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Self-propelled micromotors have previously shown to enhance pollutant removal compared to non-motile 

nano-micro particles. However, these systems are expensive, difficult to scale-up and require surfactant 

for efficient work. Efficient and inexpensive micromotors are desirable for their practical applications in 

water treatment technologies. We describe cobalt-ferrite based micromotors (CFO micromotors) 

fabricated by a facile and scalable synthesis, that produce hydroxyl radicals via Fenton-like reaction and 

take advantage of oxygen gas generated during this reaction for self-propulsion. Once the reaction is 

complete, the CFO micromotors can be easily separated and collected due to their magnetic nature. The 

CFO micromotors are demonstrated for highly efficient advanced oxidative removal of tetracycline 

antibiotic from the water. Furthermore, the effects of different concentrations of micromotors and 

hydrogen peroxide on the antibiotic degradation were studied, as well as the generation of the highly 

reactive hydroxyl radicals responsible for the oxidation reaction.  

 

1. Introduction 

Self-propelled micro/nano motors have gained considerable attention because of their attractive practical 

applications and importance for understanding motion at low Reynolds number[1–5]. In recent years, 

researchers have demonstrated  their use in sensing[6–8], micro surgery[9–11], drug delivery[12,13], and 

environmental applications[14,15]. Among these, the latter is particularly promising for near future 

practical applications of micromotors in waste water treatment[16–18]. Most of the micromotors-based 

systems reported for environmental applications are bubble propelled and contain platinum as a catalyst 

to obtain motion by decomposition of hydrogen peroxide into oxygen and water in the media. They are 

typically fabricated by various multi-step processes like template assisted synthesis or photolithography, 

and subsequent glancing angle deposition. These techniques produce multi-material structures with a 

cavity where bubbles can grow from the locally saturated oxygen and get ejected, which induces self-

propulsion. The motion of the catalytic self-propelled micromotors enhances micro-mixing and mass 

transfer in the aqueous system, thus increasing the removal rate of pollutants present in wastewaters by 

the functional material (adsorbent or oxidative catalyst) [15,19]. For instance, micromotors have been 

proven to be useful for heavy metal removal[20,21], organic removal[22–28] and bacteria 

disinfection[29–32]. However, several challenges must be addressed before micromotors-based water 

treatment technology can be used in large scale practical applications. One of the major challenges is the 

prohibitive cost associated with the use of platinum for micromotors propulsion[33]. Furthermore, 

current fabrication methods makes scaling up challenging and expensive[3]. The mass production method 
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of micromotors based on an inexpensive material is the key to their large-scale viability for water 

treatment remediation. Efforts have been made to develop platinum free catalytic micromotors for 

organic removal from water, nevertheless the reported systems still require the addition of 

surfactants[34,35] to work efficiently. These surfactants are often toxic and add an extra organic 

contamination load in water. 

Iron and other transition metals based react with hydrogen peroxide (H2O2) via Fenton-Like reactions to 

produce reactive oxygen species (ROS), especially hydroxyl radicals (HO.) by decomposition of hydrogen 

peroxide. Fenton-Like processes are complex and include multiple chain reactions, which generate 

hydroxyl radicals and oxygen gas during the catalysis cycle[36]. Hydroxyl radicals generated by Fenton-

like reactions are extremely oxidative, thus they are very important for advanced oxidative process to 

degrade refractory organic pollutants which cannot be removed naturally by microorganisms[37]. 

Pharmaceutical pollutants, namely antibiotics, hormones, and phenolic compounds are among the 

refractory pollutants that are toxic for humans and aquatic life even at very low concentrations[38]. 

Currently, industrial and municipal water treatment plants widely use separation and activated sludge 

methods to remove organic pollutants from wastewater, which is often not sufficient to remove these 

contaminants[39,40]. Various iron-based materials have been extensively studied for Fenton-like 

degradation of organic pollutants but their use for designing multifunction micromotors that can self-

propel and produce hydroxyl radicals is not yet well studied. 

