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Bubbles are pointlike regular solutions of the higher-dimensional Kaluza-Klein equations that appear as
naked singularities in four dimensions. We analyze all such possible solutions in five-dimensional~5D!
Kaluza-Klein theory that are static and spherically symmetric. We show that they can be obtained by taking
unusual choices of the parameters in the dyonic black hole solutions, and find that regularity can only be
achieved if their electric charge is zero. However, they can be neutral or possess magnetic charge. We study
some of their properties, both in theories where the internal dimension is spacelike as well as timelike. Since
bubbles do not have horizons, they have no entropy, nor do they emit any thermal radiation, but they are, in
general, nonextremal objects. In the two-timing case, it is remarkable that nonsingular massless monopoles are
possible, probably signaling a new pathology of these theories. These two-timing monopoles connect two
asymptotically flat regions, and matter can flow from one region to the other. We also present aC-type solution
that describes neutral bubbles in uniform acceleration, and we use it to construct an instanton that mediates the
breaking of a cosmic string by forming bubbles at its ends. The rate for this process is also calculated. Finally,
we argue that a similar solution can be constructed for magnetic bubbles, and that it can be used to describe a
semiclassical instability of the two-timing vacuum against production of massless monopole pairs.
@S0556-2821~97!01702-5#

PACS number~s!: 04.50.1h, 04.20.Gz, 04.40.Nr, 04.70.Dy

I. INTRODUCTION

The solitonic solutions of the gravitational field equations
have always been a focus of interest, much more in recent
times after the recognition of their relevance towards a non-
perturbative understanding of string theory@1#. We refer to
solitons in a broad sense, as localized solutions of the clas-
sical equations of motion that are nonsingular or possibly
have singularities hidden behind a horizon, the latter corre-
sponding to black holes, or more generally, black branes.
Certainly, to qualify as particle states one would also like the
solutions to be stable. However, it has been proven for a
wide range of solutions that nonextremalp-branes ~with
p>1) are classically unstable@2#. Nonetheless, though un-
stable, many of these solutions are interesting on their own.

Most of the solitons that have been considered are of
black hole type, i.e., objects with horizons and, correspond-
ingly, an associated entropy—in some cases, though, the ho-
rizon area vanishes in the extremal limit, and singularities
appear. However, there also exists an interesting class of
solutions that, even if they look like naked singularities in
four dimensions, their singularity can be resolved by going
to a higher dimension. This resolution of singularities is
purely classical, not involving any quantum smearing of the
region surrounding the singularity, and it has been shown to
smooth the inner singularity inside some black holes and
black branes of interest@3#. If applied to resolve naked sin-
gularities, the outcome is a completely regular geometry for
a pointlike object, though, as we will see, it is often an un-
stable one. Throughout the paper we will be working in the
simplest theory in which these solutions can appear, namely
five-dimensional Kaluza-Klein~KK ! theory. Many of the

features described here should also be present in more gen-
eral theories with compact dimensions.

We will describe two ways in which a naked singularity
can be regularized when ‘‘blown up’’ to reveal the higher
dimensional structure of spacetime. In one situation, the in-
ternal space closes up smoothly—in the microscopic region
representing the point particle—avoiding in this way the
reaching of the singular origin. Geodesic completeness is
preserved by leaving a nonsingular ‘‘hole’’ in space. In the
other case, the pointlike particle turns out to be a tiny micro-
scopic region bridging two asymptotically flat spacetimes
through ‘‘chronology horizons.’’

Solutions of this kind have been known for some time as
‘‘bubbles,’’ and this is the name we will adopt throughout
this paper. An early realization of the importance of bubbles
was found by Witten in@4#, where it was argued that the
Kaluza-Klein vacuum can decay by spontaneously forming
bubbles that exponentially expand after their creation. In this
paper, however, we will exclusively focus on nonexpanding
bubbles. An interesting feature of all bubbles is that they do
not have horizons, and therefore are zero-temperature objects
with zero entropy.

Bubbles appear when the internal isometry along which
the dimensional reduction is performed contains fixed points.
The Gross-Perry-Sorkin~GPS! monopole@5,6# is an example
of a bubble in which the fixed point set consists of a single
point and the bubble has zero size. In general, however, the
fixed point set will be higher dimensional, and the bubble
will have finite size. Several bubble solutions of five-
dimensional~5D! Kaluza-Klein theory~with spacelike inter-
nal dimension! were already noticed in@5,6#, and also dis-
cussed in@7,8#. In this paper we aim at determining in a
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complete way all the possible static spherical bubble solu-
tions of 5D Kaluza-Klein theory, clarify their relationship
with the already thoroughly studied black hole solutions of
the theory, and analyze bubble pair production and its con-
sequences. Parallelly, we will study a much less explored
issue, that of the solitonic objects in KK theories in which
the internal dimension is timelike.

Theories with internal timelike dimensions have been a
subject of interest for some time, and, in a rather modified
way, have been recently revived in the context of string
theory~‘‘ F theory’’! @9#. However, not much is known about
the classical vacuum solutions of two-timing theories. Re-
cently, a full classification of the possible isometry groups of
compact Lorentzian manifolds has been achieved@10#, and
this may be of relevance in determining the properties of
compactifications in such theories. For the moment, how-
ever, we will restrict ourselves to the simplest case of a
single internal timelikeS1.

The timelike character of an internal direction gives rise
to several pathological features, the most conspicuous of
which may be the fact that excitations of the internal dimen-
sions have negative norm. Experimental lower bounds on
possible violations of unitarity put a limit on the maximum
radius of the internal timelike direction@11#. If one wants to
preserve unitarity in a higher energy range, these degrees of
freedom must be somehow frozen out or gauged away. An
additional problem is that, as we will see in a moment, the
coupling constant coming from the compactification modu-
lus is imaginary. Oppositely charged objects then repel, and,
by an old argument due to Dyson, one would expect the
vacuum to be unstable against pair production of charged
particles@12#. An instability of this kind was sought in@13#,
where it was noticed that the two-timing theory contains
massless black holes, and solutions describing a pair of them
accelerating apart can be found. However, due to peculiar
thermal properties of these black holes, an instanton describ-
ing their pair creation could not be constructed. One of the
aims of this paper is to show that this obstruction can be
surmounted if instead of massless black holes one considers
massless monopole bubbles, to be constructed below.

Our analysis of the bubble solutions in theories with in-
ternal time will be greatly simplified by noticing their rela-
tion with solutions with internal space: given a solution of
the 5D Kaluza-Klein equations with spacelike internal di-
mension,

ds25e24f/A3~dx512Amdx
m!21e2f/A3gmndx

mdxn,
~1.1!

wheref is the scalar modulus~‘‘dilaton’’ !, Am the Maxwell
four-potential, andgmn the effective four-dimensional metric
(m,n50, . . . ,3), a solution of the two-timing theory can be
readily obtained by Wick rotating,

x5→ ix5, ~1.2!

and, accordingly, in order to keep the solution real,

Am→ iAm . ~1.3!

