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Black diholes
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We present and analyze exact solutions of the Einstein-Maxwell and Einstein-Maxwell-dilaton equations
that describe static pairs of oppositely charged extremal black holes, i.e., black diholes. The holes are sus-
pended in equilibrium in an external magnetic field, or held apart by cosmic strings. We comment as well on
the relation of these solutions to brane-antibrane configurations in string and M theory.

PACS number~s!: 04.40.Nr, 04.20.Jb, 04.70.Bw
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Exact solutions of general relativity describing multip
black holes are few and far between. Indeed one would
pect such configurations to have in general a very com
cated structure. Luckily, there exist some simple solutio
exhibiting remarkable properties. For instance,
Majumdar-Papapetrou solutions@1# describe an arbitrary
number of static extremal charged black holes, all w
charges of the same sign. Equilibrium is possible due to
cancellation of the gravitational attraction against electric
magnetic repulsion. In other cases, such as in the m
Schwarzschild solution in@2#, the masses are arranged in
linear configuration, and since the gravitational attraction
tween them is unbalanced, conical singularities arise al
the symmetry axis. Other solutions describe black holes
relative motion, such as in the cosmological multi-black h
solutions of@3# or in the C and Ernst metrics@4,5#, where
two black holes accelerate apart. In this paper we wan
report on a different class of solutions, which describe t
static extremal magnetic black holes, this time with char
of opposite signs. The configuration therefore possess
magnetic dipole moment, and can be appropriately calle
dihole. In order to maintain the black holes in static equili
rium an external force has to be provided. This will appea
the form of a magnetic field aligned with the dihole. Othe
wise, conical singularities~which may be interpreted as co
mic strings! will appear in the solution.

The diholes we will exhibit are solutions of Einstein
Maxwell theory, possibly coupled to a dilaton. The latt
case includes in particular Kaluza-Klein theory, for whi
the dihole consists of a monopole-antimonopole pair
scribed previously in@6#. Dipole configurations have becom
of recent interest also within the broader context of str
and M theory, as describing brane-antibrane configurati
@7#. Near the end, we will explain that much of what we w
describe below has direct relevance in that context. O
recent papers studying self-gravitating dipole solutions
string theory include@8#.

The starting point in the construction of the new diho
solutions will be certain exact solutions that are known
carry magnetic dipole moment@9,10#. We will see later that,
even in the absence of an external magnetic field, these
lutions admit an interpretation as dihole configurations,
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though conical singularities will be present in general. F
simplicity of presentation, and also because it is presuma
the most important case, we will study first the dihole
Einstein-Maxwell theory. The extension to dilaton theori
will then be a rather straightforward task.

Several years ago@9# Bonnor constructed a solution o
Einstein-Maxwell theory describing a magnetic dipole, w
metric

ds25S 12
2Mr

S D 2F2dt21
S4

@D1~M21a2!sin2 u#3

3S dr2

D
1du2D G1

D sin2 u

~122Mr /S!2
dw2 ~1!

and gauge potential

A5
2aMr sin2 u

D1a2 sin2 u
dw, ~2!

with

D5r 222Mr 2a2,

S5r 22a2 cos2 u. ~3!

