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Some of the parameters we call “constants of nature” may in fact be variables related to the local values of
some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases
when the variable in questioftall it y) takes values in a continuous range, all thermalized regions in the
universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution
for x is known. This is the so-called “spherical cutoff method.” In order to find the probability distribution for
x it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method
to the case when the range pfs discontinuous and there are several different types of thermalized region. We
first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescrip-
tion that meets all the requirements. We finally apply this prescription to calculate the relative probability for
different bubble universes in the open inflation scenario.
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[. INTRODUCTION particular moment of time. Assuming that we are a typical
civilization, we can expect to obseryg near the maximum
The parameters we call “constants of nature” may in factof P(x) [3]. The assumption of being typical has been called
be variables related to the local values of certain dynamicahe “principle of mediocrity” in Ref.[2].
fields. For example, what we perceive as a cosmological con- An immediate objection to this approach is that we are
stant could be a potentiél(x) of some slowly varying field ignorant about the origin of life, let alone intelligence, and
x(X). If this potential is very flat, so that the evolution gf  therefore the number of civilizations cannot be calculated.
is much slower than the Hubble expansion, then observatiorBut even if this were true, the approach could still be used to
will not distinguish betweertJ(x) and a true cosmological find the probability distribution for parameters that do not
constant. Observers in different parts of the universe coul@ffect the physical processes involved in the evolution of
then measure different values 0Of ). life. The cosmological constant, the density parametep
Spatial variation of the fieldg, associated with the “con- and the amplitude of density fluctuatio@sare examples of
stants” can naturally arise in the framework of inflationary such parameters. Assuming that our fielgsbelong to this
cosmology[1]. The dynamics of light scalar fields during category, the probability for a civilization to evolve on a
inflation are strongly influenced by quantum fluctuations, scsuitable planet is then independentygf, and instead of the
different regions of the universe thermalize with different number of civilizations we can use the number of habitable
values ofy,. An important question is whether or not we planets or, as a rough approximation, the number of galaxies.
can predict the values of the “constants” we are most likelyThus, we can write
to observe. In more general terms, we are interested in de-
termining the probability distributio®(x) for us to measure P(x)d*yodN, (D)
certain values ofy,. The answer to this question must in-
volve anthropic considerations to some extent. The laws ofvhere d\ is the number of galaxies that are going to be
physics may be sufficient to determine the range and eveformed in regions wherg, take values in the intervatby, .
the spacetime distribution of the variablgg. However, The probability distribution(1) based on plain galaxy
some values of, that are physically allowed may be incom- counting is interesting in its own right, since it gives a quan-
patible with the very existence of observers, and in this casétative characterization of the large scale properties of the
they will never be measured. The relevant question is themniverse. Thus, the general rules for calculatibgare worth
how to assign a weight to this selection effect. investigating quite independently from anthropic consider-
The inflationary scenario implies a very large universeations. These considerations can always be inclededs-
inhabited by numerous civilizations that will measure differ- teriori, as an additional factor giving the number of civiliza-
ent values of y,. We can define the probability tions per galaxy.
P(x)dx; - ..dy for x, to be in the intervalsly, as being The number of galaxied V{(x) in Eq. (1) is proportional
proportional to the number of civilizations which will mea- to the volume of the comoving regions wheyg take speci-
surey, in that interval[2]. This includes all present, past and fied values and to the density of galaxies in those regions.
future civilizations; in other words, it is the number of civi- The volumes and the densities can be evaluated at any time,
lizations throughout the entire spacetime, rather than at as long as we include both galaxies that were formed in the
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FIG. 1. Symmetric double well inflaton potential.
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past and those that are going to be formed in the future. It is
convenient to evaluate the volumes and the densities at the
time when inflation ends and vacuum energy thermalizes, >
that is, on the thermalization surfag . Then we can write

FIG. 2. A numerical simulation of the spacetime structure of an
P(x)<cv(xX) Py (X)- (2) inflating universd 11]. The simulation corresponds to a double-well
inflaton potential, with two degenerate minima where the inflaton

