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The interplay between topological defects~branes! and black holes has been a subject of recent study,
motivated in part by interest in brane-world scenarios. In this paper we analyze in detail the description of a
black hole bound to a domain wall~a two-brane in four dimensions!, for which an exact description in the limit
of zero wall thickness has been given recently. We show how to smooth this singular solution with a thick
domain wall. We also show that charged extremal black holes of a size~roughly! smaller than the brane
thickness expel the wall, thereby extending the phenomenon of flux expulsion. Finally, we analyze the process
of black hole nucleationon a domain wall, and argue that it is preferred over a previously studied mechanism
of black hole nucleationaway from the wall.
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I. INTRODUCTION

The study of the interaction of topologically nontrivia
field theoretic solutions and black holes in four dimensio
has yielded some interesting insights in recent years, revi
our understanding of the classic ‘‘no-hair’’ theorems f
black holes@1#, with the realization that black holes can ha
‘‘dressed’’ horizons@2#, or even topological hair, in the guis
of cosmic strings, extending to infinity@3#. An important
feature of these~and other, related, solutions in the literatur!
is that they explicitly include gravitational back reaction
the defect on the black hole spacetime. For a localized
fect, this is clearly a dressed version of a Reissner-Nordst¨m
~RN! black hole, however, for an extended defect, such
the cosmic string, the significant global aspects of the spa
time solution must be taken into account before claims
black hole hair can be validated. Fortunately, the spacet
of an infinitesimally thin string with a black hole is known
the Aryal-Ford-Vilenkin~AFV! @4# solution for a thin string
piercing a black hole~a RN black hole with a wedge cut out!,
the Israel-Kahn metric@5# for two black holes suspended i
unstable equilibrium by two strings ending on the event
rizons, and theC metric @6# corresponding to a black hol
being accelerated by a string extending to infinity. All
these metrics can have their conical deficits smoothed b
realistic vortex core model@3,7#.

Also in recent times, domain walls~and other defects!
have become a subject of intense study from the poin
view that our universe might be a brane, or defect~see@8# for
pioneering work!, sitting in some higher dimensional spac
time. The motivation has come partly because string or
theory appears to admit a phase in which our world appe
as a ‘‘wall’’ @9#, but also because of the exciting pheno
enological possibility of an unusual resolution of the hier
chy problem@10#. Most attention has been focused on t
0556-2821/2001/63~10!/104022~12!/$20.00 63 1040
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case where our universe is a gravitating domain wall@11,12#,
however, higher codimension compactifications have b
considered@13#. A general feature of these solutions is th
four-dimensional gravity is recovered on the brane unive
@12,14#, at least perturbatively, although the question of no
linear effects, such as black holes on the brane@15#, remains
an interesting open one, necessitating a study of the prob
in one dimension less@16#: i.e., a black hole living on a wall
in four spacetime dimensions.

A natural question, when considering our universe a
brane, is to investigate models in which our universe is, qu
literally, a defect, namely, a ‘‘soliton’’ solution to som
higher dimensional field theory. This approach was taken
@13#, and for the domain wall in five dimensional anti–d
Sitter space, by Gremm@17#. It appears that one can smoo
out the ‘‘singular’’ wall by modeling it with the core of a
topological domain wall. In a similar fashion to the infin
tesimally thin brane, one can ask questions about str
gravity on the thick brane, namely a black hole intersectin
thick brane. This is the question we are interested in in t
paper, and for the same reason as the infinitesimally
wall, we will examine this issue in four-dimensional gravit

Recently, it was shown numerically that a topological d
main wall could sit through a Schwarzschild black hole@18#
in the absence of gravitational back reaction. In the light
the results for the vortex solution,@3#, this is perhaps not
surprising, however, the issue of gravitational back react
is particularly important in this setup. The gravitational fie
of a domain wall was found some time ago@19#, and in a
coordinate system natural to the wall~i.e., exhibiting planar
symmetry! was found to be time-dependent—in stark co
trast to the static conical metric of the cosmic string—with
de Sitter like expansion along the spatial coordinates of
wall. Later, as the global structure of the wall spacetime w
better understood, it was realized that the horizon singul
©2001 The American Physical Society22-1
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ties of the wall spacetime were removable by transform
into a ‘‘bulk-based’’ coordinate system, in which spacetim
is flat, and consists of the interior of two hyperboloids
Minkowski spacetime glued together@20#. Space is compac
in the domain wall spacetime, and the horizon a conseque
of the acceleration of the bubble. Placing a black hole on
wall therefore involves placing a black hole on this accel
ating wall with its compact space. An additional question
how charge on the black hole affects the domain wall.
first sight, one might think that using a Reissner-Nordstr¨m
black hole, rather than Schwarzschild, for the backgrou
field theory solution should make no difference, howev
this ignores the issue of flux expulsion. For an extreme bl
hole, there is a phenomenon of flux expulsion@21–23# in
which if the vortex is thick enough, the black hole will exp
its flux, causing the field to remain in its symmetric state
the horizon. Such a flux expulsion is not dependent on
vortex being local, it occurs for global strings@23# and for
pure flux p-branes@22#, therefore we might well expect
similar phenomenon to occur for the domain wall. All of th
discussion however, hinges on not only the existence o
suitable thin wall metric with a black hole, but on this bein
a thin wall limit of a smooth thick wall metric with a blac
hole sitting on it. Note that unlike the vortex, the stro
gravitational effect of the domain wall will mean that as so
as we include gravitational back reaction, the whole nat
and global structure of the spacetime will change. Inde
even in the absence of a black hole, there is a closely rel
phenomenon of wall non-formation: if the thickness of t
wall is too great compared to the inverse mass of the sc
field forming it, then it is not possible to form a domain wa
@24,25#.

