PHYSICAL REVIEW D, VOLUME 58, 084009

Superconducting p-branes and extremal black holes

A. Chamblin
DAMTP, Silver Street, Cambridge, CB3 9EW, England

R. Emparan
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, England

G. W. Gibbons
DAMTP, Silver Street, Cambridge, CB3 9EW, England
(Received 4 June 1998; published 31 August 2998

In Einstein-Maxwell theory, magnetic flux lines are “expelled” from a black hole as extremality is ap-
proached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus,
extremal black holes are found to exhibit the sort of “Meissner effect” which is characteristic of supercon-
ducting media. We review some of the evidence for this effect and present new evidence for it using recently
found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions,
which arise naturally in string theory, which amen-superconducting extremal black holes. We present a nice
geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations
from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic
objects in string theorysuch agp-branes can also display superconducting properties. In particular, we argue
that the relativistic London equation will hold on the world volume of “light” superconductmgranes
(which are embedded in flat spacand that minimally coupled zero modes will propagate in the adS factor of
the near-horizon geometries of “heavy,” or gravitating, supercondugiiiganes|S0556-282198)09518-§

PACS numbe(s): 04.70.Bw, 04.40.Nr, 04.58-h, 11.27+d

[. INTRODUCTION the principal focus of this paper. In fact, in this paper we
shall use the terms “perfect diamagnet” and “superconduct-
As is well known, the phenomenon known as “supercon-or” interchangeably, even though technically perfect con-
ductivity” was first discoveredand namegin 1911 by H.  ductivity is only a necessarynot sufficienj condition for
Kammerlingh-Onnes. Kammerlingh-Onnes, in the course operfect diamagnetism.
studying the electric resistance of certain metals which were One may view superconductivity at various levels. One
cooled to liquid helium temperatures, found that the resismay begin by constructing a purely phemonological macro-
tance of mercury dropped drastically as the temperature wascopic theory in which Maxwell’'s equations are taken as
reduced from 4 K to 3 K. Later authors found that the tem-fundamental and one supplements them with constitutive re-
perature range over which the drop in resistivity occurs idations, of which the most useful is the London equation.
extremely small. Thus, scientists were led to discover th@dne may then pass to a classical thermodynamic formulation
first well-understood property of superconducting media: Be-of the phenomenon. Finally one may attempt to identify the
low a certain critical temperaturd (), the electric resistance quantum mechanical microscopic degrees of freedom re-
of the medium is zerdto within experimentally relevant sponsible. In this paper we shall mainly be concerned with
bounds. This behavior is of course the origin of the term, the phemonological theory. We will establish the existence
“superconductor.” in classical supergravity theories of an analogue of the usual
On the other hand, given a superconducting medium alleissner effect. We will also have some suggestions as to
some temperatur€<T,, it is always possible to get rid of how the purely phenomenological theory may be extended to
the superconductivity by applying a minimum magnetic fielda thermodynamic and quantum mechanical theory.
B>B., whereB.(T) is some critical value of the magnetic  In fact the behavior of magnetic field lines in the presence
field which depends on the temperatiiteThe destruction of ~ of strong gravitational fields has been under investigation for
superconductivity by a sufficiently strong magnetic field, to-some time by many authofsee, e.g.[1-5]). In particular,
gether with the fact that the superconductor has zero resisa 1974 Wald[1] studied the behavior of Maxwell test fields
tance, leads one inevitably to the conclusion that the magn the presence of a rotating black hole described by the Kerr
netic induction must vanish inside a superconductor, Be., solution. Using the fact that a Killing vector in a vacuum
=0. This property of superconductors, which is actually ex-spacetime acts as a vector potential for the Maxwell test
perimentally observedi.e., a magnet will “float” above a field, it is not hard to see that as the hole is “spun up” and
superconducting mediumis known as the “Meissner ef- approaches extremality, the component of the magnetic field
fect.” The Meissner effect is succinctly expressed by theB normal to the horizon tends to zero; thus, the flux lines are
statement that a superconductor displays perfect diamagnexpelled in the extremal limit and the hole behaves like a
tism. It is this property of superconducting media which isperfect diamagnet.
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This effect was noticed and then confirmed in Einstein-goes some way to implying the Meissner effect, i.e. that flux
Maxwell theory, to linear order in the magnetic field, by is expelled from the material so that the superconducting
Bicak and Dvoek [5]. In particular, they studied Reissner- state is independent of initial conditions.

Nordstran holes in the presence of magnetic fields induced One may regard the Meissner effect as a consequence of
by current loops. I5] very nice pictures are presented for the so-called Becker-Heller-Sauter equation

the field lines around a hole as it approaches extremality, so

that the emergence of the Meissner effect can actually be
seen. More recently, the authors[6f considered an Abelian
Higgs vortex in the Reissner-Nordstnobackground. It was
shown that in the extreme limibut not near extremalifyall ~ for some constank. This yields(on use of charge conser-
of the fields associated with the vortémoth the magnetic vation the freezing of magnetic flux:

and scalar degrees of freedpare expelled from the horizon

9f the black ,r,]ole. The magnetic and scalar fields always i(B+ N2curl j)=0. (2.2
wrap around” the horizon in the extremal limit. at

In this paper we shall first review the evidence ttight)
p-branes are superconductifgec. ), and then attempt to
extend the analysis to include the effect of se.If-gravitation N2curl j+B=0 2.3
(Sec. ll). The appearance of a form of the Meissner effect
on the extremal horizon of a brar&ec. IV) leads us to implies the Meissner effect more directly and yields, on use
perform a comprehensive analysis of magnetic fields in thef Faraday’s law curlE= — 9B/ t,
vicinity of extremal horizongSec. \j. We establish the ex-
istence of this effect in widely generic settings, which in- curl(E—\%)=0=E-\%=—grady (2.4
clude Kaluza-Klein and string theories. Moreover, we also )
present some exact solutions for extremal black holes in exX°r some scalar fields. o
ternal fields which exhibit this Meissner effect. These should [N @ relativistic generalization of the London equation is
serve to dispel the notion that the effect is an artifact of the
linearized approximation to the theory which could disappear
after including the back reaction. We also addri@ggpendix
B) some subtle examples where apparently the field expulc-)r
sion breaks down. A closer examination shows, however,
that in those examples one should not have expected the
expulsion to happen in the first place, because of an interac- J,=— FAM+ a,A (2.6
tion induced by the presence of a Chern-Simons term.

