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Can extreme black holes have„long… Abelian Higgs hair?
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It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and
that one can think of such a vortex as black hole ‘‘hair.’’ In this paper, we examine the properties of an Abelian
Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both
analytical and numerical techniques, we show that the magnetic field lines~as well as the scalar field! of the
vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme
black holes in Einstein-Maxwell theory are known to exhibit such a ‘‘Meissner effect’’ in general. This would
seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total
energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size
of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition
that the hole should be expelled. However, as we allow the extreme horizon radius to become very large
compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically
unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion
that a black hole can support ‘‘long’’ Abelian Higgs hair in the extreme limit. We show that these consider-
ations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at
black holes, as in the processes where a string snaps by nucleating black holes.@S0556-2821~98!08320-9#

PACS number~s!: 04.40.2b, 04.70.2s, 11.27.1d, 98.80.Cq
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I. INTRODUCTION

Black hole ‘‘hair’’ is defined to be any field~s! associated
with a stationary black hole configuration which can be d
tected by asymptotic observers, but which cannot be ide
fied with the electromagnetic or gravitational degrees of fr
dom. Back in the heyday of black hole physics, a numbe
results were proved@1,2,3# which seemed to imply that blac
holes ‘‘have no hair.’’ Put more colloquially, these resu
implied that given certain assumptions the only informat
about a black hole which an observer far from the hole
determine experimentally is summarized by the elec
charge, magnetic charge, angular momentum, and mas
the hole. Such uniqueness results are referred to as ‘
hair’’ theorems. These celebrated results would seem to
ply that a black hole horizon can support only these limi
gauge charges; for a long time, physicists thought that o
matter fields simply could not be associated with a bla
hole. However, this prejudice was to some extent discred
when Bartnik and McKinnon@4# discovered a solution of the
Einstein-Yang-Mills equations which had ‘‘particle’’-like
quantum numbers which did not correspond to the grav
tional or Maxwell fields. More precisely, the holes of@4#
support Yang-Mills fields which can be detected
asymptotic observers; one therefore says that these b
holes arecolored.

Of course, these exotic solutions do not impugn the or
nal no-hair results since all such solutions are known to
linearly unstable~see, e.g.,@5#!. These colored holes ar
therefore said to ‘‘evade’’ the usual no-hair results.

There are other amusing tricks which allow one to eva
no-hair theorems. For example, the reader will recall@6# that
0556-2821/98/58~12!/124014~11!/$15.00 58 1240
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in string theory the Einstein equations are induced from
low-energy effective field theory only to ‘‘zeroth’’ order in
a8, wherea8 denotes the Regge slope of string theory.
you include the order-a8 corrections, then you get curvature
‘‘squared’’ terms in the Lagrangian~you also get the usua
dilatonic terms!. It turns out@7# that black hole solutions in
such a curvature-squared, higher-derivative theory of gra
can support nontrivial dilatonic configurations outside t
horizon, and so they are said to possess ‘‘dilatonic’’ ha
Again, these results do not actually contradict the origi
no-hair theorems since they only apply in exotic situation

What these results teach us is that we have to tread
carefully whenever we start talking about black hole ha
We will stick with our definition of hair as any propert
which can be measured by asymptotic observers. Furt
more, we shall follow@8# and use the term ‘‘dressing’’ for
the question of whether or not fields actually reside on
horizon.

With all of this in mind, we now want to analyze th
extent to which hair is present in situations where we all
the topology of some field configurations to be nontrivial;
particular, an interesting question is whether or not topolo
cal defects, such as domain walls, strings, or textures@9#, can
act as ‘‘hair’’ for a black hole. In@8# evidence was presente
that a Nielsen-Olesen@U~1!# vortex can act as ‘‘long’’ hair
for a Schwarzschild black hole. More precisely, in@8# the
authors studied the problem of whether or not such a vo
can exist on a Schwarzschild black hole background~ne-
glecting at first the gravitational back reaction!; they pre-
sented analytical and numerical evidence for such a solut
They went on to include the gravitational back reaction o
single thin vortex and managed to rederive the ‘‘Aryal-For
©1998 The American Physical Society14-1
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A. CHAMBLIN et al. PHYSICAL REVIEW D 58 124014
Vilenkin’’ ~AFV! metric @10#, which is a solution meant to
model a cosmic string threading through a Schwarzsc
black hole ~i.e., the AFV solution is just a conical defec
centered on a black hole!. Thus they were able to argue th
the AFV solution truly is the ‘‘thin vortex’’ limit of a
‘‘physical’’ vortex–black-hole configuration. Using all o
these results, they concluded with an argument that the A
lian Higgs vortex isnot just dressing for the Schwarzschi
black hole, but rather that the vortex is truly hair, that is
property of the black hole which can be detected
asymptotic observers.