Here, P, (X)dk)( is proportional to the volume of thermali- takt_as the _valt_Jes 7. Inflating regions are white, while thermal_ized
zed regions wherg, take values in the intervaldy,, and regions with inflaton values equal to » and — » are shown with
»(x) is the number of galaxies that form per unit thermalizeddierent shades of grey.
volume with cosmological parameters specified by the valuegye separated by inflating domain wallk3,14], and so the
of xa. The calculation ofv(x) is a standard astrophysical ynjverse is never completely thermalized. Each thermaliza-
problem which is completely unrelated to the calculation oftion surface is infinite, so it will contain an infinite number of
the volume factofP, (x), and which does not pose difficul- galaxies. Moreover, there are an infinite number of thermal-
ties of principle. ized regions of each type. Therefore, the implementation of
The meaning of Eq(1) is unambiguous in models where Eq. (1) for calculating probabilities requires the comparison
the total number of galaxies in the universe is finite. Other-f infinite sets of galaxies which lie in disconnected regions
wise, one has to introduce some cutoff and define the ratio adf the universe. A similar spacetime structure is obtained if
probabilities for the intervals”y(*) andd"x(?) as the ratio e make the inflaton potential periodic by identifying the
of the galaxy numbersl\V™Y/dA® in the limit when the  two minima. In this case there are still two different types of
cutoff is removed. However, this limiting procedure hasthermalization surface, characterized by the two topologi-
proved to be rather non-trivial, and a general method thagally different paths that one can take from the top of the
would apply to all possible eternally inflating scenarios haspotential to the thermalized region. Although the particle
not yet been found. physics parameters of both types of thermalized region are
The situation is relatively straightforward in the case of anguaranteed to be the same, other cosmological parameters
infinite universe which is more or less homogeneous on vergych as the spectrum of density perturbations or the spatial
large scales. One can evaluate the ratid”/dA® in a  distribution of an effective cosmological constant will in
large comoving volumé&’ and then take the limit a§—x.  general be different.
The result is expected to be independent of the limiting pro- In any model of eternal inflation, the volumes of both
cedure; for example, it should not depend on the shape of th@flating and thermalized regions grow exponentially with
volume V. (It is assumed that the volume selection is unbi-time and the number of galaxies grows without bound, even
ased, that is, that the volumeis not carved to favor some in a region of a finite comoving size. One can try to deal with
values ofy, at the expense of other valugs. this problem by introducing a time cutoff and including only
However, the situation with an infinite universe which is regions that thermalized prior to some moment of tirpe
homogeneous on very large scales is not generic in the conyith the limit t,— at the end. One finds, however, that the
text of inflation. Most inflationary scenarios predict that in- resulting probability distributions are extremely sensitive to
flation is eternal to the future, and therefore the universe ishe choice of the time coordinatg4]. Coordinates in gen-
never completely thermalizel@,8] (for a recent review of eral relativity are arbitrary labels, and such gauge depen-
eternal inflation seg9]). An example that is particularly rel- dence of the results casts doubt on any conclusion reached
evant to the subject of the present paper is given by th@sing this approach.
double well inflaton potential depicted in Fig. 1. The inflaton A resolution of the gauge dependence problem was pro-
¢ can thermalize in two different vacua, labeled py and  posed in Ref[10] and subsequently developed [ih1,12.
7,. The spacetime distribution of the field in this model is The proposed method can be summarized as follows. Let us
depicted in Fig. 2. There are thermalized regions of twdfirst assume that inflating and thermalized regions of space-
types, characterized by the inflaton vacuum expectatiofime are separated by a single thermalization surfage
value ;. Thermalized regions witkp= 7, are disconnected The problem with the constant-time cutoff procedures is that
from thermalized regions witkp= 7,. Both types of region they cut the surfac&, in a biased way, favoring certain
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values of y and disfavoring other values. We thus need a
portion of X, selected without bias. The simplest strategy is \V4 (¢)
to use a “spherical” cutoff. Choose an arbitrary poRiton
>, . Define a sphere of radiuR to include all pointsQ
whose distance frorR alongs, is d(Q,P)<R. We can use “®s | Ps
Eq. (1) to evaluate the probability distributio®(y) in a
spherical volume of radiu®; and then letR.— . If the

fields y, vary in a finite range, they will run through all of \ , . ,

their values many times in a spherical volume of sufficiently ®1 o Gl P2 G2

large radius. We expect, therefore, that the distribufigy)

will rapidly converge as the cutoff radidg;, is increased. We FIG. 3. Asymmetric double well potential which is symmetric

expect also that the resulting distribution will be independenf'ear the maximum in the range ¢ < ¢< ;.

