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General significance: These findings may allow the design of dietary interventions to modulate Sirtuin3 

expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived 

cardiovascular remodeling. 
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ABSTRACT 

1 

2 
Background:   Intrauterine   growth  restriction  (IUGR)   is   associated   with  cardiovascular remodeling 

4 
persisting  into   adulthood.  Mitochondrial   bioenergetics,   essential   for   embryonic   development and 

6 
cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and 

8 
cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by 

10 

11 microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a 

12 

13 functional mitochondrial level to establish the ethiopathology and potential therapeutic targets for this 

14 

15 obstetric complication. 

16 

17 

18 Methods: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize 

19 

20 mitochondrial function. 

21 

22 
Results:  Enzymatic  activities  of  complexes  II,  IV  and  II+III  in  IUGR-hearts  (-11.96±3.16%;  - 

24 
15.58±5.32%; -14.73±4.37%; p<0.05) and II and II+III in IUGR-placentas (-17.22±3.46%; p<0.005 and - 

26 

27 29.64±4.43%; p<0.001) significantly decreased. This was accompanied by a not significant reduction in 

28 

29 CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in 

30 

31 placenta (-44.12±5.88%; p<0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were 

32 

33 conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02±4.35%; p<0.001), but not 

34 

35 significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR- 

36 

37 hearts (84.21±31.58%; p<0.05) despite conserved anti-oxidant SOD2 protein expression and activity in 

38 

39 both tissues. 
40 

41 

42 Conclusions: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated 

43 

44 expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels 

45 

46 under CII deficiency. 

47 
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alterations (24, 25, 28). 

It is important to note that mitochondrial alterations consisting of suboptimal oxygen consumption (29), 

as well as altered transcriptomic profile of genes involved in mitochondrial function, oxidative 

phosphorylation and complexes of MRC, and thus energy production and metabolism (30), have been 

reported in IUGR patients. However, these findings have never been demonstrated in IUGR-hearts, in 

which depth characterization of mitochondrial function has not been performed to date. 

4 

 

 

3 

5 

7 

9 

1. INTRODUCTION 

1 

2 
Intrauterine growth restriction (IUGR) refers to fetuses that do not reach their predefined genetic potential 

4 
weight and is usually defined as fetuses with an estimated fetal and birth weight under the 10th percentile 

6 
for gestational age (1, 2). IUGR is a major cause of perinatal mortality and long-term morbidity (3). The 

8 
etiopathology of this complication remains unknown, although there is evidence suggesting that placental 

10 

11 dysfunction followed by hypoxia could lead to IUGR by interference with molecular and bioenergetic 

12 

13 processes (3, 4). Placenta is crucial in fetal programming in that, for example, changes in the pattern of 

14 

15 the substrates or oxygen transported to the fetus can ultimately lead to cardiovascular or metabolic disease 

16 

17 (5-7). Indeed, it is well known that IUGR is associated with cardiovascular remodeling and dysfunction, 

18 

19 persisting into adulthood (8-11). Establishing the molecular mechanisms of cardiovascular remodeling in 

20 

21 IUGR newborns is hampered by the difficulty of accessing the heart as a target tissue. For this reason, our 
22 

23 group developed a rabbit model to study IUGR in which cardiovascular remodeling with altered spatial 
24 

25 arrangement of intracellular energetic units was evidenced by microscopy in the offspring (12, 13), also 
26 

27 reflecting the hemodynamic alterations found in newborns of IUGR pregnancies. The global gene 
28 

29 expression profile of the hearts of offspring in this IUGR-rabbit model showed alterations in different 

30 

31 pathways, all of which converged to mitochondria, including oxygen homeostasis, mitochondrial 
32 

33 respiratory chain (MRC) complex I, oxidative phosphorylation and NADH dehydrogenase activity (10, 
34 

35 14). 
36 

37 

38 Alternative animal models of IUGR have been developed consisting in carunclectomy, uterine artery 
39 

40 ligation, uterine space restriction, caloric restriction or hypoxic conditions, among other procedures, in 
41 

42 different species of animals (mainly sheep, pigs or rats models) (15-26). Heart development is different 
43 
44 among species (in structure, timing of maturation, morphology, function, etc.). However, cardiac 
45 
46 remodeling have been demonstrated in most of these models (16, 18-20, 22, 27), as well as mitochondrial 
47 
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Alterations in mitochondrial and metabolic pathways are critical in fetal programming within the setting 

1 

2 of placental insufficiency (31). Proteins regulating these crucial processes, such as sirtuins, may finally 

3 

4 modulate the development of obstetric manifestations and associated complications. Sirtuins are a family 

5 

6 of cellular sensors exerting a deacetylase function which regulates cell bioenergetics by synchronizing 

7 

8 nuclear and mitochondrial activities (32-35). Despite evidence of deregulation of sirtuins in skeletal 

9 

10 muscle of pigs with spontaneous IUGR (36), little is known about their implication in this obstetric 

11 

12 complication. Interestingly, growing evidence supports sirtuins involvement in cardiac disease, 
13 

14 independent of IUGR, either by modulation of bioenergetic shift and cardiomyocyte survival (37). 
15 

16 

17 The development of this study in heart and placenta of a validated IUGR animal model facilitated the 

18 

19 evaluation of potential disturbances in tissues responsible of cardiovascular remodeling and placental 

20 

21 insufficiency. Our hypothesis is that IUGR could be associated with mitochondrial alterations potentially 
22 

23 leading to dysfunction of cardiomyocytes and placental metabolic adaptations to hypoxia. We have 
24 

25 therefore analyzed whether the transcriptomic and ultrastructural alterations previously reported in 
26 

27 cardiomyocytes from offspring of the rabbit model of IUGR with associated cardiovascular remodeling 
28 

29 are translated to mitochondrial dysfunction in the same cell type. Second, we evaluated whether heart 

30 

31 alterations were also present in the placental tissue, limiting oxygen and nutrient supply. Finally, we 
32 

33 aimed to determine the molecular mechanisms responsible for downstream cell adaptations to 
34 

35 mitochondrial imbalance, including sirtuins, in order to establish potential therapeutic targets to prevent 
36 
37 or revert the development of this obstetric complication and associated cardiovascular remodeling. 
38 

39 

40 

41 

42 

43 

44 

45 

46 



57 

58 

59 

60 

61 

62 

63 

64 

65 

6 
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10 

12 

14 

16 

2. MATERIALS AND METHODS 

1 
2 

2.1 Animal model 

4 
5 

Six New Zealand white pregnant rabbits were used to obtain 16 IUGR and 14 control offspring by 
6 
7 

reproducing a model of IUGR previously reported (see TableS1) (12, 13). This model was based on the 
8 
9 

selective ligature of uteroplacental vessels to reduce 40 to 50% of oxygen and nutrient supply into the 

11 
fetuses in development. The ligation was performed only in one of the two uterine horns in order to 

13 
obtain,  in  the  same  pregnancy,  the  IUGR  (from  the  manipulated  horn)  and  control  (from  the non- 

15 
manipulated horn) offspring. Concretely, pregnant animals were fed with standard diet and water ad 

17 

18 libitum, with 12h/12h of light cycle. At day 25 of gestation, in each pregnant rabbit, the selective ligature 

19 

20 of uteroplacental vessels in only one of the two uterine horns was performed. Briefly, tocolysis 

21 

22 (progesterone 0.9mg/kg im) and antiobiotic prophylaxis (Penicillin G 300.000 UI iv) were administered 

23 

24 before uteroplacental vessel surgery. Ketamine (35 mg/kg) and xylazine (5 mg/kg) were given 

25 

26 intramuscularly for anesthesia induction. Inhaled anesthesia was maintained with a mixture of 1-5% 

27 

28 isoflurane and 1-1.5 l/min oxygen. After a midline laparotomy, both uterine horns were exteriorized but 

29 

30 only one was ligated to reproduce IUGR. At day 30 (full-term pregnancy), a cesarean section was 
31 

32 proceeded to obtain both IUGR and control offspring from the same pregnancy (all six pregnant rabbits 
33 

34 with the same gestational age) (12, 13). After the procedure, the abdomen was closed and animals 
35 

36 received intramuscular meloxicam 0.4 mg· kg_1· 24 h_1· 48 h, as postoperative analgesia. Offspring (from 
37 

38 the uterine horn experimentally modified)  weighting under the 10th percentile of birth weight were 

39 

40 considered IUGR (cutoff less than 60 grams) and never weighting higher than any control from the not 
41 

42 modified uterine horn and from the same nest. All newborn rabbits were sacrificed by decapitation and 
43 

44 the hearts of newborn rabbits were removed from the chest cavity and were then weighed and preserved 
45 
46 with Biops Medium (2.77mM CaK2EGTA, 7.23mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2· 6H20, 
47 
48 20mM Taurine, 15mM Na2Phosphocreatine, 20mM Imidazole, 0.5mM Dithiothreitol and 50mM MES, 
49 
50 pH 7.1) on ice. Likewise, the placentas of these newborn rabbits were identified, weighed and preserved 
51 
52 with Biops Medium (prepared as mentioned previously), on ice. 
53 

54 
55 All biometric parameters were measured once, following standardized protocols (12, 13). 
56 
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2.4 Mitochondrial oxygen consumption in heart and placenta 

7 

 

 

7 

10 

12 

14 

16 

32 

34 

39 

41 

43 

46 

48 

50 

53 

55 

Animal handling and all  the procedures were performed in accordance to  the prevailing  regulations and 

1 

2 guidelines (38-40) and with the approval of the Animal Experimental Ethics Committee of the University 

3 

4 of Barcelona (Barcelona, Spain). 