The latter amounts to makinge2, the square of the electric
charge, take on negative values, i.e., the coupling constant
has been continued to an imaginary value and objects with
equal sign charges attract each other. This method will allow
us to easily generate bubble solutions of two-timing theories.
However, even if formally similar, the two-timing bubbles
will differ considerably in their properties from ordinary
bubbles.

II. BUBBLES IN 5D KALUZA-KLEIN
WITH INTERNAL SPACELIKE DIRECTION

We want to find all the topologically nontrivial regular
solutions of 5D KK theory that appear as static, spherically
symmetric, points acting as sources of the Maxwell field.
Complete analyses of the static, spherically symmetric solu-
tions of 5D KK theory have been given in different forms,
see e.g.,@14,16#, and also@15#, but the focus has been gen-
erally on the black hole solutions. However, we will find that
bubble solutions correspond to unconventional choices of the
parameters in black hole solutions with both electric and
magnetic charge. It is convenient to illustrate this first in the
simplest example where the magnetic charges are zero.

It has been known for some time that, by taking the
Schwarzschild solution and boosting it in the fifth direction,
the entire family of electrically charged~magnetically neu-
tral! KK black holes is generated. The five-dimensional met-
ric in this case is

ds25S 11
2msinh2dQ

r D ~dx512Atdt!
2

2
122m/r

112msinh2dQ /r
dt21

dr2

12~2m/r !
1r 2dV2

2 ,

At5
msinh2dQ

2r ~112msinh2dQ /r !
. ~2.1!

Here the electric chargeQ is a function of the boost param-
eterdQ :

Q5
m

2
sinh2dQ5m

v
12v2

, ~2.2!

wherev is the boost velocity. By taking 0<v,1 we obtain,
upon reduction, the spectrum of purely electric black holes.
The limit v→1 ~which requiresm→0, keeping the charge
and mass finite! describes an extremal singular solution.

What is less well known is what happens when we take
v.1. Even if the boost parameterdQ in these solutions is
complex, with imaginary partip/2, we still find real solu-
tions. The four-dimensional reduced metric does not contain
a horizon any more, but, rather, a naked singularity. How-
ever, we must analyze if this singularity is also present in the
full five-dimensional geometry.

For all the values 1,v,` we have an electrically
charged solution for which the internal circles close at
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r5r B[2m
v2

v221
. ~2.3!

This closing of the internal space is the characteristic feature
of bubbles with internal spacelike directions. However, for
any finitev.1 the curvature is singular atr B . This can be
easily seen from the fact that, even if the length of the inter-
nal circles goes to zero at that point, their proper radius does
not. Additionally, thegtt term diverges badly at the bubble.

The singularity disappears only forv→`. Of course, this
is equivalent to interchanging the roles of the internal and
time coordinates in the Schwarzschild solution:

ds252dt21S 12
2m

r D ~dx5!21
dr2

122m/r
1r 2dV2

2 .

~2.4!

This is simply the product of the Euclidean Schwarzschild
solution with a trivial time direction, and is a completely
nonsingular geometry. It describes a neutral ‘‘bubble’’:
pointsr,2m are excised from spacetime, but this is done in
a nonsingular way—if the periodicity ofx5 is chosen to be
8pm, the internal space smoothly closes atr52m. In the
reduced description, it corresponds to a pointlike naked sin-
gularity, with Arnowitt-Deser-Misner~ADM ! mass equal to
m/2.

Notice that the Schwarzschild solution, and all the elec-
trically charged black holes can in turn be obtained by boost-
ing the neutral bubble with velocityv.1. In a sense, the
Schwarzschild solution and the neutral bubble are at opposite
endpoints of the electrically charged spectrum. This will also
be true when we add magnetic charge.

The general static, spherically symmetric solution with
both electric and magnetic charges can be found in different
parametrizations in@14–16#, and we will use them to study
the most general static spheric bubbles. We find it conve-
nient to use the parametrization in@16#. This is given in
terms of the two boost parameters applied to the Schwarzs-
child solution with massm, and it is more closely related to
the analysis above. For completeness, we discuss in Appen-
dix A how the bubbles appear when the metric coefficients
are expressed directly in terms of the physical parameters
M ,P,Q, and the scalar charge as in@15#.

The five-dimensional geometry of the solutions is@16#

ds~5!
2 5

X

Y
~dx512Amdx

m!22
f

X
dt21

Y

f
dr21YdV2

2 ,

~2.5!

At5Q
r12m

X
, Aw5Pcosu, ~2.6!

where

X5~r12m!~r12mcosh2dQ!,

Y5r 212m@~22cosh2dQ!cosh2dP1cosh2dQ#r

14m2cosh2dP , ~2.7!

f5r ~r12m!,

and the electric and magnetic charges and ADM mass are1

Q5msinhdQcoshdQcoshdP ,

P5m~22cosh2dQ!sinhdPcoshdP , ~2.8!

M5
m

2
~cosh2dQ1cosh2dP2sinh2dQsinh

2dP!. ~2.9!

Herem corresponds to the mass parameter of the Schwarzs-
child solution used to generate the whole family. Extremal
solutions correspond to limits wherem→0, while sending a
boost angle to infinity to keep the mass and some of the
charges fixed.2 To avoid Taub-NUT Newman-Unti-
Tamburino terms in the reduced metric we must keep
msinh2dQtanhdP50.

The horizons correspond to the zeros off that are not
simultaneously zeroes ofX,Y. For cosh2dQ>1 there is al-
ways a horizon atr50. These solutions are black holes, and
therefore we will concentrate on solutions with electric boost
velocity greater than 1, i.e., cosh2dQ<0. The form of the
metric coefficientsg55 andgrr tells us that bubbles will ap-
pear whenf andX have a common zero, which must also be
bigger than the roots ofY since these, in general, are singu-
larities. However, just as in the magnetically neutral case,
and for the same reasons, the metric will be singular if there
is a nonvanishing electric term. Thus we shall set
coshdQ50. Notice that the neutral solution obtained by set-
ting the electric and magnetic charge to zero by making
coshdQ5coshdP50 is singular. Therefore we consider
cosh2dPÞ0.

Remarkably, when coshdQ50 we havef5X and the five-
metric is the direct product of a ‘‘trivial’’ time with a Eu-
clidean four-geometry. The latter is, in fact, the Euclidean
Taub-NUT metric. It can be written in a more familiar way
by shifting r12mcosh2dP→r and then identifying the mag-
netic chargeP as the Euclidean nut parameter:

ds~5!
2 52dt21U~r !~dx512Pcosudw!2

1
dr2

U~r !
1~r 22P2!dV2

2 , ~2.10!

U~r !5
r 224Mr1P2

r 22P2 ~2.11!

~we stress that the parameterM here is the mass of the
monopole, and not the usual ‘‘mass parameter’’ of the four-
dimensional Taub-NUT metric, which is in fact 2M ). We
still have to impose further regularity conditions on this so-
lution, but for the moment note that this covers all the static,

1Our conventions differ slightly from@16#: with our definitions,
the Maxwell field is one-half of theirs, and our~ADM ! mass is
one-fourth of their parameterM . Also, what we calldP is their
d1, and ourm is theirb.
2There is a family of neutral solutions@6#, of which the Schwarzs-

child black hole and the neutral bubble are particular cases, that is
not contained in general in@16#. However, neither these nor their
boosted counterparts yield new regular solutions.
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asymptotically flat, spherically symmetric, regular solutions.
They represent localized lumps of energy that are sources of
a monopolar magnetic field.

