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The interplay between topological defec¢tsrane$ and black holes has been a subject of recent study,
motivated in part by interest in brane-world scenarios. In this paper we analyze in detail the description of a
black hole bound to a domain wa# two-brane in four dimensiopsor which an exact description in the limit
of zero wall thickness has been given recently. We show how to smooth this singular solution with a thick
domain wall. We also show that charged extremal black holes of a(mizghly) smaller than the brane
thickness expel the wall, thereby extending the phenomenon of flux expulsion. Finally, we analyze the process
of black hole nucleatiolon a domain wall, and argue that it is preferred over a previously studied mechanism
of black hole nucleatiomwayfrom the wall.
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I. INTRODUCTION case where our universe is a gravitating domain \l| 12,
however, higher codimension compactifications have been

The study of the interaction of topologically nontrivial considered13]. A general feature of these solutions is that
field theoretic solutions and black holes in four dimensiongour-dimensional gravity is recovered on the brane universe
has yielded some interesting insights in recent years, revisind 2,14, at least perturbatively, although the question of non-
our understanding of the classic “no-hair” theorems for linear effects, such as black holes on the brdrsg, remains
black holeq1], with the realization that black holes can have an interesting open one, necessitating a study of the problem
“dressed” horizong 2], or even topological hair, in the guise in one dimension legdl6]: i.e., a black hole living on a wall
of cosmic strings, extending to infinit)3]. An important in four spacetime dimensions.
feature of theséand other, related, solutions in the literajure A natural question, when considering our universe as a
is that they explicitly include gravitational back reaction of brane, is to investigate models in which our universe is, quite
the defect on the black hole spacetime. For a localized dditerally, a defect, namely, a “soliton” solution to some
fect, this is clearly a dressed version of a Reissner-Nonastro higher dimensional field theory. This approach was taken in
(RN) black hole, however, for an extended defect, such a§13], and for the domain wall in five dimensional anti—de
the cosmic string, the significant global aspects of the spaceSitter space, by Gremfii7]. It appears that one can smooth
time solution must be taken into account before claims obut the “singular” wall by modeling it with the core of a
black hole hair can be validated. Fortunately, the spacetim®wpological domain wall. In a similar fashion to the infini-
of an infinitesimally thin string with a black hole is known: tesimally thin brane, one can ask questions about strong
the Aryal-Ford-Vilenkin(AFV) [4] solution for a thin string  gravity on the thick brane, namely a black hole intersecting a
piercing a black holéa RN black hole with a wedge cut gut thick brane. This is the question we are interested in in this
the Israel-Kahn metri¢5] for two black holes suspended in paper, and for the same reason as the infinitesimally thin
unstable equilibrium by two strings ending on the event howall, we will examine this issue in four-dimensional gravity.
rizons, and theC metric [6] corresponding to a black hole Recently, it was shown numerically that a topological do-
being accelerated by a string extending to infinity. All of main wall could sit through a Schwarzschild black hdl&]
these metrics can have their conical deficits smoothed by & the absence of gravitational back reaction. In the light of
realistic vortex core mod€B,7]. the results for the vortex solutiofid], this is perhaps not

Also in recent times, domain walle@nd other defecis surprising, however, the issue of gravitational back reaction
have become a subject of intense study from the point ofs particularly important in this setup. The gravitational field
view that our universe might be a brane, or defseg[8] for ~ of a domain wall was found some time aft9], and in a
pioneering worlk, sitting in some higher dimensional space- coordinate system natural to the wélke., exhibiting planar
time. The motivation has come partly because string or Msymmetry was found to be time-dependent—in stark con-
theory appears to admit a phase in which our world appearsast to the static conical metric of the cosmic string—with a
as a “wall” [9], but also because of the exciting phenom-de Sitter like expansion along the spatial coordinates of the
enological possibility of an unusual resolution of the hierar-wall. Later, as the global structure of the wall spacetime was
chy problem[10]. Most attention has been focused on thebetter understood, it was realized that the horizon singulari-
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ties of the wall spacetime were removable by transformindV, the phenomenon of flux expulsion. Section V deals with
into a “bulk-based” coordinate system, in which spacetimegravitational back reaction, and Sec. VI with the nucleation
is flat, and consists of the interior of two hyperboloids in of black holes on the wall. Finally, we summarize our results
Minkowski spacetime glued togethg20]. Space is compact in Sec. VII, and discuss the possible consequences and ex-
in the domain wall spacetime, and the horizon a consequendensions to the scenario with a three-brane in five dimen-
of the acceleration of the bubble. Placing a black hole on thsions, of relevance to brane world models.