E=)\2<9]5t (2.1

The strictly stronger non-relativistic London equation

1
~ SF

)\2 5 ‘]v_ﬁv‘],u (25)

= Y

for some functionA. Becausév ,F,,=—J,, we have

1. SUPERCONDUCTING EXTENDED OBJECTS:
LIGHT BRANES —sz—i—o 2.7
> .

We begin with a description of the superconducting prop-

erties oflight branes. That is, in this section we ignore the 3nq so the mass of the vector field is given as21/If
coupling of thep-branes to gravity, so that we may think of A —g and in the absence of charges By is equivalent to
the branes as extended, sheet-like objéatzero thickness Egs.(2.1) and(2.3). In what follows we shall adopt E¢2.5)
moving in a flat spacetime background, with dynamics de-g gur criterion for superconductivity.

scribed by a Dirac-Born-Infeld action. In the next section, we  gg|achandraret al. [9] have argued that Eq2.5) typi-

will consider the superconducting properties of spacetimega"y holds on the world volum& of extended objects and
describing gravitating branes. The superconducting propeigieisen has shown, in the context of Kaluza-Klein theory,
ties of light branes have been discussed previously byhat the relativistic London equation will hold on the world
Nielsen and Oleselv,8] and by Balachandraet al. [9] (Su-  yglume of extended objects carrying Kaluza-Klein currents
perconducting vortices with non-zero thickness, such ag7) The pasic idea behind Nielsen’s observation is thif
those examined ih10], will not be discussed hereBefore s’ killing vector field generating a circle subgroup of the

reformu_lating their ideas in a geometrical language whiche,1,7a-Klein groupG of isometries of a higher dimensional
generalizes to the case of heavy branes we recall for thga),75-Klein manifold€, :£—M is the projection onto
readers’ convenience some basic facts about the Meissngy, spacetime manifoldt and

effect.

Phenomenological accounts of superconductivity distin- Fab—yagb_ybka (2.9
guish carefully betweeperfect conductivityi.e. c—»<E
=j/o=0, andperfect diamagnetism.e. u—»=B=0. The  thenw,F2® is the Kaluza-Klein field strength on spacetime
former merely implies tha#B/dt=0 which in turn implies M. Now if x:%—¢& is an immersion or embedding of @ (
that an arbitrary amount of flux may be frozen into the +1)-dimensional submanifold or brae andx .= mox the
sample depending upon initial conditions. The latter howeveprojection down to spacetimeV, then the pullbackJ
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=x"K of the Killing vector fieldK to the world volume, Consider now two orthogonally intersecting sets of 6-
yields (via Noether’s theorem and the field equations for thebranes. Geometrically we have the product
embeddingx) a conserved current on the world volume.
But clearly pulling back Eq(2.8) to the world volume shows
that ,F andJ satisfy the London equation dX; i.e.,2 is
superconducting with respect to the the Kaluza-Klein cur-
rent. We shall refer to this type of superconductivity asThere are now two Kaluza-Klein @) Killing fields, i.e. G
Nielsen superconductivity. =U(1)xU(1)". One Killing field vanishes at=x; and the

So far we have not used any field equations, either for thgther atx’ =x/ . However, apart from at the intersection, one
brane or for the background in which it moves. For lighty(1) Killing vector potential and the associated two-form
branes in some fixed background the equations of motion of2 ) are non-vanishing on the 6-brane of the other type.
a brane with vanishing Born-Infeld field on the world vol-  Clearly, away from the intersection, there is no expulsion
ume and vanishing Ramond-Ramond fields in the bulk repf a gauge field from the brane of the other type. The inter-
quire that it be a minimal submanifold, a particular case ofsection, which is itself a brane, is superconducting relative to
which is a totally geodesic submanifold. In the next sectionyoth types of flux.
we shall see that some Self'graVitating branes Satisfying the The examp'e we have just given may be read“y extended

Einstein equations may be identifed with totally geodesicyg the case of configurations of branes intersecting at angles
submanifolds. We can then see to what extent they exhibigjiscussed if12].

E=M}y X My X E?L (3.3

Nielsen superconductivity. So far we have not used the Einstein equations. To do so,
we suppose that the Killing vector field is everywhere
lIl. SUPERCONDUCTING SELF-GRAVITATING tangent to some submanifolglof £. We may regarK as a
EXTENDED OBJECTS Killing field of B. Of courseB could be all of the spacetime
manifold.

In the last section we investigated the superconducting
aspects of extended objects which have decoupled frorR
gravity. This limit, where the branes are “light” so that one
may focus strictly on the world volume terms in the action, - -
has been extensively studied by recent authig. In this ViF=—-R}K;, (3.9
section we consider the complementary description of ex-
tended objects in supergravity theories, which comes frorﬂ}vheré Rl is the Ricci tensor oB. Thus onB we have the
focusing on the "bulk” action terms, which describe the London-lligke relation '
fields which propagate in the bulk away from the brane.

These bulk terms are of course just the effective supergravity _ -~

Lagrangian terms which are obtained from the low energy J'=2R}K;. (3.5
limit of string theory and/or M-theory. One may therefore
approximate the gravitational fields gf-branes, at least pjoreover,
semi-classically, by looking for solutions of the supergravity
equations of motion with the relevant symmetries.

