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Smart biosensors for multiplexed and fully integrated point-of-
care diagnostics    

A. Romeo,a T. S. Leunga and S. S. Sáncheza,b,c 

Point-of-care diagnostics (PoC) and personalised medicine are highly valuable for the improvement of world health. 

Smartphone PoC platforms which precisely diagnosis disease and track their development through the detection of several 

bioanalytes represent one of the newest and most exciting advancements towards mass-screening applications. Here we 

focus on recent advancements on both multiplexed and smartphone integrated PoC sensors.  

Introduction 

Point-of-care (PoC) diagnostics is commonly based on 

portable, inexpensive, and user-friendly sensor platforms that 

allow sensitive, robust, and real-time detection of biotargets. 

The possibility to easily and frequently perform diagnostic 

assays opens up opportunities in clinical applications and food 

safety. In particular, personalised medicine benefits the 

advantages of PoC diagnostics since sensitive and cost-

effective detection of biomarkers is required for early disease 

diagnostics and treatment monitoring. PoC technologies have 

even greater value in developing countries and resource-

limited environments where the diffusion of infectious 

diseases can be curbed using timely and personalised 

diagnostic procedures. Two aspects that strengthen the value 

of PoC diagnostics are the possibility to detect multiple 

bioanalytes in a single device and the integration of PoC 

biosensors with smartphone technology. On one hand, 

multiplex biosensing allows finely monitoring the evolution of 

diseases, which often involve a complex panel of biotargets.1 

On the other hand, integration of PoC biosensors with 

smartphones unifies the advantages of portable diagnostics 

with ubiquitously devices such as smartphones used to collect 

and elaborate data, and give real-time feedback to the 

patient.2,3 In this Focus article we discuss recent advances on 

both multiplexed biosensing and the full integration of PoC 

diagnostics with smartphones. 

 

Multiplexing 

Accuracy and reliability of disease diagnostic protocols can be 
improved by analyzing multiple biomarkers and using 
multiplexed assays. Multiplexing is a decisive technological 
breakthrough since it allows the multivariate analysis of large 
numbers of samples from different patients. This, in turn, 
results in improved prognostic determination of the role of 
biomarkers in specific diseases. The great diagnostic potential 
of multiplexed point-of-care biosensing systems has generated 
a strong interest in the scientific community during the last 
few years. This resulted in portable, cheap, and user-friendly, 
but still highly sensitive and reliable, devices for multiplexed 
sensing of both disease-related biomarkers and 
microorganisms (i.e., viruses, bacteria, and cells).    

One of the examples of multiplexed PoC device was 
reported by Song et al.4 who developed a multiplexed 
volumetric bar-chart chip (V-Chip) for rapid quantification of 
cancer protein biomarkers (¡Error! No se encuentra el origen 
de la referencia.Ai). The authors reported a glass chip where 
bar charts consisted of microfluidic channels. Each channel 
contained an enzyme linked immunosorbent assay (ELISA) with 
captured antibodies covalently attached to the glass surface of 
the wells, pre-loaded hydrogen peroxide, and a dye. The 
working principle of the V-Chip relied on the volumetric 
measurement of oxygen generated on-chip by the reaction 
between hydrogen peroxide and an ELISA probe (catalase), 
whose concentration is proportional to that of the target 
analyte. The resulting advancement of the inked bar result was 
proportional to the concentration of the corresponding ELISA 
target in each well. Full integration of the device allowed for 
the results to be displayed without the need of optical 
instruments or data processing steps. A six-plexed V-Chip was 
successfully tested for breast cancer cell classification, by 
distinguishing the expression profile of several biomarkers 
(oestrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2)) in different 
breast cancer cell lines (¡Error! No se encuentra el origen de la 
referencia.Aii). Finally, the possibility to run ten parallel 
measurements of carcinoenmbryonic antigen from multiple 
serum samples was also demonstrated. 
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Figure 1 A i) Ink advancement images from volumetric bar-chart chips to distinguish the expression profile of biomarkers in 
different breast cancer cell lines (SKBR-3 and MCF-7). C, E, P and H indexes stand for control, oestrogen receptor (ER), 
progesterone receptor (PR) and human hepidermal growth factor receptor 2 (HER2), respectively. ii) V-Chip readouts of different 
cell lysates.4 B Schematic representation of the working principle of the LSPR microarray chip described in reference 5. C i) 
Schematic operation principle of the electrochemical enzyme-linked magnetic beads immunoassay. ii) Results of the assay in 
diagnosing Chagas disease. D i)  Sketch of the proteinticle probe-based LFA system for detection of viral infectious diseases. ii) 
Multiplex tests for AIDS, hepatitis C and hepatitis A infections using the proteinticle probe-based LFA.  E i) Nanoparticle 
aggregation concept for bacteria detection on a cellulose paper and ii) its integration with mobile phone camera. Adapted from 
Ref. 4–8 with permission from Nature Publishing Group4,8, American Chemical Society5, and Elsevier6,7. 