Here, we present platinum and surfactant free cobalt ferrite-based bubble propelled micromotors (CFO 

micromotors) for oxidation of tetracycline (TC) antibiotic, as pharmaceutical model pollutant, via Fenton-

like reaction. Tetracycline is one of most widely used antibiotic for human and veterinary healthcare[41]. 

The CFO micromotors function as self-propelled heterogeneous Fenton-like catalysts in presence of 

hydrogen peroxide, which acts as both fuel for micromotors propulsion and reagent for Fenton-like 

oxidation of the antibiotic pollutant. Furthermore, CFO micromotors are also ferromagnetic in nature, 

which makes it possible to easily recover the micromotors after the completion of degradation process.  

2. Experimental 

2.1 Synthesis and characterization of micromotors 

CFO micromotors were fabricated from cobalt ferrite nanoparticles.  Cobalt ferrite nanoparticles were 

synthesized by solvothermal method using cobalt acetate (CoAc, sigma 403024) and Iron(III) chloride 

hexahydrate (FeCl3∙6H2O, sigma F2877) as the precursors. First, 0.92 g CoAc and 1 g FeCl3∙6H2O were 

dissolved in 30 ml of ethylene glycol (sigma 324558). Then, 2.78 mg of sodium acetate (NaAc, sigma S8750) 

and 1 ml of polyethylene glycol (PEG 200, Alfa Aesar B21918) as the stabilizer were added to the previous 

mix. The prepared solution was transferred into 50 ml Teflon lined hydrothermal autoclave and heated to 

170•C for 15 hours. After the reaction was completed the reactor was cool down to room temperature 

and then the content was transferred into a beaker. The nanoparticle suspension obtained was washed 

multiple times with isopropanol (Panreac 211090) to remove ethylene glycol and unreacted precursor 

molecules. Then, the resulting suspension was dried using an oven at 80oC for 15 hours. The drying process 

induces the aggregation of the cobalt ferrite nanoparticles into few hundred-micrometers sizes of 



microparticles. These microparticles were manually grounded and sieved to obtain CFO micromotors with 

the size under 100 micrometers.  

A diluted suspension of the cobalt ferrite nanoparticles was dried overnight at room temperature on a 

copper grid to prepare samples for the transmission electron microscopy (TEM) analysis. JEOL Centurio 

model was used to obtain images of nanoparticles. Electron energy loss spectroscopy (EELS) (Gatan GIF 

ERS electron energy-loss spectrometer)) coupled with TEM was used to quantify ratio of Co and Fe present 

in the nanoparticles.  The scanning electron microscope (SEM) images of CFO micromotors were obtained 

using a FEI NOVA NanoSEM 230 system. The crystalline structure of micromotors were further 

characterized by using the Bruker D8 Advance diffractometer equipped with a Cu Kα radiation (1.5417 Å) 

source, a LYNXEYE super speed detector and a Ni filter.  

Swimming behavior of the CFO micromotors was analyzed using an inverted optical microscope Leica DMI 

3000 B equipped with a camera Leica DFC 3000 G. A custom-made 3D printed sample holder was prepared 

to position the glassware under the microscope for observing the swimming of the micromotors in-situ.  

2.2 Antibiotic degradation experiments using CFO micromotors. 

Tetracycline (TC, sigma T7660) was selected as target antibiotic. TC degradation experiments were carried 

out in a glass beaker containing CFO micromotors in 50 mg/L TC solution and 5% hydrogen peroxide (sigma 

31642). In all the experiments, the concentration of the TC was kept constant. To optimize the degradation 

approach, we studied different parameters. First, the effect of the amount of CFO micromotors in the 

efficiency of TC degradation was studied. To this end, three different suspensions of CFO micromotors 

with the concentrations of 0.05 g/L, 0.1 g/L, and 0.2 g/L were used in triplicate. To achieve the optimized 

H2O2 concentration for TC degradation using CFO micromotors, four concentrations of H2O2 were 

evaluated (1 %w/w, 2.5% w/w, 5% w/w and 7%w/w). 