Generically, these solutions will have event and Cauchy
horizons, and there will no longer exist any “brane world
volume.” A natural question, then, is where the degrees ofAs an example, suppose that the spacelike submanffo&d
freedom associated with the brane are located. Before tackpacelike, compact and has negative Ricci curvature; then a
ling that question we shall consider some examples whergimple integration by parts argument shows tanhust van-
the location of the brane is relatively unambigous. ish everywhere or3. If B is Ricci-flat, thenK need not

One of the simplest such self-gravitating brane solutions/anish, but if it does not, then it must be covariantly con-
is the 6-brane of 11-dimensional supergravity. Geometricallystant. This means that locally at ledts the metric product
this is a product of a circle with a submanifold of one dimension less than

that of B.
E=My, X B (3.1 The result we have just sketched is responsible for the
. . . . well-known fact that closed Einstein manifolds with negative
where Mry, is the multi-Taub-Newman-Unti-Tamburino cosmological constant do not admit any Killing fields. How-
(multi-Taub-NUT) metric withk centers, ever, we would like to view itn a a different way.
_ i - If K vanishes o8, then necessarily the restriction foof
ds’=V™H(dr+widx)?+Vdxdx, (32 F=dK must also vanish. Thus the submanif@dnight be
with V=1+3[1/(|x—x[)]. The groupG=U(1). The 6- said to exhibit a kind of Meissner effect. Because the math-

branes are located at=x; . These are fixed point sets of the

the Killing field d/d and hence, by a standard result, totally

geodesic submanifolds. Not only does the Killing field van- Our conventions are that the signatureis€ + - - - +), and that
ish on the branes but so does the two-fdrB). the sign of the curvature is given by (V;—V;V;)K™=R{K".

We now apply the Ricci identity to the Killing vector field
to give

VK= —RJK;. (3.6)
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ematical theorem we are appealing to is a particular case of@emponent of the boundary field theory represents the trans-
Bochner vanishing theorem, it seems appropriate to refer tgerse fluctuations of the-brane. Indeed, most recently it has
this effect as the Bochner-Meissner effect. been conjecturefdL6] that information about the dynamics of
We now turn to spacetimes with event horizons. superconformal field theorieign the largeN limit) may be
Clearly the brane is located somewhere in the vicinity ofgptained by studying the region near the horizon of certain
the horizon. For a generic non-dilatongsbrane, the near- p(p)-pranes. Thus, the conjecture implies a correspondence
horizon geomedtrylis a standa_rd com_pactifipation of the formyetween gauge theories in the lagdimit and compactifi-
(adS),, X ST 7, wheredy is the dimension of the frans-  ca1ions of supergravity theories. The correspondence is often
verse spacgl3,14 (far from the brane the geometry is USU- o) jeq “holographic” [17] because the superconformal field
ally asymptotically flat, unless some global identification hastheory(SCF'D resides on the causal boundary of adS space.
been performe)d_ . : It is now natural to propose that a gravitatipgorane is
Now the metric on (ad$),, may be written in so-called “superconducting” if the field theory on the boundary of the
horosphericalcoordinates t(,x, ,2): P 9 : M indary .

P adS factor of the near-horizon geometry exhibits behavior
characteristic of a superconducting phase. Typically, given
any specimen in a superconducting phase we expect to find
zero modes, i.e. minimally coupled eigenmodes of some
wave operator which correspond to the unimpeded move-
These coordinates then provide a foliation of (gdS)by  ment of charge in the medium. Thus, we are led to look for
flat timelike hypersurfaceg=const, which are called the zero modes which “skim along” the horospheres in the adS
“horospheres.” If one embeds (adg), as a quadric in factor.

EP*12 then the horospheres are the intersection of the quad- From what we have said above, it is natural to look for
ric with a family of null hyperplanes. such zero modes in the singlet@r doubleton supermulti-
[The notation here reflects the fact that in the case opjets. After all, the singletorfor doubletop field theories
hyperbolic spaceP*?, which is the Euclidean section of generically contain a number of massless scalar and spinor
anti—de Sitter(ad9 space, the analytic continuation of the fields, which are trapped on the boundary of adS stz
constantz incgs of Eq.3.7) is I.itera_lly flat spheres, termed g of the brane. (For an explicit discussion of the mat-
horospheres in the mathematics literature years ago. If on@ content of the superconformal multiplet of the M5-brane

p+2 _ i -di 1 . : H
Ir\cﬂege&rds '; as.th;p?]zz‘alsshshelﬁl In p(+h3) d|menS||onth see e.g]18].) The precise form of these multiplets is not
Inkowski spacetim  then horospheres are also t eimportant. What is important is that these massless modes

intersections of the quadric with a family of null hyper- skimming along the horosphere at infinity will naturally

planes] cou .
. ple to any Kaluza-Klein currents on the brane. Put an-
Now each horosphere may be thought of as a static te . : :
p-brane which solves the Dirac-Born-Infeld equations of%tther way, if we wrap the brane on a cirdaking care to

; ) S aAp+1 avoid any fixed-point singularitiegl9]), then the massless
Vrckc‘)ct;sgp(fzaf;i)eﬁjrasr;:aer?;ttﬁﬂglsgztzodt:ﬁw:ils E?;;gtrlscl)ﬁal " fermions on the dimensionally reduced brane will naturally

. . couple to the Kaluza-Klein charge—these modes will induce
the volume form of (ad$),, [15]. In this way we obtain a P 9

icularly vivid bi  h he h ~a superconducting current on the reduced brane.
particularly vivid picture of how the heavy supergravity — yye are thus led to a pleasing microscopic description of
brane is composed of many stacked light branes.

o the superconducting properties of self-gravitating branes.