The solution is asymptotically flat, static and axially sym
metric. From the asymptotic behavior ofgtt it is easy to
deduce that the mass of the solution is 2M . The magnetic
dipole moment of the solution,m52Ma, becomes eviden
by examining the asymptotic form of the potential~2!.
Changing the sign ofa amounts simply to reversing the or
entation of the dipole, so we will consider, without loss
generality,a>0. For M50 the solution is exactly flat. It
was noticed in@9# that singularities occur atr 5r 15M
1AM21a2, whereD vanishes. Our aim is, first, to study th
structure of the singularity atr 5r 1 , and show that it can be
removed by the introduction of an external magnetic fie
Then, having the new solution with an external magne
field, we will argue that at the endpoints of ther 5r 1 line,
i.e., at (r 5r 1 ,u50) and (r 5r 1 ,u5p), lie two oppositely
charged extremal Reissner-Nordstro¨m black holes; i.e., the
solution describes adihole. It will be clear then that the role
played by the external magnetic field is to balance the att
tion, gravitational and magnetic, between the black holes
©2000 The American Physical Society09-1
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ROBERTO EMPARAN PHYSICAL REVIEW D61 104009
Let us then study the locus ofr 5r 1 . Crucially, observe
that the axial Killing vector]w vanishes there. This mean
thatr 5r 1 is to be thought of as part of the symmetry axis
the solution. We are used to thinking of the linesu50,p as
forming the axis of symmetry. However, in the present si
ation the endpoints of these two semi-axes do not com
join at a common point. Rather, the axis of symmetry
completed by the segmentr 5r 1 . As u varies from 0 top
we move along this segment from one endpoint to the ot
see Fig. 1.

The obvious thing to study now is whether conical sing
larities appear on the different portions of the symmetry a
If C is the proper length of a circumference around the a
and R is its proper radius, then the presence of a con
deficit d means that (dC/dR)uR→052p2d. Take w to be
periodically identified with periodDw. Then the conical
deficit along the axesu50,p is

d (0,p)52p2UDwdAgww

Aguudu
U

u50,f

52p2Dw ~4!

and therefore would vanish with the standard choiceDw
52p. However, the conical deficit along the liner 5r 1 ,

d (r 1)52p2UDwdAgww

Agrr dr
U

r 5r 1

52p2S 11
M2

a2 D 2

Dw,

~5!

does not cancel with that same choice forDw. In fact Dw
52p gives a conical excess. That is, there is a strut al
the segmentr 5r 1 . We can see the physical origin of th
strut as providing the internal stress~pressure! needed to
counterbalance the attraction between the poles.

Instead of eliminating the conical defect outside the
pole, the periodDw can be chosen to cancel the singular
along r 5r 1 . With such a choice one finds a conical defi
running along the axesu50,p, from the endpoints of the
dipole to infinity. We can view such defects as ‘‘cosm
strings,’’ with tension

T5
d (0,p)

8p
5

1

4 F12S a2

M21a2D 2G . ~6!

The dipole is then suspended by open cosmic strings
pull from its endpoints. The liner 5r 1 , 0,u,p, joining
these is now completely non-singular.

Although the proper length of the segmentr 5r 1 , 0<u
<p is infinite, the parametera gives, in a sense, an indica
tion of the separation between the poles. For large value
a the force required to keep the dipole static becomeT
→M2/2a2, which decreases asa22 as expected from a New

FIG. 1. Axis of symmetry of the dipole solution. The linesu
50,p run alongr 1,r ,`. The segmentr 5r 1 is parametrized by
u with range 0,u,p.
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tonian approximation to the attraction between poles. No
however that in the limita→0 the tension tends to a finit
limit T→1/4. In this limit the magnetic dipole moment of th
solution vanishes but nevertheless one does not recove
Schwarzschild solution. Rather, a nakedly singular solut
appears, with higher mass multipoles@9#.

The recourse to cosmic strings to account for the con
singularities of the metric might appear as a ratherad hoc
prescription. From a physical standpoint it appears that
external magnetic field aligned with the dipole should
able to provide the necessary force to balance the attrac
between the poles, by pulling apart the dipole endpoints.
adequately tuning the magnetic field, the stresses along
axis should be made to disappear.

It is indeed possible to introduce such a magnetic field
means of a Harrison transformation@11# on the solution. In
doing so we proceed in a manner entirely analogous
Ernst’s elimination of the conical singularities of theC met-
ric @5#. The Harrison transformation of Einstein-Maxwe
theory takes an axisymmetric solution to another solut
containing a magnetic field that asymptotes to the Mel
magnetic universe@12#. This is a flux tube that provides th
best possible approximation to a uniform magnetic field
general relativity.