In this paper, we extend the analysis of@8# and allow the
black hole to be charged. That is to say, we consider
problem of an Abelian Higgs vortex in the Reissne
Nordström background. In order to ‘‘turn up’’ the electri
charge of the hole, we have to allow for the presence of
U~1!’s @one U~1! is where the charge of the hole resides a
the other U~1! is the symmetry spontaneously broken in t
ground state#; otherwise, the charge would be screened.
find that the results of@8# are reproduced when the charge
the hole is very small relative to the mass. However, as
increase the charge and the hole approaches extremality
find that something very remarkable happens. In the extre
limit, all of the fields associated with the vortex~both the
magnetic and scalar degrees of freedom! are expelled from
the horizon of the black hole. We present dramatic numer
evidence that the magnetic and scalar fields always ‘‘w
around’’ the horizon in the extremal limit. This behavior w
expected, given that extreme black holes in Einste
Maxwell–dilaton theories generically display such
‘‘Meissner effect’’ and so can be thought of as ‘‘superco
ductors’’ ~a deeper analysis of the superconducting prop
ties of extremal black holes andp-branes in Kaluza-Klein
and string theories will be given in@11#!.

We go on to calculate the total energy present in the e
tromagnetic field~of the vortex! as we allow the extreme
black hole to become very large compared to the size of
vortex, and we find an instability. Put more simply, for bla
holes large compared to the vortex radius, the energy
vortex which doesnot wrap the hole~i.e., with the black hole
outside the vortex! is muchless than the energy of a vorte
which does wrap the hole. It is therefore energetically un
vorable for the vortex to interact with the hole, and inde
the vortex will want to ‘‘slide’’ off of the hole. Thus, in the
thin vortex limit, a vortex does not want to be attached to
extreme black hole. It follows that the vortex cannot in a
way be thought of as a ‘‘property of the black hole which c
be measured at infinity’’; in other words, an Abelian Hig
vortex is not hair for an extreme black hole. Curiously, t
expulsion of the vortex does not proceed gradually as
black hole approaches extremality; rather, we have fo
numerical evidence that a nonextreme black hole is alw
pierced by a vortex, no matter how close to extremality it
We conclude with a discussion of the implications of o
results to scenarios involving strings ending on black ho
in particular, the snapping of strings by the formation
black hole pairs.
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II. NIELSEN-OLESEN VORTEX IN THE PRESENCE
OF A CHARGED BLACK HOLE

In this section we analyze the Nielsen-Olesen equati
for an Abelian Higgs vortex@12# in the Reissner-Nordstro¨m
background. Since we want to provide some continuity w
the study of Achu´carroet al. @8#, which in some respects w
generalize, we will present our analysis in a form and no
tion that closely parallel theirs.

Our treatment of the black-hole–string-vortex system
volves a clear separation between the degrees of freedo
each of these objects. The action takes the form

S5S11S2 , ~2.1!

where the first term is an Einstein-Hilbert-Maxwell action

S15
1

16pG E d4xA2g S 2R2
1

4
F2D , ~2.2!

and the second describes an Abelian Higgs system minim
coupled to gravity:

S25E d4xA2g S DmF†DmF2
1

4e2 F22
l

4
~F†F2h2!2D .

~2.3!

The matter content of the Abelian Higgs system consists
the complex Higgs fieldF and a U~1! gauge field with
strengthFmn and potentialAm . Both the Higgs scalar and th
gauge field become massive in the broken symmetry ph
They are coupled through the gauge covariant deriva
Dm5¹m1 iAm , where¹m is the spacetime covariant deriva
tive. As in @8#, we choose metric signature~1222!.

The degrees of freedom inS2 will be treated as ‘‘test
fields’’; i.e., their energy-momentum tensor is supposed
yield a negligible contribution to the source of the gravit
tional field. The latter, instead, affects the propagation of
fields F and Am : an exact solution of the Einstein
Maxwell equations fromS1 will be plugged into the Abelian
Higgs actionS2 as a fixed, background metricgmn . Notice
that we have two different gauge fields,F andF, and each is
treated in a very different manner. It is onlyF that couples to
the Higgs field and is therefore subject to spontaneous s
metry breaking. The other gauge fieldF could be thought of
as the free, massless Maxwell field of everyday experien
apart from modifying the background geometry, its dyna
ics will be of little concern to us here. Notice that where
we treat F as a test field, the back reaction ofF on the
geometry will be fully accounted for.

The parameterh is the energy scale of symmetry breakin
and l is the Higgs coupling. These can be related to
Higgs boson mass bymHiggs5hAl. There is another rel-
evant mass scale, i.e., that of the vector field in the bro
phase, mvector5&eh. On length scales smaller tha
mvector

21 , mHiggs
21 , the vector and Higgs fields behave as ess

tially massless. It is also convenient to define the Bogom
nyi parameterb5l/2e25mHiggs

2 /mvector
2 .

The action~2.3! has a U~1! invariance realized by
4-2
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CAN EXTREME BLACK HOLES HAVE ~LONG! ABELIA N . . . PHYSICAL REVIEW D 58 124014
F→FeiL~x!, Am→Am2¹mL~x!, ~2.4!

which is spontaneously broken in the ground state,F
5heiL0. Besides this ground state, another solution, the v
tex, is present when the phase ofF(x) is a nonsingle-valued
quantity. To better describe this, define the real fieldsX, Pm ,
andx by

F5hXeix, Am5Pm2¹mx. ~2.5!

A vortex is present whenrdx52pN, the integerN being
called the winding number of the vortex. IfNÞ0 and if the
spatial topology is trivial, then, by continuity, the integratio
loop must encircle a point of unbroken symmetry (X50),
namely, the vortex core.