This paper addresses the issues raised above. Fortun
the metric of an infinitesimally thin wall has been found
@16# for the case of a wall in AdS spacetime, by using theC
metric for the accelerating wall, sliced in two and identifie
In this paper, we show how to smooth such singular so
tions with a thick domain wall thereby demonstrating t
smooth wall1 black hole spacetime. We will work with th
solutions where the cosmological constant in the bulk
spacetime vanishes, but extrapolation to a nonzero cos
logical constant should be straightforward. As expected,
space is compact, and the black holes are accelerated a
with the wall. We also explore the question of ‘‘flux’’ expu
sion for the wall, proving analytically that such expulsio
occurs, and deriving bounds for the mass of the black h
~in wall units! at which it must occur. We then analyze th
process of black hole nucleation on a domain wall. Unl
the decay of strings@7#, the net result of this process is n
the disintegration of the wall, but rather a pair creation
black holes in the presence of the accelerating wall.

The layout of the paper is as follows: In the next sect
we review and extend the work of@16#, deriving an appro-
priate infinitesimal wall1 black hole metric and analyzin
its thermodynamics. In Sec. III we consider the field eq
tions of the domain wall in the background of a black ho
~both RN and theC metric!, deriving an analytic ‘‘thin-
wall’’ approximation which will be useful for the problem o
gravitational back reaction, and then demonstrating, in S
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IV, the phenomenon of flux expulsion. Section V deals w
gravitational back reaction, and Sec. VI with the nucleat
of black holes on the wall. Finally, we summarize our resu
in Sec. VII, and discuss the possible consequences and
tensions to the scenario with a three-brane in five dim
sions, of relevance to brane world models.

II. THE BLACK HOLE-WALL METRIC

A. Constructing the solution

We start by deriving the equivalent of the AFV solutio
for the vortex, namely an infinitesimally thin domain wa
with a black hole. We begin with theC metric @6#

ds25
1

A2~x1y!2 FF~y!dt22
dy2

F~y!
2G~x!dw22

dx2

G~x!G ,
~1!

where G(x)512x222mAx32q2A2x452F(2x). A bulk
cosmological constantL could be easily incorporated, and i
particular a negative one may be of interest to discuss
models for the Randall-Sundrum scenario~see @16#!. For
simplicity, we setL50: the results in Secs. III, IV and V
can be easily extended to non-zeroL. On the other hand
issues such as global structure, thermodynamics and ins
tons as studied here, extend qualitatively to all cases wh
the geometry induced on the brane is de Sitter, even ifL is
positive or negative.

In general the quarticG(j) will have 4 roots, and we will
take the parameters such that they are all real, and labele
j1<j2,j3,0,j4<1. The coordinates in Eq.~1! are re-
stricted to xP@j3 ,j4#, and yP(2x,`); y52j3 ,2j2 ,
2j1(.0) are the acceleration horizon, and outer and in
black hole horizons, respectively. FormÞ0 there is a singu-
larity at y5`, which corresponds to the central singulari
of the black hole. Note also that in general this spacetime
a conical deficit asx→j3 ,j4, one of which~say atj4) can be
eliminated by setting the periodicity ofw to be w
P@0,4p/uG8(j4)u#. The remaining conical deficit atx5j3
has the interpretation of a string pulling the accelerat
black hole away to infinity. The gauge potential for the Ma
well field is A5qydt for an electric black hole, orA5q(x
2j4)dw for a magnetic black hole.

The conventional definitions of mass@say, Arnowitt-
Deser-Misner~ADM !# cannot be applied to obtain the ma
of the accelerating black hole,1 however, for a small black
hole, i.e.,m,q!1/A, the geometry approaches the Reissn
Nordstrom solution, which allows us to identify approx
mately the black hole mass asm/G. Indeed, it is useful to
have the approximate values for the roots for a small bl
hole:

1See, however, below.
2-2



n
su

th
f

e

iv

th

is

no

r-

the

n-
ri-
ok
to

sent

l

he
er

e
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j152
1

r 2A
1O~mA!, j252

1

r 1A
1O~mA!,

j35212mA1O~m2A2!, j4512mA1O~m2A2!,
~2!

with r 65m6Am22q2 ~we are takingm>q; the extremality
bound is preciselyj2>j1). The charge of the black hole ca
be measured by integrating the flux on a sphere that
rounds it~e.g., aty5const), and is given by

Q5
1

4pE Fxwdxdw5
Dw

4p
@Aw~x5j4!2Aw~x5j3!#

5
1

qA2

1

~j42j2!~j42j1!

5q1O~mA!, ~3!

whereDw54p/uG8(j4)u is the period ofw.
To construct the wall–black-hole~WBH! metric we fol-

low the standard Israel construction, according to which
tensions of a domain wall is given by the discontinuity o
the extrinsic curvature,@Ki j #54pGshi j , with hi j the metric
induced on the wall. Following@16#, an appropriate totally
umbilic surface (Ki j }hi j ) can be found atx50. This has
normaln5(1/Ay)dx, induced metric

ds25
1

A2y2 FF~y!dt22
dy2

F~y!
2dw2G , ~4!

and extrinsic curvature

Ki j 5Ahi j . ~5!

We have chosen the conical singularity to lie atx5j3, i.e.,
on the sidex,0 of this surface. As a consequence, if w
form the WBH solution by taking two copies of the sidex
.0 and glue them together alongx50, the string will have
disappeared from the spacetime. The construction is equ
lent to substitutinguxu for x in Eq. ~1!. Note however, that the
gauge potential remains unaltered. This is evident for
case of an electric potential~which does not depend onx),
while for a magnetic potential the change in sign inx is
canceled by a corresponding reversal ofdw. The Israel con-
struction implies that the tension of the wall thus formed

s5
A

2pG
. ~6!