For an axisymmetric solution of the Einstein-Maxwe
theory with giw5Ai50 for iÞw, the Harrison transforma
tion acts as

gi j8 5l2gi j for i , j Þw, gww8 5l22gww ,

Aw85
2

lB S 11
BAw

2 D1k,

l5S 11
BAw

2 D 2

1
B2

4
gww , ~7!

wherek is an arbitrary constant that can be chosen so a
remove Dirac strings.

We apply now this transformation to the Bonnor solutio
Eqs.~1! and~2!, and obtain, after some algebra and choos
k522/B,

ds25L2F2dt21
S4

~D1~M21a2!sin2 u!3 S dr2

D
1du2D G

1
D sin2 u

L2 dw2 ~8!

and

Aw52
2Mra1 1

2 B@~r 22a2!21Da2 sin2 u#

LS
sin2 u, ~9!

whereD andS are as in Eqs.~3! and
9-2
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L5
D1a2 sin2 u12BMra sin2 u1 1

4 B2 sin2 u@~r 22a2!21Da2 sin2 u#

S
. ~10!
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It is straightforward to see that asr→` the solution ap-
proaches the same limit as the Melvin universe with ax
magnetic fieldB. Let us investigate now the conical structu
along the symmetry axis. Along the outer semi-axesu
50,p, we find the same value for the conical defect as in
~4!, so, in order to setd (0,p)50, we will chooseDw52p.
On the other hand, along the inner segment of the axir
5r 1 , we find now

d (r 1)52p2S 11
M2

a2 D 2S 11
BMr1

a D 24

Dw, ~11!

and with the choiceDw52p we see that the conical defe
can be cancelled if the magnetic field is chosen to be

B5
6AM21a22a

Mr 1
56

2M

~r 16a!2 . ~12!

There are two branches of solutions, one withB.0 and
another one withB,0 ~recall that we are takinga>0). For
the first branch, in the limita→` the field goes to zero like
B→M /2a2, whereas fora→0 the field tends to a non-zer
value B→1/(2M ). In the second branchB→22/M as a
→`. An analogous branch structure was found in@13# for
the Ernst metric, where the second branch was found to
somewhat anomalous. We will not discuss that here, an
the following we will only consider the first branch of solu
tions ~upper signs! in Eq. ~12!. Observe that values ofB
larger than Eq.~12! would have yielded a cosmic strin
stretching along the dipole, a ‘‘dumbbell’’ configuratio
similar to that considered in@14#.

We have therefore succeeded in removing the conical
gularities of the Bonnor dipole solution. However, the met
still becomes singular at the endpoints of the dipole,r
5r 1 ,u50) and (r 5r 1 ,u5p). Remarkably, we can show
that these singularities are merely artifacts of the coordin
system. In order to do so, let us study the geometry of
region very close to these points. To this effect, change
coordinates (r ,u) to (r,ū) as1

r 5r 11
r

2
~11cosū !,

sin2 u5
1

AM21a2
r~12cosū !, ~13!

1A similar change was performed in@7# in a study of the Kaluza-
Klein dipole, which can be recovered as a particular case of s
tions described below.
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and taker to be much smaller than any other length sc
involved so as to get near the poles. In this limit the solut
becomes, near (r 5r 1 ,u50),

ds252
r2

Q2 dt21
Q2

r2 dr21Q2~dū21sin2 ūdw2!, ~14!

Aw52Q~12cosū !, ~15!

where

Q5
Mr 1

AM21a2
. ~16!

This is precisely the Bertotti-Robinson solution, AdS23S2,
which describes the near horizon limit of an extrem
Reissner-Nordstro¨m black hole with charge2Q. In a similar
way, at the other endpoint (r 5r 1 ,u5p) we find the same
geometry but this time with the opposite charge.2 Therefore,
the solution contains regular horizons at the poles, and it
be continued beyondr50.