of the choice of pointP that serves as the center of the ) ) ) ) ]

sphere. The same procedure can be used for fields with ap_pbble universes in the open inflation scenario. Our conclu-
infinite range of variation, provided that the probability dis- SIons are summarized and discussed in Sec. V.

tributions for x, are concentrated within a finite range, with

a negligible probability of finding, very far away from that Il. REQUIREMENTS

range. . . -
Suppose now that there is an infinite number of discon; Suppose that the inflaton potential Hdsninima labeled

nected thermalization surfaces, as happens genericall |b 1=1,2,... N, so that there ardl different types of ther-
eternal inflation. Further, we ass,ume thaptpthe v§riaqueef Y Halized region. Suppose also that there is a set of scalar
' ’ fields x5 which take a continuous range of values in all types

Interest are sug:h that their vyhole range Of values is allowe f thermalized region. Our goal is to calculate the probability
to occur in a single thermalized regidthis is the case, for distribution

instance, for the slowly varying fielg which plays the role
of a cosmological constantand that, unlike the case of the
double well potential in Fig. 1, there is only one type of
thermalized region. We can then pick an arbitrary connected - ) . o o
component of, and apply the spherical cutoff prescription Here, P,(x) is the normahz_ed distribution fog within the
described above. Since the inflationary dynamics of the field§th type of thermalized region,
Xa have a stochastic nature, the distributionggfon differ-
ent connected components af, should be statistically f def;i(X): 1, (4)
equivalent, and the resulting probability distributi@{x)
zzgug%tgea;h;yfiig}@ Z’r:dalrl]lj:r?]g?s;}ﬁ/ng’l{hls has been Velknd P; i; the prqbability f(_)r an observer to find herself in a
The main shortcoming of the spherical cutoff prescriptionthermallzecj region of type
- - : : We begin with the obvious requirements that the prob-
is that as it stands it cannot be applied to models where the, ... . 9 : 4 > P
inflaton potential has a discrete set of minima, as in the exf’lb'l't'es.(?’).ShOUIOI 'f?ei gauge-invariant and should satisfy the
ample shown in Fig. 1. More precisely, the problem arisegwrmallzatlon condition
when the minima are separated by inflating domain walls
[13,14]. In this case, we can introduce a discrete variable 2 P,=1. (5)
labeling different minima. Each connected component of the i
thermalization surfac&, will be characterized by a single . -
value ofn (unless the d*ifferent minima can be separated by Next, we require that foN=1 thg prescription ShOUId
non-inflating domain wallsand it is clear that the probability reduce to_the spherical cutoff prescription. This |m_pI|es that
distribution forn cannot be determined by studying one SUChthe spherical cutoff shguld be used for the calculation of the
component. individual distributionsP;(x) within each type of thermali-
The purpose of this paper is to propose a generalization gfed region. What remains to be determined are the relative
the spherical cutoff prescription that would be applicable inprobabilities of different types of regionB; .
the general case. We begin in Sec. Il by formulating the Finally, we introduce a class of inflaton potentials for
requirements that we believe any such proposal should sawhich we believe there is a well-motivated answer for the
isfy. We require that it should be gauge-independent andgrobabilities. Consider first a symmetric double-well poten-
should reduce to the spherical cutoff prescription in the abtial, V(¢$)=V(—¢), with a maximum at¢=0 and two
sence of discrete variables. Moreover, we consider a class #finima at¢, ,= * 5, as in Fig. 1. Clearly, in this case the
asymmetric double-well potentials for which the probabili- symmetry of the problem dictates thag=P,=0.5.
ties can be calculated in a well-motivated way. We then re- Next, we consider an asymmetric double-well, which
quire that the general prescription should give the same réioweveris symmetric in some range ap near the maxi-
sult for this class of potentials. In Sec. Ill we propose amum,|¢|< ¢ (see Fig. 3 Quantum fluctuations ap domi-
prescription that satisfies all of the above requirements. Weate the dynamics in the rangé|=< ¢, while for ¢> ¢,
use this prescription in Sec. IV to calculate probabilities forthe evolution is essentially deterministic. We shall assume

Pi(x)=P,Pi(x)- &)
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that ¢ is in the deterministic slow-roll regimes> ¢ . Let 1,2,43,6,85. .., (10)

us consider constamp-surfacesp= *+ ¢. These are infinite

spacelike surfaces that haye| < ¢, everywhere in their _ ) _

past. Since the potentia(#) is symmetric in this range of and the same calculation would gipg en=2/3. It is clear