The Euler-Lagrange equations that follow by varyingX in
the action~2.3! are

¹2X2XPmPm1
lh2

2
X~X221!50, ~2.6!

while by varyingAm one finds

¹mFmn12e2h2X2Pn50. ~2.7!

The field x is not dynamical. In flat space, vortices
Nielsen-Olesen type@12# appear as cylindrically symmetri
solutions

F5X~r c!e
iNw, Pw5NP~r c!, ~2.8!

r c being the cylinder radial coordinate and all other comp
nents ofPm being zero. We will be concerned, however, n
with flat space, but with another solution of the Einste
Maxwell theory~2.2!, namely, the Reissner-Nordstro¨m black
hole

ds25Vdt22
dr2

V
2r2~du21sin2udw2!,

V512
2Gm

r
1

q2

r2 ~2.9!

~the chargeq is measured here in geometrical units!, which is
not cylindrically symmetric. This makes the analysis of t
solutions somewhat more complicated.

It will be convenient to rescale the radial coordinate a
black hole parameters by the Higgs wavelength to work w
the nondimensional variables (r ,E,Q)5hAl(r,Gm,q). In
terms of these variables,

V512
2E

r
1

Q2

r 2
. ~2.10!

We stress that the chargeQ of the black hole, which couple
to the fieldF, is unrelated to the Abelian gauge fieldF as-
sociated with the vortex.Q can be primarily thought of as
parameter that allows us to modify the background geo
etry, in particular, to consider the extremal black hole ba
grounds described below.
12401
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The Reissner-Nordstro¨m black hole has inner and oute
horizons whereV(r )50. We will only be interested in the
outer horizon, which is at radius

r 15E1AE22Q2. ~2.11!

The horizon exists as long asE>uQu; otherwise, one finds a
naked singularity. If the inequality is saturated,r 15E
5uQu, thenV(r ) has a double zero atr 1 and the black hole
is said to be extremal.

Return now to the equations of the vortex. One can c
sistently take

X5X~r ,u!, Pw5NP~r ,u!, ~2.12!

which simplifies the equations of motion~2.6!, ~2.7!, to the
form

2
1

r 2 ] r~r 2V] rX!2
1

r 2sin u
]u~sin u]uX!

1
1

2
X~X221!1

N2XP2

r 2sin2 u
50, ~2.13!

] r~V] r P!1
sin u

r 2 ]uS ]uP

sin u
D 2

X2P

b
50. ~2.14!

In this generic form these equations allow us to recover t
interesting situations as limiting cases. First, whenb→` the
Higgs field decouples. In this situation we would be ess
tially studying a free Maxwell test field in the Reissne
Nordström background. The complementary situation aris
when P51 ~a constant! throughout the space: this woul
be a global string, i.e., without any local gauge dynamics
the presence of the charged hole.

Equations~2.13!, ~2.14!, are, in general, rather intractab
in exact form and we will need to resort to approximati
methods. In the next section, we will solve the equatio
numerically and study configurations with arbitrary relati
sizes of the black-hole–vortex radii. For the remainder
this section we will describe an analytical solution of the
equations for the case where the black hole is small rela
to the vortex size. In the units we are using the radius of
flux tube is r;A2Nb1/4 for N@1. Thus we will require
AN@E. This sort of large-N limit was first employed to
obtain analytical results in@13#. The results we obtain in this
way will be consistent with our numerical solutions in th
next section.

Well inside the core of the vortex the gauge symme
remains essentially unbroken. Thus we expectX'0 or, bet-
ter,X2/b'0. It is not difficult to see that, within the approx
mation considered, one can consistently neglect the last t
in Eq. ~2.14! and then attempt to solve

] r~V] r P!1
sin u

r 2 ]uS ]uP

sin u
D'0. ~2.15!
4-3
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A. CHAMBLIN et al. PHYSICAL REVIEW D 58 124014
For the Schwarzschild background (Q50), a solution is
provided byP21}r 2 sin2 u. This suggests that we try th
ansatz

P'11a~r !sin2u. ~2.16!

The equation we must solve now is

~r 222Er1Q2!a912S E2
Q2

r Da822a50, ~2.17!

which admits the solution

a~r !52p~r 22Q2!, ~2.18!

and hence

P'12p~r 22Q2!sin2u. ~2.19!

Herep is an integration constant equal to twice the magne
field strength at the center of the core. We have also cho
the parameters in order to haveP→1 at the string axis (u
50,p). Far from the black hole, but still inside the vorte
we can perform an analysis similar to that in@13# to show
that

p'
1

2NAb
. ~2.20!

LargeN thus means smallp.
Now we have to solve the equation for the Higgs fieldX,

Eq. ~2.13!. Following @13#, we setX5jN and expand in
powers of 1/N. This yields

VS ] rj

j
D 2

1
1

r 2 S ]uj

j
D 2

5
P2

r 2sin2u
1O~1/N2!. ~2.21!

To be consistent we must neglect the terms proportiona
p2, since as we have seen they would contribute
O(1/N2).1 Having done this, the equation becomes separa
and can be solved in the formj5b(r )sinu, whereb must
satisfy

b8

b
5

12p~r 22Q2!

rAV
. ~2.22!

This is integrated to yield

b~r !5k~r 2E1rAV!

