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We examine the recently proposed technique of adding boundary counterterms to the gravitational action for
spacetimes which are locally asymptotic to anti—de Sitter spacetimes. In particular, we explicitly identify
higher order counterterms, which allow us to consider spacetimes of dimemkionsAs the counterterms
eliminate the need of “background subtraction” in calculating the action, we apply this technique to study
examples where the appropriate background was ambiguous or unknown: topological black holes, Taub-NUT-
AdS and Taub-Bolt-AdS. We also identify certain cases where the covariant counterterms fail to render the
action finite, and we comment on the dual field theory interpretation of this result. In some examples, the case
of a vanishing cosmological constant may be recovered in a limit, which allows us to check results and resolve
ambiguities in certain asymptotically flat spacetime computations in the liter§&0856-282(99)07318-X
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I. INTRODUCTION wherel 544 ¢) is the classical gravitational action as a func-
tional of the (supejgravity fields, and®' are the dual CFT
The anti—de Sitte(AdS)—conformal field theor(CFT)  operators. Hence in this approximation, the AdS action be-
correspondence asserts that there is an equivalence betweegoines the generating function of the connected correlation
gravitational theory ind-dimensional anti—de Sitter space- functions in the CFT1,3]. This framework is also naturally
time and a conformal field theory residing in a extended to considering CFT states for which certain opera-
(d—1)-dimensional “boundary” spacetime[1]. This tors acquire expectation values by considering solutions of
equivalence or duality is best understood in the context ofhe gravitational equations which are only asymptotically
string theory withd=5, where the duality relates type 1IB AdS[4,5].
superstring theory on Ad S, and \'=4 supersymmetric One aspect of the duality which will be interesting for the
Yang-Mills theory with gauge grouBU(N) in four dimen-  present investigation is the choice of the background metric
sions[2,3]. The precise formulation of the AdS-CFT corre- .. required to define the field theory. This metric is related
spondence is made by equating the partition functions of thgy an infinite conformal transformation to the induced metric
two theories: h;; on the boundary of the AdS spacetirfit]. Since the
boundary conformal transformation is divergent, one regular-
Zaas $oj)=Zcr1(boj)- @) izes the calculation by considering the induced metric for a
. . .  family of surfaces which approach the boundary in a limit.
Here the fieldspo; have two interpretations: On the gravity g regularization procedure then will depend on the
side, these fields correspond to the boundary data or boungy, jices of coordinates in the asymptotic AdS region: i.e., it
ary values(up to a certain rescalirid]) for the bulk fields¢;  genends on the precise family of surfaces chosen. With dif-

which propagate in the AdS space. On the field theory sidegrent choices, the background geometry inherited by the
these fields correspond to external source currents coupled =7 t5kes a completely different form. For example, de-

various CFT operators. Thus correlation functions of the op- ending on the choice of radial slicing for AdS, the
erators in the CFT can be determined through a CaICUIatiOEoundary geometry can b8lx S", S L S RN, We’ will
using the dynamics of gravity In AdS spa_cet|rfﬂa3]. In" " giscuss these and other possibilities in Sec. Il. This proce-
certain instances, one can (;onS|der eYa'“?‘“”g the AdS Partiiyre therefore allows one to study the CFT with different
tion function in a saddle-point approximation: background geometries. From the point of view of the grav-
o ity theory, this procedure is interesting because naively the
)cFT ) expressions on the left-hand side of Eq$) and (2) are
coordinate invariant. However, the asymptotic regularization
explicitly breaks this covariance.

e—'Ads(¢i):<ef¢o,i
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"Email address: cvj@pa.uky.edu integral in the saddle-point approximation has a long history
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black hole thermodynamid$] — see Refs[7] and[8] for 1

discussions relevant for AdS. There is a problem that must lo=a—= | dxVhF(I,R,VR), (4)
be faced with this approach in that typically the gravity ac-

tion diverges. Fod=n+1 spacetime dimensions, the famil-

iar (Euclidean action has two contributions
where the counterterms depend only on the curvaiufand

its derivatives of the induced boundary metrie;; — see
1 a1 n(n—1) Sec. Il for explicit expressions. That this construction is
Ipuikt sur= — mﬁwd x\g| R+ 7 unique to asymptotically AdS spaces is apparent because the
AdS curvature scalel is essential in defining the
1 N countertermg.Note that these expressions are universal de-
ey d"xvhK. () pending only orl and the spacetime dimension. Once these

IM :
’ are fixed, one may use the same counterterms to regulate the

action for any choice of coordinates on any asymptotically

The first term is just the Einstein—Hilbert-anti—de Sitter ac-AdS solution:
tion with cosmological constat = —n(n—1)/22. The sec- Even outside of the AdS-CFT correspondence, counter-
ond integral is the Gibbons-Hawking boundary term which isterm subtraction provides a remarkable new theoretical tool
required so that upon variation with metric fixed at theWith which to investigate gravitational physics. Together,
boundary, the action yields the Einstein equatifsis Here, EAs.(3) and(4) provide a finite covariant definition of the
K is the trace of the extrinsic curvature of the boundafyt gravitational action for asymptotically AdS spaces. As a
as embedded itM. In the AdS context, both of these ex- Simple example, one might consider the energy of a gravitat-
pressions are divergent because the volumes of bétand N9 system in AdS space. Traditionally the definition of en-
9M are infinite(and the integrands are nonzpr@he tradi- €9y in gravity required a background reference solution in
tional approach to circumventing this problem is to perform@Symptotically AdS spacd$,21], just as in asymptotically
a “background subtraction.” That is, one produces a finiteflat space$22]. Combined with thg qua_sllocal formulation of
result by subtracting from Eq3) the contribution of a back- Brown and York23], the AdS action with counterterms pro-
ground reference spacetime, so that one can compare tiéles a definition of energy that is independent of any refer-
properties of the solution of interest relative to those of theeNce solution[18]. Using this tecgmque, one discovers a
reference state. Note, however, that this subtraction requirddité energy for Adg with an kX S* boundary. In the con-
that the asymptotic boundary geometries of the two solution&€Xt of the AdS-CFT correspondence, one can interpret this
can be matched in order to render the surface contributiofN€rgy as the Casimir energy of the dual field theory in the
finite 1 Aside from being a technical nuisance, there are cerlatter background geometif\i8]. A similar Casimir energy
tain cases where an appropriate reference solution is ambig@tises in Ad§ [18], where there is a well-known difference
ous or unknown, e.g., topological black holgs-13] and  between the energyl = —1/(8G) of global AdS and that of
Taub-NUT (-Newman-Unit-Tamburing-AdS and Taub- theM=0 state(which is only locally AdS). o
bolt-AdS[14,15 — see discussion below. Thus one might revisit Euclidean quantum gravity with

