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Prescription for probabilities in eternal inflation

Jaume Garriga
Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155

and IFAE, Departament de Fı´sica, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Alexander Vilenkin
Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155

~Received 23 March 2001; published 12 June 2001!

Some of the parameters we call ‘‘constants of nature’’ may in fact be variables related to the local values of
some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases
when the variable in question~call it x) takes values in a continuous range, all thermalized regions in the
universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution
for x is known. This is the so-called ‘‘spherical cutoff method.’’ In order to find the probability distribution for
x it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method
to the case when the range ofx is discontinuous and there are several different types of thermalized region. We
first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescrip-
tion that meets all the requirements. We finally apply this prescription to calculate the relative probability for
different bubble universes in the open inflation scenario.
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I. INTRODUCTION

The parameters we call ‘‘constants of nature’’ may in fa
be variables related to the local values of certain dynam
fields. For example, what we perceive as a cosmological c
stant could be a potentialU(x) of some slowly varying field
x(x). If this potential is very flat, so that the evolution ofx
is much slower than the Hubble expansion, then observat
will not distinguish betweenU(x) and a true cosmologica
constant. Observers in different parts of the universe co
then measure different values ofU(x).

Spatial variation of the fieldsxa associated with the ‘‘con-
stants’’ can naturally arise in the framework of inflationa
cosmology@1#. The dynamics of light scalar fields durin
inflation are strongly influenced by quantum fluctuations,
different regions of the universe thermalize with differe
values ofxa . An important question is whether or not w
can predict the values of the ‘‘constants’’ we are most like
to observe. In more general terms, we are interested in
termining the probability distributionP(x) for us to measure
certain values ofxa . The answer to this question must in
volve anthropic considerations to some extent. The laws
physics may be sufficient to determine the range and e
the spacetime distribution of the variablesxa . However,
some values ofxa that are physically allowed may be incom
patible with the very existence of observers, and in this c
they will never be measured. The relevant question is t
how to assign a weight to this selection effect.

The inflationary scenario implies a very large univer
inhabited by numerous civilizations that will measure diffe
ent values of xa . We can define the probability
P(x)dx1 . . . dxk for xa to be in the intervalsdxa as being
proportional to the number of civilizations which will mea
surexa in that interval@2#. This includes all present, past an
future civilizations; in other words, it is the number of civ
lizations throughout the entire spacetime, rather than a
0556-2821/2001/64~2!/023507~8!/$20.00 64 0235
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particular moment of time. Assuming that we are a typic
civilization, we can expect to observexa near the maximum
of P(x) @3#. The assumption of being typical has been cal
the ‘‘principle of mediocrity’’ in Ref.@2#.

An immediate objection to this approach is that we a
ignorant about the origin of life, let alone intelligence, a
therefore the number of civilizations cannot be calculat
But even if this were true, the approach could still be used
find the probability distribution for parameters that do n
affect the physical processes involved in the evolution
life. The cosmological constantL, the density parameterV
and the amplitude of density fluctuationsQ are examples of
such parameters. Assuming that our fieldsxa belong to this
category, the probability for a civilization to evolve on
suitable planet is then independent ofxa , and instead of the
number of civilizations we can use the number of habita
planets or, as a rough approximation, the number of galax
Thus, we can write

P~x!dkx}dN, ~1!

where dN is the number of galaxies that are going to
formed in regions wherexa take values in the intervalsdxa .

The probability distribution~1! based on plain galaxy
counting is interesting in its own right, since it gives a qua
titative characterization of the large scale properties of
universe. Thus, the general rules for calculating~1! are worth
investigating quite independently from anthropic consid
ations. These considerations can always be includeda pos-
teriori, as an additional factor giving the number of civiliza
tions per galaxy.