wall therefore involves placing a black hole on this acceler-

ating wall with its compact space. An additional question is

how charge on the black hole affects the domain wall. At Il. THE BLACK HOLE-WALL METRIC
first sight, one might think that using a Reissner-Nordstro _ _
black hole, rather than Schwarzschild, for the background A. Constructing the solution

field theory solution should make no difference, however, . ) )
this ignores the issue of flux expulsion. For an extreme black e start by deriving the equivalent of the AFV solution
hole, there is a phenomenon of flux expulsi@i—23 in for the vortex, namely an infinitesimally thin domain wall
which if the vortex is thick enough, the black hole will expel With a black hole. We begin with th€ metric[6]

its flux, causing the field to remain in its symmetric state on

the horizon. Such a flux expulsion is not dependent on the 1 dy? 2
vortex being local, it occurs for global stringg3] and for ds’=————IF(y)dt’— F——G(X)d(pz— 00"
pure flux p-brane$22], therefore we might well expect a A%(X+y) ) (x)
similar phenomenon to occur for the domain wall. All of this @

discussion however, hinges on not only the existence of a
suitable thin wall metric with a black hole, but on this being ) 5 o4
a thin wall limit of a smooth thick wall metric with a black Where G(x)=1-x —2mAX A X"==F(=x). A bulk
hole sitting on it. Note that unlike the vortex, the strong cosmological constant could be easily incorporated, and in
gravitational effect of the domain wall will mean that as soonparticular a negative one may be of interest to discuss toy
as we include gravitational back reaction, the whole naturénodels for the Randall-Sundrum scenaf&ee[16]). For
and global structure of the spacetime will change. Indeedsimplicity, we setA =0: the results in Secs. lll, IV and V
even in the absence of a black hole, there is a closely relatezhn be easily extended to non-zeko On the other hand,
phenomenon of wall non-formation: if the thickness of theissues such as global structure, thermodynamics and instan-
wall is too great compared to the inverse mass of the scalabns as studied here, extend qualitatively to all cases where
field forming it, then it is not possible to form a domain wall the geometry induced on the brane is de Sitter, even i
[24,25. positive or negative.

This paper addresses the issues raised above. Fortunately,|n general the quartiG (&) will have 4 roots, and we will
the metric of an infinitesimally thin wall has been found in aie the parameters such that they are all real, and labeled as

[16] for the case of a wall in AdS spacetime, by using €e £1<E,<£,<0<&,<1. The coordinates in E¢1) are re-
metric for the accelerating wall, sliced in two and identified. gy icted to x e [£5,64], and ye(—x,%); y=—&;,— &,

I.n this paper, we show .hOW to smooth such smgulgr solu-_ &,(>0) are the acceleration horizon, and outer and inner
tions with a thick domain wall thereby demonstrating thebIaCk hole horizons. respectively. For0 there is a singu-
smooth wall+ black hole spacetime. We will work with the - resp Y. g

solutions where the cosmological constant in the bulk Oganty aty=c», which corresponds to the central singularity

. . ; of the black hole. Note also that in general this spacetime has
spacetime vanishes, but extrapolation to a nonzero cosmg- . - .
. ' a conical deficit ag— &5,&,4, one of which(say até¢,) can be

logical constant should be straightforward. As expected, the .”". : N
minated by setting the periodicity ofp to be ¢

space is compact, and the black holes are accelerated alofi 0,47/|G’ (£,)|]. The remaining conical deficit at= &,

with the wall. We also explore the question of "flux” expul- has the interpretation of a string pulling the accelerating

sion for the wall, proving analytically that such expulsion . .
occurs, and deriving bounds for the mass of the black holglaCk.hme. away to infinity. The gauge potential for the Max-
well field is A=qydt for an electric black hole, oA=q(x