3expS 2
p

2
~r 213Er !AV2

3

2
p~E22Q2!

3 ln~r 2E1rAV! D ~2.23!

1This limits the validity of the solution to distancesr sinu suffi-
ciently smaller thanA2N.
12401
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evant for our purposes!. From here we getX as

X'bN~r !sinNu. ~2.24!

Equations~2.19!, ~2.23!, and ~2.24!, constitute our solu-
tion describing a ‘‘test vortex’’ residing in the background
a charged black hole that sits well within the vortex co
The presence of charge induces a number of qualita
changes in the picture described in@8# ~the neutral case!. To
start with, notice that the distance at whichP'0, which
roughly defines the thickness of the vortex, is

r sin u'A1

p
1Q2sin2u'

1

Ap
S 11

p

2
Q2sin2u D ,

~2.25!

and so we see that, compared to the neutral black hole c
the vortex is thicker on the equatorial region when the bla
hole has charge. This effect is of orderp;1/N and acts
against the ‘‘squeezing’’ of the string due to the black ho
attraction. Intuitively, the presence of charge induc
tension—a repulsive effect.

However, there is a more important modification intr
duced by a nonzero charge on the black hole. If we comp
the magnetic flux crossing any portion of the horizon, whic
from Eq. ~2.19!, is given by

Fuwur 5r 1
52p~r 1

2 2Q2!sin 2u, ~2.26!

we see that it decreases as we increase the charge, un
precisely vanishes for an extreme black hole. Moreover,
see from Eq.~2.23! that the Higgs field also vanishes at th
horizon in that limit. The extreme black hole expels from
horizonall the fields that reside in the core of the string.

It was already known that an extreme black hole placed
a uniform magnetic field exhibits a sort of ‘‘perfect diama
netism.’’ The solution~2.19! for the gauge field describe
precisely this effect. But here we have found that this exc
sion is also true for the Higgs field associated with the str
vortex. Moreover—and this is something that we could n
have anticipated from what we knew about the behavior
the magnetic fields—a global string is also expelled from
extreme horizon. This is very easy to see: simply sep
50 in Eq. ~2.23! to obtain the field of the global string.

Given that the solution we have found is only a leadin
order approximation for largeN, one might inquire whether
further corrections still preserve the expulsion of the fiel
The numerical evidence from next section confirms t
point, even down toN51.

A natural question to ask is whether the black hole w
stay inside the vortex or will instead try to find its way ou
side the core. To this effect we will study the energy stor
in the string core when a black hole is sitting inside it.

For a static solution of the Abelian Higgs equations,
length and energy units rescaled by the Higgs wavelen
the energy density takes the form
4-4
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T0
052gi j ] iX] jX2X2gi j Pi Pj1

b

2
F21

1

4
~X221!2.

~2.27!

More specifically, for the vortex in the Reissner-Nordstro¨m
background,

T0
05V~] rX!21

1

r 2 ~]uX!21
N2X2P2

r 2sin2u
1

1

4
~X221!2

1
N2b

r 2sin2u
FV~] r P!21

1

r 2 ~]uP!2G . ~2.28!

Let E0,bh
(g) be the total energy of the gauge field in th

absence or presence of the black hole. A rather long anal
which we will spare the reader, keeping leading-order ter
in 1/N ~or, what amounts to the same, expanding for smalp!
leads to the conclusion that

Ebh
~g!

E0
~g! 512cEAp1O~p!, ~2.29!

wherec is a positive constant~a pure number! of order unity.
Hence the presence of a black hole within the vortex
creases the energy of the gauge field. For fixed black h
massE, this is independent of the value of the charge. Ev
if the latter causes an equatorial thickening of the str
which would tend to increase the energy, the energy of
fields decreases. This is, however, a smaller effect of o
O(p).

Consider now the energy stored in the Higgs field. Fr
the solution~2.23! we can see that switching on a black ho
massE decreases the value of the Higgs field inside
vortex. Again, the charge works in the opposite direction,
this is a smaller effect. As regards the energy, the larg
contribution is the potential energy arising from the fact th
the core is in the false vacuum. This is, however, har
affected by the introduction of the black hole. The gradie
terms, on the other hand, are more significantly modifi
and it is not difficult to see that a nonzero value of the bla
hole massE always tends to decrease the energy.

Of course, these energetic considerations alone do no
us what the forces induced by the vortex on the black h
are. In order to compute these, we would need to cons
configurations where the black hole is not exactly at the a
of the vortex and, thus, nonaxisymmetric configurations
simple way to estimate the forces would be to compute
energy stored in the vortex as a function of the separatiox
of the center of the black hole to the axis of the vortex; c
this function E(x). It is clear that the lack of symmetr
makes this problem very much harder. Nonetheless, the
timations above give us the valuesE(x50)5Ebh,E(x
→`)5E0 . If E(x) were a monotonic function ofx, which
does not seem unreasonable, then the forces acting on
black hole would tend to keep it inside the vortex.
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The conclusion seems to be that the black hole sho
remain stable inside a thick vortex. Qualitatively, this
largely independent of the presence or absence of black
charge and, in particular, of the vanishing of the fields on
extreme horizon. However, as will be revealed in next s
tion, this no longer remains true if the vortex radius shrin
below the horizon radius.