In the context of the AdS-CFT Correspondence' there doeg']is new theoretical tool in hand. In particular, one can ad-
not seem to be room for a background subtraction in, fofdress the cases where the background subtraction technique
example, Eq(2). Remarkably AdS spacetime offers an al- Was not possible ofdue to ambiguitiesthe results were
ternative approach. The divergences that arise in(&care @sputgd. .Th|s is one of the primary objectives of the current
all proportional to local integrals of the background CFT Investigation. _
metric y;; [1,16]. Thus these divergences can be eliminated The issue of the correct reference_state has been disputed
by extending the regularization procedure for the action withfor “topological black holes”[9-13], in particular for the
a “counterterm subtraction.” That is E43) is modified to ~ "hyperbolic AdS black holes.” The latter are black hole
include the subtraction of a finite set of boundary integralsSolutions where the horizon is a hyperbolic speieinstead
(with divergent coefficientsinvolving curvature scalars con- Of @ sphere. As it happens, there is among these solutions one
structed from the background metrig; [17]. Recently a Which is locally (though not globally equal to AdS. How-
remarkable insight was provided by REE8] (see also Ref. €ver, in order for it to be regular, the Euclidean time has to
[19]): If the counterterms are expressed in terms of the infake a fixed finite value — in other words, it is a finite tem-
duced metrich;; , rather thany;; , then they naturally appear perature solutlc_)n. As such, it is npt an adequatg reference
with the appropriate divergences, as the volume of the regustate for matc_hlng c_alculat|ons_, which W_ould require a solu-
lator surface grows as it approaches the boundary of Adgon that admits arbitrary Euclld_ean perloq. In Sec. IV, we
spacetime. Thus in the counterterm subtraction approaci@PPly the counterterm subtraction prescription to compute
one may produce a finite gravitational action by supplement-
ing the contributions in Eq.3) with an extra surface integral

2We are excluding non-polynomial terms, which could be intro-
duced in the absence of a cosmological consiak
Again, there is the implicit need for a regularization procedure 3Actually this is not quite the complete story — see below and
with regards to the asymptotic boundary. Sec. VI.
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the action, and discover some intriguing results. We are lethe only other regular solution is the Taub—bolt instarfttm.
to speculate on a connection to the “precusor’ states rewas noticed in Ref{14] that there existed a branch of solu-
cently discussed in Ref33]. tions which tends to the ALF Taub-NUT solution bs»c°.

The Taub-NUT solution is known to admit an extension (These are the analogue of the “small” Schwarzschild black
to include a cosmological constaf4], and as such, the hole branch of solutions on Réfz].) Therefore, after apply-
Taub—NUT-anti-de SittefTN-AdS) solution has been stud- ing the counterterm subtraction procedure to compute the
ied recently in Refs[14,15. The boundary geometry cannot action of the asymptotically TN-AdS solution, we take the
be matched to that of AdS space, and so there is no knowtmit | —c. This limit provides then a "background indepen-

reference solution with which to make a background subtracdent” result for the action of the ALF Taub-NUT solutions.

tion. Instead, in Refd.14,15, the analog of the self-dual TN Remarkably, we find that the result agrees precisely with the

solution(i.e., the one with a “nut,” a zero-dimensional fixed MmPerfect matching” one given in Ref.25]. Furthermore,

point set, at its originwas used as the reference state in awe show that the counterterm prescription results are repro-

background subtraction calculation of the action of the:jaL:Ctithg gﬁg?m;]neg :CF gzgrfect matching” to AdS simi-
Taub—bolt-anti-de S|tte(rTB—AdS) solution. In Sec. V, we A simple application of the counterterm subtraction is to
use the counterterm subtraction for a backgroundless Ca|Clé—a

) . . Iculate the action ofEuclidean AdS,., for different
lation of the action of TN-AdS. This allows us to study the ¢,,ices of coordinates, i.e., with different boundary geom-

thermodynamics of this solution in and of itself. In particu- gyjes |n Sec. VI, we present an analysis of the multi-slicing
lar, we can study_lts local intrinsic stab|llt)_/, and find its phenomenon folEuclidean AdS,,; with n<4, showing
entropy, as a function of the nut charge. This leads o Somge results for the action in several different cases. It is in-
surprises. teresting to note the appearance of different Casimir energies
As mentioned above, the counterterm subtraction apm the various cases. A more dramatic result is that for certain
proach cannot be extended in a straightforward way to assoundary geometries, such 8 andH", one finds that the
ymptotically flat (AF) spacetimegand for that matter, to counterterm subtraction is insufficient. That is, a divergence
spacetimes which do not asymptote to Adéd®cause the AdS that is logarithmic in the asymptotic radius appears, and can-
scale is an essential ingredient in the definition of the counnot be eliminated by the addition of a local counterterm as in
terterms(4). However, one can apply this technique in aEq. (4). These divergences which can arise for emdmave
case-by-case manner to the computation of the action dieen noted previously in the context of the AdS-CFT corre-
those asymptotically flat solutions which can be obtained aspondencg¢l,17]. There they may be related to a conformal
limits of AdS solutions. A simple example is the computa-anomaly for the dual CFT in certain background geometries
tion of the action of the Schwarzschild solution by first em-Which is well known to be connected to the appearance of
bedding it in AdS spacetime. There exists a Schwarzschildlgarithmic divergences in the effective field theory action
AdS solution[7] — discussed extensively in the context of [28]. Of course, this presents a limitation on counterterm
the AdS-CFT correspondence recenfil,4] — which for subtraction as a general ftool to investigate asymptotically
black holes that are much smaller than the cosmologicafdS spaces in odd spacetime dimensions.
length scald ~|A|~Y2 approximates the asymptotically flat Certainly our results he_we many interesting implications
Schwarzschild solution. We can compute the action of thidor the dual field theory via the AdS-CFT correspondence.
Schwarzschild-AdS black hole by using the counterterm preYVe will only make limited comments on this aspect of the
scription, and then take the limit>c. In this way we al- work here, leaving a more general study of the field theoretic

most recover the standard result that is obtained by matchintjtérpretation for a future paper. _
the AF solution to Minkowski spacetime. While this work was being completed, we were informed

The preceding is a satisfying, but somewhat trivial ex-that Mann[29] had also considered the application of the
ample. However, there are other cases of AF spaces whefdS action with counterterms to the solutions considered in
the computation of the action, using the more traditiona/Sec. IV and V.
background subtraction technique, has been the subject of
some controversy. One such case is that of the Taub-NUT II. MANY FACES OF AdS SPACETIME
solutions, which are only asymptotically locally flALF). ] ] . ]

In Ref. [25] the action of generic Euclidean Taub-NUT so-  AS described in the previous section, counterterm subtrac-
lutions (of which only the self-dual Taub-NUT and Taub- tion Works_ by subtractlng the integral of various boundary
bolt instantons are regulawas computed by trying to match Ccurvature |nvar_|§1nti4) from t_he stgndard actiofB). This

the solutions to Minkowski space, in order to perform a regulé@ves unspecified the way in which the boundary of AdS
larizing subtractiona similar matching was also attempted SPacetime is approached, i.e., the choice of “radial” coordi-
in Ref. [26]). However, since the large radius slices of Eu-Nate defining the family of surfaces which approach the
clidean Taub-NUT space are squashed three-spheres, in con-