The effect of surfactant was studied by using the optimized concentration of 0.1 g/L CFO micromotors, 

5% w/w H2O2 and 50 mg/L TC. Four sets of experiments were carried out (n=3) containing three different 

surfactants, sodium dodecyl sulfate triton-X and tween 20 in 1% w/w concentration in three different sets 

and one without the presence of any surfactant.  

In all the degradation experiments, aliquots of the different samples were taken at timed intervals. The 

concentration of TC in each sample was measured by reading the absorbance value of the sample at 

358nm using a UV-Vis spectrometer.  

2.3 Identification of hydroxyl radicals. 

Terephthalic acid was used as a probe to investigate the hydroxyl radical generation during the Fenton-

like reaction of CFO micromotors. A solution containing terephthalic acid (0.5mM) (sigma 185361), 

hydrogen peroxide (5 % w/w) and CFO micromotors (0.1 g/L) was used for the experiment and an identical 

solution without micromotors was used as control. The presence of 2-hydroxyterephthalic acid was 

produced by the reaction between terephthalic acid and the generated hydroxyl radical species. This 



product was detected by measuring its fluorescence spectra from 350nm to 600nm at 320nm excitation 

wavelength using a multimode microplate reader (Tecan Infinite M200 PRO). 

3. Results and discussion 

CFO micromotors were fabricated  from the cobalt ferrite nanoparticles, which were synthesized by using 

cobalt(II) acetate and iron(III) chloride (molar ratio Co2+/Fe3+ = 0.5) as precursors in ethylene glycol via 

solvothermal route[42]. The solvent ethylene glycol acts as a reducing agent while sodium acetate and 

polyethylene glycol are added in the solution to prevent the aggregation of nanoparticles during the 

synthesis in the liquid phase.  

 

Figure 1. Scheme of the synthesis and mechanism of the cobalt-iron micromotors (CFO micromotors). (A) 

Synthesis of the CFO micromotors by drying of cobalt ferrite nanoparticles. (B) Degradation of tetracycline 

(TC) antibiotic by using the self-propelled CFO micromotors. 

The synthesized cobalt ferrite nanoparticles were dried to obtain agglomerated micrometer-sized CFO 

micromotors as depicted in Figure 1A. The CFO micromotors decompose hydrogen peroxide (H2O2) into 

strongly oxidizing hydroxyl radicals via Fenton-like reaction that can oxidize TC antibiotic into intermediate 

oxidized products and eventually into carbon dioxide (CO2). In addition, the oxygen gas (O2) bubbles 

generated during hydrogen peroxide decomposition induce self-propulsion of the micromotors, which 

enhances mass transfer and micro-mixing of the solution to further promote the degradation of 

tetracycline (TC) by the hydroxyl radicals (Figure 1B).  

CFO micromotors were characterized by TEM and SEM (Figure 2 A, B &C). Figure 2A displays a TEM image 

of synthesized cobalt ferrite nanoparticles. It is observed that the diameter of individual nanoparticles is 

smaller than 100 nm. The cobalt ferrite nanoparticles have tendency to agglomerate because of strong 

magnetic interactions between the particles, therefore it is hard to prevent their agglomeration, even in 



the suspension form.[42,43] Once the nanoparticles are washed to remove unreacted solvents and 

surface stabilizer and dried , they strongly adhere with each other and require significant stress to 

deform.[44,45] The aggregated nanoparticles form microparticles of various sizes, ranging from 

submicron scale aggregates to a few hundred micrometers. The resulting microparticles were further 

grinded and sieved to obtain micromotors under 100 micrometers. Figures 2B and C show SEM images of 

a micrometer sized CFO micromotor obtained from aggregated nanoparticles. The surface of micromotors 

is rough and porous because of the hierarchical aggregation of the already agglomerated nanoparticles. 