The factorized form of the geometry~2.10! greatly sim-
plifies the analysis of the regularity of the solutions. There
are only two completely nonsingular instantons constructed
out of the Euclidean Taub-NUT solution: the self-dual Taub-
NUT instanton, and the Taub-bolt instanton. The Eguchi-
Hanson metric can be obtained as a limiting case of Taub-
NUT, but, in the KK context, it does not yield an
asymptotically flat reduced geometry.

The self-dual Taub-NUT solution corresponds to a mini-
mal value for the mass,MN5P/2, and yields just the GPS
monopole, which is located at the nut fixed point of]5. If we
allow the mass of the monopole to be greater than the mini-
mal valueMN , then, as shown by Page@17#, there will be a
two-dimensional fixed point set of]5 ~a spherical bolt! at the
biggest root ofU(r ), r152M1A4M22P2. A conical sin-
gularity at the bolt can be avoided by choosingM55P/8.
The metric~2.10! with

UB~r !5
~r2r1!~r2r2!

r 22P2 , r152P, r25
P

2
,

~2.12!

is referred to as the ‘‘Taub-bolt’’ solution. It is not self-dual,
and is topologically CP22$0%. The point that has been re-
moved from CP2 is ‘‘infinity’’ ( r→`).

For all other values ofM.P/2, MÞ5P/8, we obtain a
conical singularity in the internal direction. This is a very
mild singularity, and we could change the periodicity ofx5

to beDx554pr1 so as to avoid the conical singularity at the
bolt, but at the same time we should accordingly change the
periodicity of w to Dw5pr1 /P to avoid the Dirac string
singularities. In turn, this would result in a conical defect

d52pS 12
r1

2PD ~2.13!

threading the monopole along the axesu50,p. For
P/2,M,5P/8 the defect is a string, whereas for
M.5P/8 it is a strut. Therefore, the former case can repre-
sent, if not new particlelike solutions, configurations of bolt
monopoles threaded with cosmic string vortices, reminiscent
of similar black hole/cosmic string configurations considered
in @18#.

It is interesting that the GPS monopole appears as an ex-
tremal limiting case of two kinds of objects: the magnetic
black holes and the magnetic bubbles. The black holes can
be regarded as thermally excited states of the monopole, to
which they decay by emitting Hawking radiation. The bolt
monopole is likely to correspond to another type of excited
state, but since it has no horizon it does not emit Hawking
radiation. However, it is known to be classically unstable,
since the spectrum of fluctuations around the Euclidean
Taub-bolt metric contains a negative mode@19#, as does the
Euclidean Schwarzschild solution. It has been speculated@8#
that bolt monopoles should evolve to form a black hole,
which would then decay to the GPS monopole. In any case,
the most important restriction on the possible relevance of

bolt monopoles comes from the fact that fermions rule them
out, since the topology CP22$0% does not admit any spin
structure.

An interesting outcome of the analysis in this section is
the place we have found for the bubbles among the general
spectrum of dyonic solutions. This will allow us to extend to
bubbles the study of some processes involving black holes.
Before that, we will analyze some striking features of the
bubble solutions when the signature of the internal dimen-
sion is reversed.

III. TWO-TIMING MONOPOLES

As we saw in the introduction, given a solution to ordi-
nary KK theory we can easily obtain another solution corre-
sponding to a two-timing theory. However, in general, their
properties, such as the nature of their singularities, are mark-
edly different.

It is straightforward to see that, upon the continuations
~1.2!, ~1.3!, solutions with electric charge have, again, cur-
vature singularities. On the other hand, the magnetic bubbles
we have just described turn into products of theLorentzian
Taub-NUT solution with a trivial time:

ds~5!
2 52dt22U~r !~dx512Pcosudw!2

1
dr2

U~r !
1~r 21P2!dV2

2 , ~3.1!

U~r !5
r 224Mr2P2

r 21P2 , ~3.2!

which is a solution with full five-dimensional signature
(22111). After reduction, this describes an object with
~imaginary! magnetic chargeP and massM .

The metric~3.1! has singularities at

r5r652M6AP214M2. ~3.3!

Notice that r1.0 and r2,0. There is now an important
difference with the one-timing solutions. As before, the
length of the internal space generated byx5 goes to zero at
r6 , but, as pointed out in@20#, spacetime is easily extended
through these surfaces, in a way analogous to the extension
through a Lorentzian horizon. We summarize the causal
structure of the maximal extension:~1! In the region
r2<r<r1 , the coordinater is timelike and there are no
closed timelike curves~CTC’s!; ~2! in the regionsr<r2 and
r>r1 , the coordinatex5 is timelike and there are~micro-
scopic! CTC’s.

Thus, the surfacesr5r6 are in fact chronology horizons.
At r5r6 , U(r )50 and thus the ‘‘length’’ of the ‘‘internal
space’’ generated byx5 goes to zero there. Notice that the
microscopic bubble region~1! connects two asymptotically
flat regions.

Thus, we see that our two-timing Kaluza-Klein monopole
can also be regarded as a ‘‘bubble’’ of Kleinian signature,
which exists for all external time, and which is bounded from
our part of the universe~where things are effectively Lorent-
zian! by a horizon atr5r1 . Observers ‘‘far away’’ from the
source (ur u@r6) will see a magnetic monopole. As we ap-
proach r1 ~from r.r1), the size of the internal space
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shrinks to zero atr5r1 . As we move into the region
r2,r,r1 we see that the internal space is now spacelike.
The ‘‘time’’ that used to live in the internal space is ‘‘un-
compactified’’ in the regionr2,r,r1 , and so this region
~to a five-dimensional observer, the region is too small to be
detected by a four-dimensional observer! would look like a
‘‘bubble’’ of Kleinian signature, i.e., in the ill-defined effec-
tive ‘‘four-dimensional theory,’’ the metric seems to change
signature from (2211) to (2111) as we move from
the regionr2,r,r1 to the regionr.r1 .

The magnetic charge of these solutions is, as we saw in
the introduction, imaginary, and like-charged monopoles at-
tract, rather than repel each other. No nonsingular neutral
two-timing bubble exists: the magnetic chargeP is essential
in allowing the extension of the metric through the interior of
the bubble by preventing the formation of a curvature singu-
larity inside it. Thus, the neutral solution withP50 contains
the usual Schwarzschild singularity atr50. There are more
respects in which the spectrum of two-timing bubbles differs
from ordinary one-timing bubbles. For the latter, there is a
state with minimal nonvanishing mass. This is the GPS
monopole, which is extremal and saturates a Bogomolnyi
bound. No extremal state exists for two-timing monopoles,
and two-timing multimonopole static configurations neces-
sarily contain conical singularities reflecting the presence of
net forces between them.