On the other hand, the charge of the black hole changes
to

Q52
Dw

4p
@Aw~x5j4!2Aw~x50!#

5
2

qA2

j4

~j42j3!~j42j2!~j42j1!
, ~7!

but, to leading order inmA, we still haveQ.q.
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The metric induced on the wall takes a particularly inte
esting form if we introduce a radial coordinater 51/(Ay),
and t5A t̄. Then, Eq.~4! becomes

ds25S 12
2m

r
1

q2

r 2 2A2r 2Dd t̄ 2

2
dr2

12
2m

r
1

q2

r 2 2A2r 2

2r 2dw2 ~8!

which is exactly the same as the equatorial section of
four dimensional Reissner–Nordstro¨m–de Sitter solution.

The domain wall that we have constructed actually co
tains two black holes, sitting at antipodal points of a sphe
cal domain wall. In order to see this, let us have a closer lo
at the global structure of the WBH spacetime. It is helpful
consider first the situation where the black holes are ab
from the wall, i.e.,q5m50. In that case, the metric is

ds25
1

A2~x1y!2

3F ~y221!dt22
dy2

y221
2

dx2

12x2 2~12x2!dw2G .
~9!

The acceleration horizon is aty511. If we now change to
coordinates (T,X,Y,Z), using

X22T25
y221

A2~x1y!2 , Y21Z25
12x2

A2~x1y!2

T

X
5tanht,

Z

Y
5tanw ~10!

we find that we recover Minkowski space,

ds25dT22dX22dY22dZ2. ~11!

Since

X21Y21Z22T25
1

A2

y2x

y1x
, ~12!

it follows that the surface atx50 where the domain wal
lies, corresponds in Minkowski space to the hyperboloid~see
Fig. 1!

X21Y21Z22T25
1

A2 ~13!

and the regionx.0 is the interior of the hyperboloidX2

1Y21Z22T2,1/A2. Sections at constantT are spheres, so
the spatial geometry of the wall is spherical. In fact, t
intrinsic geometry of the wall is precisely that of de Sitt
space in 211 dimensions, as is evident from Eq.~8!.

Now we add the black holes, by allowing form.0. In
this case,y51` is a singularity, surrounded by at least on
2-3
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black hole horizon aty5uj2u ~and an inner black hole hori
zon y5uj1u if qÞ0). This implies that, if the black hole i
not too large, we can get a good approximation for its po
tion on the wall by looking at the trajectories of points
large positive values ofy in the metric~9!. In particular, the
central singularity of the black hole, aty51` is mapped to
Y21Z250, X22T251/A2, i.e., X56AT211/A2, Y5Z
50. At any given instantT, these aretwo points at antipodal
points on the domain wall. Therefore, the WBH metric ac
ally describes two black holes at antipodal points of a sph
cal domain wall. It is easy to see that the black holes mus
oppositely charged.

Note that the domain wall not only eliminates the stri
from the spacetime, but it also cuts off the acceleration
rizon and turns it into a horizon of finite area. The ent
construction is depicted in Fig. 2.

Finally, another interesting point is that, as argued in@26#,
the black holes will neither swallow up the brane, nor sli
off of it. The latter was argued on the basis of the elas
restoring force that the brane exerts on the black hole. Be
we will give an alternative, thermodynamic argument for th
feature.

FIG. 1. Conformal diagram for the embedding of the hyperbo
surfacex50 in Minkowski spacetime~circles in this picture are
actually spheres!. The thick lines correspond toy51`, which
track the world lines of the black holes in theC metric.

FIG. 2. Construction of the domain wall by gluing two copies
the regionx.0 along the surfacex50. The wall tension results
from the non-vanishing extrinsic curvature of this surface.
10402
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B. Thermodynamics of a black hole on the wall

The conventional definitions for the mass of the bla
hole, e.g., ADM, cannot be applied to a spacetime such
the present one, which is not asymptotically flat. Nevert
less, black hole thermodynamics can be used to give a
scription for the mass. This approach was put to use in@16#,
where it was shown to yield very satisfactory results. T
method consists of identifying the black hole entropy us
the area formulaS5Abh/4G, and the temperatureT in terms
of the surface gravityk, T5k/2p. Then, the first law of
thermodynamics~in the absence of charge!,

dM5TdS ~14!

can be integrated to give the black hole massM. For sim-
plicity, we choose to set to zero the black hole charge in t
subsection. This means thatG(x)512x222mAx3, andj1
→2`, but we remain consistent with the notation so f
i.e., y5uj2u corresponds to the location of the black ho
horizon, 0<x<j4, etc.2

The calculation of the area is straightforward,

Abh5E dxdwAgxxgwwuy5uj2u52
Dw

A2 E
0

j4 dx

~x1uj2u!2

52
Dw

A2

j4

uj2u~ uj2u1j4!
. ~15!

The factor of 2 in the second line arises from the doub
sided character of the wall.

The surface gravity is computed relative to the timeli
Killing vector ] t . In order for it to have the right dimension
ality, we have to multiply it by a factor ofA, x5A] t , and
thenk25xm;nxm;n/2. With this normalization forx one also
recovers the standard result for the temperature of
Schwarzschild–de Sitter black hole on the brane~8!. The
result is

T5
AuF8~2j2!u

4p
5

AuG8~j2!u
4p

. ~16!

In order to perform the integration of the first law it
convenient to introduce the auxiliary variable

z5
uj2u
j4

. ~17!

The limit where the black holes are absent,m50, corre-
sponds toz→`. On the other hand, there is a lower bou
for z imposed by the fact thatG(x) must have three rea
roots. This requiresmA,1/3A3, henceuj2u.A3 andz.2
~when this bound is saturated the black hole and accelera
horizons coincide!. Therefore the range forz is 2,z,`.

2Notice that here we are out of thermodynamic equilibrium, in t
sense that the temperature of the black hole and acceleration
zons are different. This poses no problem at this point, but see
VI for more on this.
2-4
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In terms ofz we have

j45
Az22z11

z
, uj2u5Az22z11, ~18!

mA5
z~z21!