5 

6 
2.2 Sample processing 

8 
9 

Left  ventricle  was  used  for  mitochondrial  studies  because  is  the  target  tissue  in  which  previous 

11 
transcriptomic   and    ultrastructural   alterations   were   observed.   Additionally,   is   the   tissue    were 

13 
cardiomyopathies are preferentially manifested. Each left ventricle and placenta tissue were processed as 

15 
follows:  a  piece  of  each  tissue  was  maintained  in  fresh  conditions  with  Biops  Medium  to  assess 

17 

18 mitochondrial oxygen consumption, and the remaining tissue was cryopreserved at -80ºC and further 

19 

20 homogenized (Caframo technologies, Ontario, Canada) at 5% (w/v) in mannitol buffer for mitochondrial 

21 

22 analysis. The protein content was quantified in left ventricle heart and placental homogenates using the 

23 

24 bicinchoninic acid colorimetric assay (Thermo Scientific assay kit Prod #23225, Waltham, MA, USA) to 

25 

26 normalize experimental measures. 

27 

28 

29 2.3 MRC activity and mitochondrial content in heart and placenta 

30 

31 
In order to study MRC function, the enzymatic activities of mitochondrial complex I, II, IV, I+III and 

33 
II+III   (CI,   CII,   CIV,   CI+III   and   CII+III)   in   both   heart   and   placental   homogenates   were 

35 

36 spectrophotometrically measured at 37ºC, as reported elsewhere (41). 

37 
38 

Citrate synthase  activity was also  spectrophotometrically determined  in heart and  placenta  at 37ºC (41, 

40 
42), as it is considered a reliable marker of mitochondrial content (43). Mitochondrial content was further 

42 
confirmed by alternative methods (see 2.8.2 section). 

44 

45 
All enzymatic assays consisted of national standardized methods run in parallel with internal quality 

47 
controls (41) and all the enzymatic assays, measured once per sample, simultaneously included both cases 

49 
and controls . 

51 
52 

Absorbance  changes  of  the  enzymatic  activities  along  time  were  monitored  in  a  HITACHI U2900 

54 
spectrophotometer using the UV-Solution software version 2.2 and were expressed as nanomoles of 

56 
consumed substrate or generated product per minute and milligram of protein (nmol/minute· mg protein). 
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50 

52 

59 

To determine oxygen consumption of heart and placental tissue from IUGR and control offspring, 3-5 

1 

2 miligrams of each tissue  were  permeabilized  on ice  with 5% (w/v)  saponine  for  30  minutes in  Biops 

3 

4 Medium. This permeabilized tissue was washed with cold respiration medium (Mir05: 0.5 mM EGTA, 3 

5 

6 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose 

7 

8 and 0.1% (w/v) bovine serum albumin, pH 7.1). High-resolution respirometry was performed at 37°C by 

9 

10 polarographic oxygen sensors in a two-chamber Oxygraph-2k system according to the manufacturer’s 

11 

12 instructions (OROBOROS Instruments, Innsbruck, Austria). Manual titration of substrates and inhibitors 
13 

14 was performed using Hamilton syringes (Hamilton Company, Reno, NV, USA). Data was recorded using 
15 

16 the DatLab software v5.1.1.9 (Oroboros Instruments, Innsbruck, Austria). 
17 

18 

19 Glutamate and malate oxidation (GM Oxidation), corresponding to electron donation of both substrates to 

20 

21 mitochondrial CI, was quantified once in all samples. Specific oxygen uptake rates sensitive to antimycin 
22 

23 a (which specifically inhibits mitochondrial oxygen consumtion) were obtained following the 
24 

25 manufacture’s recommendations (44). 
26 

27 

28 Oxygen consumption was normalized for the milligrams of dry tissue, thus, results were expressed as 

29 

30 picomoles of oxygen consumed per second and milligram of tissue (pmol O2/s· mg). 
31 

32 

33 2.5 Mitochondrial coenzyme Q (CoQ) content in heart and placenta 

34 

35 

36 Tissue levels of CoQ9 or CoQ10 (mobile electron transfer located within CI, CII and CIII in the MRC) 

37 

38 were assessed in duplicates in the heart and placental homogenates from both cases and controls by high 

39 

40 pressure liquid chromatography (HPLC in reverse form) with electrochemical detection of the reduced 

41 

42 and oxidized molecule, as described previously (45). Values were expressed as micromoles per liter 

43 

44 (μmol/L). 

45 

46 

47 2.6 Total cellular ATP levels in heart and placenta 

48 

49 
Cellular ATP levels were quantified in duplicates in the heart and placental homogenates from both cases 

51 
and controls using the Luminescent ATP Detection Assay Kit (Abcam, Cambridge, UK), according to the 

53 

54 manufacturer’s instructions. The results were normalized for protein content and expressed as picomolar 

55 

56 of ATP per milligram of protein (pmol ATP/mg protein). 

57 

58 
2.7 Lipid peroxidation in heart and placenta 
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16 

34 

48 

50 

53 

Lipid peroxidation was measured in duplicates as an indicator of oxidative damage to lipid membranes of 

1 

2 hearts and placentas using the BIOXYTECH® LPO-586™ assay by spectrophotometric  measurement of 

3 

4 malondialdehyde  (MDA)  and  4-hydroxyalkenal  (HAE)  levels  (both peroxides  derived from fatty acid 

5 

6 oxidation), according to the manufacturer’s instructions (Oxis International Inc., CA, USA). The results 

7 

8 were normalized  for  protein content and  expressed  as  micromolar of MDA and  HAE per milligram of 

9 

10 protein (μM MDA+HAE/mg protein). 

11 

12 

13 2.8 Western Blot analysis 

14 
15 

Twenty to forty µg of total protein homogenate of heart and placenta from both cases and controls were 

17 

18 separated using 7/13% SDS-PAGE and transferred to nitrocellulose membranes (iBlot Gel Transfer 

19 

20 Stacks, Life Technologies, Waltham, MA, USA). The membranes were hybridized with specific 

21 

22 antibodies overnight at 4ºC. The expression of all studied proteins was measured once and normalized to 

23 

24 β-actin protein (47kDa; 1:30.000; Sigma-Aldrich, St.Louis, MO, USA) which was used as a loading 

25 

26 control. Inter-blot control samples were used to evaluate membrane variability. The ImageQuantLD 

27 

28 program was used to quantify chemiluminiscence. 

29 

30 

31 2.8.1Expression of subunits of the MRC complexes in heart and placenta 

32 

33 
To determine the levels of protein expression of the subunits of the MRC complexes the cleared lysates 

35 

36 were subjected to SDS-PAGE and electroblotted. Proteins were visualized by immunostaining with anti- 

37 

38 SDHA and anti-SDHB (both for CII; 70kDa and 30kDa respectively; 1:1000; Invitrogen, Paisley, UK) 

39 

40 and also with anti-COX5A (for CIV; 16kDa; 1:1000; MitoSciences, Oregon, USA). Results were 

41 

42 expressed as SDHA/β-actin, SDHB/β-actin and COX5A /β-actin ratios. 

43 
44 

45 2.8.2 Expression of mitochondrial import receptor subunit TOM20 (Tom20) in heart and placenta 

46 
47 

As a mitochondrial content marker, anti-Tom20 (20kDa; 1:1000; Santa Cruz Biotechnology, Dallas, 

49 
USA) was hybridized with membranes. Results were expressed as the Tom20/β-actin ratio. 

51 

52 
2.8.3 Expression of superoxid dismutase 2 (SOD2) in heart and placenta 

54 
55 

SOD2 is a mitochondrial anti-oxidant enzyme pivotal in ROS release during oxidative stress. Membranes 
56 
57 

were hybridized with anti-SOD2 (24kDa; 1:1000; ThermoFisher Scientific, Waltham, MA, USA). Results 
58 
59 

were expressed as the SOD2/β-actin ratio. 