trast to the Minkowskian sliceSx S?, the matching is not

really well defined. Therefore, it was proposed in RHef] 4Some care should be exercised, since often in the literature the
that the proper background to be subtracted is instead thgame “Taub-NUT solution” is used to refer specifically to the
self-dual Taub-NUT instanton, which has the lowest possibl&elf-dual Taub-NUT instanton, instead of the full, two-parameter
energy among the regular Euclidean Taub-NUT solutions—Taub-NUT solution.
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boundary as a limit. Depending on this choice, the slices aDne final AdS metric which we will consider is
constant radius can have different geometry or even different
topology. Even if the spaces are locally equivalent to one dr?
another, the computation of the action will in general lead to ds’=———" -+
, ) , . ) (k+r2/19)
different results, since the boundary terms in the action will
take different values. In the end, since all different forms of . Y =2 ) .
a spacetime will be related by diffeomorphisms, with pos-here again the metricd>”, - anddX, - are defined in
sible addition or subtraction of points, and possibly as well Ed- (6). Fork=0 we once again reproduce tke-0 metric
identifications under discrete subgroups, the different result& Eq. (5). For k=*1, we assume that botm,m=2. For
for the action will bear a relation to one another, too. Herek=+1, the boundary geometry isl™xS™, while for k
we will describe some of the many possible “faces” of the = — 1, we simply interchange the hyperbolic space and the
boundary of AdS spacetime. In subsequent sections, we wiiphere. However, in the latter case, the coordinate transfor-
consider these metrics as examples for the application of thl%ationTzzrz—lz puts the metric back in the=+1 form
counterterm subtraction technique, and compare the results..

Clearly, such a comparison would have been impossible haWIth ﬁqﬁﬁ." L
we re?]/uired a backgpround for the calculation. P Thus with the metrics in Eqg5), (7) and (10), we have

Let us first present Euclidean AdS, in the following displayed Ad3., with a wide variety of boundary geom-

2

r?\ ., r2 <,
k+|—2 dE_k’r;le—szk’%, (10)

three familiar metrics, etries:
ds’= k+§ dr?+ —dr2 +§d2§ _ (5) ST ST, S
! (k+r12) 1277kt S", H", S"XH"™ (11)
where the fi—1)-dimensional metri«:ﬁﬁyn_l is All of these AdS metrics are maximally symmetric, i.e.,
Lz,dlﬂﬁ_l for k=+4, Rijk|:_|£2(9ik 9j1 — il 9jk), (12)
dzi’”fl: 21 dxiz for k=0, ©) which ensures that the geometry is conformally flat. This

12452 for k=—1 condition also ensures the geometries are all locally AdS.
—n-l ' It is interesting to notice the form of some of the bound-
wheredQ? |, is the unit metric or8" %, By H"" ! we mean &Y geometries we get here upon analytic continuation to
the (n—1)-dimensional hyperbolic space, whose “unit met- Minkowski signature, since they are rather common:
ric” dE2_, can be obtained by analytic continuation of that

) i S":Euclidean de Sitter space
on S"" 1. It is straightforward to see that all of the above P

solutions are locally equivalent to each other. In the above H™: (global) anti—de Sitter space (13)
we are assuming that>2 for k=—1, since forn=2 one
does not have a hyperbolic metit'. R":Minkowski space.

For later use in the paper, we will write the volume of the
spacedzﬁ’n asl"oy . In this way,oy— .1, will be equal to  Furthermore, if we assume a specific analytic continuation to
the volumew,, of the unitn-sphere. Lorentzian spacetime, e.d5! x S"— R(time)x S", then

Next we consider Euclidean A¢$S; with metric ] ) ) )
Rx S"~*:the Einstein static universe (14

o dr? e, - _ .
_m + Fdzk'n , (7) RXH"™*:the static open universe.

) ) o ] ) ~ The AdS-CFT correspondence implies then an equivalence
where then-dimensional metrid; , is defined precisely in between, on the one hand, quantum gravity in AdS and, on
the same way as above in E(f). For k=0, this simply  the other hand, a CFT on any of the above backgrounds. We
reproduces th&=0 metric in Eq.(5). One might note thata find it particularly amusing that, when the boundary is taken
fcransformation of the radial coordinate brings these metricgg pe H", quantum gravity in AdS,; can be dual to a CFT
into the form on an Ad$ background. It should be kept in mind that the
geometry on the boundary is not dynamical, since there are

ds’=1%dp?+ fi(p)dZg, ®  no gravitational degrees of freedom in the dual CFT.
Where There is an important feature that distinguishes the solu-
tions withk= —1 from those withk=0,+ 1: there is a finite
sinhp for k=+1, minimum radiusr =1 at whichg,, diverges. In Eq(5), the
) _ Killing vector 4, also has fixed point séf “bolt” ) at this
flp)=y € for k=0, (9 radius. In this case, the Euclidean solution will be regular
coshp for k=—1. only if the coordinater is identified with period3=2l. In
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the metric(7) with k=—1, the minimum radius=r , sim-  poundary 9M which may be defined adi;=g;; —nin;

ply denotes the boundary of a coordinate patch as is evidegjheren is an outward pointing unit normal vector &M. In
from the form of the metric in Eq(8) with the new radial  the Gibbons-Hawking boundary terhg,s, the trace of the
coordinatep. In the case of Eq(10) with k=—1,r=r is  extrinsic curvature is defined dg=hV;n; .>

the location of a “conical” singularity. Fork=+1, the The counterterm actione(h;) may be arranged as an
minimum radius is =r, =0 and the geometry is smooth at expansion in powers of the boundary curvat(aed its de-
this point in metrics(5) and (7), but it corresponds to a rivatives. The number of terms that appears grows with the
“conical singularity” in Eq. (10). For k=0, the minimum  dimension of the spacetime. The first few terms are explicitly
radius is agairr=r =0 which in this case is an infinite

proper distance away and so there is no problem with the

curvature here. Note that the geometries with conical singu- =~ i
larities or a bolt are only locally AdS; that is, they describe lct_% aMd X
AdS spacetime with additional discrete identifications of
points. ab 5
Equation(12) is an extremely restrictive condition. If one +W(n_2)2 RapR ™= mR
is simply interested in solving Einstein’s equations with a

negative cosmological constant (17)

n_1+ | .
| 2(n—2)

|3
+ ..

Rijj=— nl_zzgij ) (15  whereR and R, are the Ricci scalar and Ricci tensor for
the boundary metric, respectively. Combined these three
unterterms are sufficiéhto cancel divergences for<6.
p this covariant form, the first term originally appeared in
Ref.[19],” while the second term first appeared in Ha8].

then the above metrics remain solutions when the bounda
geometries are replaced by arbitrary Einstein spaces. In all

the metr|c§(5), (7). (10, one may replac.e gny~of he? We derived the third term by demanding that the infinite
factors (with p>1) by a space satisfyingRa,=(p volume divergences were cancelled when using the metric
—1)/1°ggp. Similarly anyHP factors can be replaced by a (10). Any of these terms may be derived with the construc-
space satisfyindR,,=— (p—1)/1%2g,,, and RP factors can tion provided by Ref[17] for the appropriate curvature in-
be replaced by any Ricci flat solution, i.&,,=0. For ex-  tegral in terms of the CFT metrig;; . One then simply sub-
ample, therS? can be replaced by a product of sphe@s  stitutes the induced boundary metrig; to produce the

X -+ X SPawhereX i, p;=p with p;>2 and the radii of the covariant counterterms appearinglin. To go to higher di-
individual spheres is scaled sp=(p—1)/(p;—1)I2. These mensions, resorting to this construction seems inescapable as
generalized solutions will no longer be conformally flat or the “simple” asymptotically AdS metrics presented in Sec.
locally AdS. Furthermore, generically a true curvature singul cannot be used to distinguish all of the curvature invariants
larity is introduced at the minimum radius, e-@i,ij”k' that can appear in the higher order counterterms. It is impor-

grows without bound as approaches , . tant to note that the fact that we have counterterms for di-
mensions up tod=7 means that we can now study all
IIl. COUNTERTERM ACTION (known) AdS applications which arise in string theory and M
' theory.