2~z22z11!3/2
,

and

S5
2p

GA2

z

~11z!2~2z21!
,

T5
A

4p

z22z22

Az22z11
. ~19!

In the range 2,z,`, m andSdecrease monotonically with
z, while T grows monotonically with it. The first law

dM

dz
5T

dS

dz
~20!

can now be integrated, with the condition thatM50 for m
50, i.e., for z→`. In this way we find that the black hol
mass is

M5
1

GA S 1

2
2z

Az22z11

2z21z21 D . ~21!

Let us examine what these formulas yield for small bla
holes, up to next to leading order inmA. Using Eq.~2!,

M5
m

G S 12
15

4
mA1O~m2A2! D ,

S5
4pm2

G
„125mA1O~m2A2!…. ~22!

If we now express the entropy in terms of the physical m
M, and the wall tensions,

S54pGM2
„115pG2sM1O~G4M2s2!…. ~23!

The leading order result reproduces the standard formula
Schwarzschild black holes. The first correction tells us th
for a given black hole mass, the entropy will be higher if it
on a wall, than if it is away from it. This feature persis
throughout the entire range of masses, as exhibited in Fig
Hence, it is thermodynamically favored for a black hole
stick to the wall, in accord with the above mentioned fa
that black holes do not slide off of the wall.

We end this analysis with two remarks related to the
istence of an upper limit for the size of the black holes on
wall. First, one may notice thatz can be allowed a rang
wider than considered above, namely, one can also hav
<z<2 without encountering any singular behavior. Ho
ever, while the limitz→2 from above corresponds tomA
→1/3A3 from below, going to 1<z,2 does not correspon
to having largermA ~since we still have three real roots!, but
10402
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rather to exchangingj2 and j3, i.e., the black hole and ac
celeration horizons. For 1<z<2, the plot in Fig. 3 would
extend to yield the entropy~area! of the acceleration horizon
for a given black hole mass.

The second remark concerns an aspect of the shap
black holes on branes discussed in Ref.@16#. There, it was
argued that large black holes in the four dimensional
brane-world have the shape of a pancake, the horizon b
flattened and having a small extent away from the brane
there anything similar in the present context? It would app
that there is not, at least not anything as drastic as in@16#.
The crucial difference is that in the situation studied in@16#,
the geometry of the brane was not asymptotically de Sit
but instead, asymptotically flat. The ‘‘black pancakes’’ co
responded tomA becoming larger than 1/3A3. We have ex-
plicitly excluded this from our analysis: the reason is that
mA51/3A3 the black hole horizon and the acceleration h
rizon ~which yields the cosmological de Sitter horizon on t
brane! become coincident, and formA.1/3A3 there is no
black hole on the brane, but rather a naked singularity. T
obstruction obviously disappears for the asymptotically
brane of@16#, and in that case the horizon on the brane c
grow arbitrarily large. There are no ‘‘black pancakes’’ in o
setting, and all our black holes are roughly spherical. On
other hand, if there were a negative cosmological constan
the bulk, but a positive cosmological constant induced on
brane, the cosmological brane horizon would be larger t
in the present setting, and the upper limit on the size of
black holes would be higher.

III. THIN WALL APPROXIMATION

Having described in detail the wall-black hole spacetim
in the limit of infinitesimal wall thickness, we now procee
to demonstrate how the distributional wall, with the bla
hole on it, can consistently arise as a limit of a physic
field-theoretical topological defect. This is needed to est
lish the analytic approximation which will be used to deri
the gravitational back reaction of the wall on the spacetim

We will use a general field theory Lagrangian for th
wall:

8pGLDW5
e

w2 @w2~¹aX!22V~X!#, ~24!

FIG. 3. The entropy of a black hole on the wall,S, compared to
the entropy of a black hole away from the wall,S054pGM2. No-
tice S.S0 for all allowed values ofM. The maximum values cor-
respond toz→2.
2-5
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where the symmetry breaking potentialV has a discrete set o
degenerate minima, and we have rescaled the scalar
X(5F/h) by the symmetry breaking parameterh. The pa-
rametere58pGh2 represents the gravitational strength
the domain wall, being the energy density per unit area,
w represents the inverse mass of the scalar after symm
breaking, which will also characterize the width of the w
defect within the theory. Without loss of generality, we w
fix our units by settingw51. The wall equations

hX1
1

2

]V

]X
50 ~25!

have the first integralX825V(X) in Minkowski spacetime,
which has an implicit solution

E
XF

X dX

AV~X!
5z2z0 , ~26!

whereXF5X(z0) is the false vacuum. For example, in th
lF4 kink model,w51/Alh51, and the above integral~26!
gives the usual kink solution centered onz0 : X5tanh(z
2z0), which has an energy per unit area

8pGs52eE
2`

`

sech4z5
8e

3
. ~27!

Now let us consider the wall equations~25! in the
Reissner-Nordstro¨m background

ds25S 12
2M

r
1

Q2

r 2 Ddt22S 12
2M

r
1

Q2

r 2 D 21

3dr22r 2du22r 2 sin2udw2, ~28!

whereM, andQ are measured in ‘‘wall’’ units,~i.e., w51)
rather than Planck units, and the numerical value ofG in
wall units has been absorbed intoM andQ. This gives for the
scalarX:

S 12
2M

r
1

Q2

r 2 DX,rr 1
2

r S 12
M

r DX,r

1
1

r 2 X,uu1
cotu

r 2 X,u5
1

2

]V

]X
. ~29!

Recall that for the case of the vortex,@3#, the fields were
very well approximated as functions ofr sinu, therefore,
guessing the AnsatzX5X(z)5X(r cosu), we find that

hX52X9F12
2Mz2

r 3
1

Q2z2

r 4 G1
2Mz

r 3
X8. ~30!