 

3 

5 

7 

10 

17 

35 

37 

2.8.4 Expression of the acetylated form of SOD2 in heart and placenta 

1 

2 
In order to determine the activity of SOD2 enzyme, we evaluate its acetylated form (indicating less 

4 
activity)  by hybridizing the  membranes  with anti-SOD2/MnSOD (24kDa; 1:1000; Abcam,  Cambridge, 

6 
UK). Results were expressed as the acetylated SOD2/β-actin or acetylated/total SOD2 ratio. 

8 

9 
2.8.5 Expression of Sirtuin3 in heart 

11 
12 

The protein content of Sirtuin3, which is a sensor of mitochondrial and metabolic balance, was 
13 
14 

determined by hybridizing the membrane with anti-Sirtuin3 (29 KDa; 1:500; Abcam, Cambridge, UK). 
15 
16 

Results were expressed as the Sirtuin3/β-actin ratio. 

18 
19 

2.9 Statistical analysis 
20 

21 
22 Statistical analysis was performed with the ‘IBM SPSS Statistics 20’ and STATA software. Biometric and 
23 
24 

experimental results were expressed as means and standard error of the mean (SEM) or as a percentage of 
25 
26 

increase/decrease of IUGR-offspring compared to control offspring after filtering for outliers. Case- 
27 
28 

control differences were sought by non-parametric statistical analysis (Mann–Whitney independent 
29 
30 

sample test) and, in case of difference, significance was adjusted by maternal influence (Random Effect 
31 
32 

regression model). Additionally, different correlations were obtained between biometric features and 
33 
34 

experimental data using the Spearman test in order to assess dependence of biometric measures in 

36 
mitochondrial function or vice versa. Differences were considered significant with a p value <0.05. 
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3. RESULTS 

1 
2 

3.1 Biometric offspring data 

4 
5 

The biometric results of both the IUGR and control offspring of the rabbit model are shown in Figure 1 
6 
7 

and Table S2. Birth weight, heart weight, left and right ventricle weight and placental weight were 
8 
9 

significantly decreased in IUGR-offspring compared to controls (-30.35±2.99%, p<0.001; -29.73±2.70%, 

11 
p<0.001; -30.00±0.00%, p<0.005; -36.36±9.09%, p<0.001; -21.49±4.85%, p<0.001, respectively).  When 

13 
cardiac or placental weights were normalized to body weight, no significant differences were evidenced 

15 
between IUGR and control offspring. 

17 

18 
3.2 MRC activity, MRC expression and mitochondrial content 

20 
21 

A significant decrease of CII, CIV and CII+III enzymatic activities (-11.96±3.16%, -15.58±5.32% and - 
22 
23 

14.73±4.37%, respectively; p<0.05 in all cases) was found in heart of IUGR-offspring compared to 
24 
25 

controls,  while  other  complexes  (CI  and  CI+III)  also  showed  a  decrease,  although  not  significant 

27 
(Fig.2A).  The  same  pattern  was  observed  in  placenta,  although  the  decrease  in  CIV  did  not reach 

29 
statistical  significance  in  IUGR-offspring  (CII:  -17.22±3.46%,  p<0.005;  CIV:  -24.03±8.26%, p=NS; 

31 
CII+III: -29.64±4.43%, p<0.001; Fig.2A). MRC enzymatic activities relative  to citrate  synthase  activity 

33 
confirmed absolute MRC enzymatic activities reduction. All of the raw data are presented in Table S3. 

35 
36 

MRC CII subunits SDHA and SDHB and CIV subunit COX5A were conserved in cardiac tissue of 

38 
IUGR-offspring compared to controls. Interestingly, regardless maintained expression of CII SDHA and 

40 
CIV  COX5A  subunits  in  placental  tissue,  MRC  CII  SDHB  subunit  was  significantly  decreased  (- 

42 
44.12±5.88%; p<0.001) in IUGR-offspring compared to controls (Fig.3 and Table S3). 

44 

45 
Citrate synthase  activity in both heart and placental tissues  showed  preserved  mitochondrial content  in 

47 
IUGR-offspring compared to controls (Fig.2A and Table S3). These results were confirmed by conserved 

49 
Tom20 expression in these samples (Figure S1and Table S3). 

51 

52 
3.3 Mitochondrial oxygen consumption 

54 
55 

We found a not significant decrease of oxygen consumption on CI stimulation with glutamate and malate 
56 
57 

(GM oxidation) in heart and placenta from IUGR-offspring compared to controls (-5.56±6.46% and - 
58 
59 

25.64±18.97%, respectively, both p=NS, Fig.2B and Table S3). 
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3.9 Associations between biometric features and experimental results 

Table 1 describes all the significant associations between the biometric data and experimental results in 

the cohorts of IUGR and control offspring from the rabbit model. The most remarkable associations are 

described below and showed in Fig.5. 

Firstly, birth weight was positively and significantly correlated with heart and left ventricle weight and 

also with placental weight (R2=0.610, R2=0.446 and R2=0.557, respectively, p<0.001 in all cases; Fig.5A 

12 

 

 

3 

5 

8 

3.4 Mitochondrial CoQ content 

1 

2 
No differences were observed in CoQ9 or CoQ10 content in either cardiac or placental tissue of IUGR- 

4 
offspring with respect to control individuals (Table S3). 

6 

7 
3.5 Total cellular ATP levels 

9 
10 

No remarkable differences were observed in total content of cellular ATP in either heart or placental 
11 
12 

tissues in IUGR and control offspring (Fig.2D and Table S3). 
13 

14 
15 

3.6 Oxidative damage 
16 

17 
18 Oxidative damage, estimated by the rate of lipid peroxidation, showed a significant decrease of 
19 
20 39.02±4.35% in hearts of IUGR-offspring compared to controls (p<0.001; Fig.2C). Contrarily, lipid 
21 
22 peroxidation was 10.65±7.33% increased, albeit not significantly, in placenta from IUGR-offspring 
23 
24 

compared to the control group (p=NS; Fig.2C and Table S3). 
25 

26 
27 3.7 Expression and activity of SOD2 
28 

29 
30 No significant differences were observed in the protein content and activity of the anti-oxidant SOD2 
31 
32 enzyme between cases and controls in none of the studied tissues (Figures S2 and S3 and Table S3; either 
33 
34 total SOD2/β-actin content or acetylated SOD2/β-actin). Only acetylated/total SOD2 ratio showed trends 
35 
36 to increase in IUGR-offspring, both in heart and placental tissues (Table S3). 
37 

38 
39 3.8 Expression of Sirtuin3 
40 

41 
42 In heart tissue of IUGR-offspring, Sirtuin3/β-actin protein levels showed a significant increase of 
43 
44 84.21±31.58% (p<0.05) compared to hearts from controls (Fig.4 and Table S3). 
45 
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15 

and B). Similarly, heart weight was correlated with left ventricle weight and placental weight (R2=0.322, 

1 
p<0.005; R2=0.346, p<0.001). See Table 1 for other biometric associations. 

3 
4 

Secondly, birth weight was positively and significantly correlated with enzymatic activities of CI, CII and 

6 
CII+III in the heart of the both offspring (R2=0.157, p<0.05; R2=0.117, p<0.05; R2=0.289, p≤0.005; 

8 
respectively; Fig.5C). The weight of the other tissues was also positively and significantly correlated with 

10 

11 the enzymatic activity of some MRC complexes (Table 1). Similarly, body, heart, left ventricle and 

12 

13 placental  weights  were  significantly  and  positively  correlated  with  CII  SDHB  protein  expression in 

14 
placenta (R2=0.304, p≤0.001; R2=0.349, p<0.001; R2=0.215, p<0.005; R2=0.364, p<0.05, respectively; 

16 

17 Fig.5D). Interestingly, we found CII, CII+III and CIV enzymatic activity positively and significantly 

18 

19 correlated with CII SDHB subunit expression in placenta (R2=0.145, p<0.005; R2=0.192, p<0.005; 

20 

21 R2=0.241, p<0.001, respectively). On the other hand, birth weight and heart weight showed a significant 
22 

23 positive correlation with lipid peroxidation in heart (R2=0.325, p<0.005; R2=0.498, p<0.001; respectively; 
24 

25 Fig.5E). Moreover, oxidative damage in heart was positively and significantly correlated with the 
26 

27 enzymatic activities of MRC CII and CII+III (R2=0.136 and R2=0.173, p<0.05 in both cases). 
28 

29 

30 Finally, significant negative correlations were found between both birth and heart weight and Sirtuin3/β- 
31 

32 actin levels (R2=0.153, p<0.05 and R2=0.266, p<0.05, respectively; Fig.5F). 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 
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4. DISCUSSION 

1 

2 
A wide range of clinical manifestations has been associated with IUGR, including metabolic, neurological 

4 
and cardiovascular disorders (46-51). Among these, fetal cardiovascular remodeling has recently been 

6 
demonstrated in IUGR (8, 11, 14, 16, 18-20, 22, 27). However, disease modeling and investigation in 

8 
cardiac or placental target tissues are lacking. 

10 

11 
It is important to note that  in the  present study, offspring  with induced IUGR showed  altered biometric 

13 
measures by significant decrease in birth weight, accompanied by a reduction in heart and placenta, as 

15 
previously  reported  (14).  Thus,  organ  to  body  weight  measures  were  preserved  due  to  global  and 

17 

18 proportioned organ and body mass reduction. Cardiac hypertrophy and consequent increase in heart to 

19 

20 body weight is not present in IUGR rabbits, resembling human conditions, in which globular and 

21 

22 elongated hearts are usual, and hypertrophy occurs only in 17% of cases of IUGR (13, 47, 52-58). 