The limiting brane aS.ZHO corresponds to the causal gjncq the supercurrent seems to reside right at the horizon of
boundary Olf (adSs . This conf{)_rmal boundary has the 0- yhe prane, we would expect the horizon to display the Meiss-
pology of S X SP, where theS" is the timelike factor and o effect. In the next few sections we will present a number
the SP is spacelike. In fact the boundary coincidgessibly of examples which confirm this effect for the horizons of
up to a discrete identificatigwith the conformal compacti- - eyireme black holes. It would be interesting to perform simi-
fication of (p+1)-dimensional Minkowski spacE”” and  |5r tests for higher dimensional extremal self-gravitating
the isometry group SQ(+ 1,2) of (adS), , acts by confor-  5nes.

mal transformations on the boundary. Thus, one is led t0 f course. all of this structure will break down faon

study the singleton and doubleton representafimfsthe extreme black branes. As you approach the outer horizon,
group SOp+1,2), in the hope of understanding the confor-here s no splitting of the spacetime geometry into an adS

mally invariant quantum field theoQFT) on the boundary.  factor and a compact factor. Furthermore, it is not possible to

In fact, this boundary QFT has precisely the same degrees @fink of a non-extreme black brane as a stack of light branes,
freedom as the world volume fields of the correspondingy) hovering just outside of the horizon. We would not expect

p-brane. A natural proposal is then that the lowest scalaghe guter horizon of a non-extreme brane to support a super-

conducting current, and therefore we would not expect such

an object to display superconducting properties. These ex-

%Singleton representations of the adS group requsimgleset of ~ Pectations are borne out when we consider non-extreme

oscillators transforming under the fundamental representation of thBlack holes. It is always possible to penetrate non-extreme
maximal compact subgroup of the covering group of the adS groupblack hole horizons with magnetic flux; superconductivity, it

doubletons require two such sets of oscillators. seems, is generically broken whenever we break extremality.

dsz=$[—dt2+dxpdxp+dzz]. 3.7
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IV. MEISSNER EFFECT FOR SUPERCONDUCTING erated along this isometiyOur aim is to show that the ho-
STRINGS rizon behaves as a Meissner surface for this field in the
gxtremal limit.

In the preceding sections we have seen that the worl There is an obvious point of concern when dealing with

volume ofp-branes behaves like a superconducting medlun?he extremal limit of the solutiofd.1): the proper size of the

;’i\gﬁ}z;fzp% (;trr:%f%%légl_eozzgjr? gfu};%gﬁimigso&%'ghIir:npﬁgshorizon is zero as measured in the Einstein frame. However,
' d PP PI€Sh four dimensions the gauge field equation is conformally

the possibility'of'stationary currents in the absence of ANMnvariant. This means that the field does not distinguish
external electric field. Another consequence of these macrqQy cther 'We are working in the Einstein, string, or any other

scopic equatio_ns is that_ magnetic fie;lds vanish in_sid_e th%onformal frame related to the one above by an overall res-
world volume, i.e. the Meissner expulsion of magnetic f|elds.Caling of the metric by a factor of the dilaton. In particular,

As a matter of fact, the magnetic fields have a vanishinglhere exists a frame, namely*3d<?, in which the metric
normal component to the world volume. Of course, in Orderdoes not become si,ngular at the ’horizon. In this frame it

for the ma_gnetlc field to be mterprete_d as a vect(_)r field, Wenakes perfect sense to consider whether the field penetrates
must restrict ourselves to four spacetime dimensions. .
o . . or not the horizon.
When the effects of self-gravnauon are included, _|t.be- There is a well-known procedure to generate, upon reduc-
comes less clear where the brane is localized. Thus, it is ncelt y

so evident where the Meissner surface, where magnetic fielgo " 2" exact solution with an axisymmetric magnetic
' g aluza-Klein field(see, e.g.[20] or [21]). Instead of identi-

ihe previous section Suggest tha, at east for non-dlaton{ying POINt along the orbis o iz, we twistthe corpac-
P 99 ' ification direction to be along orbits of

branes, this should be in the near-horizon adS throat. Dila-
tonic branes are singular at the horizon, and the adS-SCFT J J
correspondence becomes less clear, but the singular horizon q= £+ Ba_'
(or the close vicinity of it would be the natural place for the ¢
brane. In this and the following sections we will argue thatThis is most easily done by changing to the adapted coordi-
the Meissner surface is always precisely at the horizon.  4ie ¢—¢—Bz such thatqe=0. Here B will be the
The reader may feel that there is an apparent conflation ofsymptotic value of the magnetic field along the axis of the

objects of different dimensionalities here. Consider a stringy pe The Kaluza-Klein gauge potentid, reads, in terms of
which we will wrap on a circle in the Kaluza-Klein fashion. e original metric

The world volume viewpoint of the previous sections would

4.3

lead to the conclusion that the string carries a superconduct- q g
ing current along itself. In the reduced spacetime the string A= —"de=B—""—do. (4.4
world volume will look like a point, and it does not make |al 9z:t B0y

much sense to speak about the field being expelled from
point. However, when we include gravity in the picture, the
string will develop a horizon, whickin D=4) will be seen
as a 2-spheré¢the fact that this might be singular will be Hr2sir?g
dealt with latej. Our claim is that magnetic Kaluza-Klein A=B———>———do.
fields are expelled from the horizon. 1+B*Hrsin’g
Hence, our starting point is a string =5 which is
wrapped to yield a black hole. The metric, in the Einstein
frame, inD=5 is

?his is clearly a conformally invariant expression. For the
case under consideration,

(4.5

We want to find the magnetic flux across a portirof the
black hole horizon. This is given by the line integfal.4

on the horizon. If the horizon is at=ry# 0, then we find a
non-vanishing flux across any portion of it. But in the ex-

ds’=H"3(—fdt?+d7) tremal limit the horizon is at=0, where.4 vanishes. So no
dr2 magnetic flux penetrates the extremal horizon. The field is
+H23 T+r2d02+rzsin20dcp2 , (4.1  expelled from it: this is the Meissner effect. In Fig. 1 we

have plotted the lines of force of the magnetic field for non-
extreme and extreme configurations.
We would like to emphasize the fact that this analysis has
been carried out at a level where the supergravity equations
q ro have been treated in an exact form. In particular, the field
H=1+-, f=1-—. (4.2 (4.5 is an exact field configuration iB=4 (together with
the corresponding metric and string winding field

where

For ro#0 there is an event horizon atry. Whenry=0
the string is extremal.