III. NUMERICAL SOLUTIONS

In the previous section we have provided evidence tha
extremal black hole does not allow penetration through
horizon of the fields associated with the vortex. The analy
though, has had to be restricted to the situation where
black hole is small relative to the vortex and stays w
within its core. It is irresistible to push this picture to i
limits and let the vortex shrink to a size smaller than t
horizon radius. Will the string still fail to pierce the extrem
horizon? In this case we would expect that the presenc
the black hole inside the vortex should cause an incremen
the tension of the flux. As a result, the energy stored in
vortex should increase—instead of decrease, as in the p
ous section—and this would clearly suggest that the confi
ration is unstable: the extremal black hole would stron
oppose wearing the Abelian Higgs wig, and the~thin! string
should slide off the horizon, leaving the extreme black h
as bald as we have always known it to be.

To analyze these issues we shall need to resort to num
cal integration of Eqs.~2.13! and ~2.14! outside and on the
black hole horizon. Our results will confirm the picture of th
previous section for thick vortices, as well as provide e
dence that, when the string is thin, it will tend to slip off th
extreme horizon.

The Abelian Higgs equations in the presence of a ba
ground Reissner-Nordstro¨m metric are elliptic. On the hori-
zon they become parabolic. In order to solve the equati
numerically, we use a technique first used by Achu´carro,
Gregory, and Kuijken@8#. We will briefly describe this tech-
nique below.

One common approach to solving elliptic equations is
introduce an artificial, first-order in time, diffusive term t
the elliptic equation to be solved. The resulting diffusio
equation is then iterated and the fields relaxed, until the tim
dependent term~the ‘‘residual’’! approaches zero to suffi
cient accuracy, leaving a solution to the original ellipt
equation. This is the basic technique used in@8#; however,
they have introduced some changes in order to solve
equations on the horizon.

Their method is to set boundary conditions atu50 and
u5p consistent with field values at an Abelian string co
At r 5`, boundary conditions are set to those of t
asymptotic fields of the string. Field values on the horiz
are also initially set to asymptotic values. The integrati
technique then proceeds as follows.

First, the discretized field is relaxed inside the simulati
volume. Next, using the equations for the fields on the ho
zon, which are elliptic in the radial direction, the field
relaxed on the horizon, giving new boundary points the
This process is iterated until the residual is considered sm
4-5
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enough that a solution has been found.
The relaxation procedure we have used is based on

successive overrelaxation method described in@14#. How-
ever, since the equations are nonlinear, Chebyshev acce
tion had to be turned off, and we typically had to underre
es
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th

rg
o

th
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the field.
To check our code, we ensured that solutions to the

charged black hole case matched those of@8#.
The discretized equations for theP and X fields in a

Reissner-Nordstro¨m background outside the horizon are
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and theP andX equations on the horizon are
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2
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X00

2
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~3.4!

Here a zero subscript indicates the value at a given m
point, and1 and 2 indicate adjacent values to the left o
right.

On theu50, p boundaries, we setP51 andX50, at r
5r max we setP50 andX51, and initially, on the horizon,
we setP50 andX51. The boundary conditions atr 5r max
are only an approximation to the correct values since
string is forced to have a width of one grid zone atr max. This
tends to distort the field values nearr max. In our simulations,
we have solved the equations on a Cartesianr -u mesh. In
order to minimize the distortion, we setr max to be from 5 to
10 horizon radii. Since grid zone volume increases for la
r, the string is then well approximated as having a width
less than a grid zone inr -u coordinates.

With the above discussion in mind, we now present
numerical results.
h-

e

e
f

e

A. Expulsion of the electromagnetic and Higgs fields
by the extreme black hole

We have already seen, in Eqs.~2.23!–~2.26!, that when
the vortex size is large compared to the black hole size
magnetic and Higgs fields are both expelled by the extre
black hole. However, the estimates which we used to ob
these analytic expressions no longer hold when the vorte
very thin relative to the hole. In this situation, we have to u
numerical techniques.

We have pushed this calculation to the limits, making t
vortex as small as we could given the computational c
straints. What we have found is that the vortex isalways
expelled, no matter how small the magnetic and Higgs fl
tubes are taken to be.

Here we present dramatic pictures of the numerical e
dence which we have amassed. Our intention is to give
reader a ‘‘flavor’’ of the general phenomena using a frug
selection of images. The general pattern displayed here h
no matter how small you make the flux tubes.

We begin with the expulsion of theP field by the extreme
hole. In the diagram below, we have setE5Q510, with
winding numberN51 ~the smallest winding possible!. Fur-
thermore, the Bogomol’nyi parameterb is set equal to unity,
so that the magnetic and Higgs flux tubes are the same
~see Fig. 1!.

Clearly, theP field literally ‘‘wraps’’ the black hole hori-
zon; furthermore, given the relation betweenP andFuw , it is
clear that no magnetic flux is crossing the horizon. The
treme hole still behaves just like a perfect diamagnet.
now want to see if we can ‘‘puncture’’ the horizon with flu
by making the magnetic flux tube even smaller. Perhaps
simplest way to make the vector flux tube thinner is by d
creasing the value ofb. This has the effect of greatly enhan
ing the size of the mass term in Eq.~2.14!. Sinceb is the
ratio of the sizes of the vector and Higgs flux tubes, mak
b very small will correspond to making the magnetic flu
4-6
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tube very thin~while keeping the size of the Higgs flux tub
fixed, though enlarging the size of the transition region
tween massless and massive Higgs phases, which
;b21/2). This is done in Fig. 2, where we have setE5Q
510, N51, andb50.0001.