The number of galaxiesdN(x) in Eq. ~1! is proportional
to the volume of the comoving regions wherexa take speci-
fied values and to the density of galaxies in those regio
The volumes and the densities can be evaluated at any t
as long as we include both galaxies that were formed in
©2001 The American Physical Society07-1
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past and those that are going to be formed in the future.
convenient to evaluate the volumes and the densities a
time when inflation ends and vacuum energy thermaliz
that is, on the thermalization surfaceS* . Then we can write

P~x!}n~x!P* ~x!. ~2!

Here,P* (x)dkx is proportional to the volume of thermal
zed regions wherexa take values in the intervalsdxa , and
n(x) is the number of galaxies that form per unit thermaliz
volume with cosmological parameters specified by the val
of xa . The calculation ofn(x) is a standard astrophysica
problem which is completely unrelated to the calculation
the volume factorP* (x), and which does not pose difficu
ties of principle.

The meaning of Eq.~1! is unambiguous in models wher
the total number of galaxies in the universe is finite. Oth
wise, one has to introduce some cutoff and define the rati
probabilities for the intervalsdnx (1) anddnx (2) as the ratio
of the galaxy numbersdN (1)/dN (2) in the limit when the
cutoff is removed. However, this limiting procedure h
proved to be rather non-trivial, and a general method t
would apply to all possible eternally inflating scenarios h
not yet been found.

The situation is relatively straightforward in the case of
infinite universe which is more or less homogeneous on v
large scales. One can evaluate the ratiodN (1)/dN (2) in a
large comoving volumeV and then take the limit asV→`.
The result is expected to be independent of the limiting p
cedure; for example, it should not depend on the shape o
volumeV. ~It is assumed that the volume selection is un
ased, that is, that the volumeV is not carved to favor some
values ofxa at the expense of other values.!

However, the situation with an infinite universe which
homogeneous on very large scales is not generic in the
text of inflation. Most inflationary scenarios predict that i
flation is eternal to the future, and therefore the univers
never completely thermalized@7,8# ~for a recent review of
eternal inflation see@9#!. An example that is particularly rel
evant to the subject of the present paper is given by
double well inflaton potential depicted in Fig. 1. The inflat
f can thermalize in two different vacua, labeled byh1 and
h2. The spacetime distribution of the field in this model
depicted in Fig. 2. There are thermalized regions of t
types, characterized by the inflaton vacuum expecta
valueh i . Thermalized regions withf5h1 are disconnected
from thermalized regions withf5h2. Both types of region

FIG. 1. Symmetric double well inflaton potential.
02350
is
he
s,

s

f

-
of

at
s

ry

-
he
-

n-

is

e

o
n

are separated by inflating domain walls@13,14#, and so the
universe is never completely thermalized. Each thermal
tion surface is infinite, so it will contain an infinite number o
galaxies. Moreover, there are an infinite number of therm
ized regions of each type. Therefore, the implementation
Eq. ~1! for calculating probabilities requires the comparis
of infinite sets of galaxies which lie in disconnected regio
of the universe. A similar spacetime structure is obtained
we make the inflaton potential periodic by identifying th
two minima. In this case there are still two different types
thermalization surface, characterized by the two topolo
cally different paths that one can take from the top of t
potential to the thermalized region. Although the partic
physics parameters of both types of thermalized region
guaranteed to be the same, other cosmological param
such as the spectrum of density perturbations or the sp
distribution of an effective cosmological constant will
general be different.

In any model of eternal inflation, the volumes of bo
inflating and thermalized regions grow exponentially w
time and the number of galaxies grows without bound, ev
in a region of a finite comoving size. One can try to deal w
this problem by introducing a time cutoff and including on
regions that thermalized prior to some moment of timetc ,
with the limit tc→` at the end. One finds, however, that th
resulting probability distributions are extremely sensitive
the choice of the time coordinatet @4#. Coordinates in gen-
eral relativity are arbitrary labels, and such gauge dep
dence of the results casts doubt on any conclusion reac
using this approach.