There are more differences between both classes of ob-
jects. The background geometry of two-timing monopoles
admits fermion structures. More strikingly, in the two-timing
case the value ofM is completely unrestricted, and we can
perfectly well setM50. Thus we find a regularmassless
monopole. This case is also especially interesting since the
two different regionsr.P and r,2P connected by the
Kleinian bubble are isometric underr→2r .

In the massive case the isometry is broken. We can also
have negative mass objects. This is surprising, since negative
mass usually implies naked singularities. These are certainly
present in the four-dimensional description of these mono-
poles, but the full solutions are regular. The significance of
these negative mass solitons is unclear, but the apparent ab-
sence of a lower energy bound is probably one more indica-
tion of the pathological behavior of these theories.

The classical stability of these two-timing solutions can-
not be inferred from that of their one-timing counterparts,
and this remains an interesting problem. The fact that like-
charges attract each other suggests that these monopoles
would tend to a minimal size. Let us use this admittedly
nonrigorous criterion to analyze which monopole configura-
tion is likely to be more stable. The monopoles have two
‘‘mouths,’’ one atr5r1 , the other atr5r2 . The total area
of both mouths isA}(r1

2 1r2
2 12P2)516M214P2, so that,

for fixed P, the minimal value is attained whenM50. This
would suggest that the massless monopole might be, at least,
more stable than the massive states, with masses of either
sign. Whether these solutions can evolve to a black hole state
is not clear, given the strange properties of black holes in
these theories@13#.

It is of some interest to calculate geodesic motion in the
background of the two-timing monopole. To this end, note
that from the metric~3.1! we recover, via the action prin-
ciple, the following Lagrangian:

L52 ṫ22U~r !~ ẋ512Pcosuẇ!21
1

U~r !
ṙ 2

1~r 21P2!~ u̇21sin2uẇ2! ~3.4!

where the overdot denotes differentiation relative to any af-
fine parameters. As usual, for photonsL50 whereas for
massive particlesL.0. Now,L is cyclic in t, x5, andw, and
so we obtain three constants of motion:

«5 ṫ5 ‘‘energy’’

v5~r 21P2!ẇ5 ‘‘angular momentum’’

d5U~r !ẋ55 ‘‘five-dimensional velocity’’.

The five-dimensional velocity is interpreted by the four-
dimensional observer as electric charge.

For simplicity, we restrict our attention to the motion of
test particles in theu5(p/2) plane, i.e.,u̇50 for all times.
Thus,

L52 ṫ22U~r !ẋ5
21

1

U~r !
ṙ 21~r 21P2!ẇ2. ~3.5!

To be concise, we will only consider the motion of light-like
particles, ‘‘photons’’; the timelike case is very similar. Thus,
assumingL50 we see that the Lagrangian assumes the form

S drdw D 25U~r !~r 21P2!F «2

v2 1
d2

U~r !v2 21G .
Radial motion of the photon is possible only if
(dr/dw)2.0, i.e., if and only if

«2.v22
d2

U~r !
.

A natural question is whether or not it is possible for a
photon to escape out to infinity (r51`) from the monopole
‘‘core’’ ~i.e., r5r1). Of course, the answer to this question
is trivial once one realizes that atr5r1 , U(r1)50. That is,
the above inequality becomes

«2.v22`,

which is trivially satisfied for any values of the energy and
angular momentum, as long as the ‘‘charge’’d is nonvanish-
ing ~even whend is vanishing we can just set the angular
momentum to zero!. Thus, any photon starting in the core
will always make it out tor5`. Likewise, since any photon
beginning in the asymptotic region will trivially satisfy
«.2`, any such particle can fly through the monopole core
and emerge in the other asymptotic region.

From the point of view of quantum scattering, this pre-
sumably means that the monopole is stable to quantum cor-
rections as long as the flux from one asymptotic region is
exactly compensated by the flux from the other region. How-
ever, as we discussed above, the two asymptotic regions are
isometric if and only ifM50. This would seem to provide
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further support to the conjecture that theM50 state would
be ‘‘stable,’’ and that massive states would want to ‘‘settle
down’’ to M50.

However, the massless two-timing monopole is neither
extremal nor does it saturate any Bogomolnyi-type bound.
Therefore we do not expect to find that the background ad-
mits N51 supersymmetry. In other words, there should not
exist any covariantly constant spinor fielde ~by covariantly
constant we mean constant relative to the Levi-Civita con-
nection on Taub-NUT!. To see that this is true simply recall
that the only Lorentzian manifolds admitting covariantly
constant spinor fields are thepp waves; however, allpp
waves have typeN curvature, whereas Taub-NUT is of type
D. In view of this, the precise meaning of our vague argu-
ments about the stability of the solutions is at present un-
clear.

IV. PAIR CREATION OF NEUTRAL BUBBLES

A. C metric for accelerating bubbles

A number of ways of pair producing black holes have
been studied in recent years. In Sec. II we have seen that
Kaluza-Klein black holes and bubbles form part of the same
family of dyonic solutions. This will allow us to obtain an
instanton describing pair creation of neutral bubbles. The
bubbles will appear at the ends of a cosmic string that snaps
into two pieces; after that, they accelerate away pulled by the
string tension. Notice that the same argument that allows a
topologically stable string vortex to end in a black hole
@18,21# can be extended to a neutral bubble: the nontrivial
topology R3S23R2 of the neutral bubble allows to con-
struct a nonsingular Wu-Yang fibration of the gauge field
carried by the cosmic string, so that it is well defined every-
where.

How do we construct the metric that describes two accel-
erating bubbles? The key is the relation that we have found
between electrically charged KK black holes and neutral
bubbles. For our present purposes this relation takes a more
convenient form if we first rewrite the metric~2.1! by mak-
ing r12msinh2dQ→r, and renaming

r1[2mcosh2dQ , r2[2msinh2dQ . ~4.1!

The metric for static electric black holes is then

ds25S 12
r2

r D 21S dx51 2Q

r
dtD 22S 12

r1

r Ddt2
1
12r2 /r

12r1 /r
dr21r 2S 12

r2

r D 2dV2
2 , ~4.2!

with

Q5
Ar1r2

2
. ~4.3!

The radii r6 must satisfyr12r2>0, and r1r2>0. The
mass of the black holes is

M5
1

2 S r12
r2

2 D . ~4.4!

The ~singular! electric bubbles correspond to
0<2r1,2r2 , and the neutral bubble appears in the lim-
iting case wherer150. In this case, the mass of the bubble
is M52r2/4.0, and it is located atr50.

In @22# a dilaton C metric describingmagnetically
charged black holes accelerating apart is given. We particu-
larize to the KK case, and perform a generalized duality
transformation

F̃mn5
1

2
e22A3femnrsF

rs, ~4.5!

f→2f, ~4.6!

while leaving the effective four-metric unchanged. In this
way we obtain the following five-dimensional metric de-
scribingelectrically charged accelerating black holes:

ds25
F~x!