Again, theP contours all wrap around the black hole h
rizon, indicating that there is never any penetration. We h
repeated this calculation for the smallest resolvable value
b ~keepingE, Q, andN fixed!, and we have always seen th
same phenomena. Similarly, we have keptN andb fixed and
madeE5Q very large ~i.e., fixed the vortex size and in

FIG. 1. Expulsion of theP field from the extreme horizon, fo
the valuesE5Q510, N51, andb51.

FIG. 2. Expulsion of theP field from the extreme horizon, fo
the valuesE5Q510, N51, andb50.0001.
12401
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e
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creased the size of the extreme hole!, and again we see per
fect expulsion.~There is very little reason to show the pic
tures of these calculations since without magnification th
are qualitatively identical to the figure above.!

We now turn to the behavior of the Higgs fieldX. Again,
in the thin vortex limit we are unable to make analytic es
mates and we are forced to resort to numerical integrat
We have found that theX field is always expelled from the
extreme hole, no matter how small the scalar flux tube
made. Actually, in Fig. 3 what we do is fix the size of th
scalar flux tube~by fixing N51 andb50.5) and we allow
the mass of the extreme hole to increase. The plots run f
left to right with increasing mass. The graphs are plotted
the valuesE5Q51, E5Q55, E5Q510, andE5Q520.

As was claimed, theX contours all wrap around the blac
hole horizon, no matter how large the hole is made. Inde
the sequence of pictures in Fig. 3 provides an intuitive p
ture of why Eq.~2.29! makes sense. When the black hole
much smaller than the vortex, the black hole is just a ‘‘hol
where no vortex energy can be stored. Thus the presenc
the hole tends to subtract the total energy of the vortex.
the other hand, when the hole becomes much larger than
vortex ~and our estimates break down!, the vortex still has to
wrap the hole and so we would expect the total energy of
vortex to become very large. We now provide a more d
tailed discussion which will show that this intuition is in fa
correct.

B. Instability of the vortex energy in the large mass limit

As we have discussed, Eq.~2.29! tells us that when the
hole is small relative to the vortex, increasing the mass of
hole tends to decrease the total energy stored in the vo
We can also see it must be the case that when the hole is
large relative to the vortex, increasing the mass of the h
must increase the energy of the vortex due to the tensio
the flux lines. Thus the energy of the vortex as a function
extreme black hole mass must have at least one minimum
fact, it is not hard to see that there must be at most
minimum ~although we will not provide an analytic argu
ment here, since the numerical results will make this cle!.
We shall denote this value of the hole mass, where the vo
energy is minimized, asEc(N,b). We have writtenEc as a
function of N and b in order to emphasize that the critica
mass depends on the ‘‘width’’ of the vortex. Now, again,
Ebh denote the total energy of the vortex centered on
extreme black hole~note that in the numerical calculation
which follow we have introduced an obvious cutoff; i.e., w
do not integrate over all of spacetime to obtain the ener
but rather we integrate out to the boundaries of some la
‘‘box’’ !. Then it is always the case thatEbh(Ec),E0 , where
E0 is the energy of the vortex in the absence of the bla
hole. This means that a black hole of massEc is perfectly
happy to sit inside of the vortex, and indeed it would
energetically unfavorable for the hole to be removed fro
the vortex. In fact, it is always the case that there exist
maximum massEmax such that for all black holes of mas
E,Emax, Ebh(E),E0 ; as long as the hole is not too massiv
it is content to sit inside the vortex.
4-7



A. CHAMBLIN et al. PHYSICAL REVIEW D 58 124014
FIG. 3. Expulsion of the Higgs field from the extreme horizon, for the values~from left to right! E5Q55,10,20,30,N51, andb50.5.
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The statements made above are based on the results o
numerical computations of the total energyEbh. In the figure
below we have plotted the results of one such computat
Here we have setb50.5 andN510. The flat, horizontal line
~at 6640! representsE0 in our units. Clearly, for these value
Ec is about 8 andEmax is about 15. Furthermore, for blac
holes of mass greater thanEmax, the energy of the vortex is
diverging. The erratic behavior of the vortex energy for ve
small values of the black hole mass is an artifact of
numerical techniques employed in the calculation and sho
be ignored~see Fig. 4!.

It is clear from the graph of Fig. 4 that a black hole wi
massE.15 is going to find it energetically favorable to sl
out of the vortex. Thus it is really not appropriate to think
such a vortex as a ‘‘property of the black hole’’; the iden
fication of the vortex as long hair does not seem to

FIG. 4. Plot of total vortex field energy as a function of bla
hole mass.
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through in this situation. Of course, when the mass of
hole is small, you could still technically try to identify th
vortex with hair since at least in that case the configuratio
energetically stable. On the other hand, the fact remains
the vortex is completely expelled from the hole, even in t
~putatively! stable situation. Thus one would say that t
vortex is notdressingthe black hole. It is still unclear to us
whether or not one should think of such a ‘‘thick’’ vortex a
genuine hair for a small extreme black hole. This is som
what a reversal of previously studied situations~e.g., the col-
ored black holes!, where the black hole may be dressed, b
the configuration is unstable.