Now, noting thatr is strictly greater thanM outside the ho-
rizon of an RN black hole, we see that thez-dependent terms
in Eq. ~30! are of orderzM 22 or z2M 22. Therefore, if the
thickness of the wall is much less than the black hole hori
size, i.e.,M@1, we see thatX5X0(z), whereX0 is the flat
space solution of Eq.~26!, will solve the equations of motion
10402
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d
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up to O(M 22), since the derivatives ofX0 differ from zero
significantly only forz 5 O~1!. Thus we see that a thin wa
can be painted on to a black hole solution, as confirmed
the numerical work in@18#.

However, since we expect our gravitating wall-black ho
system to have a metric of the form~1!, we have to see how
to paint the wall onto theC metric, which at first sight is a
rather different looking beast, however, if we change co
dinates via

t̄ 5A21t, r 51/Ay, and u5E
x

x3
dx/AG~x! ~31!

then

ds25@11Arx~u!#22F S 12
2m

r
1

q2

r 22A2r 2Dd t̄2

2
dr2

S 12
2m

r
1

q2

r 2 2A2r 2D 2r 2du22r 2G~x!dw2G .

~32!

We see therefore that the variablex is basically cosu, and
therefore we guess thatz5x/Ay. Substituting this into the
wave operator forX gives

2hX5X9~11Az!2@G~x!1A2z2F~y!#1X8A~11Az!

3@2G~x!12AzF~y!~21Az!1„yG8~x!

2xF8~y!…~11Az!#. ~33!

We now need to consider what the ‘‘thin wall’’ approxima
tion means in the context of theC metric. Clearly we expect
the black hole horizon radius to be large in these units,
Auj2u!1, however, recall that for a self-gravitating doma
wall, there is a limit to wall formation given by the size o
the spontaneously compactified spacetime, which co
sponds to the acceleration horizon. Therefore, although
are not at this point considering gravitational back reacti
we will also work in the re´gime of large acceleration radius
i.e., Auj3u!1. Now, the wall fields differ significantly from
their vacuum values forz;1, and the values ofy are
bounded by the black hole horizon, and the acceleration
rizon 1,uj3u<y,uj2u. Thereforex<Ay!1 in the core of
the wall. Meanwhile, the maximum value ofF(y) is at most
of order uj2u2, hence we see that

2hX5X91O~A!. ~34!

SoX5X0(z) is indeed a good approximation to the solutio
of the field equation in theC metric background.

IV. EXTREMAL HORIZONS EXPEL THICK WALLS

Having argued the existence of the domain wall solut
in the black hole background for large mass black holes,
will now consider the special case of an extremal black ho
2-6
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for which the inner and outer horizons coincide. First co
sider the extremal RN black hole

ds25S 12
M

r D 2

dt22S 12
M

r D 22

dr22r 2du22r 2 sin2udw2.

~35!

For the cosmic string, or a pure flux p-brane, a phenome
of ‘‘flux expulsion’’ occurs for sufficiently small mass blac
holes, namely, the defect ceases to penetrate the black
horizon, and instead wraps around it with the horizon
maining in the symmetric phase across all of its area. If s
a phenomenon occurs with the domain wall, this would me
that X[0 over the event horizon, and all of the nontrivi
field dynamics of the wall would occur in the exterior regio
Although the above thin wall approximation indicates th
for large mass black holes there is a solution with the w
intersecting the black hole, it gives no indication of wh
might happen forM<O(1).

Indeed, a simple argument gives us a first indication t
at least very small extremal black holes sitting well insi
the wall will expel it. Deep inside the core of the wall th
potential terms are very small compared to the grad
terms, so we neglect them. In this approximation, we now
to solve the wall equations in the RN background, i.e., E
~29! with the RHS set to zero. Given that, in the absence
a black hole, the solution for a wall in the region close to
center isX'z2z0, we try the ansatzX5b(r )cosu, and ob-
tain the equation

~r 222Mr 1Q2!b912~r 2M !b822b50, ~36!

which admitsb5r 2M as the regular solution at the horizo
i.e.,

X'~r 2M !cosu. ~37!

We see that if the black hole is not extremal, thenXÞ0 on
the horizon, butX will vanish on an extremal horizon. W
now derive a more precise and rigorous bound onM for
which the wall must be expelled from the black hole.

Suppose there is a solution to the equations of mo
which penetrates the horizon, then on the horizon the fi
equations become

X,uu52cotuX,u12M2X~X221!, ~38!

i.e., an ODE forX in terms ofu. Taking the derivative gives

X,uuu52cotuX,uu1X,u@csc2u12M2~3X221!#. ~39!

Now, any nontrivial solution will satisfyX(p/2)50 which
implies that X,uu(p/2)50. Without loss of generality we
may suppose thatX,u(p/2).0, so thatX,u has a maximum
~minimum! at p/2 for M2.1/2 (M2,1/2) since Eq.~39!
implies that at any turning point ofX,u

X,uuu5X,u@csc2u12M2~3X221!#.X,u@122M2#
~40!
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~for X,u.0). But we now see that ifM2,1/2, any turning
point of X,u is a minimum, which is inconsistent withX,u
50 at u50,p. Therefore forM2,1/2, the only possible
solution isX[0 on the horizon, i.e., expulsion must occu
By continuity, we in fact expect the true limit onM2 for
expulsion to be somewhat higher than 1/2, although num
cal work would be required to establish the true bound. F
the C metric, the argument is slightly more involved, how
ever, using theu-coordinate as defined in Eq.~31! we can
derive a similarly weak bound for expulsion asAuj2u.1.