The detailed form of the boundary counterterms was Other matter field actions, for example an action for Max-
originally explored in Ref[17], where they were derived in well fields, can be added to E¢L6). Although, at least for
terms of the backgroundield theory metric y;; . The in-  black hole solutions, the addition of gauge fields does not
sight provided by Ref 18] was that the counterterms should seem to require new counterterf®2], we must remain alert
be written in terms of the induced metric on the boundaryto the possibility that extra matter fields may require the
hij . In this way, they naturally appear with the appropriateaddition of new, non-geometric surface counterterms to the
(infinite volume divergences to cancel those arising from action. This issue will not be considered further here.
the classical gravitational action. The focus of H&B] was As a simple example, we will consider calculating the
to construct a finite boundary stress tensor without using action (16) with the metric (5) for AdS spacetime with
reference background. However, the proposed prescriptioboundaryS'xM,. Let us present the contributions of the
naturally provides the construction of a finite action whichindividual terms in the action:
can then be employed, for example, to calculate the action of
Euclidean gravitational instantons. This will be the primary
application which we consider in the following.

Hence the full(Euclidean gravitational action ind=n S0ur conventions differ by signs from Refd.8,23, but are cho-
+1 spacetime dimensions has three contributions sen to conform with standard practice in general relativity, as in,
e.g., Ref[30].
I ads= louik(9ij) + 1 surf(Gij) + e hij ). (16)

0r almost, see Sec. IV.

The first two terms, comprising the familiar classical action, “This term had also been considered to providgartia) regu-
were given in Eq(3). Here,h;; is the induced metric on the larization of the action of AdSin Ref. [31].
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where oy ,—; is the (dimensionlessvolume of the space
with metric dEﬁln,lllz, and B is the period ofr. We have
also separated the contributions of the individual counter
terms in Eq.(17), soly, is the integral of theéth term in the
action. Now, for a particular boundary dimension only some
of the counterterms are included to cancel the divergences.
So forn=2i—1,2, one keeps only up tb,. For any odd

value ofn, one has then

B Okn-1
87GI?

Ik,n+1: -

For the even values af, an extra constant term makes an

appearance so that

Boyn-1 3k?

87GI?

Ik,n+1:

2 8

+-~-+O(I”+1/r)).

As we have explained above, fer= + 1,0, we haves arbi-
trary andr . =0, whereas fok=—1, r . =| and8=2l.

[rh+0("Yr)].

k
2 4
1 = D128, 148, 4
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Note that for evem, the coefficients of the higher coun-
terterms are actually divergent, even though they formally
evaluate to a finite result. Further in either of these results,
Egs.(19) and(20), there are extra terms of orderr Livhich
vanish when the limit — o is taken in order to approach the
AdS boundary. However, consider the casenafdd, where
we have in fact the option of keeping all of the higher order
counterterms in Eq(17), i.e., including the terms which ac-
tually vanish in the boundary limit. This would give a result
where in fact all of the inverse powers P would be can-
celled so that not only would the action be finite, but it would
be independent of the regulator radius.

Given the explicit counterterms in E¢L7), we can only
really evaluate the action fon<6. However, keeping in
mind that the higher order counterterms ensure the cancella-
tion of divergences order by order, it is clear that the formu-
las (19) and(20) will be unchanged fon>6. Further we can
show that the coefficient of the extra contributionsriceven
will be

p(n—nn?
(—k) /2T| ) (22)

To derive this result, note that the bulk and surface contribu-
tions can be written as

Boyn-1

m[—ri—(n—l)r“(ﬂ—x)], (22)

loulc ™ surf=

wherex=kl?/r?, while the counterterms yield

Bokn-1
IP=—"—=(n—1)r"c xP L(1+x)2 (23)
¢ 8rGI2 P
wherec, are constants independentrofThe key point is to
realize that the counterterm contributions will cancel the
dependence in Eq22) to an arbitrarily large order, and
hence these coefficients are just the coefficients in the Taylor

eries
(1+x)12= pzl cpxP L, (24)

Now as stated above for a given=2i, the action only in-
cludes the finite sumkpy+ syt =p_ 11§ Thus with some
elementary manipulations, one finds the residual finite term
in Eq. (20) appears with the coefficieril) above.

IV. AdS BLACK HOLES

In this section we turn to the study of black hole solutions,
using the counterterm subtraction scheme. In the presence of
a negative cosmological constant, the horizon of a black hole
admits a much larger variety of geometries and topologies
than in asymptotically flat situations. This is consistent with
the variety of boundary topologies that we can obtain for
AdS itself, depending upon how we choose to radially foliate
it, as discussed in Sec. Il. The case=(1, below of spheri-
cal black holes has already been studied using this counter-
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term subtraction scheme in Réfl8], but we compute and the other hand, the extremal solution, with a lower value of
list those results in what follows for completeness and foru (and as we will see, of the enengyhas arbitrary8 and
comparison with the flat and hyperbolic cases. therefore can be matched to any other solution. Hence, the
In Ref.[13], it was shown that the Einstein—anti—de Sitterextremal solution was the preferred background for the
system inn+ 1 dimensions admits the following solutions: matching calculations in Ref§11-13.
It is clear from this discussion that the method of coun-

d?=—V(r)dt?+ dr? n rzdzz (25) terterm subtraction can be of help here. For the solutions
k V(1) |27 kn-1 described above we obtain
i | ZM(_rnﬂ_'z__lzg
u r2 k,n+1 87TG|2 + 2 2 n,2
=Kk— J,— —_—
o e 1 0 +3 2I“5 5kl65 +
—1%8,4— =186, 6+ - - -
) 8 nto16 "

where the (—1) dimensional metridX ,_, is defined as
in Eq. (6). Thus it represent§" 1, R""* and H""* for k Bown1| 3k?
= +1,0 and— 1, respectively. A spacetime that is locally the = 16wé|2 (kfrl 212—rT —KI25, o+ T|45n,4
same as anti—de Sitter is recovered wjaen0 for which the
metric reduces to that in E¢5). 5k

By going to the Euclidean section one finds that the Eu- - §|65n,6+ T
clidean time periodthe inverse temperaturdas to be

: (32

where agairvy ,_; is the(dimensionlessvolume associated
=, (27)  Wwith the unit metriodEﬁvn_lllz. Using Eq.(32) we can com-
nri+k(n—-2)I pute the energy and entropy of the solutions by application
of standard thermodynamical formulas. One finds

2
Al

Here,r, is the largest positive root &f,(r), typically asso-

ciated with the outer horizon of a black hole. Hor 1 and (N—=1)oykn-1 0

1=0 (global AdS spacetimethere is no such root, but the E=—l6:c HtE (33
correct results are obtained by setting=0. Now, it is im-

portant to notice that, whereas fhre={1,0} the locally AdS  where we denote by

solution corresponds to, =0, this is not true forkk=—1.