&, all these surfaces are statistically equivalent. The symmdhat by appropriately ordering the series one can obtain any
try of the problem suggests that the probabilits, can be ~ @NSWer foDe,e, between 0 and 1. This seems to suggest that
calculated by sampling comoving spheres of equal radius of'€ Probabilitiesp; are hopelessly ill-defined.

the two types of surface. The ratio of the probabilities will ~ We note, however, that the situation with the natural se-
then be ries is not as bad as it may seem. The series has a natural

ordering in which the nearest neighbors of each number dif-
P,/P,=N;/N,, (6) fer from that number by 1, and we can require that our sam-

pling procedure should respect this natural “topology.”
whereNq,N, are average numbers of galaxies that will form Then we haveye,.,= 1/2, which is the answer that one intu-
in large comoving spherical regions which have equal radiitively expects. With an infinite number of thermalized re-
at p==* ¢¢. If we assume for simplicity that the two types gions of different types, one could also order the list of re-
of regions have identical physics at thermalization and aftergions in a way that would give any desired result fior/ p.
wards, then the difference betweBhh andN, can only be But again one can hope that this ambiguity can be removed if
due to the different inflationary expansion fact@rscharac- we require that our sampling procedure should reflect the
terizing the evolution fromt ¢ to the thermalization points spatial distribution of the regions.

¢4i. We then haveN;<Z? and The ratioN; /N, can be calculated by counting galaxies in
spheres located in regions of the two types. In the double-
P1/P,=(Z,1Z,)3. (7)  well example of Sec. Il, there is complete symmetry between

) o _the surfacesp= ¢s and = — 5. We expect, therefore, that
We shall require that the gengral prescription for proba_blll—plz p, and we choose the radii of the spheres to be equal at
ties should reproduce Ed7) in the case of asymmetric 4=+ 4. . However, it is not clear what sets the relative size

double-well potentials of the type we discussed here. of the spheres in the absence of symmetry. We shall now
describe the method we propose for evaluapngndN, /N,
Ill. THE PROPOSAL in the general case.

In the general case, the inflaton potential has no symme- We start by noting that there is one thing that thermalized

. 4 . 4 regions of the two types have in common. In their past the
tries to guide our selection of the equAlsurfaces on which 9 yp P Y

. all went through a period of stochastic inflation, with the
to calculate probabilities. Suppose the potential has a MaX|r faton field undergoing a random walk near the top of the
mum, which we choose to be &t=0, and two minima with

L X otential. Our idea is to use some markers from this early era
thermalization points a#, ; and ¢, ,. We can then choose b y

; ) for the calculation of probabilities.
some arbitrary valueg, and¢, in the slow roll ranges of Let us imagine that markers are point objects and that
adjacer_n .t°¢*1 and d.’*z‘ respectively, and calg:ulate the they are produced at a constant rate per unit spacetime vol-
probabilities by sampling the surfacés= ¢; . Imagine for a

. . ume in inflating regions wheré is at the top of its potential,
moment that the number.of t_hermallzed. regions of.bc.)th type§/(¢)wvmax' After that, the markers evolve as comoving
and the number of galaxies in each region are all finite. The?est particles and eventually end up in a thermalized region
we could write of one type or the other. We shall defipeas the fraction of

markers that end up in regions of typeFurthermore, the
(8)  reference length scale on which the number of galaxies is
counted in a region of typé will be set by the average
distaced; between markers in that type of region. In other

words, the galaxies are counted in spheres of RgandR,

Pi_PiNy
P, p2 Ny

Here, p; is the probability for a randomly selected thermali-

zed region to be of typeandN; is the average number of such thaR,/R,=d;/d,. To summarize, we propose that the

galaxies In a type-region. In our case, however, th_e nl.mberrelative probabilities for the constants of nature are given by
of thermalized regions and the number of galaxies in eacfllz.q (3) with

region are infinite, so the definitions of the probabilitigs
and of the ratioN; /N, are problematic.