Now let us examine the regionM2.1/2. If a stable ex-
pelling solution exists, we expect that in the region near
horizon, it monotonically relaxes to a kink solution as w
move away from the horizon, namely,X,u remains of the
same sign~without loss of generality we will takeX,u.0 for
r .M ). Let us consider the full field equations in a neig
borhood of the horizon such thatr ,M1d/M anduXu,d for
some small parameterd:

X,uu52cotuX,u22M2X2@~r 2M !2X,r # ,r1O~d!.
~41!

By consideringu derivatives of this equation, it is possible t
show thatX,uu ,X,uuu<0 andX,uuuu>0 on @p/2,p# for M2

.1/2; hence,

p

4
X,uS p

2 D,X~p!,
p

2
X,uS p

2 D ~42!

and

p

4
uX,uu~p!u,X,uS p

2 D,
p

2
uX,uu~p!u. ~43!

Combining these inequalities, and reading offX,uu(p) from
Eq. ~41! gives

p2M2

16
X~p!,X~p!,

p2M2

4
X~p!, ~44!

i.e., 2/p,1/A2,M,4/p. Therefore, ifM.4/p there can
be no such expelling solution.

V. GRAVITATIONAL BACK REACTION

First let us briefly recall the self-gravitating domain wa
In wall-based coordinates the metric can be written in
form

ds25a2~z!@dt22e2kt~dx21dy2!#2dz2, ~45!

where the functionA(z), and the constantk, can be deter-
mined analytically as a power series ine, the leading order
values being

a~z!512eE
0

z

dz8E
0

z8
dz9V„X0~z9!…

512
e

6
@4log coshz1tanh2z#, ~46a!
2-7
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k5eE
0

`

dz8V„X0~z8!…5
2e

3
, ~46b!

the explicit forms being those for thelF4 kink. Note that
the change in extrinsic curvature from one side of the kink
the other is@a8#524e/3524pGs from Eq. ~27! as re-
quired by the Israel junction conditions. Comparing this w
Eq. ~5! for the WBH solution, we see that we must have t
acceleration parameterA52e/3 for consistency with the
self-gravitating thick wall.

In general, our thick-WBH metric will take the form

ds25V22@E2dt22B2dy22D2dx22C2dw2#, ~47!

where to leading orderX5X0 and Eq.~47! takes the form of
Eq. ~1!. We will now perform a linearized calculation ine
53A/2, the energy of the wall, writingV5V01AV1 etc.,
whereV1 /V05O(1) near the core of the wall, and tends
zero away from the core.

Let us start by calculating the stress energy of
X0-field:

gxxX0,xX0,x52G~x!A2~ uxu1y!2S X08

AyD
2

.2X08
2 ,

~48a!

gyyX0,yX0,y52F~y!A2~ uxu1y!2S 2zX08

y D 2

5O„~Ayh!2
…. ~48b!

Since the gauge potential for the Maxwell field is unalter
by the presence of the wall, its energy momentum ten
remains formally the same:

TEM0
0

5TEMy
y

5q2V452TEMx
x

52TEMw
w . ~49!

Therefore the Einstein equations for the wall,

Rab52eX,aX,b2eV~X!gab1T
EMab, ~50!

become, to leading order inA,

R0
02q2V45Rw

w1q2V452
3A

2
V~X!

5Ry
y2q2V41O~A2!

5
1

3
~Rx

x1q2V4!1O~A2!. ~51!

Since in Eq.~1! the variation of the extrinsic curvature due
the wall is primarily carried byV, with E0

25B0
25F(y) un-

affected, and C0
25D0

225G(x) only affected at O(x3)
5O(A3y3) we guess thatE,B,C,D will effectively take
their background values, in which case we find that the R
tensor is
10402
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R0
05

1

2
V2F9~y!22F8~y!VV ,y2G8~x!VV ,x2@G~x!

3~VV ,xx23V ,x
2 !1F~y!~VV ,yy23V ,y

2 !# ~52a!

Rw
w5

1

2
V2G9~x!22G8~x!VV ,x2F8~y!VV ,y2@G~x!

3~VV ,xx23V ,x
2 !1F~y!~VV ,yy23V ,y

2 !# ~52b!

Rx
x5

1

2
V2G9~x!22G8~x!VV ,x2F8~y!VV ,y2@3G~x!

3~VV ,xx2V ,x
2 !1F~y!~VV ,yy23V ,y

2 !# ~52c!

Ry
y5

1

2
V2F9~y!22F8~y!VV ,y2G8~x!VV ,x2@G~x!

3~VV ,xx23V ,x
2 !13F~y!~VV ,yy2V ,y

2 !# ~52d!

Rxy5
V ,xy

V
. ~52e!

The Einstein equations~51! then suggest

V5A~ f 1y!, ~53!

where f 05uxu. Inputting this ansatz gives

1

2
~Rw

w2Rx
x!5G~x!A2y~11Auzu! f ,xx5

3A

2
sech4

x

Ay
~54a!

1

2
~R0

02Ry
y!5F~y!A2y~11Auzu! f ,yy5O~A2! ~54b!

1

2
~R0

02Rw
w!2q2V4

5A2~y1 f !†~113mAuxu12q2A2x2!~ f 2x f ,x!

2y f ,y13mAy~ uxu2 f 1y f ,y!1q2A2

3@~x22 f 2!~ f 13y!22y3f ,y#‡

5O~A2!. ~54c!

Using @25#, Eq. ~54a! has solution

f 5AyF ln cosh
x

Ay
1

1

4
tanh2

x

AyG ; ~55!

note that while f ,x5O(A), f ,y5( f 2x f ,x)/y5O(A2), and
the Einstein equations are satisfied to leading order inA.