A resolution of the gauge dependence problem was p
posed in Ref.@10# and subsequently developed in@11,12#.
The proposed method can be summarized as follows. Le
first assume that inflating and thermalized regions of spa
time are separated by a single thermalization surfaceS* .
The problem with the constant-time cutoff procedures is t
they cut the surfaceS in a biased way, favoring certain

FIG. 2. A numerical simulation of the spacetime structure of
inflating universe@11#. The simulation corresponds to a double-we
inflaton potential, with two degenerate minima where the infla
takes the values6h. Inflating regions are white, while thermalize
regions with inflaton values equal to1h and2h are shown with
different shades of grey.
*
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PRESCRIPTION FOR PROBABILITIES IN ETERNAL . . . PHYSICAL REVIEW D 64 023507
values ofx and disfavoring other values. We thus need
portion ofS* selected without bias. The simplest strategy
to use a ‘‘spherical’’ cutoff. Choose an arbitrary pointP on
S* . Define a sphere of radiusR to include all pointsQ
whose distance fromP alongS* is d(Q,P)<R. We can use
Eq. ~1! to evaluate the probability distributionP(x) in a
spherical volume of radiusRc and then letRc→`. If the
fields xa vary in a finite range, they will run through all o
their values many times in a spherical volume of sufficien
large radius. We expect, therefore, that the distributionP(x)
will rapidly converge as the cutoff radiusRc is increased. We
expect also that the resulting distribution will be independ
of the choice of pointP that serves as the center of th
sphere. The same procedure can be used for fields wit
infinite range of variation, provided that the probability di
tributions forxa are concentrated within a finite range, wi
a negligible probability of findingxa very far away from that
range.

Suppose now that there is an infinite number of disc
nected thermalization surfaces, as happens genericall
eternal inflation. Further, we assume that the variablesxa of
interest are such that their whole range of values is allow
to occur in a single thermalized region~this is the case, for
instance, for the slowly varying fieldx which plays the role
of a cosmological constant!, and that, unlike the case of th
double well potential in Fig. 1, there is only one type
thermalized region. We can then pick an arbitrary connec
component ofS* and apply the spherical cutoff prescriptio
described above. Since the inflationary dynamics of the fie
xa have a stochastic nature, the distributions ofxa on differ-
ent connected components ofS* should be statistically
equivalent, and the resulting probability distributionP(x)
should be the same for all components. This has been v
fied both analytically and numerically in@11#.

The main shortcoming of the spherical cutoff prescripti
is that as it stands it cannot be applied to models where
inflaton potential has a discrete set of minima, as in the
ample shown in Fig. 1. More precisely, the problem aris
when the minima are separated by inflating domain w
@13,14#. In this case, we can introduce a discrete variabln
labeling different minima. Each connected component of
thermalization surfaceS* will be characterized by a singl
value ofn ~unless the different minima can be separated
non-inflating domain walls! and it is clear that the probability
distribution forn cannot be determined by studying one su
component.

The purpose of this paper is to propose a generalizatio
the spherical cutoff prescription that would be applicable
the general case. We begin in Sec. II by formulating
requirements that we believe any such proposal should
isfy. We require that it should be gauge-independent
should reduce to the spherical cutoff prescription in the
sence of discrete variables. Moreover, we consider a clas
asymmetric double-well potentials for which the probab
ties can be calculated in a well-motivated way. We then
quire that the general prescription should give the same
sult for this class of potentials. In Sec. III we propose
prescription that satisfies all of the above requirements.
use this prescription in Sec. IV to calculate probabilities
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bubble universes in the open inflation scenario. Our conc
sions are summarized and discussed in Sec. V.

II. REQUIREMENTS

Suppose that the inflaton potential hasN minima labeled
by i 51,2, . . . ,N, so that there areN different types of ther-
malized region. Suppose also that there is a set of sc
fieldsxa which take a continuous range of values in all typ
of thermalized region. Our goal is to calculate the probabi
distribution

Pi~x!5PiP̂i~x!. ~3!

Here, P̂i(x) is the normalized distribution forx within the
nth type of thermalized region,

E dkxP̂i~x!51, ~4!

and Pi is the probability for an observer to find herself in
thermalized region of typei.