It has been remarkel,9] that the problem of determin- P. piny vq
ing p; is similar to the problem of calculating the probability p_2: poN, ,,_2
Peven that a randomly selected integer is even. If we take a
long stretch of the natural series

(11)

where n;=d. ? is the mean number density of markers in
123..., (9 regions of type andv;, given by

it will have nearly equal quantities of even and odd numbers,

suggesting th =1/2. However, the series can be reor- _ A _
dorcdas v [ Boow oox
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FIG. 4. Asymmetric inflaton potential with a metastable vacuum
at the top, which replaces the quantum diffusion region of Fig. 3.
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FIG. 5. Spacetime geometry of the bubble in comoving coordi-

is the mean density of galaxies in that type of region. Asnates. Heref=|x|, and variousT=const surfaces of the open

mentioned in the Introduction, the calculationgfis a stan-

Robertson-Walker universe inside the bubble are shown, as well as

dard astrophysical problem which we shall not be concernedne of the§=const curves.

with in this paper.
A physical counterpart to the production of our idealized

tion.”) If the bubble nucleation rate is not too high, bubble

markers is quantum nucleation of black holes in an inflatingcollisions are rare and inflation is eternal. Assuming that the

universe. Black holes are produced at a rgt8] r<exp
[—1/8V(¢)] that grows exponentially witNV(¢), so that by
far the highest rate is achieved ¥{¢) =V, ,.x. Here, we
prefer not to identify markers with black holes and to think

two types of bubble have identical low-energy physics, we
would like to find the probability for an observer to find
herself in one type of bubble or the other.

In false vacuum regions outside bubbles the metric is de

of them as of idealized point objects. This frees us fromSitter,

concerns such as the contribution to black hole production
from regions that are not at the top of the potential, black
hole evaporation, etc. The reality and observability of mark-
ers is not really an issue, since the comparison of causallyhereH,=87GV,/3 andV,=V(0) is the false vacuum en-

disconnected thermalized regions is certainly a gedanken e¥rgy density. The bubble interior has the geometry of an

periment. o ~ open Robertson-Walker universe,
The average comoving distance between the markers in a

thermalized region is manifestly gauge invariant, and so is
the ration,/n; in Eq. (11). The quantitiep; are also gauge-
independent, and thus the probabilitiésin (11) should be
gauge-invariant.

It is also easy to verify that the above proposal gives th
expected result7) for the probabilities when the inflaton
potential is symmetric in the diffusion range ¢f In this

ds?=dt?>— e?Holdx? (13

ds?=dr?—a?(7)[d&?+ sintPedQ?]. (14)
After nucleation, the bubble wall expands rapidly approach-
eing the speed of light. If the initial bubble size is much
smaller than the de Sitter horizd#y, *, then the wall world-

sheet is well approximated by the future light cone of the

case, the average distance between markers on the surfa ter of spapetime symmetry of the. bubble. We  shall
b=, is the same as that o= — ¢, (with ¢, defined in  cNOOSe coordinates so that this center ixat=0 and

s s s _ .
Sec. l). Hence, the distances between markers at thermali-_o' Then, ast:oo, the bubb.Ie wall asymptotically ap-
zation may differ only due to the difference in the expansionProachesx|—Ho *. The spacetime geometry of the bubble

factors from= ¢ to &, is illustrated in Fig. 5.
° * The relation between the coordinatesxj and (r,£) can

be easily found if we assume, as is usually done, thahe
potentialV(¢) immediately outside the barrier has nearly the
same valué/, as in the false vacuum, and) the gravita-
tional effect of the bubble wall is negligible. Then, at suffi-
ciently small values of, the metric(14) inside the bubble is
close to the open de Sitter metra,7) = Hgl sinh(Hy7). The
coordinatest(,x) and (r,&) are related by the usual transfor-
mation between the flat and open de Sitter charts, which we
shall not reproduce here.

dl/dZZZ]_/Zz, (12)

and Eq.(7) follows immediately.

IV. OPEN INFLATION

As an illustration of the method we shall now calculate
probabilities for a model of “open inflation'[16-18. We
assume an inflaton potential of the form shown in Fig. 4. It
has a metastable false vacuu 0 which is separated b
potential barriers from two slg\;ﬁoll regions onpthe left a)rqd. We assume that marker_s are produced at a constart rate
on the right. The false vacuum decays through bubble nucle!” the false vacuum outside thg bubbles. The density of
ation, and the inflaton rolls towards the true vacuum insidénarkersn(x,t) satisfies the equation
the bubbles. Comoving observers inside each bubble would,
after thermalization of the inflaton, see themselves in an

open homogeneous univergelence the name “open infla- (19

an+3H
E on=r,
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which has a stationary solutiamy=r/3H,. This de Sitter— P, M(Z* 1)3 22
= 22

invariant solution is rapidly approached, regardless of the P\ Z
initial conditions. We are interested in the average separation 2 h2iTw2
between the markers on the surfagesr, ; corresponding to  This agrees with one’s intuitive expectation that the prob-

thermalization of the inflaton in the two types of bubbles. gpjjity should be proportional to the nucleation rate and to
The densities of markers, ; on these surfaces are also con-the volume expansion factor inside the bubbles.