Therefore, the topological kink solution smooths out t
shell-like singularity of the infinitesimal domain wall in
much the same way as the topological local vortex solut
smooths out the delta-function singularity in the AFV a
other metrics.
2-8
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VI. NUCLEATION OF BLACK HOLES ON WALLS

Both cosmic strings and domain walls are objects wit
tension that tends to make them unstable to snapping
forming holes on them. In the absence of gravity, they m
be protected against such instabilities by the topology of
field configuration that gives rise to them. However, it h
been known for some time now that even topologica
stable vortices are unstable to snapping by forming a pai
black holes at their end points@7#. This is a quantum tunnel
ing process, mediated by an instanton obtained from the
clidean continuation of the sameC metric as in Eq.~1!.

An investigation of a related instability for domain wal
was initiated in@27#. It was found that domain walls coul
nucleate black holes at a finite distance from them. That i
spherical domain wall that is accelerating in an otherw
empty Minkowski space@such as we have described in Eq
~11!–~13!# may tunnel to a configuration where it encloses
black hole. Actually, given the double-sided nature of t
wall, it encloses two black holes, one on each side of
wall. It should be noted that the description of such tunnel
process is not without its qualms, since given the comp
nature of the Euclidean solutions involved, the wall~and the
entire universe with it!, must be annihilated before givin
way to the configuration where the wall encloses the bl
hole.3

This instability of the domain wall, however, is not qui
the analogue of the snapping string. Instead, we shall
scribe now how black holes can formon a domain wall~even
on a topologically stable one!—an instability that might be
dubbed thehole-punchmechanism.

The final state will be precisely the one we have be
describing in the previous sections: an accelerating sphe
domain wall with a pair of black holes grafted at antipod
points on the wall. The black holes do not swallow the bra
hence the holes do not grow. Again, the transition to t
configuration involves a quantum fluctuation where the i
tial domain wall is annihilated, to be recreated back with
black holes on it. The probability for this to happen is give
in first approximation, by exp@2(I2I0)#, where the Euclidean
actionI 0 of the initial configuration~the wall without a black
hole! is subtracted from the Euclidean actionI of the final
state with the black holes on the wall~we are assuming no
boundary conditions for the wave functions of the cor
sponding universes!. Alternatively, exp@2(I2I0)# can be
viewed as the ratio of the probabilities to nucleate a dom
wall with and without black holes riding on it.

Let us proceed to construct the wall-black-hole instant
After continuationt→ i t, in order to get the correct signatur
we restrict the range ofy to 2j3<y<2j2. The end points
of this interval are spherical bolts~two-dimensional fixed
point sets of]t) and in order to avoid the appearance
conical singularities at them the Euclidean time coordin
has to be periodically identified,t;t1b, in such a way that

3This is familiar also from processes of black hole nucleation
an inflating universe@29#.
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4p

G8~j3!
5

4p

uG8~j2!u
. ~56!

The second equality cannot be fulfilled unless we appro
ately restrict the parameters of the solution. Specifically, t
equation requiresj12j22j31j450. The physical interpre-
tation of this constraint is simple, and corresponds to a c
dition of thermal equilibrium: the temperature of the bla
hole must be the same as the one induced by the acceler
horizon. A neutral black horizon is smaller, hence hott
than an acceleration horizon, and as a consequence the a
equation has no solutions ifq50. If charge is added to the
black hole, its temperature can be lowered and then tune
match the acceleration temperature. One could also cons
extremal black holes, for whichj15j2 so that the black hole
horizon does not restrictb. This can be accommodated ea
ily in what follows, and does not lead to qualitatively ne
results.

The hole-punch instanton thus constructed~see Fig. 4! is
completely non-singular~save for the smoothable singularit
at the location of the wall!, and it is also compact, which
considerably facilitates the calculation of its action. The l
ter can be computed directly by plugging the explicit form
the solution into

I 52
1

16pE d4xAg~R2F2!1sE d3xAh ~57!

(G51). This expression, in fact, can be further simplifie
on-shell by use of the equations of motion which allow o
to eliminate, say,R in favor of F2 and the wall action. Al-
ternatively, one can use the on-shell equation@28#

I 52
1

4
~Aacc1Abh!, ~58!

which gives the action in terms of the area of the horizo
which are all finite in the present solution. Both metho
yield, of course, the same result, but the latter is perh

FIG. 4. The instanton process for nucleation of a domain w
with black holes on it. The lower half-sphere is half the Euclide
instanton, which then tunnels to real time and the hyperbolic exp
sion of the wall. The black holes are created as a partic
antiparticle pair. An identification of this geometry to a copy
itself along the boundaryx50 must be performed, as in Fig. 2.
2-9
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slightly simpler. The area of the black hole horizon has
ready been computed in Eq.~15!, and that of the acceleratio
horizon is, analogously,

Aacc52
Dw

A2

j4

j3~j32j4!
. ~59!

Collecting all terms, we obtain

I 52
1

8ps2

4j4

uG8~j4!u
S 1

j3~j32j4!
1

1

j2~j22j4! D .

~60!

On the other hand, the action for a domain wall instan
~without black holes! is

I 052
1

8ps2 , ~61!

and, as we said, the rate for nucleating holes on the wa
;exp@2(I2I0)#. The resulting expression is not too illum
nating, but it simplifies in the limit of small black holes
M ,Q!s}1/A,

I 52
1

8ps2 „128pMs1O~M2s2!… ~62!