 
Multiplexed detection of biomarkers in serum was also 

reported by Chen et al.5 who used a localized surface plasmon 
resonance (LSPR)-based biosensor microarray for the multiplex 
immunoassay of cytokines (¡Error! No se encuentra el origen 
de la referencia.B). The authors exploited the nanoplasmonic 
detection of gold nanorods (AuNRs) functionalized with 
antibodies against six specific cytokines (interleukin-2, -4, -6, 
10, interferon-gamma and tumor-necrosis-factor alpha) that 
are involved in several immune response processes. Excellent 
correlation was observed between the results obtained by 
LSPR microfluidic immunoassay and ELISA assay, with highly 
sensitive cytokine detection down to 5-20 pg/ml with the LSPR 
chip. The short time required for the whole assays (40 min) 
and small volume of sample required (1 μL serum) 
demonstrated the low invasiveness of this technique. The 
technique reliably monitored the evolution of cytokine levels 
in infant patients before and after undergoing 
cardiopulmonary bypass surgery. 

Advancements in multiplexed detection of biomarkers 
present high relevance also for the diagnosis of infectious 
diseases. In this case, the capability of finely detecting 
different microorganisms is required. Cortina et al.6 used 
superparamagnetic microbeads in an electrochemical 
enzymatic biosensor for point-of-care serodiagnosis of both 

human and animal infections. The magnetic microbeads were 
functionalized with antigens specific towards the targets 
investigated (parasitic protozoa, bacteria, and viruses), and 
incubated with the samples and horseradish peroxidase-
conjugated antibodies. Upon multiple washing steps, the 
system was able to electrochemically detect the catalytic 
activity of the enzyme, once the target-bound microbeads 
were magnetically collected onto an electrode (¡Error! No se 
encuentra el origen de la referencia.Ci, ii). The multiplexed 
configuration allowed up to 8 readings in less than 3 min (20 s 
per reading) using a portable potentiostat, resulting in a highly 
compact, portable, and fast PoC system. 

Lee et al.7 reported more specifically on the multiplexed 
detection of viral infectious diseases (AIDS, hepatitis C, and 
hepatitis A) using a lateral flow assay (LFA) based on 
engineered nano-scale protein particles (proteinticles) used as 
LFA probes (¡Error! No se encuentra el origen de la 
referencia.). Proteinticles were genetically engineered to 
display viral antigens on their outer surface, with 
homogeneous orientation and native conformation that 
guarantee extremely high sensitivity. Indeed, the assay based 
on proteinticles probes showed outstanding performance 
compared to peptide-only probes, with 100% sensitivity (no 
false negative cases in patients with viral disease) and 100% 
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Figure 2 A  Point-of-care diagnostic tools and their respective mobile user interfaces. i) Schematic design of the cellphone-based cytometer 

for blood analysis (A-ii) displayed results after hemoglobin measurement. B i) Picture of the smartCARD smartphone cholesterol accessory 

with attachments ii) calculated cholesterol readout following analysis. Reproduced from Ref. 9 and 10, respectively with permission from 

The Royal Society of Chemistry. C i) ELISA colorimetric reader model ii) Top down view of the microplate and iii) it’s resulting image as taken 

by the camera iv) screenshot of quantitative test results. Reprinted from Ref. 11 with permission from the American Chemical Society.  

specificity (i.e., no false positive signals in healthy patients). 
The results obtained demonstrate the feasibility of the 
proteinticle-probe-based LFA for qualitative assay of viral 
disease, although more investigations are needed for 
quantitative assessment of the viral infection progress. 