If we compactify this geometry along the string direction 3jn order to avoid confusion with other gauge fields that may
z, we obtain a dilatonic black hole solution in=4. In the  appear, throughout this and the following sections we will consis-
previous sections we have seen that the string is supercogently use script letters for the fieldl that experiences the Meissner
ducting with respect to the Kaluza-Klein gauge figfdgen-  expulsion and its potentiall.
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B
M_Q_H

20,
Xu™ 1- T um

In the extremal limit 2),J=M, and therefored, =y, ,
which vanishes precisely at the horizon. As in the preceding

FIG. 1. Field lines of the Kaluza-Klein magnetic fieffifor the ~ section, the flux along any portiah of the horizon,f ;s A,
exact solution(4.5), for the black holes that result from compacti- vanishes. Again, the extremal horizon behaves like a perfect
fication of non-extremal and extremal strings. The radius in Eqdiamagnet.

A

. (5.2

—_—
_—— _———
i 4“

a——— _—
P _

(4.5 has been changed to “Schwarzschild radius™r —q. This solution involved the magnetic field as a test field
only. But it is possible to find an exact generalization of it
V. MEISSNER EFFECT IN EXTREMAL BLACK HOLES within Kaluza-Klein theory. Start with the product of the

. . . . . (neutra) D=4 Kerr solution with a five dimensional direc-

It is remarkable_ that th_|s Meissner effect is not unique Oon x5. We can now apply the “twisted reduction” proce-
extremal geometries derived froprbranes. In. fact, as we dure described in Sec. IV to put ti=4 neutral Kerr black
argue below, it appears.to be a rather generic feature of Sfole in the background of an axisymmetric Kaluza-Klein
tremal black holes. Typically, the lines of force of a mag- ., yhetic field in an exact way. In order to avoid the presence

netic field penetrate the horizon of a non-extremal blackys ooy charge in the black hole, the compactification di-

Bglr?étrHa?gvgfrgn\:\S r‘:\glrli;;i trllr?;t;ha% “tnheesy c;{gLotlr;ew:zlgl) tt?\ %ection must also involve a twist in the time coordinate. Spe-
. : ' ifically, we identi oints along orbits of the vector
black hole.The horizon of an extremal black hole behaves y fyp 9

like the surface of a perfectly diamagnetic object.

To be more precise, in a superconducting material the q=ﬁ+B ¢+V17 . (5.3
magnetic field penetrates to some small distance from the
surface: this is the penetration depth. For extremal blackhe exactkaluza-Klein gauge field that follows is
holes the penetration depth appears to be zero. Also, the
perfectly diamagnetic state of the black hole breaks down at 2J
any finite temperature, i.e. for any deviation from extremal- vt ™M u

To our knowledge, this phenomenon was first pointed out [¢]

in the literature by Bigk and Dvoek in [5], in the context of ) e . L
Einstein-Maxwell theory. We believe this to be a genericWhich reduces to Wald's field in the linear approximation,
phenomenon for black holes in theories with more compli-2Nd in the same way can be seen to exhibit the Meissner
cated field content, although a precise specification of th&ffeCt in the extremal limit. The reader may have noticed that
dynamical situations where this effect is present seems to h&/ald’s solution does not contain any dilaton field, whereas

out of reach. The results below constitute very strong evithe Kaluza-Klein solution does. But to linearized order in the

dence that it is true whenever the gauge field couples minitést gauge field there is no contribution from a test dilaton

mally to the geometry, or possibly includes dilatonic cou-/S€€: €0 Eq5.13 below]. Therefore Wald's solution is the
plings. linear approximation to the axial field configuration falt

Einstein-Maxwell-dilaton theorieb.
Finally, in the solutions we have been considering the
A. Field expulsion from extremal rotating black hole magnetic field is aligned with the rotation axis of the black
A first example(also noticed i{5]) of this Meissner ef- hole. According to[5], the Meissner expulsion can also be
fect follows from Wald’s analysifl] of a test magnetic field S€en for fields where no alignment is assumed.
in the background of the neutral Kerr black hole.[ld a
solution for a field aligned with the axis of the black hole is  B. Field expulsion from spherically symmetric extremal
constructed, by using the isometries of the Kerr background. throats
Let us depote the axial and temporal Killing vectors of the  Now we would like to consider other classes of extremal
Kerr solution byy¢=d/d¢ and n=4d/t. Then a test gauge plack holes, and the most obvious candidates are charged

field can be constructed as (Reissner-Nordstra) black holes. However, several subtle-
23 Q tigs arise that need to be dealt with care. Consider, as the
A,=B| ¢, + _W) — o 7 (5.)  simplest example that comes to one’s mind, an electrically

M 2M charged Reissner-Nordstmoblack hole in the background of

a magnetic field. This configuration was analyzed, in an ex-

B is the magnetic field along the axis, af@dis the charge

that the black hole acquires, which we want to be zero. The

field can be conveniently written in terms of the vecfor  4actually, the Kaluza-Klein perspective provides a simple way to
=Qy ¥+ n, which is tangent to the null geodesic generatorsrederive, by linearization in the gauge field, the general technique
of the horizon. Herdd is the angular velocity of the hori- used in[1] to construct solutions for test Maxwell fields in back-
zon. We find(with Q=0) grounds with isometries.
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act way, in[3]. Naively, according to our conjecture the  For the test fieldF=d.A we will assume the ansatz
magnetic field should be expelled from the horizon in the
extremal limit in this configuration. However, this does not —f :

. - =f(r)sirf6 de, 5.
happen. The puzzle is solvgd] when one notices that the A=T(n)si ¢ ©.9

solution in[3] is actuallyrotating. A rotating electric charge i terms of which the magnetic flux crossing any surfics
generates a magnetic dipole moment. The black hole i@iven by [ s A.

therefore the source of a magnetic dipolar field. This is ac=" \yith the ansat#5.7), the field equation(5.5) becomes
tually the field across the extremal horizon of the solution in
[3].° The authors of5] then went on to construct a linearized
solution where the rotation of the charged black hole in the i( ﬂ _2f (5.9
external field could be set to zero, and found it exhibited the dr\ “dr] rZ° '
Meissner expulsion of the field in the extremal limit.