~recall that the black holes are nearly extremal, soM.Q).
Hence,

I 2I 0.
M

s
, ~63!

which, we observe, is a positive quantity. Nucleation
black holes is exponentially suppressed, as was to be
pected. It may be observed that, to this order, onlyAacc con-
tributes. The black hole entropy;4pM2 contributes to en-
hance the nucleation rate, but enters only at the next ord

We have demonstrated how, in addition to the proces
nucleation of black holesenclosed bya wall described in
@27#, black holes can nucleateon the wall. The question
arises of which instability the domain wall is more likely
undergo. The two processes are actually rather different
one has to specify which final states one is comparing
@27# it was found that the action difference for nucleation
a neutral black hole inside the wall is

I 2I 05
11A3

36

M

s
'0.53

M

s
, ~64!

which would be smaller than Eq.~63! and hence the proces
would appear to be less suppressed. However, there is a
cial difference: in the configuration where the black hole
enclosed by the wall, the mass of the black hole is fixed to
M5(6A3ps)21 and hence cannot be varied independen
of the tension of the wall. In fact, the geometry is that of t
Schwarzschild solution, with the wall sitting at a fixed radi
r 53M . In other words, domain walls can only nucleate
side them black holes of a certain~large! size. As a result, the
process of@27# can only lead to the formation of very larg
10402
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black holes, and therefore will be heavily suppressed. In c
trast, in the hole-punch process the black hole massM is a
parameter that can be varied independently ofs. Therefore,
Eq. ~63! can be made arbitrarily small.4 We conclude that
domain walls will preferentially nucleate small black hol
on them, rather than large ones inside them.

One might still be interested in comparing the proces
where the domain walls nucleate black holes with the sa
features—we take the black holes to be extremal or ne
extremal. To this effect, we should compare Eq.~63! to the
nucleation rate of a~nearly! extremal charged black hol
inside the wall. In that case,M is again fixed in terms ofs,
M5Q51/(8ps), and5

I 2I 05
3

32ps2 5
3

4

M

s
, ~65!

again smaller than Eq.~63!. However, this result is exact
whereas corrections to Eq.~63! ~which can be seen to lowe
its value! will be quite important since we are supposed to
taking mA.2pMs51/4, not a small number. And, in an
event, the hole-punch process can form nearly extre
black holes much smaller than this, which will be less su
pressed.

VII. CONCLUSIONS

In this paper we have considered the problem of havin
black hole sitting on a topological domain wall, necessar
including the gravitational back reaction. A domain wall h
a very strong effect on the spacetime surrounding it, caus
a compactification of spatial sections. We started by deriv
the metric for an infinitesimally thin domain wall bisecting
black hole, using theC metric in a recently developed con
struction @16#. The global structure of this spacetime is th
interior of two hyperboloids in a Lorentzian spacetime~see
Fig. 2! with two accelerating black holes ‘‘glued’’ to thes
walls. If the horizons are identified, then the black holes
joined by a wormhole—this indeed happens if the bla
holes are nucleated as a pair. We have used thermodyna
to provide a definition for the mass of the black hole, whi
led us to conclude that it is entropically preferred to have
black hole on the wall, rather than away from it. We show
how one can smooth out the ‘‘singular’’ behavior of the ze
thickness wall by using a core of a topological, and hen
thick, domain wall. Meanwhile for extreme black hole
while the picture is qualitatively the same, if the wall is thic
enough relative to the black hole~roughly bigger than the
black hole size! the black hole will expel its flux, in the sens
that the scalar field forming the wall will remain in its fals
vacuum, restored-symmetry state on the event horizon. T
phenomenon might have consequences for any brane-w
model in which such charged black holes are possibl

4The semiclassical approximation, however, will break do
when the black hole mass reaches the Planck scale.

5Of all the situations considered in@27# we are only taking the
process for which the action is smaller.
2-10
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BLACK HOLES ON THICK BRANES PHYSICAL REVIEW D63 104022
recall that these black holes are charged under a gauge
that isnot confined to the brane. If one tries to pull a sm
extremal black hole out of the brane, it will not experien
the same elastic restoring force that non-extremal black h
suffer, so, apparently they might be able to slip off of t
brane into the bulk.

The problem of black hole nucleation on the doma
wall—the hole-punch process—is also analyzed and we c
clude it is more probable than the black hole nucleation aw
from the wall considered in@27#.

We want to conclude by discussing the possible extens
of the results in this paper to one dimension higher, this is
the scenario with a three-brane in five dimensions, which
pertinent for brane world models.

The first, and very serious, obstacle is the lack of an a
logue of theC metric solution in five dimensions. Even if
is fairly safe to assume, on physical grounds, that suc
spacetime must exist, no explicit construction of it has be
found. Hence, the five dimensional analogue of the w
black hole metric remains unknown. In contrast, there sho
be no problem in studying a black hole intersected by
domain wall in five dimensions if the gravitational backrea
tion of the latter is ignored. Including the backreaction in
perturbative fashion might give some clues to the full so
tion. On the other hand, the phenomenon of flux expuls
appears to be essentially dimension independent.

The process of nucleation of black holes on walls prese
some peculiarities in five dimensions. Again, the absenc
an explicit analogue of theC metric precludes a conclusiv
analysis. Nevertheless, in@30# an instanton was presente
which mediated the nucleation of a domain wall in five d
mensions, with a ‘‘black object’’ on it. On the brane, as w
e

-
,
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as on any surface at constant radius away from the brane
four-geometry is that of the Nariai instantonS23S2 ~a lim-
iting case of the Euclidean Schwarzschild–de Sitter so
tion!. Hence, the black object does not seem to be a bl
hole localized on the brane, but rather a black string exte
ing throughout the bulk—note, however, that the authors
@30# argue otherwise. The size of the black objects nuclea
via this instanton is, as was the case in@27#, fixed by the wall
tension. This is, the mass of the black object isnot an inde-
pendent parameter. In contrast, we have argued that, in
four dimensional setting, a domain wall can nucleate bla
holes of arbitrarily small size—which are preferred ov
larger black holes. It seems reasonable to assume that a
lar process will be possible in five dimensions, and sm
black holes will be nucleated on the brane. Neverthele
notice that Euclidean regularity demanded that the black h
be endowed with charge with respect to a bulk gauge fie
Such gauge fields are not always present in brane w
models. The absence of an explicit wall-black hole solut
in five dimensions leaves the door open to unexplored al
natives, but it might be that, if no such charges are allow
then the only possible instanton for nucleation of walls w
black objects on them, were that of@30#.
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