23 
24 

Cardiac metabolic and mitochondrial impairment has been previously demonstrated in the present animal 

26 

27 model at a transcriptional and ultrastructural level (14). However, the bioenergetic functional imbalance 

28 

29 has not yet been demonstrated in the target tissue of cardiovascular remodeling (heart) or in the tissue 

30 

31 responsible for oxygen and nutrient supply (placenta), and neither have the potential causal agents or 

32 

33 downstream cell consequences for this imbalance been described. 

34 

35 

36 The present study provides evidence of mitochondrial deficiency in the cardiac tissue of IUGR-rabbits, 

37 

38 with a significant decrease of enzymatic activities of MRC CII, CIV and CII+III. The same pattern was 

39 

40 observed in IUGR-placentas regarding CII and CII+III. Interestingly, CII SDHB protein expression 

41 

42 showed a significant decrease in placental tissue in front of preserved mitochondrial content, CoQ levels 

43 

44 and ATP content. Lipid peroxidation was found to be significantly decreased in cardiomyocytes but 

45 

46 showed a not significant increase in placental tissue. All these mitochondrial functional deficiencies 

47 

48 validate previous transcriptomic and ultrastructural findings (14). 

49 
50 

51 Interestingly, birth weight, placental and left ventricle weight were significantly and positively correlated 

52 

53 with the enzymatic MRC activities (including CI, CII, CII+III and CIV), thereby strengthening the 

54 

55 relevance of the need for adequate bioenergetic mitochondrial status to reach potential body, heart and 
56 

57 placental weight. 
58 
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Sirtuin3 is the most important mitochondrial deacetylase encoded in the nucleus and plays a role in the 

regulation of mitochondrial function and oxidative phosphorylation (60-62). Interestingly, since 

mitochondrial CII is one of the targets of Sirtuin3 (60, 63), this protein is able to simultaneously interfere 

with MRC and the Krebs cycle. In our study, the significant increase of cardiac Sirtuin3 observed in 

IUGR-offspring was associated with a significant decrease of CII enzymatic activity in both heart and 

placental tissues. This up-regulation in Sirtuin3 expression may be the compensatory response to 

15 

 

 

In this sense, mitochondrial functional alterations in IUGR-offspring are not confined to the target tissue 

1 

2 of cardiovascular remodeling (heart), but rather are also present in placenta. Mitochondrial dysfunction in 

3 

4 placenta (and probably also in heart and other tissues) might be caused by the de novo rearrangement 

5 

6 adaptations imposed by the experimental hypoxia induced by the ligature of uteroplacental vessels in this 

7 

8 animal model (6). Similar hypoxic conditions are also present in patients with IUGR due to placental 

9 

10 insufficiency. These  are  undoubtedly examples of  the  fetal programing,  first  described  by Barker (5), 

11 

12 which establishes that physiologic adaptations to the fetal environment may condition organ development 
13 

14 and consequent disease in adulthood. 
15 

16 

17 Both heart and placenta from IUGR-offspring showed a common enzymatic alteration in MRC CII 

18 

19 dysfunction. CII, also known as succinate dehydrogenase, is the molecular link between the Krebs cycle 

20 

21 and the MRC. The Krebs cycle is a central pathway of the mitochondrial energy metabolism, which is 
22 

23 responsible for the oxidative degradation of the different dietetic supplies, feeding the MRC and, 
24 

25 subsequently, activating ATP synthesis. In order to further investigate the molecular basis of CII 
26 

27 dysfunction in heart and placenta of IUGR-offspring, the expression of CII SDHA and SDHB proteins 
28 

29 were assessed, together with CoQ levels, the electron donor for CII. Interestingly, in front of preserved 

30 

31 CoQ levels, SDHB subunit was found significantly decreased in placenta and positively and significantly 
32 

33 correlated with CII, CII+III and CIV enzymatic activities. These findings suggest that MRC enzymatic 
34 

35 dysfunction may be due, at least partially, to down-regulation of MRC subunits expression. Additionally, 
36 
37 the significant and positive correlation between CII SDHB levels and all biometric parameters from 
38 
39 IUGR and control offspring (body, placental and heart weights), highlighted the relevance of SDHB and 
40 
41 CII in this obstetric complication. As CII is the only complex of the MRC exclusively encoded by the 
42 
43 nuclear DNA (59), its deficiency may be more likely associated with alterations in the oxidative 
44 
45 metabolism events controlled by the nucleus, rather than a regulation associated with mitochondrial 
46 
47 genome. 
48 
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phenotype. Further studies are required to elucidate the functional consequences of the loss of some 

enzymatic MRC complexes in order to know whether CII dysfunction is a consequence or the cause of 

this obstetric complication and associated cardiovascular remodeling. It is also important to keep in mind 

that the bioenergetic findings of the present approach may become more evident by analysis under 

hypoxic conditions, other than the normoxic environment of experimental mitochondrial measures. 

Additionally, the reduced sample size of the present study may limit statistical findings which should be 

16 

 

 

7 

9 

imbalanced  bioenergetics status.  In accordance  with these  findings  obtained  in  IUGR-offspring  with 

1 

2 placental  hypoxia, environmental  hypoxia  has also  been associated  with alterations in the  Krebs cycle 

3 

4 (64), which may also lead to neurological or cardiac clinical consequences (65). 

5 
6 

Additionally, Sirtuin3 has been reported to modulate the induction of hypertrophy in heart (34) and  it has 

8 
been proposed  that this protein has a  role in  antioxidation, promoting  the  maintenance  of ATP  levels, 

10 

11 especially in hypoxic conditions (66, 67). Interestingly, in heart from IUGR-offspring, oxidative stress 

12 

13 was found to be significantly decreased in the setting of conserved cellular ATP levels, suggesting that 

14 

15 increased Sirtuin3 levels may protect cardiomyocytes from oxidative stress insults in placental hypoxia. 

16 

17 Sirtuin3 would exert a compensatory role in this phenotype by modulating mitochondrial lesion in 

18 

19 cardiomyocytes. Moreover, the presence of cardiac oxidative damage increased according to body weight, 

20 

21 heart weight and proper MRC activity, suggesting that the antioxidant protection of Sirtuin3 may be more 
22 

23 necessary in MRC dysfunction and abnormal fetal development. This hypothesis seems to be confirmed 
24 

25 by the significant negative correlation of body and heart weight with cardiac Sirtuin3 levels. In parallel, 
26 

27 cellular ATP levels were also maintained in placental tissue, albeit with a not significant increased lipid 
28 

29 peroxidation. This juxtaposed oxidative phenotype between heart and placenta may also be explained by 

30 

31 the poor antioxidant defenses characteristic of the placenta (68, 69). Interestingly, CoQ levels and SOD2 
32 

33 expression, that take part in the antioxidant defense system, did not seem to play a role in the 
34 
35 mitochondrial and oxidative phenotype observed in either cardiac or placental tissue. Actually, trends to 
36 
37 higher inactivation of SOD2 (acetylated vs. total SOD2 ratio) were noticed in IUGR-offspring that, 
38 
39 together with up-regulated expression of Sirtuin 3, have been previously associated with aging (35). 
40 
41 Nonetheless, further research is needed to address this topic and deeper in the potential association 
42 
43 between increased Sirtuin 3 expression and observed dysfunctional mitochondrial phenotype. 
44 

45 

46 The present study has some limitations and technical considerations that should be mentioned. IUGR is 
47 

48 considered a multifactorial disease involving many pathways and etiologies which finally lead to a single 



 

interpreted as a proof of concept However, further studies including a larger sample size are needed, 

1 

2 where   additional   measures   may  ideally  be   collected   (brain   sparing,   sex   distribution,   timing of 

3 

4 development and maturation of the heart, cardiac severity markers, etc) to explore underlying mechanistic 

5 

6 pathways. Additionally, all rising evidences that support mitochondrial dysfunctional phenotype in other 

7 

8 obstetric  complications  associated  to  placental  insufficiency  (for  instance  small  for  gestational  age, 

9 

10 preeclampsia, miscarriage or stillbirth) may strengthen the relevance of mitochondrial role in proper  fetal 

11 

12 development. 