We begin with the obvious requirements that the pro
abilities ~3! should be gauge-invariant and should satisfy
normalization condition

(
i

Pi51. ~5!

Next, we require that forN51 the prescription should
reduce to the spherical cutoff prescription. This implies th
the spherical cutoff should be used for the calculation of

individual distributionsP̂i(x) within each type of thermali-
zed region. What remains to be determined are the rela
probabilities of different types of regions,Pi .

Finally, we introduce a class of inflaton potentials f
which we believe there is a well-motivated answer for t
probabilities. Consider first a symmetric double-well pote
tial, V(f)5V(2f), with a maximum atf50 and two
minima atf1,256h, as in Fig. 1. Clearly, in this case th
symmetry of the problem dictates thatP15P250.5.

Next, we consider an asymmetric double-well, whi
however is symmetric in some range off near the maxi-
mum,ufu,fs ~see Fig. 3!. Quantum fluctuations off domi-
nate the dynamics in the rangeufu&fq , while for f@fq
the evolution is essentially deterministic. We shall assu

FIG. 3. Asymmetric double well potential which is symmetr
near the maximum in the range2fs,f,fs .
7-3
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JAUME GARRIGA AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 023507
thatfs is in the deterministic slow-roll regime,fs@fq . Let
us consider constant-f surfacesf56fs . These are infinite
spacelike surfaces that haveufu,fs everywhere in their
past. Since the potentialV(f) is symmetric in this range o
f, all these surfaces are statistically equivalent. The sym
try of the problem suggests that the probabilitiesP1,2 can be
calculated by sampling comoving spheres of equal radius
the two types of surface. The ratio of the probabilities w
then be

P1 /P25N1 /N2 , ~6!

whereN1 ,N2 are average numbers of galaxies that will for
in large comoving spherical regions which have equal ra
at f56fs . If we assume for simplicity that the two type
of regions have identical physics at thermalization and af
wards, then the difference betweenN1 and N2 can only be
due to the different inflationary expansion factorsZi charac-
terizing the evolution from6fs to the thermalization points
f* i . We then haveNi}Zi

3 and

P1 /P25~Z1 /Z2!3. ~7!

We shall require that the general prescription for probab
ties should reproduce Eq.~7! in the case of asymmetri
double-well potentials of the type we discussed here.

III. THE PROPOSAL

In the general case, the inflaton potential has no sym
tries to guide our selection of the equal-f surfaces on which
to calculate probabilities. Suppose the potential has a m
mum, which we choose to be atf50, and two minima with
thermalization points atf* 1 andf* 2. We can then choose
some arbitrary valuesf1 andf2 in the slow roll ranges off
adjacent tof* 1 and f* 2, respectively, and calculate th
probabilities by sampling the surfacesf5f i . Imagine for a
moment that the number of thermalized regions of both ty
and the number of galaxies in each region are all finite. T
we could write

P1

P2
5

p1

p2

N1

N2
. ~8!

Here,pi is the probability for a randomly selected therma
zed region to be of typei and Ni is the average number o
galaxies in a type-i region. In our case, however, the numb
of thermalized regions and the number of galaxies in e
region are infinite, so the definitions of the probabilitiespi
and of the ratioN1 /N2 are problematic.

It has been remarked@6,9# that the problem of determin
ing pi is similar to the problem of calculating the probabili
peven that a randomly selected integer is even. If we tak
long stretch of the natural series

1,2,3, . . . , ~9!

it will have nearly equal quantities of even and odd numbe
suggesting thatpeven51/2. However, the series can be reo
dered as
02350
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1,2,4,3,6,8,5, . . . , ~10!

and the same calculation would givepeven52/3. It is clear
that by appropriately ordering the series one can obtain
answer forpeven between 0 and 1. This seems to suggest t
the probabilitiespi are hopelessly ill-defined.