The use of inexpensive materials and smart designs can 

achieve low-cost and user-friendly PoC diagnostic tools. Paper, 

among other materials, has recently experienced a 

considerable growth as flexible substrate for biosensing 

devices. The recent work from Shafiee et al.8 highlight the 

potentiality of cellulose paper for cheap and easy-to-use PoC 

diagnostics. The authors developed different biosensing 

platforms based on paper and flexible polyester films for the 

detection of multiple biotargets, namely Human 

Immunodeficieny Virus-1, Escherichia coli, and Staphylococcus 

aureus, and CD4+ T lymphocytes, in complex biological samples 

(¡Error! No se encuentra el origen de la referencia.Ei, Eii). 

Both electrical and optical sensing mechanisms were 

exploited, using antibodies and peptides as recognition 

elements. For instance, pathogen detection was achieved by 

exploiting nanoparticles aggregation strategy, where gold 

nanoparticles were functionalized with specific recognition 

elements and transferred to a disposable paper. The authors 

demonstrated that the morphology and structure of the 

nanoparticles aggregation was closely related to the presence 

of E. coli in the sample solution, as determined via optical 

measurements.  

Smartphone integration 

Today’s smartphone is a multifaceted device which can be 

used as a camera, sensor for health and activity tracking 

applications, and social networking client which provides the 

perfect platform for developing point-of-care devices. The 

papers presented here take advantage of standard 

smartphone features such as the camera and wireless 

connectivity with surrounding instruments that help make 

truly integrated biosensors for personalised medicine and 

medical devices possible.  

Using a smartphone camera, Zhu et al.9 created 

miniaturized microscopy techniques, where a 3-part opto-

mechanical system measured red and white blood cell (RBC & 

WBC) densities and hemoglobin concentration from a 10 µm 

sample (Figure 2Ai). A blood analysis application provides a 

user friendly interface where the user chooses the 

measurement type and places the correct attachment and the 

pre-processed blood sample together. A combination of 

coloured LEDS and plano-convex lens are used to record 

fluorescent and bright field micrographs for WBC and RBC 

respectively and retrieves data within 10 seconds (¡Error! No 

se encuentra el origen de la referencia.Aii). Image processing 

for both RBC and WBC converts RAW image red, blue, green 

values (RBG) into hue, saturation values (HSV) where 

saturation is used to measure concentration. Light absorbance 

of lysed blood in a standard cuvette was used to establish 

hemoglobin concentration. Here, a substitute pinhole camera 

notes and analyses the transmission intensity. The RAW image 

is then transformed into a grayscale image from which the 

absorbance value is calculated using a calibration curve. 

Results were compared against a standard hematology 

analyser where WBC, RBC, and hemoglobin exhibited a 7%, 

5%, and <5% error respectively proving its usability for rapid 
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blood analysis.  

Using a similar method, Oncescu et al.10 were able to 

monitor cholesterol levels with the help of enzymatic 

colorimetric test strips. This was achieved with an attachable 

smartcard accessory comprised of a black PDMS flash diffuser 

and an optical path (Figure 2Bi). When dry reagent test strips 

were placed into the device, the colorimetric color change is 

recorded 3 times with flash, analysed, and compared against 

reference data. In the captured image, its average RGB values 

are converted into hue, saturation, lightness (HSL) values 

which can be easily quantified into cholesterol levels. Results 

were displayed within 60 seconds on a user friendly interface 

(Figure 2Bii). This system boasts 1.8% accuracy within the 

physiological range and variability of 5.8% between readings 

enabling home cholesterol testing.  

Smartphone camera-based microscopy is even applicable 

to diagnostic tools for identifying contagious diseases as 

demonstrated by Berg et al.11. Here, a 3D printed ELISA 

colorimetric microplate reader (Figure 2Ci) serves as a 3-part 

system where the top is a smartphone holder, the middle 

allows for the insertion of 96-well plate, and the bottom part 

which holds 96 optical fibers. Once an ELISA plate is loaded, 

the 24 blue LED array light illuminates the well which is then 

transmitted through the fiber optic array to a collection lens 

where the smartphone’s camera is able to capture an image at 

3 different exposure times (Figure 2Cii & 2Ciii). Using the 

custom-made application, images are loaded and processed by 

the calculating the average intensities of each well and 

measuring transmittance values on a scale of 0 to 1 and thusly 

converted into a quantified clinical index value (Figure 2iv). 