stant, due to the spacetime symmetry of the bublfédls
points on the surface=const are equivalent

The interior geometries of different types of bubble are
nearly identical at early timesmall 7), while V(¢)~V,. In this paper we have suggested a cutoff procedure which
Let us choose a valug, in that range and consider surfaces allows one to assign probabilities to different types of ther-
7= 1. The geometry and the distribution of markers in themalized region in an eternally inflating universe. The prob-
past of such surfaces are the same for the two types ddbilities are calculated with the aid of “markers’—
bubble, and therefore the average separations of markers @maginary pointlike objects which are assumed to be created
these surfaces should also be the samhg,rg)=d,(7) at a constant rate in the inflating regions where the inflaton
=dy. The separation of markers at thermalizationdis; field is at the top of its potential. The probability for regions
=Z,,do, whereZ,; is the expansion factor betweeg and  of typei is then
7,.i, and we have

V. DISCUSSION

PiopiN;, (23
Ni/No=(Z,1/Z,2)°. (16)
where p; is the fraction of markers that end up in type-

To complete the calculation, we have to determine theegions and\; is the number of galaxies formed in a comov-
fraction p; of the markers that end up in typebubbles. Let ing sphere of radius equal to the average separation between
fi(t) be the fraction of comoving volume occupied by type-the markers.

i bubbles in a comoving volume which we assume to be free In contrast to some earlier proposals, the new prescription

of bubbles at the initial momernt=0, is manifestly gauge-invariant. It also gives the expected re-
sults in cases where we have well-motivated intuitive expec-
fi(0)=0. (17)  tations for the probabilities.
The method of calculating probabilities presented in this
The evolution off;(t) is described by the equations paper has some similarities to the so-callegrescription

that was proposed in Ref19]. Starting with a comoving

f?fl_ 4mNg volume with ¢ near the top of the potential, the numbers of
gt 3Hs (1=f1=13), (18) galaxies are calculated in this prescription by imposing cut-

offs at different times in different types of region. The cutoff
gfo AN in type4 regions is chosen at the tinhg when all but a small
2 2(1_ fi—1,), (19) fraction e of the comoving volume destined to thermalize in
gt 3H3 this type of region has thermalized. The valueeofs the

same for all types of region, but the cutoff times are differ-
where\; is the nucleation rate of typebubbles. In these ent. The limite—0 is taken after calculating the probabili-
equations we are neglecting “secondary” bubble nucleationies. Thee-prescription was applied if20] to calculate the
which may occur within a comoving distanet™* from any  probabilities in open inflation and gave the same rem
given “primary” nucleation event, before the primary that we obtained here.
bubble reaches its asymptotic comoving site’. Second- To see the connection between this prescription and the
ary nucleations will affect the comoving volume distribution method of the present paper, imagine that the initial comov-
very little, especially if the nucleation rate per unit volume ising region contains a large number of markerspjlfis the
much smaller tharH*. This is a typical situation since the fraction of markers that are going to end up in typegions,
nucleation rates are usually exponentially suppressed. Th@en the cutoffs ine-prescription are imposed at the times
solution of these equations with the initial conditiV) is  when the numbers of markefs,,; in the two types of region
are related byW,1 /NVo=p1/p2- The number of galaxies in

N 4\ each type of region i8/;;=/NniN;, whereN; is the number
fi(t)= N 1—exp( B 3H3t) ' 200 of galaxies per one marker. Hence,
where =X+ \,. The fraction of markers that end up in E:Aﬂ: && (24)
bubbles of type is given by P, Ng2 P2 N’
pi=fi(t—o)=N;/\. (21)  which has the same form as E®).

One difference between the two methods is that markers
Now, substituting Eqs(16) and (21) into Eq. (8) for the  are continuously produced in our new approach, while in
probabilities we obtain e-prescription new markers are not produced even in regions
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when the inflaton field fluctuates back to the top of its po-demonstrating that a prescription satisfying all the criteria

tential. Another difference is thate-prescription uses can indeed be constructed. It is quite possible, however, that
constant cutoffs, while the new approach uses sphericalour prescription is not unique and that more attractive and
cutoffs. Because of its reliance on a constawtitoff, the  better motivated methods can be developed. With this in

results obtained using-prescription are generally gauge- mind, we conclude by indicating some possible shortcom-

dependent, whereas the new method is gauge independentags and limitations of our method.