The roughness and porosity of surface (Figure 2C) increase the surface area and provide favorable points 

for bubble nucleation, necessary for propulsion.  

The composition and crystalline structure of the CFO micromotors was analyzed by electron energy loss 

spectroscopy (EELS) method and XRD respectively (Figure 2 D &E). Individual elements present in the 

micromotors were quantified to estimate their amount in the structure. Mainly three elements cobalt, 

iron, and oxygen were detected. The ratio of cobalt and iron elements was found to be 0.5 which is 

consistent with the ratio of the cobalt and iron precursor used in the synthesis of the micromotors (Figure 

2D), confirming the CoFe2O4 structure. The XRD patterns of the dried CoFe2O4 micromotors (Figure 2E) 

evidence a poorly crystalline structure. The (311) and (440) lattice planes correspond to CoFe2O4 (JCPDS 

22-1086).  

 

Figure 2. Characterization of the CFO micromotors. (A) TEM image of cobalt ferrite nanoparticles (B) SEM 

image of a CFO micromotor. (C) SEM image of the surface morphology of a CFO micromotor. (D) Element 

composition of the CFO micromotors obtained by electron energy loss spectroscopy (EELS). (E) X-ray 

diffraction (XRD) pattern of CFO micromotors.  

The motion of cobalt ferrite nanoparticles and micromotors was investigated by optical microscopy. We 

observed that the nanoparticles do not exhibit bubble propulsion in H2O2 solution. Bubbles were only 



observed in the bulk liquid or on the surface of the container due to gas saturation in the sample. On the 

contrary, in the case of CFO micromotors, they self-propel by the bubbles generated from the 

decomposition of H2O2 fuel at their surface because their bigger size and rough surface can provide 

sufficient nucleation points for bubbles to grow. It has previously been reported that the size limit of the 

catalytic micromotors for bubble propulsion depends on the catalytic activity, concentration of H2O2 and 

various geometrical factors[46]. For instance, platinum coated spherical micromotors can only exhibit 

bubble propulsion if their diameters are above 10 µm[47]. However, tubular micromotors can swim by 

bubble propulsion even with sub-micrometer diameter due to the confinement of the gas generated in 

the tubular structure[48]. In the case of CFO micromotors, a precise quantification of their cut-off size for 

bubble propulsion is difficult to assess due to the asymmetric shape of the micromotors which leads to a 

different number of nucleation points for the bubble growth and detachment. Figure 3A shows tracking 

of an individual CFO micromotor swimming in 5% w/w H2O2 for 10 seconds (Video S1).  We observed that 

the motion of the micromotors was pulsatile and the recoil force of the bubble detachment mainly 

contributed to their motion. Swarms of CFO micromotors rapidly move around the liquid producing a 

chaotic swimming behavior (Video S2) that can induce an efficient mixing in the system. Figure 3B 

illustrates the tracking of four different CFO micromotors swimming for 10 seconds. CFO micromotors can 

maintain individual swimming direction even though bursting and fusion of the bubbles create often 

strong drift in the liquid. 

 

Figure 3. Swimming behavior of CFO micromotors. (A) Tracking of an individual CFO micromotor swimming 

in 5% w/w H2O2 concentration. (B) Tracking of multiple CFO micromotors swimming in 5 % w/w H2O2. 



The CFO micromotors were studied for their efficiency towards TC degradation via Fenton-like reaction.  