F~y!
~dx512Qydt!21

1

A2~x2y!2FF~x!SG~y!dt2

2
F~y!

G~y!
dy2D1F~y!2S dx2

G~x!
1
G~x!

F~x!
dw2D G , ~4.7!

whereQ5Ar1r2/2, and

F~j!511r2Aj,

G~j!512j22r1Aj3. ~4.8!

We will see below how this metric can also describe ac-
celerating electric~singular! or neutral bubbles, but it is first
convenient to briefly analyze the physical interpretation of
the metric when the parameters are chosen so as to describe
black holes.

The root ofF is j1521/(r2A), andG has three roots
j2 ,j3 ,j4. It is convenient to analyze them for smallr6A.
Thenj1 is large and negative, as is alsoj2'21/(r1A). The
other two roots are of order 1:j3'21, j4'11. When
r1>r2>0 their physical meaning can be obtained by con-
sidering the following limits.

~1! We blow up the region neary5j1 ,j2 by making
y521/(rA), and A→0. In this case, with the additional
changex5cosu and rescalingt→At, the metric reduces to
~4.2!. Alternatively, instead of saying that we go close to the
black holes, one could interpret this as the static limit of the
metric, where the acceleration parameter is set to zero and
the conformal factorA22(x2y)22 in front of the four metric
is removed.

~2! While still keepingr6A!1, consider now the region
neary5j4'1. This root corresponds to an acceleration ho-
rizon, since in this case, withF(y),F(x)'1, the metric be-
comes that of Rindler space~though written in unusual co-
ordinates!, crossed with a trivial internal space. Points of
constanty,x are moving with uniform acceleration. It can
also be interpreted as a small particle limit.

This interpretation holds wheny lies in the range
21/(r2A),y,x. The endpoints of this interval are singu-
lar, and correspond to the singularity inside the black hole
and asymptotic infinity.

It is also clear that we must keep the coordinatex between
the two order 1 roots ofG(x), j3<x<j4. Thenx plays the
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role of cosu in the angular (x,w) part of the metric, which is
topologically a sphereS2. However, this sphere is distorted,
and can easily be seen to contain necessarily a conical sin-
gularity at one of the poles, reflecting the need for an accel-
erating force.

From our discussion of the static solution above, it is clear
what to do to obtain accelerating bubbles. Singular electric
bubbles appear for 0<2r1,2r2 , and the regular neutral
bubble corresponds tor150, 2r254M . In this case

F~j!5124MAj, G~j!512j2, ~4.9!

and all the roots are easily given:j1521, j251,
j351/(4MA). Notice that the ordering of the roots has
changed. Now we take21<x<1 and2`,y,x. The axis
x521 points to infinity, whereasx51 points to the other
black hole. The valuey521 corresponds again to the ac-
celeration horizon. But now, instead of a black hole horizon
we find a bubble located at the zero ofF(y)21, i.e., at
y→2`, where the size of the internal circles vanishes. This
is just as expected, since by takingy521/(rA) andA→0
we recover the neutral bubble metric, with the bubble at
r50.

We now analyze in more detail the conical singularities
that pull the bubble. The relevant part of the metric is

~2!ds25
dx2

12x2
1
12x2

F~x!
dw2. ~4.10!

For 21<x<1 this is topologicallyS2. If the periodicity of
w is Dw, there is a conical deficit at each of the poles
x561 given by

d~61!52pS 12
Dw

2pAF~61!
D . ~4.11!

Clearly, it cannot be made zero simultaneously at both poles.
We choose to keep regularity along the axisx51 joining the
black holes, so we take

Dw52pAF~1!. ~4.12!

A conical defect runs along the axisx521, i.e., from each
black hole to infinity. We can interpret it as coming from a
cosmic string with tensionm5d/(8p), which is pulling the
black holes apart. The mass and acceleration are related to
the string tension by

m5
1

4 S 12A124MA

114MAD'MA, ~4.13!

where the last approximate equality is obtained for small
MA and reproduces Newton’s law as expected.

We require the geometry to be regular at the bubble. To
do so, we focus on the (x5,y) part of the metric, in the limit
y→2`. In this case, absence of conical singularities re-
quires the period ofx5 to be

Dx5516pM . ~4.14!

Finally, we study the possibility of constructing a Euclid-
ean instanton describing pair production of these bubbles.

We Wick rotatet→ i t, and analyze what condition must be
imposed on the Euclidean time periodDt so as to avoid a
conical singularity at the acceleration horizony521. Note
that there is no other horizon and the bubble has no prefixed
temperature. Then it is always possible to attain regularity by
setting

Dt5
4pAF~21!

uG8~21!u
52pA114MA. ~4.15!

This Euclidean solution describes the worldsheet of a cosmic
string containing a loophole delimited by a circular bubble
trajectory. The decay process is described as usual: take the
initial configuration to be that of a cosmic string~i.e., a coni-
cal defect! with the required tension in flat space. The Eu-
clideanC metric above tends asymptotically to this configu-
ration. Moreover, surfacest5const of the C-metric
instanton have the same geometry as thet50 section of the
Lorentzian solution. Since their extrinsic curvature is vanish-
ing, we can smoothly ‘‘glue’’ the Euclidean and Lorentzian
sections and thus describe a process in which a cosmic string
snaps and bubbles appear at its ends. The semicircular Eu-
clidean bubble trajectory corresponds to the bubbles tunnel-
ing towards a configuration where they both have zero ve-
locity; at that point, the transition to Lorentzian signature
~real time! takes place, and the circular motion turns into
uniformly accelerated hyperbolic trajectories for the pair of
bubbles just created. This breaking of a cosmic string with
formation of neutral bubbles at its ends provides an alterna-
tive to the processes where the string breaks by forming
black holes@24#.

It is interesting to notice that we have been able to con-
struct aC-metric instanton for aneutralobject. This is new:
usually, charge is needed to lower the black hole horizon
temperature to match the acceleration temperature. In this
case, however, we have a neutral object with zero~more
properly, nonfixed! temperature, and no such problem is
present. Moreover, as far as we know, this is the first nonex-
tremal pair creation instanton constructed for a theory with
dilaton coupling parametera.1. In these theories, the black
hole temperature grows without limit as one approaches ex-
tremality, and this precludes the possibility of regularly
matching the Euclidean time periodicity. Clearly, this ob-
struction disappears for bubbles.

One could also expect to be able to create neutral bubbles
in a cosmological context, in a way similar to the nucleation
of Schwarzschild black holes in a de Sitter universe@25#.
However, it is very unlikely that a similar solution for
bubbles exists within the framework of pure KK theory. No-
tice that a cosmological constantL in five dimensions would
yield, upon reduction, a four-dimensional Liouville-type po-
tentialLe2f/A3, which is inversely proportional to the length
of the internal circles. This potential would diverge at the
position of a bubble, where the internal space closes up.
Such a divergence, however, would come entirely from the
conformal factor in the metric and, even if somewhat unde-
sirable, it might give no problems in the higher dimensional
metric. We would expect to find a neutral bubble if we had a
KK cosmological~de Sitter! solution containing an electri-
cally charged black hole. The bubble would correspond to
taking the electric charge to be zero in the way described in
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Sec. II. However, it has been argued in@26# that no such
charged solutions exist for nontrivial Liouville-type dilaton
potentials. In principle, this does not rule out completely the
existence of neutral bubble cosmological solutions, since
they could exist and not be related to any electric black hole
spectrum, but this certainly seems unlikely.