C. No expulsion of vortex fields in the near-extreme limit

So far, we have presented firm numerical evidence t
the fields of an Abelian Higgs vortex are expelled from t
horizon of an extreme black hole. A natural question is th
whether or not similar results continue to hold when the h
is madeslightly nonextreme. As is well known, a nonex
treme black hole with nonsingular horizon hasQ,E. As we
let Q approachE from below ~letting the hole approach ex
tremality!, will we see the fieldsP and X ‘‘gradually’’ ex-
pelled from the horizon? Or will the fields suddenly ‘‘pop
out only when we get precisely to the extreme limit?

In order to understand how to answer this question, i
useful to first recall the estimates which we made in Sec
in the limit where the vortex is thick compared to the ou
horizon radius of the black hole. In particular, recall E
~2.26!, which follows immediately from Eq.~2.19!. Equation
~2.26! tells us that, in regions where the mass of the gau
field is negligible, the magnetic flux across the horizon in t
nonextreme limit will always be nonvanishing and, hen
that the vortexP field will penetrate the horizon. The flux
vanishes in the extreme limit since the equation says thatFuw

on the horizon is proportional tor 1
2 2Q2 ~where r 1 is the
4-8
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outer horizon radius! and r 15Q precisely in the extreme
limit.

Now the regionr 2,r ,r 1 is regular in the coordinate
which we have been using, even though there are~remov-
able! coordinate singularities at the inner and outer horizo
r 2 andr 1 . Furthermore, there is no reason why the estim
~2.26! should not continue to hold in this region. In oth
words, there is always a surface atr 5Q, which we dub the
‘‘Meissner surface,’’ across which no flux may flow. Th
Meissner surface agrees with the outer black hole hori
only in the extreme limit, and so it is only in this limit tha
the Meissner surface is of relevance to external observ
One could think that, since for a near-extremal black hole
Meissner surface can be very close to the~outer! horizon,
then if the layer of vortex on the Meissner surface is th
enough, the expulsion from the Meissner surface might
appreciable by external observers. Now this vortex layer g
thicker with vortex size. But for large vortices, the effect
the Meissner surface can be read from Eq.~2.19!, and we see
that the expulsion only appears when the extremal limi
reached.

In all of our numerical calculations, we do not consid
the penetralia of the black hole. Rather, we solve for t
fields outside~and on! the horizon of the hole and we do no
concern ourselves with what goes on inside the horizon. T
is why, by construction, we do not expect to see the field
gradually expelled from the horizon.

For the edification of the reader we present here so
pictures of calculations which show that the argument giv
above goes through even when the vortex is thin relative
the radius of the hole. In Fig. 5, where we plotP, we have set
E510,Q59.99,N51, andb51.

Clearly, theP field is passing right through the black ho
horizon even though the hole is quite close to extremal
Similarly, one finds that theX field contours flow through the

FIG. 5. Penetration of a non-extremal horizon by theP field, for
the valuesE510, Q59.99,N51, andb51.
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outer horizon of any nonextreme black hole. In Fig. 6, whe
we plot X, we have again setE510, Q59.99,N51, and
b51.

IV. CONCLUSIONS

We have found that the fields of a vortex are always
pelled from an extreme horizon; this effect is generic
arbitrary relative sizes of the horizon and the vortex co
Furthermore, a thin enough vortex tends to slip off the bla
hole. Thus it appears that an extreme black hole cannot
port ‘‘long’’ Abelian Higgs hair. Of course, we have in n
way accounted for the back reaction of the vortex on
geometry. Is there any reason why the flux tubesshould not
pierce the horizon once the back reaction is included? Ac
ally, there is a piece of evidence that the expulsion may h
exactly: there do existexact solutions~i.e., including the
full back reaction! for black holes in U(1)2 theories where a
black hole that is charged to extremality with respect to o
of the gauge fields completely expels the field of a~Melvin!
flux tube of the other gauge field@11#. In these solutions
none of the gauge symmetries is broken, but recall that
spontaneous symmetry breaking is of negligible influence
the perturbative first-order solution inside the core that
have found in Eq.~2.19!. This strongly suggests that, afte
accounting for the back reaction, the flux should be expe
from a black hole that sits inside it, at least in the case wh
the vortex is thick. In view of the evidence provided abov
the effect could as well persist for thinner black holes, but
cannot be conclusive. In any case, the back reaction wo
certainly be expected to be small if the energy scale of sy
metry breaking is sufficiently small compared to the bla
hole mass.

In order to implement a back reaction in the numeric
calculations, we would first start with a fixed backgrou
and solve for the ‘‘test fields’’ as we have done in this pap

FIG. 6. Penetration of a non-extremal horizon by the Hig
field, for the valuesE510, Q59.99,N51, andb51.
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Next, we would have to plug the energy-momentum ten
for the test fields into the Einstein equations and solve for
‘‘corrected’’ background geometry. Then we would aga
have to solve for the vortex field configuration in the co
rected geometry, and so on. Now, in general, the horizon
move each time we obtain a corrected background geom
While we are currently working on a numerical approach
include the back reaction, we will have nothing more to s
about this issue here.