Apparently, the fieldB has no effect down the throat~14!.
But, crucially, realize that in order to arrive at Eq.~14! the
field B is required to take precisely the value~12!. It is illu-
minating to see how things change for other values ofB. If
we keepB arbitrary, then the limiting form of the solution
near the poles is

ds25g2~ ū !F2
r2

Q2 dt21
Q2

r2 dr21Q2dū2G1
Q2 sin2 ū

g2~ ū !
dw2,

~17!

with Q as in Eq.~16! above, and where

g~ ū !5
1

2 F11cosū1S a

AM21a2
1BQD 2

~12cosū !G
~18!

is a function such thatg( ū)51 when the fieldB is tuned to
the value~12!. The important point is that in general th
surfacer50 is still a horizon, albeit not one of spherica
symmetry. Instead, the horizon is a prolate spheroid, wh
is further distorted by a conical defect at either pole. W
want to stress that the horizons are present even for the
of the Bonnor dipole (B50). As far as we know, this crucia
feature of the Bonnor solution~1! has gone unnoticed in al
previous literature.

u- 2The signs of the charges would be reversed for the second br
in Eq. ~12!.
9-3



it

om

l-
. I

e

e-
er
o
t

th
er
th

a

a

e

ou

.
h
p

we
o

n

ck

een

for

e,
he

rate
en-

ck
-

ack

to

-
-
eo-
he

sis
her

r-

In-

es
e

at

ns
a-

ROBERTO EMPARAN PHYSICAL REVIEW D61 104009
The gauge field near the horizon is also distorted from
monopolar form to

Aw52QS a

AM21a2
1BQD 12cosū

g~ ū !
. ~19!

The physical magnetic charge of the hole can now be c
puted using Gauss’s law,Q̂5(1/4p)*S2F (S2 is any topo-
logical sphere surrounding the charge!, so, in general, the
actual physical charge of the hole is notQ, but rather

Q̂5
Dw

4p
@Aw~ ū5p!2Aw~ ū50!#

5
Dw

2p

Q

a/~AM21a2!1BQ
. ~20!

The limiting geometries above were valid for arbitrary va
ues ofa, as long as we remain close enough to the pole
instead, we consider the limit of very largea, while keeping
r 2r 1 anda sin2u finite, the solution~8! tends to

ds252S 11
Q

r D 22

dt21S 11
Q

r D 2

@dr21r2~dū2

1sin2 ūdw2!#, ~21!

with Q→M , andAw as in Eq.~15!. We recognize this as th
extremal Reissner-Nordstro¨m black hole. In the limita→`
the magnetic fieldB vanishes, consistently with the interpr
tation that the poles are ‘‘infinitely apart’’ from each oth
and the force between them goes to zero. Incidentally, n
that if one wanted to consider an adiabatic process where
two black holes held in equilibrium are taken apart, then
magnetic field would obviously have to be adjusted at ev
moment in such a way that the field precisely balances
forces for fixed values of the charge of each hole~20!.

So we conclude that our solution~8!, ~9! indeed describes
a dihole. In general, for finite values ofa, the geometry of
the black holes is distorted from their asymptotically fl
form ~21!, but for the particular value ofB in Eq. ~12!, the
distortion becomes inappreciable well down the thro
where we recover the near horizon geometry~14!. Moreover,
the infinite proper distance along the dipole liner 5r 1 is
now seen as a consequence of the infinite throat charact
tic of extremal Reissner-Nordstro¨m black holes.

The dihole character of the dipole solution brings ab
some interesting consequences@now we restrict ourselves to
the solution withB given by the upper sign solution in Eq
~12!#. There is a non-vanishing area associated with the
rizon of each of the black holes and, therefore, an entro
This is easily obtained from Eq.~14! asS5Ah/45pQ2 for
each hole.

In the limit of large separation between the holes
would expect a Newtonian approximation to become reas
able. Indeed, for largea, the magnetic fieldB exerts the right
force, T'QB'Q2/(2a2) to counterbalance the attractio
between two particles at a distance of the order ofa.
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As a→0, though, there is the peculiarity that the bla
holes in Eq.~8! never appear to merge. Fora50 the solution
is non-singular~outside the horizons!, and is to be inter-
preted as the configuration of minimal separation betw
the black holes. It corresponds to a maximum value forQB,
namely (QB)max51.

