is shru
to zero.

Inserting the trace of Einstein’s equations in Eq.~1!, we
find @9#

SE52E d4xAgV~f!2
1

2E d3jAhm~f!. ~14!

The limit of the second term as the size of the membran
shrunk to zero can be interpreted as the contribution of
singularity to the action of the instanton. It is given by

Ssing5
p2C

k
. ~15!

Taking into account that the trace of the extrinsic curvat
of the membrane isK53(b8/b), and using Eq.~13!, we find
that this contribution is actually one-third of the Gibbon
Hawking term@7,4,2# evaluated on the external face of th
membrane:

Ssing5
1

3
SGH5

21

24pGE d3jAhKext . ~16!

This conclusion is rather general. The junction condition@8#
@K#5212pGm relates the value ofm(f) in Eq. ~14! to the
jump in the trace of the extrinsic curvature. However, t
jump in K is dominated by the extrinsic curvature on th
external face, from which Eq.~16! follows.

Note that the result in Eq.~15! does not depend on th
parametersm0 or a characterizing the membrane. The reas
is thata has been eliminated in favor ofC through Eq.~10!,
whereasm0 does not contribute in the limitb(sm)→0. In
fact, there is no strong reason for using a coupling of
form ~2!. It has been chosen so that the regulatora remains
finite as the singularity is approached.1 If we think of our
membrane as a physical object, then for eachC and for each
value of the cutoffsm , the solution only exists for specific
values ofm0 anda determined by the matching condition
One can extend this interpretation by taking the couplinga
to be very small and allowing for a superposition of a
number of membranes with positive and negative charges
this case, the parametersm0 and a can be thought of as
continuous variables, which can be adjusted to satisfy
~10! for any value ofC andsm .

The instability of flat space pointed out by Vilenkin@4#
has an analogue in the regularized theory. Vilenkin’s inst
ton can also be regularized with a membrane near the sin
larity. Just as in the cosmological case, the Euclidean wo
sheet of this membrane is a three-sphere. Upon analytic
tinuation to the Lorentzian regime, this becomes the wo
sheet of a spherical membrane which accelerates into the
assymptotic region. Thus, the instability can be pictured

1We could replacem0 by m01be(k/3)f, and thenm0 andb would
also remain finite in the limitb(sm)→0.
1-2
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the spontaneous creation of a membrane which is a so
for the scalar field. Becausef is large near the membrane, i
effective energy per unit aream(f) is negative. This nega
tive energy compensates for the positive energy in the sc
field configuration, so that the total energy is zero and t
neling is allowed. In Ref.@4#, a massless scalar field wa
considered, and there was no minimum gap to be s
mounted in order for tunneling to occur~the constantC
could be chosen arbitrarily small!. As mentioned in@4#, the
same seems to be true for an arbitrary potential. The re
larization we suggest here can be applied for any value oC
and in this respect the same construction that would m
the Hawking-Turok instanton acceptable also makes
space unstable. There may be models, however, where
is a minimum height of the tunneling barrier. These mod
would make flat space metastable at least.

The solution of Hawking and Turok is also special wi
regard to the unrelated question of cosmological pertur
tions. In the approximation when the gravitational back
action of the scalar field perturbations is neglected, Hawk
and Turok@1# have argued that the quantization of fluctu
tions is marginally well defined in spite of the singularit
Indeed, after the rescalingf5x/b, and introducing the con
formal coordinateX5*s

s fds/b(s), the field modes obey a
Schrödinger equation with a potential that behaves
2(2X)22 near the singularity. This is again very coincide
tal, since with a stronger singularity the quantum mechan
problem would certainly be ill posed@1,10#.

Therefore it is important to check what happens wh
gravitational back reaction is included. The quantization
cosmological perturbations inO(3,1)-symmetric geometrie
~the analytic continuation of our instanton has this symm
try! was recently studied in Ref.@11#. The analysis was don
in terms of the variableq}aF/f8, whereF is Bardeen’s
gauge invariant potential. The variableq obeys a Schro¨-
dinger equation with effective potential given by

4pGf821f8S 1

f8
D 9

. ~17!
.
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Here, a prime indicates derivative with respect to the conf
mal coordinateX introduced above. It is straightforward t
show that the first term dominates near the singularity,
having ask/X2, with k53/4. Hence, the effective potentia
goes to plus infinity rather than minus infinity near the s
gularity. Interestingly, the coefficientk53/4 is again a criti-
cal one@10#. As mentioned above, fork,21/4 the problem
is not well posed. For21/4,k,3/4 the problem is margin-
ally well posed, since both solutions of the Schro¨dinger
equation are square integrable near the singularity, but o
one has a square integrable kinetic energy. The exceptio
k50, for which both solutions are well behaved~this case
was discussed in@5#!. Finally, for k>3/4, the basis of func-
tions is uniquely determined by the requirement of squ
integrability @10#, which selects one solution for each valu
of the energy. Thus, the singularity behaves as a reflec
boundary and the problem of quantizing the scalar pertur
tions seems to be well posed. In particular, this seems
preclude the possibility of scalar perturbations ‘‘streami
out’’ from the singularity into the universe@5#. The same
comment applies to gravity waves, for which the correspo
ing effective potential reduces to the first term in Eq.~17!
@11#.

To summarize, we have shown that the contribution of
singularity to the Euclidean action depends on whether i
viewed as a true boundary of spacetime or whether i
viewed as the limit of a family of regular instantons. Th
second option seems preferable. The Einstein-Hilbert te
may be a good approximation at low curvature, but near
singularity corrections may be expected and the finitenes
the action is hard to justify—unless the singularity is d
namically cut off in the context of a more fundament
theory. Also, we have pointed out that the quantization
linearized cosmological perturbations is well posed in
singular background. Therefore, the predicted power spe
will tend to a well-defined limit when the regulator is re
moved. This suggests that predictions may not be too se
tive to the details of the underlying theory, provided that t
cutoff scale is sufficiently high.

It is a pleasure to thank Alex Vilenkin Takahiro Tanak
and Xavier Montes for very useful conversations.
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