13 
14 

15 In summary, the present study shows that mitochondrial impairment is not only associated with IUGR but 

16 

17 could also ultimately be the source of cardiac dysfunction and consequent cardiovascular remodeling. A 

18 

19 potential mechanistic explanation for MRC CII dysfunction and decreased oxidative damage in heart of 

20 

21 IUGR-offspring could be that Sirtuin3 regulates this unbalanced mitochondrial function by interfering 
22 

23 MRC and Krebs cycle activity, empowering antioxidant defenses in an attempt to recover mitochondrial 
24 

25 function in cardiomyocytes in the setting of placental insufficiency and derived hypoxia (Fig.6). 
26 

27 

28 Since sirtuins and cardiac function can be modulated through dietary interventions (37), the potential use 

29 

30 of such non-invasive approaches in human pregnancies is a strategy that should be further investigated to 
31 

32 reduce the risk of obstetric complications and associated diseases in adulthood. 
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ABBREVIATIONS 

1 

2 IUGR: intrauterine growth restriction 
3 
4 

MRC: mitochondrial respiratory chain 
5 

6 

7 EGTA: ethylene glycol tetraacetic acid 

8 
9 ATP: adenosine triphosphate 
10 
11 

12 MgCl2: magnesium chloride 

13 
14 MES: 2-(N-morpholino)ethanesulfonic acid 
15 
16 

CI: complex I 
17 

18 

19 CII: complex II 
20 
21 CIV: complex IV 
22 
23 

24 CI+III: complex I+III 

25 

26 CII+III: complex II+III 
27 

28 
HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

30 

31 GM Oxidation: glutamate malate oxidation 
32 
33 MDA: malondialdehyde 
34 
35 

36 HAE: hydroxyalkenal 

37 
38 SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis 
39 

40 
SDHA: Succinate dehydrogenase complex, subunit A 

42 

43 SDHB: Succinate dehydrogenase complex, subunit B 

44 
45 

COX5A: Cytochrome c oxidase subunit 5a 
46 
47 

48 Tom20: Mitochondrial import receptor subunit TOM20 

49 
50 SOD2: Superoxid dismutase 2 
51 
52 

SEM: standard error of the mean 
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(stripped bars) compared to controls (empty bars). Lipid peroxidation showed a significant decrease in 

hearts while showing a not significant increase in placenta from IUGR-offspring. D) Total cellular ATP 

levels in heart (left; control N=10 and IUGR N=14) and placenta (right; control N=14 and IUGR N=16) 
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FIGURE LEGENDS 

1 
2 Fig.1  Biometric  results  of  heart  and  placenta  from  rabbit  offspring  with  intrauterine  growth 
3 
4 restriction (IUGR). IUGR- offspring are presented as column bars demonstrating percentage of increase 
5 
6 or decrease compared to controls (represented as the baseline 0). There was a significant decrease in birth 
7 
8 weight in IUGR-offspring (control N=14 and IUGR N=16), accompanied by a reduction in heart  (control 
9 
10 N=13 and IUGR N=15), left (control N=11 and IUGR N=14) and right ventricle (control N=10 and IUGR 
11 
12 N=13) and placental weight (control N=14 and IUGR N=16). Heart body weight relative to body weight 
13 
14 (control N=13 and IUGR N=15) and also placental weight corrected by body weight (control N=14 and 
15 
16 IUGR N=16) did not show significant differences between cases and controls. The results are expressed 
17 
18 as a percentage of decrease compared to controls. Case-control differences were sought by non- 
19 
20 parametric statistical analysis and, in case of difference, significance was adjusted by maternal influence.. 
21 
22 

**: p<0.001;; ##: p<0.005; LV: left ventricle; RV+S: right ventricle and septum. 
23 
24 

25 Fig.2 Mitochondrial impairment of heart and placenta from rabbit offspring with intrauterine 
26 

27 growth restriction (IUGR). A) Enzymatic activities of the mitochondrial respiratory chain (MRC) 
28 

29 of heart (left) and placenta (right) from IUGR-offspring compared to controls (represented as the 
30 

31 baseline). A significant decrease of CII, CIV and CII+III enzymatic activities was observed in heart of 
32 

33 IUGR-offspring, while CI and CI+III showed a not significant decrease (control N=10 and IUGR N=14 
34 

35 for all). The same pattern was observed in placenta, although the CIV decrease did not reach statistical 

36 

37 significance in IUGR-offspring (CI: control N=14 and IUGR N=14; CII and CIV: control N=14 and 
38 

39 IUGR N=16; CI+III: control N=13 and IUGR N=15; CII+III: control N=13 and IUGR N=16). Citrate 
40 

41 synthase (CS) activity (mitochondrial content) was conserved in both heart (control N=10 and IUGR 
42 
43 N=14) and placental (control N=14 and IUGR N=16) tissues from IUGR-offspring. B) Mitochondrial 
44 
45 oxygen consumption stimulated with substrates of complex I (glutamate and malate) in heart (left; 
46 
47 control N=11 and IUGR N=14) and placenta (right; control N=13 and IUGR N=13) from IUGR-offspring 
48 
49 (striped bars) compared to controls (empty bars). Oxygen consumption showed a not significant decrease 
50 
51 on CI stimulation in heart and placenta from IUGR-offspring. C) Lipid peroxidation in heart (left; 
52 
53 control N=10 and IUGR N=14) and placenta (right; control N=13 and IUGR N=16) from IUGR-offspring 
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were sought by non-parametric statistical analysis and, in case of difference, significance was adjusted by 

maternal influence.. #: p<0.05. B) A representative Western Blot of Sirt3 protein expression in hearts is 

shown in which β-actin is used as the loading control. 

Fig5 Associations between birth weight of intrauterine growth restriction (IUGR) and control 

offspring and some biometric data or experimental results. Herein, there are correlations 

demonstrating the positive association between birth weight and mitochondrial parameters and also the 

21 

 

 

from IUGR-offspring (striped bars) compared to controls (empty bars). No remarkable differences were 

1 

2 observed in the total cellular ATP content in either heart or placenta tissue. The results are expressed as a 

3 

4 percentage of decrease compared to controls (A) and as means and standard error of the mean (SEM) 

5 

6 compared  to controls (B-D). Case-control differences  were  sought by non-parametric statistical analysis 

7 

8 and, in case of difference, significance was adjusted by maternal influence. #: p<0.05; ##: p<0.005; **: 

9 

10 p<0.001; CI, CII, CIV, CI+III, CII+III: MRC complex I, II, IV, I+III, II+III; CS: Citrate synthase. 

11 

12 

13 Fig.3 Expression of the mitochondrial respiratory chain (MRC) subunits SDHA and SDHB (from 

14 

15 complex II) and COX5A (from complex IV) in IUGR-offspring and controls. A) This column bar 

16 

17 graph represents protein SHDB subunit levels in placenta from IUGR-offspring (striped bars; N=16) 

18 

19 compared to placenta from controls (empty bars; N=14). SHDB/β-actin expression is significantly 

20 

21 decreased in placenta from IUGR-offspring. The results are expressed as mean and standard error of the 
22 

23 mean (SEM) compared to controls. Case-control differences were sought by non-parametric statistical 
24 

25 analysis and, in case of difference, significance was adjusted by maternal influence. **: p<0.001. B) A 
26 

27 representative Western Blot of SDHA, SDHB and COX5A protein expression in placenta is shown in 
28 

29 which β-actin was used as the loading control. C) A representative Western Blot of SDHA, SDHB and 

30 

31 COX5A protein expression in heart is shown in which β-actin was used as the loading control. IUGR: 
32 

33 Intrauterine growth restriction; SDHA: Succinate dehydrogenase complex, subunit A; SDHB: Succinate 
34 
35 dehydrogenase complex, subunit B; COX5A: Cytochrome c oxidase subunit 5a. 
36 

37 

38 Fig.4 Mitochondrial levels of protein Sirtuin3 (Sirt3/β-actin ratio) in heart of rabbit offspring with 
39 

40 intrauterine growth restriction (IUGR). A) This column bar graph represents protein Sirtuin3 levels in 
41 

42 hearts from IUGR-offspring (striped bars; N=13) compared to hearts from controls (empty bars; N=10). 
43 
44 Sirtuin3/β-actin levels in heart tissue of IUGR-offspring showed a significant increase. The results are 
45 
46 expressed as mean and standard error of the mean (SEM) compared to controls. Case-control differences 
47 
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5 

7 

9 

negative association with Sirtuin3 expression, probably up-regulated as a homeostatic intent to revert 

1 

2 mitochondrial lesion. 

3 

4 
Fig.6 Association between metabolic and mitochondrial impairment and compensation according to 

6 
Sirtuin3  levels  in  a  rabbit  model  of  intrauterine  growth  restriction  (IUGR)  and  associated 

8 
cardiovascular remodeling. In the context of IUGR there is a situation of placental insufficiency that 

10 

11 creates a hypoxic environment during fetal development leading to metabolic and mitochondrial 

12 

13 rearrangements and cardiovascular remodeling. In these settings Sirtuin3 levels increase, probably in an 

14 

15 attempt to regulate this adverse situation and revert the metabolic and mitochondrial imbalance that may 

16 

17 finally lead to the development of IUGR and cardiovascular remodeling. MRC: Mitochondrial respiratory 

18 

19 chain; CI-IV; Complex I-IV; AC: Acetylation; O2
-: superoxide anion; H2O2: Hydrogen peroxide; OH-: 

20 

21 Hydroxil anion. 
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Table 
 
 
 
 
 

Table 1. Associations between biometric data and experimental results in the IUGR and control 

offspring. 