2
AdS spacetime with hyperbolic slicing has a bifurcate Kill- o_Y%kn-1 —KS- o+ ﬁpé _ 5_k|45 +. ..
ing horizon atr=1 and a fixed temperatur@=2l. By K 167G nzt o4 0 “nd g oné
contrast, there exists an extremaF —1 solution, with a (34
idnzgenerate horizon at=r, and parametep.= s, satisfy- the terms that are independent of the black hole parameters

(e.g., of the temperatureTheir contribution to the action is
therefore of the fornﬂEE. Note that one can extrapolate this

n—2 2 [n—2\"2
M= Tl’ o= — E(T) I""2, (28  Casimir energy to
In particular, EE:%(— k)n/zww—z, (35
fo=— % fe:%, for n=3, (29) forﬁggigigog\;em using Eq.(21).
2 | g Ton-1" (36
Ke=~ 7 re=ﬁ, for n=4, (30 4G

satisfies the area law, and is independent of the extra terms
414 \F BEY. Not surprisingly, the result is therefore the same as in
He= = 57 Me= §|' for n=6. (3) 4 background calculation.
Curiously, the results fon=3 andn=4 show different
Therefore, in a calculation fok=—1 of the action, with  qualitative features. Far= 3 the result that we obtain is the
background matching, the question arises concerning whickame as one would obtain by performing a background sub-
is the correct background to subtract: On the one hand, thigaction from the locally Ad$ solution neglecting the coni-
locally AdS solution—which has the higher symmetry— cal singularity that would appear for& — 1. This is rather
might be physically appealing. However, since its pefiod  similar to what we will find for TN-AdS in the next section:
fixed, matching it to a solution with a different value gf  the method of counterterm subtraction appears to reproduce
would introduce a conical singularity at the horiZdrl]. On  the results of an “imperfect matching” calculation. As a
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result, the extremal solutiorf29) has negative energy, AdS,. However, the situation for AdSis somewhat enig-
whereas the locally AdS solution, withh=0, has vanishing matic. In this case, the action does not vanish either for the
action and energy. extremal black hole or for the locally AdS solution. Also, the

By contrast, the result for the hyperbofie=4 black holes  energy is non-zero for both. Perhaps this is consistent with
supports the opposite scenario. The actidp) in this case yet to be understood properties of the (2,0) superconformal
reproduces precisely that obtained by taking the extremdield theory that resides on the world volume of the M5-
state(30) as the reference state, and not the locally AdS stat@rane[37].

[notice thatl =0 for the values in Eq(30)]. Forn=4 and Finally, it is of interest to note that because the “small”
k=—1, the energy(33) of the extremal state vanishes, a Schwarzschild black holeén the sense of Ref7]) survive
confirmation that this is to be taken as the ground state of thghel — « limit, (i.e., the cosmological constant goes to 2ero
theory. The ternE(k’ is independent of the black hole param- the surface counterterm subtraction method supplies results
eters(e.g. the temperatuyeand its contribution to the action for the action, energy and entropy for ordinary Schwarzs-
is therefore simply of the forn}BEE. child black holes. For odd, these results coincide precisely

For k=1 this term has been identified in Rg¢fL8] as  with those obtained by the background subtraction method,
precisely the Casimir energy associated A6=4 super- using Minkowski spacetime as a reference. For engethe
Yang-Mills theory on the static Einstein spacetifiexS®,  results would again coincide with the standard results in as-
which is the spacetime obtained as the boundary of Adymptotically flat space, except for the constant contribution
spacetime in this case. This agreement is a striking outcomef the Casimir energy35) (and the analogous term in the
of the counterterm subtraction method. Notice that the interaction. In this case because fae=4 this energy is propor-
pretation as a Casimir energy is the only possible one, givetional toI"~2, it becomes an infinite constant in the linhit
that the AdS solution is the one with the lowest action and—. We will see that this ability to take the flat spacetime
energy among that family— i.e., it is the ground state. limit occurs for other interesting solutions in the next sec-

We would like to see whether a similar correspondencdion, and allows us to address and resolve certain situations
holds fork=—1. In this case it is crucial to notice that the which were fraught with uncertainties and/or ambiguities in
ground state isotthe locally AdS solution. The latter should the literature.
be regarded as an excited state of the system. The ground
state is the extremal solution, which has zero energy. By V. ANTI —de SITTER NUTCRACKER
translating this into the AdS-CFT correspondence we would
not expect to find a Casimir energy for the field theory cal- As we mentioned in the Introduction, the issue of choos-
culations on the open static univerBe< H2. Indeed, the ef- ing a correct reference state for background subtraction has
fective action and renormalized stress-energy tensor for coreen a matter of some controversy for Taub-NUT and Taub-
formal fields vanish on that spa¢see, e.g., Ref28]). This  bolt solutions, in the asymptotically locally flat situation
is in perfect agreement with the zero energy results that wk25,27 as well as in the asymptotically locally AdS case
find for the ground staté30) of the theory. [14,19.

There are, however, some aspects that are in need of fur- Note that in this section will be used to denote the “nut
ther exploration. In particular, from the entropy formula we charge,” not the number of dimensions—we will only deal
see that folk=—1, not only does the locally AdS solution With four-dimensional solutions.
have non-zero entropy, but so does the extremal ground

state. In particular, fon=4, A. Spherical nuts and bolts
5 The Taub—NUT-anti-de SittdiTN-AdS) solution is
Ok=-13
ext™ o - (37) dr?
2"%G ds?=V(r)(dr+2ncosfde)?+
V(r)
In this respect, this ground state bears resemblance to the +(r2—n?)(d6?+sirtode?), (38)

extremal black hole ground state discussed 3], which
had non-vanishing entropy as well. It is of great interest toyhere
understand this resu(B7) from a field-theoretical point of

view. The “precursor” states of Ref.33]—constructed in 2, .2 —2,.4 2,2 4

) ) +n?)— + - -
standard field theory—might be extremely relevant to such a = (r7+nf)—2mrt 17 %(r7—6n"r"—3n%) (39
discussion. As proposed in Rd833], these are degrees of r2—n?

freedom that do not contribute to the energy density, al-
though they store information. This looks precisely like whatHere we will simply sketch some of the features of the so-
is needed to account for an entropy like we have found in Eqlution. For a detailed analysis we refer the reader to Ref.
(37). Perhaps the entropy of this ground state and the ongl4]. If n=0, we recover the Schwarzschild-AdS solutions
presented in Ref.32] represents the count of the number of with mas a mass parameter. The analytically continued time,
precursor degrees of freedom in the field theory. 7, parametrizes a circleS!, which is fibered over the two
For black holes in Ad$(i.e., n=5, and in fact, all odd sphereS?, with coordinates? and ¢. The non-trivial fibra-
values ofn) the conclusions are essentially the same as iion is a result of a non-vanishing “nut charge¥. As a
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result, the boundary as—o is described as a “squashed”
three-sphere, wherend/12 parametrizes the squashing.

Euclidean regularity of the solution restricts the period of
7 to be

B=8mn. (40

In addition, the mass parameter has to be restricted so th
the fixed point set of the Killing vectas,. at radial position
r=r, is a regular one. Hence one finds “nut” or “bolt”

PHYSICAL REVIEW 60 104001

2n?

r

Vh=\W(r)(r2=n?sing, R=—5—5—

n r2_nz)2V(r).