In this example, the complication arises due to gravita-This is easily solved as
tionally induced non-linear interactions between the electric
field of the black hole and the external magnetic field. How- f(r)=r2—Q?, (5.9
ever, notice that our main reason to have a charge on the

black hole is to provide a means to reach the extremal limityp to a multiplicative constant, related to the value of the
In other words, we are not particularly interested in the dy-magnetic field at infinity, which we have arbitrarily fixed.
namical aspects associated with the charge of the black holaccording to Eq.(5.7), the magnetic flux crossing the hori-
Rather, we want to isolate the behavior of the magnetic fielg.on js proportional td(r,). This is non-zero for black holes
in the gravitationalfield created by the black hole. As away with M>Q, butit vanishes precisely in the extremal limit
to disentangle the effect of the charge of the black hole from _

that of the magnetic field, we can think of the charge of the Now, we want to consider non-rotating extremal black
black hole as being coupled to a gauge field that is differenggies in more generality. In order to simplify the analysis,
from the external magnetic gauge field. In other words, W&ye will focus only on the region near the horizon of the
work with a U(1)x U(1) gauge theory, with two Maxwell  pjack hole, since it is there where the Meissner effect is
fields. The black hole will be charged with respect to one ofexpibited. As the most generic characterization of this region
the U(1) fields, while the other gauge field will be the mag- o spherically symmetric extremal black holes, we will take
netic field that experiences the Meissner effect. This introne following:

duction of a second gauge field may seem unrealistic, but we rqor some choice of conformal frame, the region near the
should view it as simply a device that provides us with a Wayextremal horizon becomes asymptotically an infinite throat

be clear in our analysis below that the dynamics of the gauge— g then

field associated with the charge of the black hole plays no
essential role. Besides, theories with more than one gauge

4o 2
i i i i i r dr
gee)i(tjs arise quite naturally in string theory and related con- dszz—(7) dt2+ /2 > +d02+sin20d<p2}.
We will start our analysis by treating the magnetic field as (5.10
a test field in the background of the black hole geometry. . i .
Therefore, we want to solve the equation The freedom in choosing coordinates has been used to

simplify the possible forms of the metric and bring the hori-
Y zon tor =0. The parameter fixes the scale of the geometry
9, (N—gF*")=0, (59 (and is typically related to the charge and mass of the black
hole). The exponentx is an arbitrary real number. Within
this class we find, for example, the extremal dilatonic black
holes of[22] or the stringy black holes if23].

As in Sec. IV, the reference to the conformal frame is
motivated by the fact that, in the presence of scéddaton
fields, when we write the metric in the canonical Einstein

2M Q2 frame, the throat at= 0 typically pinches down to zero size
V=l-—+17. (5.6 in a singular way. But then we can use the dilaton to perform
a conformal rescaling of the metric to yield the regular throat
The outer(even) horizon is atr=r,=M+M?—Q?, and (5.10. Since the Maxwell field equatio(6.9 is, in four
extremality is achieved by settif@=M. dimensions, invariant under such conformal rescalings, we
are allowed to choose to work in the conformal gauge fixed
by Eq.(5.10. In fact, we may want to consider an equation

5. o slightly more general than E@5.5),
It is even clearer that, for similar reasons, we should not expect

the extremal Kerr-Newman black hole, which has a magnetic dipole
by itself, to expel the magnetic field]. d,(N—ge” ad Frry=0, (5.1)

in some fixed background geomeuy,, .
For starters, take the Reissner-Nordstrmetric

ds?=—Vdt?+V dré+r3(de?+sinfed¢?),
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where we allow for a coupling of the test field to a dilatonic be used to disprove our conjecture, which clearly requires the

field ¢ with non-constant background value near the horizonabsence of magnetic sources inside the black hole. A subtle

r=0, example of how flux can penetrate a horizon of the type
, (5.10, if the theory contains Chern-Simons couplings in-

f (5.12 volving the field F, is discussed in Appendix B.

r

2B
e =

. o . C. Some further exact solutions
As a further minor generalization, we could consider the

test gauge field to be coupled totest scalaro, with the In the preceding subsection we have found evidence that
standard actiorfwe suppress inessential factprs magnetic fields are expelled from the horizon of spherically
symmetric extremal black holes. However, the magnetic field
has been treated as a test field, and its effect on the geometry
I~f (do)’+e T F2, (5.13 of the black hole has been neglected. One could worry that,
if the back reaction effect of the magnetic field on the geom-
However, the field equation far implies that if F is linear ~ €lry were accounted for, the behavior of the horizon might
in the (smal) applied magnetic field, thear only enters at change and the magnetic flelq would per_haps penetrate into
quadratic order and is therefore negligible in the approximalhe Plack hole, thereby evading the Meissner effect. This,
tion we are working. Hence we need not consider eXpncmyhowever, is rather unlikely: the fact that the magnetic field

such scalars. vanishes near the horizon leads us to expect a negligible
In order to solve Eq(5.11), we consider again the ansatz back reaction in that region. This expectation is confirmed in
(5.7 for the magnetic field émd we find the equation all cases where exact solutions have been constructed.