We have mentioned that the mass of the dipole was,
Bonnor’s asymptotically flat solution, equal to 2M . The so-
lution ~8!, ~9! is instead asymptotic to the Melvin univers
but it is still possible to compute its energy by taking t
Melvin universe as the reference background, following@15#.
The result is that the energy is still equal to 2M . In the limit
of large separation the mass of each black hole~21! is M, so
the total energy is the sum of the energies of the sepa
black holes. Thus, for infinite separation the interaction
ergy vanishes, as could have been expected.

Now, at finite values ofa we would expect to find a
non-vanishing interaction energy. Given that extremal bla
holes in isolation satisfyMbh5Q, we can estimate the inter
action energy in the dipole as

Eint5Etotal22Mbh52M22Q52
2M2

AM21a2
. ~22!

This is negative, reflecting the attraction between the bl
holes. For fixed black hole chargeQ, this energy is mini-
mized whena50. Notice that the value asa→0 is Eint5
22M .

Now let us turn to the generalization of these diholes
theories with a dilaton fieldf. The action we consider is

I 5
1

16pGE d4xA2g@R22~]f!22e22afF2#. ~23!

For dilaton couplinga50 we will recover the results dis
cussed above. The case ofa253 corresponds to Kaluza
Klein theory, and in this case the solutions admit nice g
metric interpretations. The Kaluza-Klein analogue of t
Bonnor dipole was identified in@16#. The introduction of the
background magnetic field, together with a thorough analy
of the structure of the solutions and extensions to hig
dimensions, was undertaken in@6#.

For arbitrary values of the dilaton coupling, the counte
parts of the Bonnor dipole were obtained in@10#. The conical
singularity along the axis was correctly identified there.
deed, a straightforward calculation like the one in Eq.~5!
shows that the conical deficit is present for arbitrary valu
of a. More importantly, we will find that the entire dihol
structure reveals itself for any value ofa, in a manner en-
tirely analogous to the Einstein-Maxwell dihole. This is
variance with the conclusions in@10#, an issue we will return
to below, after completing our analysis.

It is a straightforward matter to take the dipole solutio
in @10# and subject them to a dilatonic Harrison transform
tion @17#. The resulting metric is
9-4
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ds25L2(11a2)F2dt21
S4/(11a2)

@D1~M21a2!sin2 u# (32a2)/(11a2)

3S dr2

D
1du2D G1

D sin2 u

L2/(11a2)
dw2, ~24!

the dilaton,e2f5La/(11a2), and the gauge potential,
th
n
th
n

i

-

a

he

r

10400
Aw52

@2/~A11a2!#Mra1
1

2
B@~r 22a2!21Da2 sin2 u#

LS

3sin2 u, ~25!

with
L5
D1a2 sin2 u12A11a2BMra sin2 u1@~11a2!/4#B2 sin2 u@~r 22a2!21Da2 sin2 u#

S
. ~26!
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andD andS still given by Eq.~3!.
The analysis of these solutions can be carried out in

same manner as above for the Einstein-Maxwell dihole, o
in this case at the poles we find extremal dilatonic holes,
horizons being replaced by null singularities. The solutio
asymptote to the dilaton Melvin solutions of@18#. The value
of the magnetic field that removes all conical singularities

B5
2

A11a2

M

~r 11a!2 ~27!

~a second branch also exists for these cases!. The same co-
ordinate change as in Eq.~13! yields, for largea,

ds252S 11
Q

r D 22/(11a2)

dt2

1S 11
Q

r D 2/(11a2)

@dr21r2~dū21sin2 ūdw2!#,

~28!

with a monopole potentialAw of chargeQ/A11a2, and di-
laton ef5(11Q/r)a/(11a2). These solutions are the ex
tremal dilatonic holes of@18#.