B. Euclidean actions and pair creation rate

As usual, by continuing the solutions to Euclidean time,
their action can be used to obtain thermodynamical proper-
ties or pair creation rates. Upon dimensional reduction, the
five-dimensional action

I5
1

16pG5
E
M̃
Aug̃uR̃2

1

8pG5
E

]M̃
Auh̃uK̃, ~4.16!

~quantities with tildes will correspond to the 5D description!
turns to

I5
1

16pG4
E
M

Augu@R22~¹f!22e22A3fF2#

2
1

8pG4
E

]M
AuhuK. ~4.17!

The boundary]M is taken to be the one induced by obtain-
ing the quotient of the five-dimensional boundary]M̃. Also,
the five-dimensional and four-dimensional coupling con-
stants are related byG45G5 /Dx

5. For exact solutions of the
Kaluza-Klein equations, the volume term in Eq.~4.16! van-
ishes and only the boundary term remains. Dimensional re-
duction of this term yields

Auh̃uK̃5Auhu
e2f/A3

Augu
]m~ef/A3Augunm!

5AuhuK1Auhunm]mln~ef/A3Ag!, ~4.18!

wheren is the normal vector to the boundary]M induced
by the normalñ to ]M̃,

ñ→e2f/A3n. ~4.19!

Thus we see that the result not only contains the extrinsic
curvature boundary term in Eq.~4.17!, but also a surface
term involving the scalar field. The latter can be obtained
from Eq.~4.17! on shell by substituting the scalar field equa-
tion of motion, as is done in@23#.

We have remarked that the bubbles are, in the four-
dimensional effective description, naked singular points.
However, when computing the action one should not include
an additional boundary surrounding the singularity, since this
must not be introduced in five dimensions, where the geom-
etry is regular. As we have just explained, once the boundary
terms at infinity have been properly accounted for, the results
should be the same if we work in either 5D or 4D.

From the Euclidean continuation of the static metrics in
Sec. II we obtain their thermodynamical properties, such as
the entropy. The static KK Schwarzschild solution and the
neutral bubble correspond, in the Euclidean regime, to the

same metric. However, the Schwarzschild black hole has the
usual Bekenstein-Hawking entropy, whereas no entropy is
associated to the bubbles. Of course, there is nothing para-
doxical here, since the entropy depends on the choice of the
periodic variable~Euclidean time! that is associated to the
asymptotic temperature. For both the Euclidean continuation
t→ i t of the bubble solution~2.4! and Euclidean Schwarzs-
child3(dx5)2, the action is3

I5
1

2
mDt. ~4.20!

However, for the bubble,MB5m/2, whereas for Schwarzs-
child MS5m. Then, settingDt5b,

I bub5bMB , ISch5
1

2
bMS . ~4.21!

The vector ]t has a fixed point at the horizon for the
Schwarzschild solution, but it acts freely on the bubble. In
the latter case,b andM can be varied independently while
remaining on shell. The usual reasoning then leads to zero
entropy for the bubble, and Bekenstein-Hawking entropy
S5A/4 for the black hole. As we have stressed, for both
solutions the only boundary is the surface at infinity.

The action of the analytically continuedC metric gives
the dominant contributione2I to the semiclassical bubble
pair production by snapping strings. The calculation requires
carefully matching the boundaries near infinity
x5y5j1521 of the C metric and the reference back-
ground~flat space with a cosmic string!, see e.g.,@27#. Then,
straightforward application of the formulas above for the ac-
tion gives the result

I5
p

4A2 uF8~21!uAF~1!F~21!5
pM

A
A1216M2A2.

~4.22!

This answer can also be easily obtained by decomposing the
action as

I5bH2
1

4
DA, ~4.23!

whereH is the physical Hamiltonian andDA is the differ-
ence in the areas of the acceleration horizons of theC metric
and the reference background@27#. As it turns,H50, and
the difference in acceleration horizon areas is found to ac-
count for the entire action~4.22!. Again, no boundary con-
ditions have to be imposed at the four-dimensional singular-
ity.

The exact relation betweenA andm can be inverted to
express the action in terms of onlyM andm:

I5
pM2

m

124m

122m
. ~4.24!

For smallm, the leading term is the same as for string break-
ing with monopole or black hole formation. Subleading cor-

3From now on we setG451. ThusDx5 does not appear in Eq.
~4.20!.
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rections are due to graviton and scalar exchange between
different points of the Euclidean circular trajectory of the
bubble.

V. PAIR CREATION OF MAGNETIC BUBBLES
AND DYSON’S INSTABILITY

Now that we know how to pair create neutral bubbles, it
would be natural to try and look for pair creation of magnetic
bubbles. Such a process could be readily described if we had
a KK C metric fordyonicblack holes. Our analysis in Sec. II
shows that magnetic bubbles are easily obtained from dyonic
black hole solutions by sending the electric charge to zero in
the appropriate way, i.e., by taking an infinite velocity boost
in the internal direction. As we have just seen in the previous
section, this method certainly works forC-type metrics.
Thus, we believe that aC metric for magnetic bubbles can be
constructed.

However, the Kaluza-Klein dyonicC metric is likely to
be very complicated, since it must combine the intricacies of
both the static dyonic solutions~to which it must reduce in
the limit A→0), and of theC metrics. The full dyonic
C-metric solution must simplify greatly when particularized
to describe accelerating magnetic bubbles, so one could try
to find first the metric for the latter, which, by the way, is the
situation of interest to us now. Even with this simplification,
the solution is probably not as simple as any of the known
C metrics, and we have not found it yet. Some steps towards
its construction are described in Appendix B.

Although we do not have the explicit form of the solution,
we can semiquantitatively describe several features it must
certainly have. Just like in the neutral case, thisC metric
must contain conical singularities pulling apart the bubbles.
Since the bubbles are magnetically charged, these singulari-
ties can be removed by introducing a background magnetic
field B asymptoting to the Kaluza-Klein Melvin solution,
which then provides the required force. In Kaluza-Klein
theory there is a simple way to do this: when identifying
points in the internal direction, introduce a twist along the
axial rotation axis@22#. The solution thus obtained could be
used to describe a new decay mode of magnetic fields in
Kaluza-Klein theory. To leading order, the action of the in-
stanton should be given by the Schwinger value

I5
pM2

PB
1•••, ~5.1!

and would be smallest for the minimal mass bubble, i.e., the
extremal GPS monopole. Also, the entropy enhancement fac-
tors of nonextremal black holes should be absent.