We have already presented two exact solutions, in Secs.
IV and V A, using the Kaluza-Klein ansatz, where we have
i(rzm—ﬁ)uf,):Zrz(a—ﬁ)—lf_ (5.14 intrpduced an axisymr_ne_tric magngtic field whiqh exhibits
dr Meissner expulsion. Similar exact fields can be introduced,
o ) _ for different values of the dilaton coupling, by applying
This is a homogeneous equation, which we can solve byparrison-like” [24] solution-generating transformations

choosing(up to a multiplicative constaht [20,25,2§ (dilatonic Melvin flux tubes were discussed in
[22)). In particular, the behavior of black holes in magnetic
f(ry=r?, (5.15 fields, for essentially any value>0 of the dilaton coupling,
can be readily analyzed using the solution$a6]. We will
with not give any details, but in all such cases the Meissner effect
can be seen to be present as well. Here we will display an-
y=\(B—a)?+2+B—a>0. (5.1  Other sort of magnetic fields that can, in a sense, be consid-

ered as curved space generalizations of the uniform magnetic

What is important here is that is never zero. Since the flux field in flat space. These are the covariantly constant fields,
crossing the horizon is proportional f¢r =0), in order to  exemplified by the Bertotti-Robinson solution of Einstein-
have a finite, non-vanishing flux we should haye0. In-  Maxwell theory. There do exist generalizations of such solu-
stead, we find that the flux always vanishes at the horizotions for the U(1¥ theory of[27] or the U(1)' theories in
r=05% The Meissner effect, therefore, is a common charac{26].
teristic of extremal throats. For completeness, we show in One should be careful, however, in constructing the solu-
Appendix A that the Meissner effect never takes place oriions. The field in the Bertotti-Robinson solution is spheri-
non-extremal horizons. cally symmetric, and “emanates” from an origin, which

Finally, notice that in order to solve the equations andnevertheless is non-singular since the geometry develops an
exhibit the Meissner effect we have only needed the metri¢nfinite throat. In the analogous dilatonic solutions, the field
of the black hole solution. That is, the fact that we may needimilarly emanates from an origin, which now is singular in
the black hole to be charged for it to be extremal plays ndhe Einstein frame. In any case, our point here is that, if we
essential role. Besides this, we have assumed that the intekant the extremal black hole to expel the field, then it is
actions of the gauge fieldF are essentially given by Eq. clear that the “source” should not hiesidethe black hole.
(5.11). More complicated situations could be envisaged, buin other words, the Bertotti-Robinson-like field and the black
from the evidence we have presented here we believe that th@le mustnot be concentric.
phenomenon is generic. If other couplings of the figid With this proviso, the theory we will consider will §27]
were considered, care should be exercised to ensure that the

additional interactions do not indirectly generate source A 1 ) e ¢ ) e? )
terms for the fieldF, which would produce an outgoing flux |=f d*xXV—g|R=5(9¢)"— —-F"= 5 G,
of the field across the horizon. These cases, of course, cannot (5.17)

and the solution we are interested in is, in the Einstein con-
5The solutions withy<0 have been discarded as pathological. formal gauge,
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We can analyze in this way whether the field created by
the black hole with chargg, in F penetrates the horizon of
the black hole with chargg. The solution is just like Egs.
(5.18 above, but now with

2

The horizon of this second black hole israt=0. The field
created by it is exactly the same as in the previous example,
Eq. (5.19, only changingo—q,. Thus we find another ex-
act solution exhibiting the Meissner effect at the extremal
horizon atr =0. Evidently, by symmetry, the flux created by
the black hole with chargg does not penetrate the horizon,
atr,=0, of the other extremal black hole.

In these examples the black hole under study has been the

FIG. 2. Field lines of the magnetic field for the exact configu-
ration (5.18. The radius in Eq.(5.18 has been changed to
“Schwarzschild radius’r —r —q. The “origin” of the covariantly
constant field has been putlat /2.

ds?= — A2+ A A (dr2+r2d 62+ r2sirfod o?) “a=1 dilatonic black hole.” In terms of the test field analy-
AfAg 76 ’ sis performed in the previous subsection, the relevant param-
eters area=0, B=1/2, which yield y=2 for Eq. (5.15.
rcosd—| This is in precise agreement with the expansion for small
F=dA, A=b———dp, G=gsinddo/\de, magnetic fieldo (andr) of the exact resul(5.19. Different
i values of the dilaton couplingessentially, any valua>0)
(5.18 can be readily analyzed using the solutiong26], with no
s Ag q b qualitative differences.
e?=—, Ag=1l+—-, Ap=—,
Ar r ry

VI. CONCLUSIONS

ro=\r<+1°—2lrcos. Superconductivity is a rich and multifaceted subject, with
applications in a variety of physical models, from condensed
In this form of the solution, both fields are of magnetic type.matter physics to QCD. It is therefore natural to investigate
The black hole is extremal from the outset, with horizon athow superconducting phenomena may emerge from the rich
r=0 and charge. The “origin” of the magneticF field is  structure described by M-theory; after all, M-theory is our
at a coordinate distance along the axis#=0, i.e., atr,  only real candidate for a unified description of all physical
=0. Settingq=0 vyields a geometry that is conformally phenomena.
equivalent to the product of the linear dilaton vacuurrDof In this paper, we have described the superconducting
=2 string theory with a spher®’ and a covariantly constant phases of the solitonic objects of M-theory, fhdranes. In
field . The degenerate horizon at=0 is singular. The order to perform such a description, we have concentrated on
proper size of the extremal black hole is zero if measured ihree of the most elementary and well-known aspects of su-
the Einstein metric. However, as discussed in the previouperconducting media: the Meissner effect, London theory
sections, for the purpose of studying the gauge fields w@nd the existence of minimally coupled zero modes.
could just as well work in a conformally related metric where ~ With respect to the Meissner effect, we have presented a
the extremal horizon is non-singular. The “preferred” frame number of exact solutions which demonstrate that Kaluza-
is e?ds?, in which the extremal black hole area is equal toKlein magnetic flux is expelled from the horizon of a generic
412, extreme black hole. We have extended this analysis to the
Once again, the exact value of the flux across constant case of a black string iD =5, and again found that Kaluza-
surfaces, given by Klein flux is expelled. It would be interesting to perform
similar tests for the Meissner effect for higher-dimensional
r2(r —cosd) extreme branes. It would also be intere;ting if we cquld un-
f0¢:b3inaT’ (5.19 gerstanq:)reuselywhen and how the Meissner effect is bro-
2 en.