We note, however, that the situation with the natural
ries is not as bad as it may seem. The series has a na
ordering in which the nearest neighbors of each number
fer from that number by 1, and we can require that our sa
pling procedure should respect this natural ‘‘topology
Then we havepeven51/2, which is the answer that one intu
itively expects. With an infinite number of thermalized r
gions of different types, one could also order the list of
gions in a way that would give any desired result forp1 /p2.
But again one can hope that this ambiguity can be remove
we require that our sampling procedure should reflect
spatial distribution of the regions.

The ratioN1 /N2 can be calculated by counting galaxies
spheres located in regions of the two types. In the doub
well example of Sec. II, there is complete symmetry betwe
the surfacesf5fs andf52fs . We expect, therefore, tha
p15p2 and we choose the radii of the spheres to be equa
f56fs . However, it is not clear what sets the relative si
of the spheres in the absence of symmetry. We shall n
describe the method we propose for evaluatingpi andN1 /N2
in the general case.

We start by noting that there is one thing that thermaliz
regions of the two types have in common. In their past th
all went through a period of stochastic inflation, with th
inflaton fieldf undergoing a random walk near the top of t
potential. Our idea is to use some markers from this early
for the calculation of probabilities.

Let us imagine that markers are point objects and t
they are produced at a constant rate per unit spacetime
ume in inflating regions wheref is at the top of its potential,
V(f)'Vmax. After that, the markers evolve as comovin
test particles and eventually end up in a thermalized reg
of one type or the other. We shall definepi as the fraction of
markers that end up in regions of typei. Furthermore, the
reference length scale on which the number of galaxie
counted in a region of typei will be set by the average
distacedi between markers in that type of region. In oth
words, the galaxies are counted in spheres of radiiR1 andR2
such thatR1 /R25d1 /d2. To summarize, we propose that th
relative probabilities for the constants of nature are given
Eq. ~3! with

P1

P2
5

p1n2

p2n1

n1

n2
, ~11!

where ni}di
23 is the mean number density of markers

regions of typei andn i , given by

n i
215E P̂i~x!n i

21~x!dx
7-4
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PRESCRIPTION FOR PROBABILITIES IN ETERNAL . . . PHYSICAL REVIEW D 64 023507
is the mean density of galaxies in that type of region.
mentioned in the Introduction, the calculation ofn i is a stan-
dard astrophysical problem which we shall not be concer
with in this paper.

A physical counterpart to the production of our idealiz
markers is quantum nucleation of black holes in an inflat
universe. Black holes are produced at a rate@15# r}exp
@21/8V(f)# that grows exponentially withV(f), so that by
far the highest rate is achieved atV(f)5Vmax. Here, we
prefer not to identify markers with black holes and to thi
of them as of idealized point objects. This frees us fro
concerns such as the contribution to black hole produc
from regions that are not at the top of the potential, bla
hole evaporation, etc. The reality and observability of ma
ers is not really an issue, since the comparison of caus
disconnected thermalized regions is certainly a gedanken
periment.

The average comoving distance between the markers
thermalized region is manifestly gauge invariant, and so
the ration2 /n1 in Eq. ~11!. The quantitiespi are also gauge
independent, and thus the probabilitiesPi in ~11! should be
gauge-invariant.

It is also easy to verify that the above proposal gives
expected result~7! for the probabilities when the inflato
potential is symmetric in the diffusion range off. In this
case, the average distance between markers on the su
f5fs is the same as that onf52fs ~with fs defined in
Sec. II!. Hence, the distances between markers at therm
zation may differ only due to the difference in the expans
factors from6fs to f* i ,

d1 /d25Z1 /Z2 , ~12!

and Eq.~7! follows immediately.