 

Parameter With respect to Correlation 

coefficient 
p R2 

 

 

 

 

 

 

 

 

 

 
Birth weight (g) 

Heart weight (g) 0.783 <0.001 0.610 

Left ventricle (g) 0.676 <0.001 0.446 

Right ventricle + septum (g) 0.735 <0.001 0.459 

Placental weight (g) 0.758 <0.001 0.557 

CI enzymatic activitya in heart 
0.429 <0.05 0.157 

CII enzymatic activitya in heart 0.448 <0.05 0.117 

CII+III enzymatic activitya in heart 0.543 ≤0.005 0.289 

Citrate synthase activitya in heart 
0.517 <0.01 0.125 

Lipid peroxidationb in heart 0.591 <0.005 0.325 

Sirtuin3/β-actin ratio (AU) in heart -0.498 <0.05 0.153 

CI+III enzymatic activitya in placenta 0.380 <0.05 0.172 

CII+III enzymatic activitya in placenta 0.574 ≤0.001 0.347 

Citrate synthase activitya in placenta 0.371 <0.05 0.217 

SDHB/β-actin ratio (AU) in placenta 0.570 ≤0.001 0.304 

 

 

 

 

 

 
Heart weight (g) 

Left ventricle (g) 0.511 <0.005 0.322 

Right ventricle + Septum (g) 0.843 <0.001 0.658 

Heart/body weight x 100 (g) 0.469 ≤0.005 0.106 

Placental weight (g) 0.575 <0.001 0.346 

Lipid peroxidation
b
 in heart 0.710 <0.001 0.498 

Sirtuin3/β-actin ratio (AU) in heart -0.505 <0.05 0.266 

CII enzymatic activitya in placenta 0.450 <0.05 0.146 

CI+III enzymatic activitya in placenta 0.594 ≤0.001 0.277 

CII+III enzymatic activitya in placenta 0.515 <0.005 0.234 

Citrate synthase activitya in placenta 0.402 <0.05 0.183 

SDHB/β-actin ratio (AU) in placenta 0.500 <0.01 0.349 

 

 

 

Left ventricle (g) 

Placental weight (g) 0.563 ≤0.001 0.336 

CII enzymatic activitya in heart 0.480 <0.05 0.130 

CII+III enzymatic activitya in heart 0.512 <0.01 0.209 

Citrate synthase activitya in heart 0.594 <0.005 0.338 

CII enzymatic activitya in placenta 0.461 <0.05 0.230 

CIV enzymatic activitya in placenta 0.476 <0.05 0.412 

CII+III enzymatic activitya in placenta 0.507 <0.01 0.270 



 

 Citrate synthase activitya in placenta 0.606 ≤0.001 0.332 

SDHB/β-actin ratio (AU) in placenta 0.544 <0.005 0.251 

 
Right ventricle + 

Septum (g) 

Heart/body weight x 100 (g) 0.467 <0.05 0.048 

Sirtuin3/β-actin ratio (AU) in heart -0.593 <0.005 0.293 

CI+III enzymatic activitya in placenta 0.459 <0.05 0.228 

CII+III enzymatic activitya in placenta 0.442 <0.05 0.181 

Heart/body weight x 

100 

CI+III enzymatic activitya in placenta 0.424 <0.05 0.018 

Sirtuin3/α-tubulin ratio (AU) in heart -0.551 ≤0.01 0.053 

 

 
Placental weight (g) 

Placenta/body weight x 100 (g) 0.436 <0.005 0.301 

CIV enzymatic activitya in placenta 0.436 <0.05 0.245 

CII+III enzymatic activitya in placenta 0.548 ≤0.001 0.267 

SDHB/β-actin ratio (AU) in placenta 0.514 <0.005 0.364 

Placenta/body weight x 

100 
Sirtuin3/β-actin ratio (AU) in heart 0.732 <0.001 0.599 

Lipid peroxidation in 

heart 

CII enzymatic activitya in heart 0.436 <0.05 0.136 

CII+III enzymatic activitya in heart 0.432 <0.05 0.173 

SDHB/β-actin ratio 

(AU) in heart 
Total ATP levelsc in heart 0.537 <0.01 0.226 

SOD2/β-actin ratio 

(AU) in heart 
Citrate synthase activitya in heart -0.418 <0.05 0.112 

 

 
SDHB/β-actin ratio 

(AU) in placenta 

CII enzymatic activitya in placenta 0.497 <0.005 0.145 

CIV enzymatic activitya in placenta 0.617 <0.001 0.241 

CII+III enzymatic activitya in placenta 0.521 <0.005 0.192 

Citrate synthase activitya in placenta 0.613 <0.001 0.261 

SOD2/β-actin ratio (AU) in placenta 0.402 <0.05 0.314 

COX5A/β-actin ratio 

(AU) in placenta 

CIV enzymatic activitya in placenta 0.409 <0.05 0.149 

Citrate synthase activitya in placenta 0.406 <0.05 0.179 

Tom20/β-actin ratio 

(AU) in placenta 
CIV enzymatic activitya in placenta 0.429 <0.05 0.164 

SOD2/β-actin ratio 

(AU) in placenta 

CIV enzymatic activitya in placenta 0.513 <0.005 0.249 

CII+III enzymatic activitya in placenta 0.482 <0.01 0.216 

CI: Complex I; CII: Complex II; CI+III: Complex I+III; CII+III: Complex II+III; CIV: Complex IV; 

SDHA: Succinate dehydrogenase complex, subunit A; SDHB: Succinate dehydrogenase complex, subunit 

B; COX5A: Cytochrome c oxidase subunit 5a; Tom20: Mitochondrial import receptor subunit TOM20; 

SOD2: Superoxid dismutase 2; AU: Arbitrary units; g: grams; a: nmol/minute· mg protein; b: μM 

MDA+HAE/mg protein; c: pmol ATP/mg protein. 
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A) Enzymatic activities of the MRC B) Oxygen consumption 
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Fig.S1 Representative Blot for the expression of mitochondrial import receptor subunit TOM20 

(Tom20) in heart and placental tissue from IUGR-offspring and controls. No remarkable differences 

were observed in heart (control N=4 and IUGR N=8) and placenta (control N=15 and IUGR N=15) 

between cases and controls. β-actin was used as loading control. IUGR: Intrauterine growth restriction 

 

Fig.S2 Representative Blot for the expression of superoxid dismutase 2 (SOD2) anti-oxidant enzyme 

in heart and placental tissue from IUGR-offspring and controls. No remarkable differences were 

observed in heart (control N=10 and IUGR N=14) and placenta (control N=15 and IUGR N=15) between 

cases and controls. β-actin was used as loading control. IUGR: Intrauterine growth restriction 

 

Fig.S3 Representative Blot for the expression of the acetylated form of superoxid dismutase 2 

(SOD2) anti-oxidant enzyme in heart and placental tissue from IUGR-offspring and controls. No 

remarkable differences were observed in heart (control N=8 and IUGR N=13) and placenta (control N=X 

and IUGR N=X) between cases and controls. β-actin was used as loading control. IUGR: Intrauterine 

growth restriction 
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SUPPLEMENTARY MATERIAL 

 
TableS1. Sample size included for each pregnant rabbit according to 10

th
 

percentile of birth weight. 

 N Offspring 

Pregnant rabbit N Control N IUGR 

1 1 1 

2 4 4 

3 4 4 

4 2 2 

5 1 1 

6 2 4 

N total 14 16 

N: number of sample; IUGR: intrauterine growth restriction 

 

 

 
Table S2. Biometric data of experimental groups. Whole body, cardiac and placental weight are 

reduced in IUGR-offspring compared to control-offspring 

 

 
Control IUGR 

% of increased (+) 

or decreased (-) 
P value 

Birth weight (g) 
52.26±1.32 36.40±1.56 -30.35±2.99 <0.001 a 

Heart weight (g) 
0.37±0.01 0.26±0.01 -29.73±2.70 <0.001 a 

Left ventricle heart 

weight (g) 
0.10±0.01 0.07±0.00 -30.00±0.00 <0.005 a, † 

Heart/body weight 

x 100 
0.71±0.02 0.73±0.05 +2.82±7.04 NS 

Right Ventricle + 

Septum heart 

weight (g) 

 
0.11±0.01 

 
0.07±0.01 

 
-36.36±9.09 

 
<0.001 a 

Placental weight (g) 7.63±0.48 5.99±0.37 -21.49±4.85 <0.001 a, † 

Placenta/body 

weight x 100 
0.15±0.01 0.17±0.01 +13.33±6.67 NS 

 
Values are expressed as mean ± standard error of the mean. Case-control differences were sought by 

non-parametric statistical analysis and, in case of difference, significance was adjusted (a) by maternal 

influence (†). IUGR: Intrauterine Growth Restriction. 
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Table S3. Raw data of absolute and relative enzymatic activities of complex I, II, IV, I+III and 

II+III of the mitochondrial respiratory chain, MRC subunits expression (SDHA, SDHB and 

COX5A), citrate synthase (CS) activity, Tom20 expression, Complex I-stimulated oxygen 

consumption (GM Oxidation), CoQ9 and CoQ10 levels, cellular ATP levels, lipid peroxidation, 

SOD2 expression and Sirtuin3/β-actin levels in the experimental groups. 