In the same manner as we have done before in the
sence of dilaton, we can also keepa finite, but go to small
values ofr. In this way we recover the geometry near t
~singular! horizon r50 of the extreme dilatonic hole, with
the parameterQ defined as in Eq.~16!, and some angula
distortion whenB takes values different from Eq.~27!. That
is,

ds2→g~ ū !2/(11a2)F2S r

QD 2/(11a2)

dt2

1S Q

r D 2/(11a2)

~dr21r2dū2!G
1S Q

r D 2/(11a2) r2 sin2 ū

g~ ū !2/(11a2)dw2
, ~29!
e
ly
e
s

s

b-

now with

g~ ū !5
1

2 F11cosū1S a

AM21a2
1BQA11a2D 2

3~12cosū !G . ~30!

In these coordinates it is easy to compute the scalar curva
near the polesr 5r 1 , u50,p since these loci correspond t
r50. One finds

R→ f ~ ū !

r2a2/(11a2)
, ~31!

where f ( ū) is a certain function which is regular for 0<ū
<p. We can see that the scalar curvature diverges atr50
except whena50. Thusr50 ~i.e., r 5r 1 ,u50,p) is, for
aÞ0, a real singularity. But this is just the well-known nu
singularity of extremal dilatonic holes. These holes do n
have any Bekenstein-Hawking entropy associated. T
proper distance between the holes foraÞ0 is finite, since in
that case the proper distance to the~singular! horizon of each
hole ~28! is known to be finite. In addition, for values ofB
other than Eq.~27! the geometry around the singular horizo
is angularly deformed in a manner similar to Eq.~17!.

A very different interpretation of the geometry was pr
posed in@10#, where it was claimed that fora51 ~and only
for that value! regular non-extremal horizonsare present at
the polesr 5r 1 , u50,p. The analysis of@10# was based on
a study of certain two-dimensional sections of the soluti
in particular of the geometry of the two-dimensional secti
given by r 5r 1 , w5const. It was pointed out in that pape
that theintrinsic curvature of this two-dimensional metric i
divergent atu50,p unlessa51. However, such a restricte
two-dimensional study cannot be conclusive, if only for t
fact that singularities of a submanifold do not in gene
correspond to singularities of the full manifold. The analy
is indeed misleading: The full four-dimensional structure
the solutions near the poles is manifested using the coo
nates (t, r, ū, w) as introduced in Eq.~13!, and then Eq.
~31! explictly shows that onlya50 yields a non-singular
four-dimensional curvature atr50. This is just as expected
9-5
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ROBERTO EMPARAN PHYSICAL REVIEW D61 104009
from the fact that we have recovered the geometries nea
horizon ofextremalcharged dilatonic black holes, of whic
only the pure Einstein-Maxwell case possesses a regular
rizon. The standard analysis of the structure near the hor
of the extremal Reissner-Nordstro¨m black hole and its limit-
ing Bertotti-Robinson geometry can be equally well appl
to Eq. ~14!. In particular, future directed geodesics can cro
each of the horizons at each pole, so at both poles we h
future horizons. Since the geometry is symmetric under t
reversal, there are also past horizons. Also, the coordin
can be extended in the standard manner beyond the horiz
This forms the basis of our claim that the non-dilatonic s
lution describes atime-symmetricconfiguration with two ex-
tremal black holes, each with a future and a past horiz
This is obviously at variance with the claim in@10# of a
non-extremalwhite hole~a past horizon! at one pole and a
black hole~a future horizon! at the other pole fora51 ~and
a singularity foraÞ1). Actually, this time-asymmetric in
terpretation is another artifact of the restriction to the tw
dimensional submanifold mentioned above. We would a
like to stress that our interpretation is in consonance with
one given in@6# for the casea5A3, and extends it in a
natural way to other values ofa.