The accuracy of this device was improved using a machine 

learning algorithm to facilitate a blind diagnostic decision 

based on gathered statistics. This test was applicable for the 

testing of measles, HSV-1, HSV-2, and mumps and obtained 

accuracies of 98.6% and above compared against FDA 

approved reference methods. The reader itself can be 

powered by 6 AAA batteries allowing for use in resource-

limited settings. 

Another common feature on smartphones today is their 

wireless connectivity to wearable technologies. Electrolyte-

based sensing (in terms of hydration and heat-stress 

monitoring) can help monitor athletes and military personnel 

condition in extreme conditions.12 The bodily fluid targeted 

here is sweat as it contains a number of analytes including 

glucose, lactate, and various salts. Tattoo sensors have been 

developed but only recently have wirelessly integrated 

systems as demonstrated by Rose et al.12 and Gao et al.13 with 

the use of radio frequency identification (RFID) and Bluetooth 

connectivity respectively.  

Inspired by a Band-Aid form factor, Rose et al.12 fabricated 

an adhesive potentiometric sensor patch that determines Na+ 

concentration which achieved 96% accuracy in the 20-70mM 

range with a 30 second response time. The bandage sensor is 

comprised of sensor electrodes for detecting the Na+ 

concentration, a commercial sold RFID transponder chip that 

operates at 13.56MHz, external capacitors, a diode, and a coil 

loop antenna. Electromagnetic waves generated by the reader 

were harvested into usable energy by the transponder chip 

allowing for battery-free operation. Together, the tuned RFID 

circuit and antenna provided 0.5W, enough to power the 

device. The generated voltage is then delivered to the sensor 

to begin measurements. The sensor exhibited a sensitivity of 

0.3 mV/mW, excellent stability, and repeatability as low as 

0.1%.  However, it must be noted that a customizable 

application was not made for the sensor but could be 

interfaced with RFID readers and smartphones.      
 

  
Fig. 3 A Wirelessly-enabled point-of-care device as developed 
by Gao et al.13 i) Sensor array noted in the red dashed box with 
integrated circuit layout. ii) Photo of the flexible sensor 
wristband. iii) User interface for real time monitoring for sweat 
analysis. Adapted from Ref. 13 with permission from Nature 
Publishing Group. 

 
  The potential for a multianalyte system discussed by Rose 

et al.12 was realized by Gao et al.13 who presented a truly 

interconnected multiplexed sweat sensor (measuring Na+, K+, 

glucose, lactate, and temperature) flexible and wireless PCB 

(Figure Ai), and battery module were combined into a smart 

wristband or headband (Figure 3Aii). Launching the 

Perspiration Analysis App establishes a Bluetooth connection 

between the wristband and the phone, where data are 

received and displayed. Once the subject engages in exercise 

and starts to sweat, a stabilized input of +5V for the 

microcontroller and +3.3V for Bluetooth are generated. This 

voltage is delivered to the lactate and glucose sensors which 

produces an electrical current signal. This is then converted 

back into a voltage within the input voltage range of the 

analogue to digital converter. As for the K+ and Na+ ions, a 

differential voltage is obtained, filtered, and then translated 

back into the microcontroller and transmitted through the 

Bluetooth receiver to the android interface. This continuous 

feedback loop provides real time monitoring once a sufficient 

amount of sweat is obtained displays a result (Figure 3Aiii).  

 

Conclusions 
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It is evident that inexpensive, portable, and rapid PoC 

diagnostics for detecting multiple biomarkers related to 

infectious diseases and microorganisms is feasible nowadays. 

When combined with smartphone technology, it becomes a 

powerful, user-friendly, and versatile tool for those especially 

in poverty stricken environments. However, the major 

challenges of the the devices examined here include their need 

for end user training in terms of sample preparation and 

technical knowledge. This is only beginning to be addressed as 

demonstrated in sweat-based sensors where full integration 

was actualized. With this emerging trend, smart and fully 

integrated multiplexed biosensors are sure to revolutionize 

medical and smartphone industries alike.   
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