(45

(

we find, for a solution with generic values of andn,

4n

T GI?

at 3

+

I (I°?m+3n?r . —r3), (46)

solutions, depending on whether the fixed point set is zero ofhere, as we said above, is the minimum possible value

two dimensional, respectively. In particular, for “nut” solu-
tions

4n3

r.=n, mn=n——|2—. (41

In what follows, by TN-AdS we will mean the Taub-NUT-
AdS solutions with this particular value af. Notice thatm,
vanishes for the valup=1/2. It was shown in Ref.14] that
for this particular value the solution is precisely Ad%vith
the slicing in which the sections at constantare round
three-spheres. In contrast, the solution with m=0 corre-
sponds to Ad$ with slices of geometng!x S?. For Taub-
bolt-AdS (TB—AdS) the expressions are more complicated
[14]:

rg+n? 1 . 62 3n4 45
=t — — —
m 2I'b 2|2 I nery Mo ’ ( )
2 n2 n4
r+=rbizﬁ(1t Vl_48|_2_+144|_4) (43)

Forry, to be real the discriminant must be non-negative. Fur-
thermore, we must take the part of the solution which corre-

sponds tap>n. This gives

|

1

- (44)

\/@ 112
o

of r, where there is a fixed point of the Killing vectar. Of
course, as explained above, Euclidean regularity demands
eitherm=m, or m=m,.

There are several things to note about this result. The first
is a consistency check: if we subtract the values we obtain
for the TB-AdS and TN-AdS solutiond o e, We re-
cover (after some algebjathe result obtained in Refs.
[14,15 for the action of TB-AdS with TN-AdS as a refer-
ence. Of course this consistency is to be expected in general.
The standard background subtraction requires the asymptotic
geometry of the solution and its reference state match. Hence
the counterterms which depend only on the intrinsic bound-
ary geometry must be equal, and will cancel if one takes the
difference of the counterterm subtracted actions.

Next, in the flat space limit— we obtain

| 4nm 4
- (47)
In particular, in this limit we find
41rn? 51n?
Ihur— G Ihor— G (48)

These are precisely the results that were obtained in[ R&f.

by an “imperfect match” of the Taub-NUT solution to Eu-
clidean Minkowski space. Indeed, the same “imperfect
match” to AdS can be seen to reproduce the re$4i6)

It is only for this range of parameters that one can construcabove. Even if it is not possible to match the squaskedt

real Euclidean TB-AdS solutions. Notice, in particular, that
the AdS valud =2n lies outside this range.
In Refs.[14,15, the action of the TB-AdS solutions was

the boundary to the boundary of Ag®vith the slicing S*
X §?, a finite result can nevertheless be obtained by neglect-
ing the non-trivial fibering and performing a standard back-

computed by matching the solutions to a TN-AdS solutionground subtraction. Proceeding this way the b(dklume
with the same value of the nut charge. The thermodynamicterm yields, at large,

of TB-AdS solutions were then found to be rather similar to
that of Schwarzschild-AdS black holes. However, this

method precluded an analysis of the TN-AdS solutions by

4mn ) 5. mnr
IbUIk:GT(I m+3n r+—r+)+a2—+0(llr). (49)

themselves, since they acted as reference states. A com-

pletely rigorous calculation of the action of TN-AdS could

not be performed using the reference background metho%

simply because it is not possible to match pure Ad®
intuitively obvious candidate backgrounto TN-AdS, as
they have incompatible slices for ah except n=1/2.

Equipped with the counterterm subtraction procedure, we

can now compute the action for TN-AdS, without any refer-
ence to a background.
With

In contrast to other action calculations in AdS spacetime, the
ulk term, even after subtraction, is not finite by itself; rather
one needs to take into account the Gibbons-Hawking bound-

ary term:

nr
d3xVh(K —Ko) = — = +O(1/r).

lsurf:_SWGng Gl
(50
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By adding Eq.(49) and (50) and takingr —c we therefore
recover Eq.(46).

PHYSICAL REVIEW D60 104001

the Hamiltonian on it. Indeed, in the absence of a bolt this
appears to be the only possible source of gravitational en-

We therefore conclude that the fact that the match to thdropy for the TN-AdS solution. A brief calculation confirms
background is an imperfect one does not appear to be as battat Sy,5 corresponds precisely to the expression we obtained

as it looks at first sightCertainly, the result47) of Ref.[25]
in the ALF limit is on a better standing after having recov-
ered it from a counterterm calculation.

Now we return to the result46), and specialize to nut

solutions using Eq41):
47n? 2n2

= (50
Forn=1/2 we recover the value for A¢gSwvith boundaryS?,

I TN-AdS™

which will be obtained and discussed in Sec. VI, whereas for

n=0 we recover the valuézerg for AdS, with boundary

in Eq. (53).

The fact that the specific heat becomes negativenfor
<1/\/12 is an indication that the solutions become thermally
unstable, making them unusable for equilibrium
thermodynamids(in the canonical ensembleSo if we de-
clare that the physically relevant solutions are those with
both positive entropy and positive specific heat, then the
valid range for the nut charge is

J12

=ns= (55)

-

S'x S2. Again, these special cases may be regarded as con-
sistency checks on the internal consistency of our implemenSolutions in this range have positive action and positive en-

tation of the procedure.
Notice that the action becomes negative forng

ergy.
Finally, we note that the results for the energy, entropy

=1/1/2. More interestingly, being able to vary the value of and specific heat of TB-AdS can be recovered by combining

the Euclidean perio8=87n we can compute the energy of
the solutions,

mn
E:&ﬂl = =,

G (52

which confirms the interpretation ofi as a mass parameter.

those for TN-AdS above, and those for TB-AdS with the
TN-AdS subtraction in Ref.14].

B. Remarks upon field theory on squashed three-spheres

As discussed in Ref.14,15, the study of solutions with
nut charge which are locally asymptotically AdS is relevant

We may go further and compute the entropy and specifi¢o the 2+ 1 dimensional “exotic”’[38] conformal field theo-

heat:

47n? 6n2
S=igl—1=—(5—|1- 5= (53
8mn? n?
C=—/3(9,BS= G —l+12|—2- . (54)

As had been already noticed in Rgf4], the masgenergy
becomes negative fan>1/2. More strikingly, the entropy
becomes negative far>1//6. In particular, the entropy of
AdS, (n=1/2) is negativgequal to minus its action, since it
haseE=0). Whereas a negative mass may not be too trouble
some(one may shift the energy scalea negative entropy

certainly would appear to be a sign of pathological behavior.
One should keep in mind, however, that this negative en-

tropy appears because of a particular choicéEafclidean

time coordinate. Even if it may seem surprising at first sight
that AdS, suffers from this pathology, we stress that this is a

consequence of the particular choice of time slicing that w

have made here, rather than an instrinsic property of th

AdS, solution itself.

In Ref. [34] it was pointed out that in spaces where Eu-

ries which reside on the world volume of M2-bran@sd
closely related theori€g after placing them on squashed
three-spheres. Following that work, in RE39] the effective
actions of various fields on squashed three-spheres have been
computed.