The most straightforward way to implement the new pre-  Admittedly, our prescription includes an element of arbi-
scription is through a numerical simulation of an eternallytrariness when we assume that markers are produced only in
inflating spacetime. This method, however, suffers from seegions where the inflatog is at the top of its potential. This
vere computational limitationgl1]. Alternatively, one can  « 5. nction” source should not be understood literally. The
use an approximate analytic met_ho_d ba;ed on the F.0kke§emiclassical picture of eternal inflation involves smearing
Planck (FP) formalism of stochastic inflatiofi7,21,4. This over spacetime scalesH 1 and over scalar field intervals

method works very well for the calculation pf [22]. How- ~ ~ . .
ever, the results for the density of markers obtained usingS 'l/qz;\'/;s:tc% n;?:r(lférfof:)rpnig(t)ignatvf/:lﬁi;ozr?f i?czr?/z:;nual

this approach are generally not gauge invariant. o § h fth il
The FP formalism can be used to calculate the physical /27 from the top of the potential. However, an attempt

volumeV, (t) that thermalizes prior to some tint@nd the to extend .ma'rll<er formation to a vyider interval encounters
number of marker\, ;(t) contained in that volume for dif- SOMe ambiguities. Formally, there is no problem in calculat-
ferent types of regions. The average distance between tHBd the densityn; of markers in thermalized regions even if
markers can be expressed as these are produced at some given rifgp)d¢ per unit
proper time and volume in regions where the field is in the
13 ranged ¢. However, there is an obvious arbitrariness in what
. :[V*i(t)} (25) should be chosen as our “smearing functioR(¢). Also, if
: N,i(t) markers are produced at different rates at different values of
H(¢), the calculation of the fraction of markeps that end
One might expect that in the limit—o, d;(t) should ap- up in regioni becomes somewhat ill posed. Markers formed
proach the average separation between markers on the theit-different values o will have a different probability; of
malization surface&.,; (calculated in large spherical vol- ending up in a typé-region and it is not clear how to weigh
umesg. However, this is not generally the case. Thethe different contributions. One could calculgig ¢) and
thermalized volume/,i(t) in an eternally inflating universe then average oves with some weight, but it is not clear
is dominated by the newly thermalized regidishortly be-  how the weight function is to be determined. It thus appears
fore the timet), and the density of markers in these regionsnat confining marker formation to the top of the potential
is generally correlated with the choice of the time variable 55 some advantages and may be not as arbitrary as it first
The density of markers on the surfacBg; can vary geems.
greatly from one area to another. In some places the #eld |t is not clear whether or not our method will give reason-
takes a more or less direct route from the top of the potentigypje results when applied to the most general type of infla-
to ¢,, resulting in a relatively high density of markers, tjonary scenario when the inflaton potential has several local
while in others it takes a long time fluctuating up and downmaxima. Additional complications arise in models where the
the potential, so that the markers are greatly diluted. By inminimum of the potential has a non-vanishing cosmological
cluding only regions that thermalize prior to timewe “re-  constant. In such models, regions of true vacuum in the post-
ward" regions that thermalize faster and therefore introducenjationary universe may fluctuate back to the quantum dif-
a bias favoring higher densities of markers. This qualitativeysjon range of the inflaton potential and the spacetime struc-
tendency is present for most choices of the time variable, byjre is more complicated than the one represented in Fig. 2.
quantitatively the b.|as will not be the same. Hence, one Also, our method is not applicable when the potential is
should not be surprised thel calculated from Eq(25) de-  ynpounded from above, in which case eternal inflation runs
pends on the choice of gauge. into the Planck boundary. This is not particularly worrisome,
Despite this gauge dependence, the FP method may gignce after all the inflaton may be a modulus with a compact
approximately valid results for some class of model. It hagange, and the inflaton potential may well be bounded from

been argued in Reff19,23 that in the case of-prescription  apove at a scale much lower than the Planck scale.
the gauge dependence is rather weak for a wide class of

potentials. One can expect the situation to be similar for our

new method when a consta_rctutoff is use(_j._ However,_ more ACKNOWLEDGMENTS
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