First, the micromotors concentration was optimized by using different amounts of CFO micromotors from 

0.05 to 0.2 g/L in the presence of 5% w/w H2O2 (Figure 4A). We observed that the degradation rate of TC 

did not increase above 0.1 g/L micromotors. To study the effect of H2O2, further experiments were carried 

out using 0.1 g/L CFO micromotors and varying the H2O2 concentration (1%, 2.5%, 5% and 7.5% w/w). As 

it is observed in Figure 4B, the TC degradation rate increased by increasing H2O2 concentration, reaching 

a maximum at 5% w/w (Figure 4B inset). 0.1 g/L micromotors and 5% w/w H2O2 were selected as optimized 

concentrations and for further experiments to study the effect of surfactants and the generation of 

hydroxyl radicals.  

 

Figure 4. Degradation of TC antibiotic by CFO micromotors. (A) Effect of different amount of CFO 

micromotors. (Inset: Extraction of micromotors using NdFeB magnet) (B) Effect of different 

H2O2concentrations. (Inset: TC removal after 10 minutes of reaction with micromotors at different H2O2 

concentrations).  (C) Effect of presence of various surfactants 



Generally, surfactants are added to the solution to improve the overall swimming behavior of the 

micromotors regarding directionality and speed. Surfactants stabilize the interface of bubbles therefore 

facilitating their detachment from the micromotors surface, which smoothens the swimming and 

decreases the drift in the liquid due to fusion and bursting of bubbles[49]. In certain cases, surfactants are 

even necessary to achieve motion of micromotors.[50] Recently, it has been reported that addition of 

surfactants improves pollutant removal efficiency of micromotors because of the improvement in the 

swimming behavior and adsorptive separation of pollutants on the bubbles.[15,34,51]  However, 

surfactants increase the organic matter of the wastewater and can be toxic, requiring further treatment 

such as electrocoagulation processes[52,53]. We studied the performance of CFO micromotors for TC 

antibiotic degradation in the presence of various surfactants, such as sodium dodecyl sulfate (SDS), triton-

X and Tween 20 and without the addition of surfactant. CFO micromotors performed better (~84%) for 

removal of TC when surfactants were not added in the system. However, the presence of surfactants 

severely affected the performance of degradation of TC by the CFO micromotors (Figure 4C). Indeed, it 

was observed that SDS (~54 % removal) decreased the efficiency of TC degradation more significantly than 

Tween 20 and Triton-X (~70 % and ~59% removal respectively). The extra organic load added by the 

presence of the surfactant can competitively consume the reactive oxygen species produced by the 

Fenton-like reaction. Furthermore, surfactants form micellar structure around TC molecules that may 

oxidize first and prevent access of hydroxyl radicals to TC. This effect can be enhanced for anionic 

surfactant like SDS due to its electrostatic interaction with TC[54].  

The degradation efficiency of TC by the CFO micromotors was compared with control experiments using 

only H2O2 without the addition of the CFO micromotors and the TC degradation by the micromotors 

without the addition of H2O2. As shown in Figure 5A, only a small decrease in the characteristic absorbance 

peak of TC in both control experiments were observed, which can be attributed to the oxidative nature of 

the H2O2 and adsorption of TC on the CFO micromotors. TC degradation was minimal in the control 

experiments while in the presence of swimming CFO micromotors most of the antibiotic was degraded 

from the solution after 10 min of the Fenton-like reaction, being the characteristic absorbance peak of TC 

negligible.  



 

Figure 5. (A) Degradation of TC by the CFO micromotors approach at optimized H2O2 concentration (5%) 

and CFO micromotors amount (0.1 g/L) over time. (B) Hydroxyl radical generated during the swimming of 

CFO micromotors in H2O2 probed by fluorescence intensity measurement of 2-hydroxyterephthalic acid 

converted from terephthalic acid. (Inset: fluorescence spectra scan over time). 