We do not expect to see in those particular field theory
results any signal of the apparently pathological behavior
(e.g., negative entropyhich we have found, and indeed we
do not. The difficulty essentially lies in the fact that the field
theory results can only be used at weak coupling, whereas
supergravity is describing a strongly coupled regime of the
field theory. The unusual behavior belongs only to the low
temperature phase of the field theory, and strong coupling
effects change the picture drastically. Recall the phase struc-
ture described in Refl14]:

(i) At high T (small n) we have both TN-AdS and TB-
AdS as possible solutions, but the latter has the lower free
energy, and is therefore preferred. It was shown in Rief]
that at highT, TB-AdS gives the expected behavier T3
hich, not surprisingly, is the result found in REB9]. This
Isa deconfined phase.

clidean time is non-trivially fibered there appeared a contri- 8\eyertheless, a negative specific heat is not so bad as a negative
bution to the entropy other than the usual one coming fromentropy; as a matter of fact, as is well known, the Schwarzschild

the bolts(the latter yields the black hole area lawhis extra
entropy can be associated to “Misner strings35] (a geo-
metric analogue of Dirac stringsand we would expect it to
contribute to the entropy of TN-AdS aSys=Aus/(4G)
— BHus, [36] whereAys is the area of the string aridl;g is

black hole in asymptotically flat spacetime has negative specific
heat—and so does the ALF Taub-NUT solution.

%Recall there is a problem with the spin structure of TB-AdS, and
so the M-theory interpretation is unclegt4], although there is
almost certainly a dual CFT nonetheless.
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(i) At low T (largen), however, the only existing phase dr?
is TN-AdS. There is a phase transition separating this regime ds*=V(r)[d7+2n(coshf—1)d¢]*+ v +(r?=n?)
from the deconfined phase mentioned above. This phase
transition prevents us from obtaining information from the X (d@?+sintPod¢?), (59
results in Ref.[39], since at weak coupling, where those
results were obtained, one does not get the confined phas#¥th

It is in this largen region that the entropy becomes nega-
tive. In fact, all of the negative entropy regime is within the _ —(r’+n?—2mr+1"2(r*-6nr?-3n%
region where the only regular solution is TN-AdS: TB-AdS B r2—n2 '
is absent there. One might speculate whether the Lorentzian
version of the field theoryin this confined phagecontains  The fibration is trivial, and again, there are no Misner strings.
ghosts that do not decouple. Such ghosts would yield a neg&towever, it was found in Ref.14] that there are no hyper-
tive contribution to the entropy. bolic nuts: i.e., it is not possible to make=n into a regular

So we discover that the supergravity studies give us neviixed point of 9.. Nevertheless, bolt solutions can be con-
information on the strongly coupled phases of the theory orstructed. This is rather analogous to the situation we encoun-
the world volume of the M2-brane and related theories afteter for hyperbolic black holes in Sec. IV. The result for the

(60)

compactification on squashed three-spheres. action is again formally very similar to Eq&46) and (58),
: g
C. Flat and hyperbolic Taub-NUT-AdS | = 8fG|2 (|2mJr 3n2r+ _ ri), (61)

A solution where the nuts and bolts are flat planes instead
of spheres can be found as well, and was analyzed in Ref,

[14] hereo is the area of the hyperbolic spaliéquotients of

H? are taken to yield surfaces of gengs-1 (this is not
n 2 gr2  r2-p2 essentigltheno=4m(g—1)].
dSZZV(r) dr+ I—Z(Xdy_de) +W+|—2
VI. AdS REVISITED

2 2
X (dx*+dy”), (56 Many of the quantities we have been computing can be
where. now translated into field theory results by using the dictionary
’ ’ provided by the AdS-CFT corresponder@40], namely,
Ve —2mr+1"2(r*=6n%r2—3n%) 57 3l " |2
= 22 : =55 for AdS;, N ~G for AdS,,
S o ) 3 3 15
The fibration is in this case a trivial one, and as a result the N =—= for AdS;, N°~ = for AdS;,
: ; . : ; 2G G
Euclidean periodB is independent oh. Zero dimensional 62)

fixed point sets 0B, (“nuts”) exist for m,=—4n?%12. So-
lutions with bolts have a hlgher value ot The result for the wherec is the central Charge of the dual CFT in two dimen-
counterterm calculation of the action for a solution with ge-sjons. The powers dfl displayed above are measures of the
nericmandn is number of “unconfined” degrees of freedom: for AN is

the rank of the gauge group of the dudlk=4 supersymmet-

|— BL? (m2—r2 +3n2r ) (58) ric four dimensionalSU(N) Yang-Mills theory. Meanwhile,
87GI? * o for AdS, and AdS, the dual field theories are the ones

[37,38 that describe the world-volume dynamics fpar-
where, as usuat,. is the radial position of the fixed point set allel M2-branes, and M5-branes, respectively. The details of
(r.=n for a nud, andL? accounts for the area of the,§) these latter two theories are still rather indirectly and poorly
plane, —L/2<{x,y}=<L/2. It can be easily checked that the understood, and the precise numerical relationship between
action of Ref.[14], where the nut solution was taken as afactors [missing in Eq.(62) for these casgswill not be
reference background, can be recovered from 5§ as needed here, as we will make no precise numerical compari-
I (bolt)— I (nut). Moreover, Eq(58) is the same result we son. While there is almost certainly a dual conformal field
would obtain had we performed a background subtractioheory for the case of AdS we will not comment upon it
calculation with “imperfect matching” to Adg[the latter in ~ further. Note again that AdS for all of the dimensions listed
its flat incarnation as=m=0 in Eq.(56)]. We note that for ~are cases that can be handled with the counterterms that we
the nut values the action is negative, which reflects the fadgiow have.
that its energy is negative—its entropy vanishes, as could In Sec. lll, we considered the counterterm action for AdS
have been expected in the absence of bolts or Misner stringw/ith the boundary geometri&d X M’k"l. In those cases, the

so in fact we findl ,,= BE - action is finite and interestingly for evean an extra contri-
The last possibility is that of having hyperbolic fixed bution appears of the forrﬁEE whereEE is a constant en-
point sets ofd.. The explicit solution is ergy — see Eq(35) in Sec. IV. This constant energy is
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readily interpreted in the dual field theory as a Casimir enwhere we have separated the contributions of the individual

ergy of the conformal field theory o&'x Mﬂ’l — see Ref. terms in the counterterm actigh?), as was done in Eq18).

[42] for another discussion of Casimir energies in the AdS-Again the limitr —c remains to be taken. Our counterterms

CFT correspondence. We can consider these results for allow us to deal withn=2,...,6. Wetherefore find for

=2,4 in more detail: the well known Casimir energy of (1 kanﬂ

+ 1) dimensional CFT when going from the infinite plane to

the cylinderRx St is reproduced by the term=2 in Eq.