Strictly speaking, the Meissner effect follows from the
vanishes at the horizon of the black hole=0, as we fact that inside a superconductor the field has to be pure
claimed. The lines of force for the fiel# are plotted in Fig. gauge. This, however, is not true for the field in the interior
2. of the extremal black hole, as can be readily seen from the

With little extra effort we can consider a slightly different examples above. We are not claiming, therefore, that the
situation, where we have two extremal black holes, each witlbblack hole interior is in a superconducting state. Our state-
charge coupled to different gauge fields. As before, if we danents refer to the horizon or, at most, to the near-horizon
not want to find a trivial penetration of flux, we have to region.
consider a two-center solution. Of course, the Meissner effect is just one property exhib-
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ited by superconducting media; ultimately, we want to con-is expressed in terms of the Bessel function of order zero,
struct a phenomenological model which attempts to describsuch that ;(0)=1; i.e., there is a non-vanishing flux cross-
what is going on. The theory of London goes beyond theng any portion of the horizon. There is no Meissner expul-
simpleobservatiorof the Meissner effect, and proposes a setsion from non-extremal horizons.

of field equations which imply various things about the mi-

croscopic theory which underlies the entire phenomenon.  AppENDIX B: A “COUNTEREXAMPLE” TO THE
Thus, in order to have a macroscopic phenomenological de- MEISSNER EEFECT AND ITS RESOLUTION
scription of a superconducting-brane, we have followed

Nielsen, Balachandraet al. and others by proposing that a  Consider the five-dimensional action

p-brane is in a superconducting phase if and only if the rela- L L

tivistic London equation holds on the world volume of the ~| - BT
brane. For a test brane, this definition is not ambiguous since Is= f dSX\/__g[ R— E(‘w)z_ e TR
it is clear where the brane is located; i.e., the brane is just

some extended object moving in a background spacetime, _ 1 +2Bf2 (B1)
from which it has decoupled. The mativation for our defini- € ’
tion is then clear, since the London equation will hold on the

world volume of any extended object which is carrying Five-dimensional quantities will be caretedl. and F are
Kaluza-Klein currents. For self-gravitating branes, we haves_form and 2-form field strengths, obtainable from the 2- and
proposed that a brane is in a superconducting phase if anij-form potentialsz,A, A=dB E=dA Very similar (but

only if this “Nielsen” type condition holds on the boundary . . )
of the adS factor of the near-horizon geometry of the braner.]Ot exactly the sameactions can be derived from compac

Given all of this structure, it is then natural to propose thatif1€d String—M-theory. The fieldsi andF admit the inter-
the microscopic degrees of freedom which leacptbrane pretatlon_of flelds_wr[h string and particle sources. Actually,
superconductivity are precisely the zero modes, associatdf® solution we discuss below can be seen as a bound state
with the singleton superconformal multiplets, which propa-(@t thresholdl of a string and a particle. , ,
gate on the boundary of the adS factor of the near-horizon The equations of motion of this theory admit the solution
geometry. These zero modes naturally couple to any Kaluza- s
Klein currents, and so they literally represent the unimpeded d2=— d—t+A2(dr2+l’2dQZ)+dX2
flow of charge far down the throat of a self-gravitating brane. A? 2 5

Of course, in this analysis we have neglected a number of
other theories and approaches to superconductivity. It would q
be interesting to investigate whether or not it is possible to A=1+-, (B2)
define p-brane superconductivity using the ideas of these

other theories. Research on these and related problems is N . - .
currently underway. B=A""dt/\dxs, A=A"-'dt. (B3)
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We can now generate a background Melvin flux tube by
APPENDIX A: ABSENCE OF THE MEISSNER EFFECT performing a Kaluza-Klein reduction as described in Sec. IV:
IN NON-EXTREMAL HORIZONS change the polar variable t9— ¢ —Bxz, and reduce t®

=4 by consistently identifying points along. The Kaluza-

In order to complete our general analysigegtmagnetic Klein gauge potential is

fields in the vicinity of spherically symmetric black holes,

here we solve the equations in the presence of non-extremal 2,26
. . ; A%r?sirte
horizons. In this case, close enough to the horizon the geom- A=B——————do. (B4)
: : 1+B2AZr2%sireg - ¢
etry is of the Rindler form

ds?=—p?d 2+ dp?+ R2(d6?+sin #?de?). (Al)

"We could also have included scalar fields, as in &ql1), but
These typically take finite, non-zero values on non-extremal hori-
zons and do not alter the results.

81t would be easy to construct a more general solution with dif-
ferent harmonic functiond,A, for the particle and string that
Sirko de (A2) \t/;/](i)sullg\ygleld non-constanp, but we prefer to keep things simpler at

R is a constant measuring the radius of the horizon, which i
at p=0. We now solve Eq(5.5 for a test Maxwell field in
this background using the same ang@).” The solution
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This doesnot vanish on the extremal horizon=0. The lar, which are inessential for this discussioifhe conse-
Meissner effect is not present for this solution. Neverthelessjuence is that the effective equation 8rin D=4 differs
the geometry near the horizon is of the form required in Eqnow from Eq.(5.11) by the presence of an extra source term.

(5.10. _ _ . In this indirect way, theH-charge of the black hole is re-
The resolynon of this puzzle comes from examining thesponsible for the appearance of an induced magnetic dipole
actua! coup_llngs of the Kaluza-_KIem gauge f'e'@ in the for the black hole in the presence of an external figldThis
nggt'\g? _e4 Egg]or)_/r.hzoirmdet?llstof t.h? ;]educ.tlo?h ptr()t?]e— is the source of the flux coming out of the horizon. This is, in
S EAT portan .poln ere 1s that the o way, similar to the absence of the Meissner effect in the
non-vanishing component of the field along x5, Bus  solutions considered if8], in that subtle non-linear interac-
=B,,, yields a Chern-Simons-like coupling in the=4 ac-  tjons induce dipolar sources for the black hole.
tion of the form This extra term is also present in the compactification of
(dBAA)2 (B5) f[he string that we analyzc_ad_in_ Sec. IV. However, in that case
its value in the extremal limit is zero, and so it does not spoil
(times factors involving the scalap and Kaluza-Klein sca- the Meissner effect.
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