The degradation pathway of TC was previously studied by other researchers giving a general idea of its 

possible mineralization pathways [55]. The mechanism includes oxidation of the methyl and amino groups 

attached to the aromatic rings, followed by the ring opening reactions that subsequently become oxidized 

into the short chain carboxylic acids before mineralization into carbon dioxide. Because of the complex 

structure of the TC molecules, many intermediate molecules can be produced during the oxidative 

removal. Hydroxyl radicals are considered the key oxidative radicals generated in the Fenton-like reaction 

that are mainly responsible for such mineralization process. To verify the generation of the hydroxyl 

radical by CFO micromotors, we used terephthalic acid as probe molecule, that acts as selective scavenger 

of hydroxyl radicals and converts into 2-hydroxyterephthalic, which is fluorescent. The increase in 2-

hydroxyterephthalic acid concentration was measured by fluorescence spectrometry. Figure 5B displays 



the increase in the fluorescence signal of 2-hydroxyterephthalic acid over time when the CFO micromotors 

are swimming in mixture of H2O2 and terephthalic acid solution, thus confirming the presence of the 

hydroxyl radicals. Fluorescence signal of 2-hydroxyterephthalic acid rapidly increases over the time during 

the Fenton-like reaction of CFO micromotors indicating an increase in the generation of hydroxyl radicals. 

Hydroxy radical production rate slows down after 20 minutes of reaction which can be attributed to 

depletion in both, H2O2 and terephthalic acid concentrations.  

Fenton reaction mechanism, proposed by Haber and Weiss, can explain both the production of hydroxyl 

radicals for organic degradation (Eq.1) and oxygen bubble for self-propulsion in the ferrous ions recycling 

step (Eq. 3). 

𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2+ +  𝐻2𝑂2 → 𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒

3+ +  𝑂𝐻 
• + 𝑂 

− 𝐻                                𝐸𝑞. 1 

𝐻2𝑂2 + 𝑂𝐻 
• →  𝐻2𝑂 + 𝑂𝑂 

• 𝐻                                                               𝐸𝑞. 2 

𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒
3+ +  𝑂𝑂𝐻 

• → 𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2+ +  𝐻+ + 𝑂2                                     𝐸𝑞. 3 

Presence of cobalt in the catalyst structure can also activate hydrogen peroxide for increased production 

of hydroxyl radicals, thus increasing the efficiency of the catalyst (Eq. 4).  

𝐶𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2+ +  𝐻2𝑂2 → 𝐶𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒

3+ +  𝑂𝐻 
• + 𝑂 

− 𝐻                              𝐸𝑞. 4 

𝐶𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒
3+ +  𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒

2+ → 𝐶𝑜𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2+ + 𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒

3+                               𝐸𝑞. 5  

Co3+ can be recycled back to Co2+ by Fe2+ because of the thermodynamically favorable redox reaction to 

accelerate decomposition of hydrogen peroxide[56] (Eq. 5). Apart from above mentioned radical 

mediated production of oxygen gas, surface oxygen vacancies present in the metal oxides  can also 

decompose hydrogen peroxide directly into oxygen and water without producing intermediate hydroxyl 

radicals [57]. However, the detection of hydroxyl radicals suggests the involvement of radical mediated 

pathways for CFO micromotors for both the degradation of TC and generation of oxygen gas for self-

propulsion.  

 

4. Conclusions 

We have fabricated inexpensive CFO based micromotors by nanoparticle drying process, using easily 

scalable synthesis methods. The CFO micromotors can swim without the addition of surfactants in the 

system and efficiently degrade antibiotics from wastewater. Furthermore, we observed that the presence 

of the surfactants decreases the efficiency of CFO micromotors. We have also verified the production of 

hydroxyl radicals to support the oxidation mechanism of TC by CFO micromotors. Since the hydroxyl 

radicals are non-selective oxidants, these micromotors can potentially be used for wide range of 

pharmaceutical and other organic pollutants. We believe that CFO micromotors do not only demonstrate 

the usability of self-propelled micromotors for wastewater cleaning, but also show an improvement of 



previously reported systems, since they are composed of cheap materials and do not require the addition 

of surfactants, which are an extra organic load on the water. 
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