IV. OPEN INFLATION

As an illustration of the method we shall now calcula
probabilities for a model of ‘‘open inflation’’@16–18#. We
assume an inflaton potential of the form shown in Fig. 4
has a metastable false vacuum atf50 which is separated by
potential barriers from two slow roll regions on the left a
on the right. The false vacuum decays through bubble nu
ation, and the inflaton rolls towards the true vacuum ins
the bubbles. Comoving observers inside each bubble wo
after thermalization of the inflaton, see themselves in
open homogeneous universe.~Hence the name ‘‘open infla

FIG. 4. Asymmetric inflaton potential with a metastable vacu
at the top, which replaces the quantum diffusion region of Fig.
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tion.’’ ! If the bubble nucleation rate is not too high, bubb
collisions are rare and inflation is eternal. Assuming that
two types of bubble have identical low-energy physics,
would like to find the probability for an observer to fin
herself in one type of bubble or the other.

In false vacuum regions outside bubbles the metric is
Sitter,

ds25dt22e2H0tdx2 ~13!

whereH058pGV0/3 andV05V(0) is the false vacuum en
ergy density. The bubble interior has the geometry of
open Robertson-Walker universe,

ds25dt22a2~t!@dj21sinh2jdV2#. ~14!

After nucleation, the bubble wall expands rapidly approa
ing the speed of light. If the initial bubble size is muc
smaller than the de Sitter horizonH0

21, then the wall world-
sheet is well approximated by the future light cone of t
center of spacetime symmetry of the bubble. We sh
choose coordinates so that this center is atx5t50 and t
50. Then, ast→`, the bubble wall asymptotically ap
proachesuxu→H0

21. The spacetime geometry of the bubb
is illustrated in Fig. 5.

The relation between the coordinates (t,x) and (t,j) can
be easily found if we assume, as is usually done, that~i! the
potentialV(f) immediately outside the barrier has nearly t
same valueV0 as in the false vacuum, and~ii ! the gravita-
tional effect of the bubble wall is negligible. Then, at suf
ciently small values oft, the metric~14! inside the bubble is
close to the open de Sitter metric,a(t)5H0

21 sinh(H0t). The
coordinates (t,x) and (t,j) are related by the usual transfo
mation between the flat and open de Sitter charts, which
shall not reproduce here.

We assume that markers are produced at a constant rr
in the false vacuum outside the bubbles. The density
markersn(x,t) satisfies the equation

]n

]t
13H0n5r , ~15!

FIG. 5. Spacetime geometry of the bubble in comoving coor
nates. Here,r 5uxu, and varioust5const surfaces of the ope
Robertson-Walker universe inside the bubble are shown, as we
one of thej5const curves.
7-5
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JAUME GARRIGA AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 023507
which has a stationary solutionn05r /3H0. This de Sitter–
invariant solution is rapidly approached, regardless of
initial conditions. We are interested in the average separa
between the markers on the surfacest5t* i corresponding to
thermalization of the inflaton in the two types of bubble
The densities of markersn* i on these surfaces are also co
stant, due to the spacetime symmetry of the bubbles~all
points on the surfacet5const are equivalent!.

The interior geometries of different types of bubble a
nearly identical at early times~small t), while V(f)'V0.
Let us choose a valuet0 in that range and consider surfac
t5t0. The geometry and the distribution of markers in t
past of such surfaces are the same for the two types
bubble, and therefore the average separations of marker
these surfaces should also be the same,d1(t0)5d2(t0)
[d0. The separation of markers at thermalization isd* i
5Z* id0, whereZ* i is the expansion factor betweent0 and
t* i , and we have

N1 /N25~Z* 1 /Z* 2!3. ~16!

To complete the calculation, we have to determine
fraction pi of the markers that end up in type-i bubbles. Let
f i(t) be the fraction of comoving volume occupied by typ
i bubbles in a comoving volume which we assume to be f
of bubbles at the initial momentt50,

f i~0!50. ~17!

The evolution off i(t) is described by the equations

] f 1

]t
5

4pl1

3H3
~12 f 12 f 2!, ~18!