If, as we have argued, the vortices may fail to penetr
extreme horizons, then there are several interesting imp
tions. Consider what happens when a string tries toendat a
black hole. It has been argued in@8,17# that there is no globa
topological obstruction for a topologically stable string
end at a black hole. The reason is that the spatial topol
S23R of the extended black hole spacetime allows one
take gauge patches in the manner of Wu and Yang that tr
form the trivial vacuum on one side of the black hole to t
nontrivial configuration of the vortex on the other side. Fu
thermore, there do exist solutions where the string actu
penetrates the nonextreme black hole, as shown
Schwarzschild spacetime in@8# and generalized to a
Reissner-Nordstro¨m background in this paper. Now consid
what happens if the black hole is extremally charged w
respect to a different U~1!. Then, again, there is no topolog
cal obstruction in principle, since the topology of the spa
sections is stillS23R and this would admit a gauge patchin
of the same sort as before. But what we have found seem
strongly suggest that, even if the penetration on only one
of the black hole is globally topologically feasible, the
does not exist a solution of the equations of motion that d
actually penetrate. We say ‘‘suggest’’ since we have not a
lyzed the situation where the string is only on one side of
black hole, but our results very strongly hint that there is
way a vortex can penetrate an extreme horizon: the rea
we would say, is that this penetration is alocal issue, not
having to do with global topological considerations. Now,
the string cannot pierce the extreme horizon, then there i
way that one can construct the Wu-Yang type of patch
the string to end at the black hole: intuitively, there is
place for the flux to escape. With the caveats above
mind—back reaction being perhaps the most troubleso
issue—it would follow that a topologically stable string ca
not terminate on the horizon of a black hole that is extre
ally charged relative to a distinct, unbroken U~1!. This is a
rather unexpected twist, since one usually assumes, nai
that once the topological obstruction disappears, the des
solution can be constructed.

Now there have been a number of papers describing
pair creation of black holes with strings ending on them@15–
19#. Apart from the topological stability issues, the proce
of a string snapping with formation of black holes differs
one important respect from the strings that break with mo
poles at the end. In order for the Euclidean gravitatio
instanton that mediates the process to be regular, the b
holes must have~unconfined! charge and be either extrem
or close to extremality. This forces one to introduce, in a
dition to the massive gauge field carried by the string
~massless! U~1! field to which the black hole charge couple
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Effectively, one works in a U(1)2 theory of the same kind
we have been discussing in this paper. But if, as we h
argued, the string cannot end at the extreme horizon,
corresponding instanton does not exist. This would seem
imply that a Nielsen-Olesen string could not snap by form
extreme black holes at its ends. Therefore, consideratio
‘‘realistic’’ strings seems to impose new selection rules
string snapping, of a sort somewhat different from those
cently discussed in@20#.

Furthermore, if the extrapolation of our no-penetration
sults to strings trying to end at an extreme black hole w
correct, then another thing that the string could not do is
‘‘fray’’—as discussed in@17#—by forming extreme black
holes on it, since in order for the string to fray the tensio
and thus the flux, must be different on each side of the bl
hole. But the flux cannot be different on each side for re
sons identical to those just discussed: without piercing
black hole, there is no place for the ‘‘excess’’ flux to go.

Another interesting scenario involving pair creation
black holes, still in a theory with two gauge fieldsF ~mass-
less! andF ~massive!, is the following: let there be a string
vortex ~carrying confined flux ofF! and a magnetic~uncon-
fined! background fieldB parallel to the string. Suppose tha
a pair of magnetic holes, charged relative to theB field with
charges6q, are pair created and accelerate apart under
force induced by the field, like in the Schwinger pair creati
process. Suppose, moreover, that the black holes are cre
right on the string, but that the latter does not snap
‘‘fray.’’ This process can be described by means of the Er
metric with a constant conical deficit along the axis whe
the black holes lie.

In principle, the presence of the stringdoesaffect the pair
creation rate: it is enhanced relative to the creation of bl
holes away from the string, since the action of the instan
is smaller precisely by a factor of the conical deficit. Th
enhancement is no more than the effect~discussed in@19# in
the context of thermal nucleation of black holes! that a black
hole nucleates preferentially on a string, rather than on
space. Now, if the holes are extreme, the string cannot p
etrate the horizon of either of the holes. Rather, the vor
must wrap around each of the black hole horizons, so that
entire configuration will look rather like two peas in a po
being squeezed apart. Now suppose that the created hole
much larger than the vortex flux tube. Then the created ho
will want to pop out of the vortex. This would suggest th
the rate at which two extreme black holes nucleate o
~nonsnapping! string will be strongly suppressed and pro
ably zero. It would also suggest that a one-dimensional
teracting gas of small extreme black holes would popul
the string. Research on this and related problems is curre
underway.

Note added in proof. After this work was completed, an
accepted for publication, more recent studies have appe
@21#, which cast doubt on our numerical results for thin vo
tices in the extreme black hole background. As a result, t
enough vortices seem to be capable of piercing extremal
rizons. However, the expulsion seems to be a true phen
enon for thicker vortices. In particular, we believe the an
lytical results in Sec. II to be valid.
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