Having a metric that describes two accelerating magnetic
bubbles, then, as we have seen, we could easily obtain from
it a metric corresponding to two accelerating two-timing
monopoles. In particular, the massless case is of great inter-
est, since no force is needed to accelerate the monopoles, and
therefore, no conical singularities should appear. That this
no-external-force condition can actually be met for massless
objects has been explicitly verified for accelerating massless
black holes in@13,28#. The anti-Maxwell theories considered
in @13# include the two-timing KK theory for a specific value
of the dilaton. However, the attempt at constructing a regular

Euclidean instanton describing Dyson’s pair creation of anti-
Maxwell massless black holes failed. There are no Einstein–
anti-Maxwell-dilaton extremal black holes, and it is not pos-
sible to lower down the black hole horizon temperature to a
value small enough to match the acceleration temperature.4

Remarkably enough, this obstruction should be absent for the
monopole bubbles, since they have no horizon and no pre-
fixed temperature. Thus, the two-timing vacuum would not
decay by production of massless black holes, but rather by
forming zero mass monopole pairs.

For a general massive two-timing monopole, if no back-
ground field is introduced and, therefore, the monopoles are
pulled by strings,5 we expect the action of the instanton to be
given by the usual effective low energy result

I5
pM2

m
1O~P2!5

pM

A
1O~P2!, ~5.2!

where, we recall,P is the magnetic charge. The massless
monopole configuration is smoothly connected to the posi-
tive mass solutions. However, in the massless limit the lead-
ing termpM /A in the action vanishes, and the qualitative
behavior of creation rates changes. It is no longer of the
usual exponentially damped Schwinger form, and is domi-
nated by theO(P2) terms, which without explicit computa-
tion we cannot determine. However, these terms come from
Coulomb corrections due to graviton, photon, and scalar ex-
change between different points of the circular trajectory.6

For, e.g., gravitating monopoles, this term ispP2/2, which is
positive due to particle-antiparticle attraction. Hence, for
two-timing monopoles it would be reasonable to expect this
term to be2pP2/2, and we would findnegative actionin
the massless case. In fact, recently a EuclideanC-metric in-
stanton with massless black holes has been found to have
precisely an action of this kind@28#. The repulsion between
two oppositely charged two-timing monopoles makes it not
very surprising to find an enhanced~instead of suppressed!
pair creation rate. Pair creation of massless two-timing
monopoles would thus imply a crass instability of the two-
timing vacuum.

On the other hand, we could also consider a solution with
accelerating negative mass monopoles. This solution can as-
ymptote to the two-timing flat vacuum if we allow for a
conical deficit in between the monopoles: the singularity
would pull them together, but, since they have negative
mass, they accelerate in the opposite direction. The conical
deficit can operationally be replaced by a cosmic string such
as in @30#, and in this way we would find a decay of the
two-timing vacuum by spontaneously producing cosmic
strings with negative mass monopoles at their ends.

4It has been pointed out by Hawking that this absence of an ex-
tremal limit is not as odd as it may appear: in anti-Maxwell theory,
the photons emitted by a black hole have negative energy, and
therefore a black hole should increase its mass by radiating them
out @29#.
5The following heuristic discussion can be easily generalized to

include pair creation in external fields.
6For black holes, the entropy enters also at this order.
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Notice that in two-timing decay processes the tunneling
takes place through a path that, though effectively Euclidean
in four dimensions, is Lorentzian in the full five-dimensional
picture. In this case it is not completely clear how the clas-
sical action contributes to the leading terms of the decay rate.
A possible resolution is to simply take the point of view of
the effective four-dimensional description and write
G;e2I .

As usual, assuming a supersymmetric vacuum will rule
out the decay of the vacuum via the newC-metric instanton
that we have attempted to find here. More explicitly, the
instanton will simply be connected and so the only spin
structure allowed will be the one for which the fermions
satisfy aperiodic boundary conditions as they are parallel
propagated around the internal space. However, for super-
symmetry we would require the fermions to be periodic on
the internal space, and therefore it would not be possible to
match the fermion structures when trying to construct the
pair creation instanton. As in@4#, this is the most natural
mechanism for suppressing this pathological behavior.

VI. DISCUSSION AND CONCLUSIONS

The bubble solutions of the form (2dt2)
3Euclidean–Taub-NUT in Sec. II were already constructed
some time ago@5,6#. However, our approach to constructing
them by identifying the solutions in the parameter space of
dyonic black hole solutions is much more general. It has
allowed us to extend the class of pair creation processes stud-
ied till now. Interestingly, we have found that nonextremal
pair creation instantons are indeed possible in a theory with
dilaton couplinga.1. Another application of our method
for finding bubbles is to other theories containing internal
dimensions. In this way one can find bubbles—including
also bubble strings—as solutions of the low energy effective
equations of string theory, and of other higher dimensional
theories. These will be discussed elsewhere. It should be kept
in mind that, like many extended black objects, the~one-
timing! bubbles studied here suffer from classical instabili-
ties.

Given the finite size of bubbles, it is natural to ask
whether rotating bubbles exist. However, this does not seem
likely to occur, at least in 5D KK. If we consider the rotating
dyonic solutions of this theory@32#, then any way of elimi-
nating the electric charge to obtain bubbles~such as taking
boostsv→`) also sends the angular momentum of the so-
lution to zero. In fact, the bubble solutions thus obtained take
the form of (2dt2)3Euclidean–Kerr-Taub-NUT. These do
not correspond to rotating bubbles, but, rather, to objects in
background magnetic fields@31#. When the ‘‘Euclidean-
rotation’’ parameterV is small as compared to the inverse
compactification scale, the four-dimensional description is
that of a distorted bubble in a background magnetic field.
The bubble has a magnetic dipole moment, in addition to the
monopolar charge it may already have. On the other hand, if
V is comparable to the inverse compact radius, then the ap-
propriate picture is in terms of two GPS monopoles at an-
tipodal points of the EuclideanS2 bolt, with, in general,
charges of different magnitude. In all these configurations,
conical singularities appear so as to keep the whole set static.

A peculiar outcome of our analysis is the massless mono-

pole in the two-timing theory. It is likely that massless ob-
jects are a rather general feature of theories with internal
times. Usually, the mass and charges are expressable as sums
and products, respectively, of several characteristic radii,
such as in Eqs.~4.3! and ~4.4!. The imaginary charge asso-
ciated with an internal time may be obtained by changing the
sign of one of these radii, and this, in turn, may lead to
regions of parameter space where the mass can be set to zero.

On the other hand, classical massless black hole solutions
have been recently found in the context of string theory@33#.
They exhibit a number of peculiar features, most of them
associated to the fact that they are nakedly singular@28#. Our
massless monopoles exhibit also a singularity in four dimen-
sions, but this is harmless since we know how to handle it by
going to the regular five-dimensional manifold. Another sig-
nificant difference is that, whereas the stringy massless holes
are supersymmetric, the two-timing massless monopoles are
not. As a consequence, they are expected to acquire mass by
quantum corrections. Given the presence of negative mass
states, it is not clear what the quantum corrected mass spec-
trum of monopoles would be. As we have argued, the mass-
less monopole could be stabilized due to the symmetry be-
tween the two asymptotic regions it connects. However, the
quantization of the two-timing theory is certainly bound to
exhibit all kinds of pathologies.