] f 2

]t
5

4pl2

3H3
~12 f 12 f 2!, ~19!

where l i is the nucleation rate of type-i bubbles. In these
equations we are neglecting ‘‘secondary’’ bubble nucleat
which may occur within a comoving distanceH21 from any
given ‘‘primary’’ nucleation event, before the primar
bubble reaches its asymptotic comoving sizeH21. Second-
ary nucleations will affect the comoving volume distributio
very little, especially if the nucleation rate per unit volume
much smaller thanH4. This is a typical situation since th
nucleation rates are usually exponentially suppressed.
solution of these equations with the initial condition~17! is

f i~ t !5
l i

l F12expS 2
4pl

3H3
t D G , ~20!

where l5l11l2. The fraction of markers that end up i
bubbles of typei is given by

pi5 f i~ t→`!5l i /l. ~21!

Now, substituting Eqs.~16! and ~21! into Eq. ~8! for the
probabilities we obtain
02350
e
n

.

of
on

e

e

n

he

P1

P2
5

l1

l2
S Z* 1

Z* 2
D 3

. ~22!

This agrees with one’s intuitive expectation that the pro
ability should be proportional to the nucleation rate and
the volume expansion factor inside the bubbles.

V. DISCUSSION

In this paper we have suggested a cutoff procedure wh
allows one to assign probabilities to different types of th
malized region in an eternally inflating universe. The pro
abilities are calculated with the aid of ‘‘markers’’—
imaginary pointlike objects which are assumed to be crea
at a constant rate in the inflating regions where the infla
field is at the top of its potential. The probability for region
of type i is then

Pi}piNi , ~23!

where pi is the fraction of markers that end up in typei
regions andNi is the number of galaxies formed in a como
ing sphere of radius equal to the average separation betw
the markers.

In contrast to some earlier proposals, the new prescrip
is manifestly gauge-invariant. It also gives the expected
sults in cases where we have well-motivated intuitive exp
tations for the probabilities.

The method of calculating probabilities presented in t
paper has some similarities to the so-callede-prescription
that was proposed in Ref.@19#. Starting with a comoving
volume withf near the top of the potential, the numbers
galaxies are calculated in this prescription by imposing c
offs at different times in different types of region. The cuto
in type-i regions is chosen at the timetci when all but a small
fraction e of the comoving volume destined to thermalize
this type of region has thermalized. The value ofe is the
same for all types of region, but the cutoff times are diffe
ent. The limite→0 is taken after calculating the probabil
ties. Thee-prescription was applied in@20# to calculate the
probabilities in open inflation and gave the same result~22!
that we obtained here.

To see the connection between this prescription and
method of the present paper, imagine that the initial com
ing region contains a large number of markers. Ifpi is the
fraction of markers that are going to end up in type-i regions,
then the cutoffs ine-prescription are imposed at the time
when the numbers of markersNmi in the two types of region
are related byNm1 /Nm25p1 /p2. The number of galaxies in
each type of region isNgi5NmiNi , whereNi is the number
of galaxies per one marker. Hence,

P1

P2
5

Ng1

Ng2
5

p1

p2

N1

N2
, ~24!

which has the same form as Eq.~8!.
One difference between the two methods is that mark

are continuously produced in our new approach, while
e-prescription new markers are not produced even in regi
7-6
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when the inflaton field fluctuates back to the top of its p
tential. Another difference is thate-prescription uses
constant-t cutoffs, while the new approach uses spheri
cutoffs. Because of its reliance on a constant-t cutoff, the
results obtained usinge-prescription are generally gauge
dependent, whereas the new method is gauge independ

The most straightforward way to implement the new p
scription is through a numerical simulation of an eterna
inflating spacetime. This method, however, suffers from
vere computational limitations@11#. Alternatively, one can
use an approximate analytic method based on the Fok
Planck ~FP! formalism of stochastic inflation@7,21,4#. This
method works very well for the calculation ofpi @22#. How-
ever, the results for the density of markers obtained us
this approach are generally not gauge invariant.