Let us now discuss some generic aspects of the dih
solutions we have constructed. First of all, we have sho
that the solutions of@9# and@10# are properly interpreted, fo
arbitrary values of the dilaton coupling, as diholes, with t
holes being kept in equilibrium by strings or struts. The h
rizon of each hole is deformed by the field created by
other hole, as well as by the conical defect. We have fo
that an external field can be applied and tuned so as to
ance the system and remove the conical singularities. In
case, the external field precisely cancels the field create
the other hole, with the effect that the distortion disappe
and the horizon is spherically symmetric.

On the other hand, the conical defects that pull apart
holes in the Bonnor dihole can be made more physical
regarding them as the limit of self–gravitating vortices th
end on the black holes. Therefore they add to the catalo
solutions describing cosmic strings ending on black ho
@20,14#.

Another aspect to note is that the configurations are
pected to be unstable. On physical grounds it is clear th
slight deviation from the equilibrium configuration shou
set the black holes either in runaway motion away from e
other, or collapsing onto one another. As a matter of fact,
instability of the dihole is known to be present for thea
50 solution in the Kaluza-Klein casea5A3. In that case
the solution can be related to the Euclidean Schwarzsc
instanton, which is known to have an unstable mode@21#.

Indeed, the instability of these solutions fits in nicely wi
the existence of instantons describing the pair creation
black holes in an external field@19# or in the breaking of a
cosmic string@20#. The diholes are to be seen as the spha
rons sitting on top of the potential barrier, under which t
tunneling process takes place. Thus, the dihole solution
this paper are closely linked to theC and Ernst type of so-
lutions that describe black holes accelerating apart@4,5,17#.
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We have mentioned as well that, when held in an exter
field, it does not appear to be possible to bring the bla
holes close enough to make them merge. Fixing the cha
there is an upper limiting value for the magnetic field, whi
is approached asa→0 for the branch withB.0. In this limit
the two-black-hole structure still persists. This might be se
as providing support for the cosmic censorship conjectu
the merging of the Reissner-Nordstro¨m black holes, which
would imply the annihilation of charge and possibly
change in the spatial topology, might have led to a nak
singularity. Nevertheless, notice that for the Bonnor dih
kept in equilibrium by cosmic strings, the black holes ac
ally merge asa→0, and then form a singularity. Howeve
these ‘‘tests’’ must not be regarded as conclusive, sin
given the instability of the solutions, a gedanken experim
in which the black holes are slowly moved towards one
other does not appear to be physically realizable. Rela
analyses of cosmic censorship can be found in@13#.

Several extensions of the work presented in this pa
seem possible. First of all, it is clear that electric diholes c
be constructed simply by dualizing the magnetic field to
electric field. More interesting are generalizations to theor
with a richer field content. Dilaton black holes with couplin
a50,1/A3,1,A3 are known to occur in the low energy de
scription of string and M theory compactified down to fo
dimensions. They admit an interpretation in terms of bra
intersecting in higher dimensions, with all the longitudin
and relative transverse coordinates being compactified.
one example among many possible embeddings,
Reissner-Nordstro¨m black hole can be obtained as an inte
section of, e.g., four equally charged D3-branes@22#. We can
lift our solution ~8! to ten dimensions by suitably adding fla
dimensions, and then interpret it as an intersecting bra
antibrane configuration. A similar lift can also be done f
the solutions with the other three special values ofa.

Now, when the charges of the branes are not equal to
another, the four dimensional black holes appear as solut
to theories with fourU(1) gauge fields and three indepe
dent scalars@23#. It is likely that dihole solutions for these
theories can be constructed. Indeed, the existence ofC and
Ernst-type metrics in suchU(1)4 theories, describing pairs
of black holes accelerating apart@24#, strongly suggests tha
it should be possible to construct their static diho
counterparts.3

On the other hand, it is less clear how to obtain no
extreme diholes. Also, one might speculate on the possib
that the dihole is held in equilibrium not by an external ma
netic field, but rather by the expansion produced by a po
tive cosmological constant. To our knowledge, such so
tions have not been constructed yet.
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3The term ‘‘dihole’’ has also been used in this context in@25# to
refer to a different type of solutions.
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