Finally, we have presented evidence that theories with
internal time directions can give rise to pair production of
massless particles out of the vacuum. This evidence is based
on the following facts:~i! The 5D KK theory contains a
nonsingular massless monopole, which can be obtained by
appropriately choosing parameters in the general dyonic so-
lution; ~ii ! dilatonC metrics for both electric and magnetic
black holes are known, so we expect that a similar metric for
dyonic black holes must exist;~iii ! we have explicitly shown
that it is possible to construct, using theC metrics already
known, instantons for pair production of bubbles.

Thus, theories with extra times are expected to suffer
from an instability that in some sense is even worse than
those previously known. Pathologies caused by negative
norm fluctuations of the internal dimension can be kept be-
low a certain level by, for example, taking the internal radius
to be sufficiently small. On the other hand, the instability of
the ordinary KK vacuum described in@4# is suppressed for
large internal radius.7 In contrast, production of massless
two-timing monopoles is, as we argued, probably enhanced.
Work towards the explicit construction of the corresponding
C metric, as well as the more general KK dyonicC metric, is
in progress.
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APPENDIX A

For some purposes, it is useful to write the solution~2.5!,
~2.7! as it is done in@15#, in terms of the more physical
parametersM ,P,Q, and the scalar chargeS. The latter is
obtained asf→S/r1O(r22) and is not an independent pa-
rameter, but rather it must satisfy

2

3
S5

Q2

S2A3M
1

P2

S1A3M
. ~A1!

The functions~2.7!, after a linear shift ofr , are given by

X5~r2S/A3!21
2Q2S

S2A3M
,

Y5~r1S/A3!21
2P2S

S1A3M
, ~A2!

f5~r2M !22~M21S22Q22P2!,

and

At5Q
r1S/A3

X
,

Aw5Pcosu. ~A3!

This representation has the advantage that the electric-
magnetic duality~4.5! of the four-dimensional description is
evident from the symmetry underQ↔P, S→2S.

At first sight, it is not clear how to obtain the bubble
sector of the solution, since if we directly setQ50 we only
find the magnetically charged black holes. However, a dif-
ferent solution is obtained if we sendQ→0 and simulta-
neouslyS→A3M , while keeping the ratioQ2/(S2A3M )
finite and fixed by Eq.~A1!. In this limit we find

X5 f5~r2M2A4M22P2!~r2M1A4M22P2!,

Y5~r1M2P!~r1M1P!. ~A4!

Shifting now r1M→r we find the same metric as in Eq.
~2.10!.

APPENDIX B

In this appendix we find a unified form for the several
known limits that theC metric for magnetic bubbles must
satisfy. The full solution has not been found yet, but we think
that the results presented here may be useful for further in-
vestigations.

The KK C metric for magnetic bubbles will depend on
three parameters, namelyr1 ,r2 ,A. It must certainly satisfy
the following limits: ~1! For vanishingr1 or r2 it must
reduce to the neutral bubbleC metric;~2! for r15r2 it must
reproduce theC metric describing creation of GPS mono-
poles@23#; ~3! for A→0 it must reduce to the static general
Taub-NUT solution across a trivial time.

Of course, these metrics need not be reproduced in pre-
cisely the form given above or in@23#, and some coordinate

changes may be needed. We will rewrite all these metrics in
a way that a unified form of all of them is possible.

Start first with the static limit, i.e., Taub-NUT3(2dt2).
Writing it as

ds252dt21
~r2r1!~r2r2!

r 22r1r2
@dx512Ar1r2cosudw#2

1
r 22r1r2

~r2r1!~r2r2!
dr21~r 22r1r2!dV2

2 , ~B1!

we change to the coordinate

y52
1

~r1r1!A
~B2!

„other choices are possible, such asy521/(rA) or
y521/@(r6r2)A#, but this one is quite convenient since it
will allow for the simplest form of the off-diagonal term in
theC metrics with magnetic charge…. In this static metric the
parameterA has no special meaning, and simply has the
dimensions of an inverse length.

Then, the metric~B1! is

ds25
H~y!E~y!

J~y!
~dx512Ar1r2cosudw!22dt2

1
J~y!

H~y!E~y!

dy2

A2y4
1
J~y!

A2y2
dV2

2 , ~B3!

where we have defined the following polynomial functions:

H~j!5112r1Aj,

E~j!511~r11r2!Aj, ~B4!

J~j!5112r1Aj1r1~r12r2!A2j2.

The following cases are especially interesting.
~1! For r15r2 we have H(y)5E(y)5J(y)51

12r1Ay. The nut is aty521/(2r1A).
~2! For r150, we have H(y)5J(y)51, E(y)51

1r2Ay. The bubble is aty521/(r2A).
~3! For r250, E(y)511r1Ay, J(y)5E(y)2. The

bubble is aty521/(2r1A).
We can now rewrite the KKC metrics with bubbles or

GPS monopoles in a way that the bubbles or monopoles are
located at precisely these same values ofy. This requires that
in theC metrics we make coordinate changes of the form

y21→y211r 0A,

x21→x211r 0A, ~B5!

where by adequately choosingr 0 we can locate the bubbles
where required.

After some straightforward manipulations, we can write
all these metrics in the following unified form:
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ds25
H~y!E~y!J~x!

H~x!E~x!J~y!
~dx512xAr1r2dw!2

1
1

A2~x2y!2 FH~x!E~x!

3SK~y!dt22
J~y!

E~y!H~y!K~y!
dy2D

1J~y!S dx2

K~x!
1
K~x!E~x!H~x!

J~x!
dw2D G . ~B6!

The functionsH,E,J, are as given above. Despite its com-
plicated aspect, this metric easily reproduces all the required
limiting solutions if the functionK is properly chosen. Pre-
cisely, one must take the following.

~1! For r15r2 ,

K~j!5
1

H~j!
2j2. ~B7!

~2! For r150,

K~j!5E~j!22j2. ~B8!

~3! For r250,

K~j!5H~j!22j2. ~B9!

Whatever theC metric for magnetic bubbles is, it must be
possible to write it in a way that these solutions are found.
Additionally, the static limitA→0 requires that, for large
y, K(y);2y2, and for x;1, K(x);12x2. Notice that
there are two forms of a neutral bubbleC metric; they are
related by a coordinate change such as in Eq.~B5!. Alterna-
tive forms are possible, but the magnetic potential term gets
more complicated. Unfortunately, we have not found any
simple enough function that reproduces the above limits and,
simultaneously, solves the five-dimensional Einstein equa-
tions.

If we tried to aim at finding only the most interesting case,
the solution containing massless monopoles, the approach
just described might not be adequate, and other simplifica-
tions may be more useful. For massless objects, the polyno-
mial functions in theC metric have to be even~or, more
properly, one expects them to be even for at least some
choice of coordinates!. This property can easily be seen to be
related to the no-external-force condition in the (x,w) part of
the metric, or equivalently, the vanishing of the mass in the
~static limit of the! (t,y) part ~see@28#!. However, even in
this particular case the solution has remained elusive.
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