The FP formalism can be used to calculate the phys
volumeV* i(t) that thermalizes prior to some timet and the
number of markersN* i(t) contained in that volume for dif-
ferent types of regions. The average distance between
markers can be expressed as

di~ t !5FV* i~ t !

N* i~ t !G
1/3

. ~25!

One might expect that in the limitt→`, di(t) should ap-
proach the average separation between markers on the
malization surfacesS* i ~calculated in large spherical vo
umes!. However, this is not generally the case. T
thermalized volumeV* i(t) in an eternally inflating universe
is dominated by the newly thermalized regions~shortly be-
fore the timet), and the density of markers in these regio
is generally correlated with the choice of the time variablet.

The density of markers on the surfacesS* i can vary
greatly from one area to another. In some places the fielf
takes a more or less direct route from the top of the poten
to f* i , resulting in a relatively high density of marker
while in others it takes a long time fluctuating up and do
the potential, so that the markers are greatly diluted. By
cluding only regions that thermalize prior to timet, we ‘‘re-
ward’’ regions that thermalize faster and therefore introdu
a bias favoring higher densities of markers. This qualitat
tendency is present for most choices of the time variable,
quantitatively the bias will not be the same. Hence, o
should not be surprised thatdi calculated from Eq.~25! de-
pends on the choice of gauge.

Despite this gauge dependence, the FP method may
approximately valid results for some class of model. It h
been argued in Refs.@19,23# that in the case ofe-prescription
the gauge dependence is rather weak for a wide clas
potentials. One can expect the situation to be similar for
new method when a constantt cutoff is used. However, more
work is needed to determine what additional requireme
the potential should satisfy for this approximate gauge in
pendence to apply.

We started in Sec. II of this paper by formulating a set
requirements that we believe any method for calculating
probabilities should satisfy. The specific prescription we
troduced in Sec. III can be regarded as an ‘‘existence proo
02350
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demonstrating that a prescription satisfying all the crite
can indeed be constructed. It is quite possible, however,
our prescription is not unique and that more attractive a
better motivated methods can be developed. With this
mind, we conclude by indicating some possible shortco
ings and limitations of our method.

Admittedly, our prescription includes an element of arb
trariness when we assume that markers are produced on
regions where the inflatonf is at the top of its potential. This
‘‘ d-function’’ source should not be understood literally. Th
semiclassical picture of eternal inflation involves smear
over spacetime scales;H21 and over scalar field interval
;H/2p. Hence, marker formation at the top of the potent
is equivalent to marker formation within an intervalDf
;H/2p from the top of the potential. However, an attem
to extend marker formation to a wider interval encount
some ambiguities. Formally, there is no problem in calcu
ing the densityni of markers in thermalized regions even
these are produced at some given rateR(f)df per unit
proper time and volume in regions where the field is in t
rangedf. However, there is an obvious arbitrariness in wh
should be chosen as our ‘‘smearing function’’R(f). Also, if
markers are produced at different rates at different value
H(f), the calculation of the fraction of markerspi that end
up in regioni becomes somewhat ill posed. Markers form
at different values off will have a different probabilitypi of
ending up in a type-i region and it is not clear how to weig
the different contributions. One could calculatepi(f) and
then average overf with some weight, but it is not clea
how the weight function is to be determined. It thus appe
that confining marker formation to the top of the potent
has some advantages and may be not as arbitrary as it
seems.

It is not clear whether or not our method will give reaso
able results when applied to the most general type of in
tionary scenario when the inflaton potential has several lo
maxima. Additional complications arise in models where t
minimum of the potential has a non-vanishing cosmologi
constant. In such models, regions of true vacuum in the p
inflationary universe may fluctuate back to the quantum d
fusion range of the inflaton potential and the spacetime st
ture is more complicated than the one represented in Fig

Also, our method is not applicable when the potential
unbounded from above, in which case eternal inflation ru
into the Planck boundary. This is not particularly worrisom
since after all the inflaton may be a modulus with a comp
range, and the inflaton potential may well be bounded fr
above at a scale much lower than the Planck scale.
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