 

HEART Control IUGR 
% of increased (+) or 

decreased (-) 
P value 

Complex I 

(nmol/minute· mg 

protein) 

 
147.21±18.57 

 
114.02±12.31 

 
-22.55±8.36 

 
NS 

Complex I relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.33±0.04 

 

 
0.28±0.03 

 

 
-15.15±9.09 

 

 
NS 

Complex II 

(nmol/minute· mg 

protein) 

 
272.68±11.45 

 
240.08±8.63 

 
-11.96±3.16 

 
<0.05 a 

Complex II 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.63±0.03 

 

 

0.59±0.03 

 

 

-6.35±4.76 

 

 

NS 

Complex IV 

(nmol/minute· mg 

protein) 

 
576.95±23.93 

 
487.06±30.71 

 
-15.58±5.32 

 
<0.05 a 

Complex IV 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

1.34±0.08 

 

 

1.17±0.07 

 

 

-12.69±5.22 

 

 

NS 

Complex I+III 

(nmol/minute· mg 

protein) 

 
111.62±4.99 

 
100.71±4.99 

 
-9.77±4.47 

 
NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.23±0.03 

 

 

0.24±0.01 

 

 

+4.35±4.35 

 

 

NS 

Complex II+III 182.55±5.76 155.66±7.98 -14.73±4.37 <0.05 a 
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(nmol/minute· mg 

protein) 

    

Complex II+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.43±0.02 

 

 

0.37±0.01 

 

 

-13.95±2.33 

 

 

NS 

SDHA/β-actin 

(AU) 
2.60±0.19 2.85±0.27 +9.62±10.38 NS 

SDHB/β-actin 

(AU) 
1.02±0.11 1.37±0.13 +34.31±12.75 NS 

COX5A/β-actin 

(AU) 
2.50±0.61 2.29±0.64 -8.40±25.60 NS 

Citrate Synthase 

(nmol/minute· mg 

protein) 

 
436.96±21.72 

 
419.33±20.56 

 
-4.03±4.71 

 
NS 

Tom20/β-actin 

(AU) 
4.09±0.18 6.60±1.30 +61.37±31.78 NS 

GM Oxidation 

(pmol O2/s*mg) 
19.80±2.46 18.70±1.28 -5.56±6.46 NS 

CoQ9 levels 

(μmol/L) 
68.99±6.31 61.03±4.47 -11.54±6.48 NS 

CoQ10 levels 

(μmol/L) 
479.29±15.74 435.66±32.27 -9.10±6.73 NS 

ATP levels 

(pmol ATP/mg 

protein) 

 
0.57±0.03 

 
0.54±0.01 

 
-5.56±1.75 

 
NS 

Lipid peroxidation 

(μM      

MDA+HAE/mg 

protein) 

 

 
14.02±0.89 

 

 
8.55±0.61 

 

 
-39.02±4.35 

 
 

<0.001 a 

SOD2/β-actin 

(AU) 
6.05±1.02 4.41±0.76 -27.11±12.56 NS 

SOD2 

acetylation/β-actin 

(AU) 

 
7.84±0.77 

 
10.84±1.37 

 
+38.27±17.47 

 
NS 

Ratio SOD2 

acetylation/SOD2 

expression 

(AU) 

 

 
1.781.71±0.1707 

 

 
1.872.29±0.30 

 

 
5.06+33.92±16.2917.54 

 

 
NS 
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Sirtuin3/β-actin 

(AU) 
0.19±0.01 0.35±0.06 +84.21±31.58 <0.05 a 

PLACENTA Control IUGR 
% of increased or 

decreased 
P value 

Complex I 

(nmol/minute· mg 

protein) 

 
10.28±1.37 

 
8.33±0.52 

 
-18.97±5.06 

 
NS 

Complex I relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.25±0.04 

 

 
0.24±0.01 

 

 
-4.00±4.00 

 

 
NS 

Complex II 

(nmol/minute· mg 

protein) 

 
17.94±0.99 

 
14.85±0.62 

 
-17.22±3.46 

 
<0.005 a 

Complex II 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.41±0.02 

 

 

0.42±0.02 

 

 

+2.44±4.88 

 

 

NS 

Complex IV 

(nmol/minute· mg 

protein) 

 
57.27±6.53 

 
43.51±4.73 

 
-24.03±8.26 

 
NS 

Complex IV 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

1.27±0.12 

 

 

1.18±0.09 

 

 

-7.09±7.09 

 

 

NS 

Complex I+III 

(nmol/minute· mg 

protein) 

 
9.52±1.51 

 
6.36±0.59 

 
-33.19±6.20 

 
NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.21±0.02 

 

 

0.18±0.02 

 

 

-14.29±9.52 

 

 

NS 

Complex II+III 

(nmol/minute· mg 

protein) 

 
28.44±2.24 

 
20.01±1.26 

 
-29.64±4.43 

 
<0.001 a 

Complex II+III 

relative to CS 
0.61±0.03 0.55±0.02 -9.84±3.28 NS 
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activity 

(nmol/minute· mg 

protein) 

    

SDHA/β-actin 

(AU) 
0.68±0.15 0.54±0.07 -20.59±10.29 NS 

SDHB/β-actin 

(AU) 
0.68±0.07 0.38±0.04 +44.12±5.88 

<0.001 a, † 

COX5A/β-actin 

(AU) 
0.47±0.07 0.33±0.04 -29.79±8.51 NS 

Citrate Synthase 

(nmol/minute· mg 

protein) 

 
45.64±3.26 

 
36.39±1.91 

 
-20.27±4.18 

 
NS 

Tom20/β-actin 

(AU) 
2.78±0.40 2.91±0.34 +4.68±12.23 NS 

GM Oxidation 

(pmol O2/s*mg) 
1.95±0.47 1.45±0.37 -25.64±18.97 NS 

CoQ9 levels 

(μmol/L) 
33.19±0.00 34.63±1.44 +4.16±4.16 NS 

CoQ10 levels 

(μmol/L) 
55.99±6.14 54.89±8.61 -1.96±15.38 NS 

ATP levels 

(pmol ATP/mg 

protein) 

 
0.04±0.00 

 
0.04±0.00 

 
+5.71±8.57 

 
NS 

Lipid peroxidation 

(μM      

MDA+HAE/mg 

protein) 

 

 
12.96±1.31 

 

 
14.34±0.95 

 

 
+10.65±7.33 

 

 
NS 

SOD2/β-actin 

(AU) 
2.29±0.35 1.92±0.22 -16.16±9.61 NS 

SOD2 

acetylation/β-actin 

(AU) 

 
5.21±0.60 

 
5.64±0.48 

 
+8.25±9.21 

 
NS 

Ratio SOD2 

acetylation/SOD2 

expression 

(AU) 

 

 
2.553.03±0.4846 

 

 
2.273.94±0.3053 

 
- 

+10.9830.03±11.7617.49 

 

 
NS 

 

Values are mean ± standard error of the mean. Case-control differences were sought by non-parametric 

statistical analysis and, in case of difference, significance was adjusted (a) by maternal influence (†). 

IUGR: Intrauterine Growth Restriction; SDHA: Succinate dehydrogenase complex, subunit A; SDHB: 
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Succinate dehydrogenase complex, subunit B; COX5A: Cytochrome c oxidase subunit 5a; Tom20: 

Mitochondrial import receptor subunit TOM20; GM Oxidation: Glutamate and malate oxidation; CoQ9 

and 10: Coenzyme Q9 and Q10; MDA: Malondialdehyde; HAE: Hydroxyalkenal; SOD2: Superoxid 

dismutase 2; AU: Arbitrary units; NS: not significant. 
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SUPPLEMENTARY MATERIAL 

 
TableS1. Sample size included for each pregnant rabbit according to 10

th
 

percentile of birth weight. 