(35. Similarly, the Casimir energy of four dimensional

Yang-Mills theory onR x S is precisely the value difj:+1 3

for n=4 [18]. o2 ‘Tk,4( 14l 2r)

k5 91

We found there as well that for the theory Bix H3, even ’ 647G |

if E;__,+0, the result is consistent with the absence of a

lo 2r
o _ k,2
19,= leWG(leZIogl—),

5
Casimir energy after identifying correctly the ground state of |k°7: k5l 0'k16(§_3|092_r) , (66)
the theory. We remarked as well upon the striking appear- ' 64mG | 4 !
ance of a non-zero entropy for this ground state, which 2
strongly suggests the presence of degrees of freedom which |® :l ‘Tkv35 1® —0 (67)
can contribute to the entropy but not to the energy density, k4™ 4G T k6™ =

just like the “precursor” states identified in Rgf33]. (This _ o _ o
also reminds us of the non-zero entropy extremal groun(yvhere we have omitted contributions which vanish in the
state studied in Ref32].) limit r—o. Here the most striking result is that for even
We can translate some of our results for the cases of, AdSEAs- (66), there remain logarithmically divergent contribu-
and AdS as well, finding that the Casimir energies derivedtions from the bulk terms that are not cancelled by the
by using Eq.(62) are correctly proportional to the number of boundary counterterms. Furthermore, given their logarithmic
degrees of freedom in the theory, as can be deduced from tiEture, there is no way that they can be cancelled by a coun-
power ofN which appears in each case: The scaling Wil terterm V\_/hlch is a Iocgl mt_egral over the boundary of a
precisely the same as had been obtained from computatiofigolynomia) curvature invariant. The appearance of these
of black brane entropieigtl]. divergences then presents a I!mltatlon _for th_e ut_|I|ty of the
Let us now consider AdS; with boundary geometries Ccounterterm subtraction technique for investigations of as-
S" andH" as described by the metrics in ). In order to  YmPptotically AdS solutions in odd dimensioffs.

notationally distinguish them from the fami§tx M, , we However, these divergences do not signal a problem for
will denote them with a®. The results for the action are the AdS-CFT correspondence, but rather provide a remark-

able consistency check. The possible existence of logarith-
explicit form. For the three contributiori¢he bulk term, the ~MiC divergences for odd spacetime dimensions was noted in

Gibbons-Hawking surface term, and the counterterm agtionRefS- [4,17], where the coefficients of the divergent terms
we find were related to the conformal anomaly in the dual field

theory. It is a standard result of field theory in curved space-
— time[28,43 that the appearance of a conformal anomaly in a
e Nokn(r — T classically conformally invariant theory is due to logarithmic
Vo= dr : UV di t least at th loop levedppearing i
87GlJ:, \/m |vergenc¢s(a east at the one-loop leyedppearing in
the quantum field theory. Thus we have the UV-IR relation
. _ . [45] of the AdS-CFT correspondence at work here: the ap-
which can be expressed in terms of hypergeometric funcpearance of an infinite volume singularity in the AdS calcu-

tions, but we will only need its expansion for largeThe |ation is a reflection of the existence of a UV divergence in
lower integration limit isr , =0 for k=+1,0, andr . =1 for  the CFT.

somewhat more complicated to express for generia an

(63

k=—-1: Further, if we make the association of the AdS radius with
an energy scale, we see that the divergence is logarithmic as
° Nokn 12 required by the field theory. For=4, it is straightforward to
lsur=~ 571" Vitkz (64 verify that in fact the\'=4 Super-Yang-MillSSYM) theory

has a conformal anomaly & or H*, and further a pertur-

bative weak coupling calculation reveals a logarithmic sin-
I.l_(n_l)o-k,nrn
ct 87Gl ’

1%0ne could consider the addition of nonpolynomial counterterms
.2_(n_1)(7k,n n n kl? to resolve this problem. A suitable counterterm would have the
¢t 8aGl 2(n—2) Pk form a,,;o(R)logf(R) wherea,;»(R) is the conformal anomaly term
(see belowandf(R) is an arbitrary curvature scalar. While such a
204 counterterm would render the action finite, it may produce problem-
|03:(n_ Down nl _ n ﬁ (65) atic results in calculating the boundary stress en¢fd;23. We
ct 87 Gl 8(n—4) r* )’ would like to thank Sergey Solodukhin for this suggestion.
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gularity in the effective action for the background metric atPlugging this expression in E¢68) we recover the exact
oneloop[43,44. That is, despite the remarkable finitenesslogarithmic term in Eq(69).
properties ofN'=4 SYM theory to higher loops in flat space  The finite part of the action would be expected to follow
[46], in curved spacetimes th&=4 supersymmetry is only from field-theoretical calculations as well. The scalgis
enough to protect against potential quadratic and linear dijust expected from the number of degrees of freedom of the
vergences. In general though, there is the possibility of onetheory, and the absence of any other factors follows from
loop logarithmic divergences. One can show though that fodimensional arguments. Related to this is the fact that the
the N=4 SYM theory, the coefficient of these divergent trace anomalyT¢) can be computed exactly within the AdS-
terms will always vanish on product space geometjris. CFT correspondendd. 7]. Having that, the full stress tensor
This is consistent with the fact that no logarithmic singulari-follows in this case since the symmetry of the geometry will
ties were found in the action@0) for the boundary geom- dictate thatT,,) =h.,(TS)/n. Therefore, it is not surprising
etriesS' X M. that a calculation of the stress tensor in the manner described
Let us make this connection somewhat more precise. Iih Ref.[18] reproduces this result.
the presence of a trace anomaly tefinthe action picks a For AdS; we can write the result as
divergent contribution of the form

2r
1+ 2Iog—), (71

Cc
r ® _ 1 lg—
I|og:('°9|‘) [ ey (69 s=~kglo—1 |

[see, e.g[17]. The cutoffe in that paper is related to ours as whereg is the genus of the two-dimensional boundary sur-
e=(1/r)?]. Therefore we would expect, and we will actually face; i.e., for the hyperbolic case we have taken quotients by
verify it below, that the logarithmic terms we have found discrete groups in order to find gengsurfacesthis is not
follow directly from the value of the anomaly. essentigl Again, the logarithmic term is precisely the result

Let us now write some of the result§6) in terms of field  for a (1+ 1) dimensional conformal field theory on a surface
theory parameters, in order to make a comparison with thef genusg, area 4rl?|g—1|, as follows from the trace
field-theoretical expressiof68). The result fom=4 should anomaly on such a surfaCTég: —kel/(1271?).

be related toV=4 supersymmetric four-dimensional Yang-  In the same vein, we would expect that the presence of a
Mills theory on de Sitter $*) or anti—de Sitter spacetime |ogarithmically divergent factor for AdScan be interpreted
(H*). We find a pleasingly simple result, in terms of the effective field theory for the M5-brane when
) defined on six dimensional de Sitter space. The anomaly for
|® :_kzN_(1_4|ng_r> (69) this theory has not been computed by independent field-
k5 4 I theory methods; rather it has been deduced in [Ré&1.using

the AdS-CFT correspondence. Using that result, the logarith-
Note the fact that the action does not change sign when ganic term comes out precisely as expected.
ing fromS* to H* (i.e., k= +1—k=—1) has its counterpart |t s clear that in the present paper we have only scratched
in the field theory in the fact that the divergent term in thethe surface of the full subject, and more detailed and exten-
effective action is given by curvature squared terms. In factsive comparisons between the results of Euclidean quantum
this result generalizes to no sign change fier4p, where  gravity and the dual field theories are possible. We hope to
the conformal anomaly is proportional to the Dower of  report progress on this in the future.
curvatures, and a change of sign for4p+2, where the
relevant power is @+ 1 [43].

Explicitly, for A’=4 SYM theory onS* the trace anomaly ACKNOWLEDGMENTS
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