 N Offspring 

Pregnant rabbit N Control N IUGR 

1 1 1 

2 4 4 

3 4 4 

4 2 2 

5 1 1 

6 2 4 

N total 14 16 

N: number of sample; IUGR: intrauterine growth restriction 

 

 

 
Table S2. Biometric data of experimental groups. Whole body, cardiac and placental weight are 

reduced in IUGR-offspring compared to control-offspring 

 

 
Control IUGR 

% of increased (+) 

or decreased (-) 
P value 

Birth weight (g) 
52.26±1.32 36.40±1.56 -30.35±2.99 <0.001 a 

Heart weight (g) 
0.37±0.01 0.26±0.01 -29.73±2.70 <0.001 a 

Left ventricle heart 

weight (g) 
0.10±0.01 0.07±0.00 -30.00±0.00 <0.005 a, † 

Heart/body weight 

x 100 
0.71±0.02 0.73±0.05 +2.82±7.04 NS 

Right Ventricle + 

Septum heart 

weight (g) 

 
0.11±0.01 

 
0.07±0.01 

 
-36.36±9.09 

 
<0.001 a 

Placental weight (g) 7.63±0.48 5.99±0.37 -21.49±4.85 <0.001 a, † 

Placenta/body 

weight x 100 
0.15±0.01 0.17±0.01 +13.33±6.67 NS 

 
Values are expressed as mean ± standard error of the mean. Case-control differences were sought by 

non-parametric statistical analysis and, in case of difference, significance was adjusted (a) by maternal 

influence (†). IUGR: Intrauterine Growth Restriction. 
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Table S3. Raw data of absolute and relative enzymatic activities of complex I, II, IV, I+III and 

II+III of the mitochondrial respiratory chain, MRC subunits expression (SDHA, SDHB and 

COX5A), citrate synthase (CS) activity, Tom20 expression, Complex I-stimulated oxygen 

consumption (GM Oxidation), CoQ9 and CoQ10 levels, cellular ATP levels, lipid peroxidation, 

SOD2 expression and Sirtuin3/β-actin levels in the experimental groups. 

 

HEART Control IUGR 
% of increased (+) 

or decreased (-) 
P value 

Complex I 

(nmol/minute· mg 

protein) 

 
147.21±18.57 

 
114.02±12.31 

 
-22.55±8.36 

 
NS 

Complex I relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.33±0.04 

 

 
0.28±0.03 

 

 
-15.15±9.09 

 

 
NS 

Complex II 

(nmol/minute· mg 

protein) 

 
272.68±11.45 

 
240.08±8.63 

 
-11.96±3.16 

 
<0.05 a 

Complex II relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.63±0.03 

 

 
0.59±0.03 

 

 
-6.35±4.76 

 

 
NS 

Complex IV 

(nmol/minute· mg 

protein) 

 
576.95±23.93 

 
487.06±30.71 

 
-15.58±5.32 

 
<0.05 a 

Complex IV 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

1.34±0.08 

 

 

1.17±0.07 

 

 

-12.69±5.22 

 

 

NS 

Complex I+III 

(nmol/minute· mg 

protein) 

 
111.62±4.99 

 
100.71±4.99 

 
-9.77±4.47 

 
NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.23±0.03 

 

 

0.24±0.01 

 

 

+4.35±4.35 

 

 

NS 

Complex II+III 

(nmol/minute· mg 
182.55±5.76 155.66±7.98 -14.73±4.37 <0.05 a 
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protein)     

Complex II+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.43±0.02 

 

 

0.37±0.01 

 

 

-13.95±2.33 

 

 

NS 

SDHA/β-actin 

(AU) 
2.60±0.19 2.85±0.27 +9.62±10.38 NS 

SDHB/β-actin 

(AU) 
1.02±0.11 1.37±0.13 +34.31±12.75 NS 

COX5A/β-actin 

(AU) 
2.50±0.61 2.29±0.64 -8.40±25.60 NS 

Citrate Synthase 

(nmol/minute· mg 

protein) 

 
436.96±21.72 

 
419.33±20.56 

 
-4.03±4.71 

 
NS 

Tom20/β-actin 

(AU) 
4.09±0.18 6.60±1.30 +61.37±31.78 NS 

GM Oxidation 

(pmol O2/s*mg) 
19.80±2.46 18.70±1.28 -5.56±6.46 NS 

CoQ9 levels 

(μmol/L) 
68.99±6.31 61.03±4.47 -11.54±6.48 NS 

CoQ10 levels 

(μmol/L) 
479.29±15.74 435.66±32.27 -9.10±6.73 NS 

ATP levels 

(pmol ATP/mg 

protein) 

 
0.57±0.03 

 
0.54±0.01 

 
-5.56±1.75 

 
NS 

Lipid peroxidation 

(μM MDA+HAE/mg 

protein) 

 
14.02±0.89 

 
8.55±0.61 

 
-39.02±4.35 

 
<0.001 a 

SOD2/β-actin 

(AU) 
6.05±1.02 4.41±0.76 -27.11±12.56 NS 

SOD2 

acetylation/β-actin 

(AU) 

 
7.84±0.77 

 
10.84±1.37 

 
+38.27±17.47 

 
NS 

Ratio SOD2 

acetylation/SOD2 

expression 

(AU) 

 

 
1.71±0.07 

 

 
2.29±0.30 

 

 
+33.92±17.54 

 

 
NS 

Sirtuin3/β-actin 

(AU) 
0.19±0.01 0.35±0.06 +84.21±31.58 <0.05 a 
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PLACENTA Control IUGR 
% of increased or 

decreased 
P value 

Complex I 

(nmol/minute· mg 

protein) 

 
10.28±1.37 

 
8.33±0.52 

 
-18.97±5.06 

 
NS 

Complex I relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.25±0.04 

 

 
0.24±0.01 

 

 
-4.00±4.00 

 

 
NS 

Complex II 

(nmol/minute· mg 

protein) 

 
17.94±0.99 

 
14.85±0.62 

 
-17.22±3.46 

 
<0.005 a 

Complex II relative 

to CS activity 

(nmol/minute· mg 

protein) 

 

 
0.41±0.02 

 

 
0.42±0.02 

 

 
+2.44±4.88 

 

 
NS 

Complex IV 

(nmol/minute· mg 

protein) 

 
57.27±6.53 

 
43.51±4.73 

 
-24.03±8.26 

 
NS 

Complex IV 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

1.27±0.12 

 

 

1.18±0.09 

 

 

-7.09±7.09 

 

 

NS 

Complex I+III 

(nmol/minute· mg 

protein) 

 
9.52±1.51 

 
6.36±0.59 

 
-33.19±6.20 

 
NS 

Complex I+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.21±0.02 

 

 

0.18±0.02 

 

 

-14.29±9.52 

 

 

NS 

Complex II+III 

(nmol/minute· mg 

protein) 

 
28.44±2.24 

 
20.01±1.26 

 
-29.64±4.43 

 
<0.001 a 

Complex II+III 

relative to CS 

activity 

(nmol/minute· mg 

protein) 

 

 

0.61±0.03 

 

 

0.55±0.02 

 

 

-9.84±3.28 

 

 

NS 
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SDHA/β-actin 

(AU) 
0.68±0.15 0.54±0.07 -20.59±10.29 NS 

SDHB/β-actin 

(AU) 
0.68±0.07 0.38±0.04 +44.12±5.88 

<0.001 a, † 

COX5A/β-actin 

(AU) 
0.47±0.07 0.33±0.04 -29.79±8.51 NS 

Citrate Synthase 

(nmol/minute· mg 

protein) 

 
45.64±3.26 

 
36.39±1.91 

 
-20.27±4.18 

 
NS 

Tom20/β-actin 

(AU) 
2.78±0.40 2.91±0.34 +4.68±12.23 NS 

GM Oxidation 

(pmol O2/s*mg) 
1.95±0.47 1.45±0.37 -25.64±18.97 NS 

CoQ9 levels 

(μmol/L) 
33.19±0.00 34.63±1.44 +4.16±4.16 NS 

CoQ10 levels 

(μmol/L) 
55.99±6.14 54.89±8.61 -1.96±15.38 NS 

ATP levels 

(pmol ATP/mg 

protein) 

 
0.04±0.00 

 
0.04±0.00 

 
+5.71±8.57 

 
NS 

Lipid peroxidation 

(μM MDA+HAE/mg 

protein) 

 
12.96±1.31 

 
14.34±0.95 

 
+10.65±7.33 

 
NS 

SOD2/β-actin 

(AU) 
2.29±0.35 1.92±0.22 -16.16±9.61 NS 

SOD2 

acetylation/β-actin 

(AU) 

 
5.21±0.60 

 
5.64±0.48 

 
+8.25±9.21 

 
NS 

Ratio SOD2 

acetylation/SOD2 

expression 

(AU) 

 

 
3.03±0.46 

 

 
3.94±0.53 

 

 
+30.03±17.49 

 

 
NS 

 

Values are mean ± standard error of the mean. Case-control differences were sought by non-parametric 

statistical analysis and, in case of difference, significance was adjusted (a) by maternal influence (†). 

IUGR: Intrauterine Growth Restriction; SDHA: Succinate dehydrogenase complex, subunit A; SDHB: 

Succinate dehydrogenase complex, subunit B; COX5A: Cytochrome c oxidase subunit 5a; Tom20: 

Mitochondrial import receptor subunit TOM20; GM Oxidation: Glutamate and malate oxidation; CoQ9 

and 10: Coenzyme Q9 and Q10; MDA: Malondialdehyde; HAE: Hydroxyalkenal; SOD2: Superoxid 

dismutase 2; AU: Arbitrary units; NS: not significant. 