(in wall unitg) at which it must occur. We then analyze the ™ do f tic black hol
process of black hole nucleation on a domain wall. Unlike €4)dg for a magnetic black nole. .
The conventional definitions of magsay, Arnowitt-

the decay of string§7], the net result of this process is not : . .
the disintegration of the wall, but rather a pair creation ofDeser-M|sner(A[_)M)] cannot be applied to obtain the mass
black holes in the presence of the accelerating wall. of the_ accelerating black hofehowever, for a small b.laCk
The layout of the paper is as follows: In the next sectiongcc))lf’ds't'rec;’nr?’gjulﬁléa thvih?fi?rgﬁct)rv)\//sarigrcﬁc?deesn:rf; ';S;i?(?r'
we review and extend the work §16], deriving an appro- ’ g )
b16] 9 bp mately the black hole mass a¥G. Indeed, it is useful to

priate infinitesimal wall+ black hole metric and analyzing h h . | for th ; Il black
its thermodynamics. In Sec. Il we consider the field equa- ave the approximate vajues for the roots for a small blac

tions of the domain wall in the background of a black holeh°|e:

(both RN and theC metric), deriving an analytic “thin-

wall” approximation which will be useful for the problem of

gravitational back reaction, and then demonstrating, in Sec.!See, however, below.
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1 1 The metric induced on the wall takes a particularly inter-
§1=— A TOMA),  &H=— A +O(mA), esting form if we introduce a radial coordinate= 1/(Ay),

- andt=At. Then, Eq.(4) becomes

&=—1-mA+0O(m?A?), &,=1—mA+0O(m?A?),
(2) 2m q

with r . =m= m?— q2 (we are takingn=q; the extremality

bound is precisel¥,= ¢;). The charge of the black hole can dr? ot o
be measured by integrating the flux on a sphere that sur- - 2m g2 —rede ®8)
rounds it(e.g., aty=const), and is given by 1- T+ r—z—Azr2
_ 1 = Ae = = which is exactly the same as the equatorial section of the
Q= EJ FxedXde=7—[Ay(X=£4) = Ay(X=E3)] / _ actly the € equalto _
our dimensional Reissner—Nordstine-de Sitter solution.
1 1 The domain wall that we have constructed actually con-
=—> tainstwo black holes, sitting at antipodal points of a spheri-
qA" (E4—&2)(Ea— &) cal domain wall. In order to see this, let us have a closer look
—q+O0(mA), (3) at the global structure of the WBH spacetime. It is helpful to
consider first the situation where the black holes are absent
whereA p=47/|G’'(£,)| is the period ofe. from the wall, i.e.,q=m=0. In that case, the metric is
To construct the wall-black-holeNVBH) metric we fol-
low the standard Israel construction, according to which the _ .
tensiono of a domain wall is given by the discontinuity of A%(x+y)?
the extrinsic curvatur¢ K;; |=47Gaoh;; , with h;; the metric dv2 dx2
mduged on the wall. Following16], an approprlate_ totally x| (y2—1)dt2— ZL_ — 5 —(1-x¥)de?|.
umbilic surface Kjj«h;;) can be found ak=0. This has y°”=1 1-x
normaln=(1/Ay)dx, induced metric (9)
1 2 dy? 2 The acceleration horizon is = + 1. If we now change to
dsz_Az_yz Fly)dt= W_d‘p ’ “) coordinates T,X,Y,Z), using
_— 2 2
and extrinsic curvature Y22 2y 1 S Y2ze— 21 X .
A“(X+Yy) A“(X+Yy)
. . . . . T z
We have chosen the conical singularity to liexat &5, i.e., Y:tanh’ V:tal’w (10)

on the sidex<<0 of this surface. As a consequence, if we
form the WBH solution by taking two copies of the side
>0 and glue them together alomg=0, the string will have
disappeared from the spacetime. The construction is equiva- d2=dT2—dX2—dY2—dZz2. (11)
lent to substitutingx| for xin Eqg. (1). Note however, that the

gauge potential remains unaltered. This is evident for th&ince
case of an electric potentiélvhich does not depend ax),

while for a magnetic potential the change in signxris
canceled by a corresponding reversablgf. The Israel con-

struction implies that the tension of the wall thus formed is
it follows that the surface at=0 where the domain wall

we find that we recover Minkowski space,

1 y—x
X2+Y2+ZZ—T2=Kz—y+X, (12

A lies, corresponds in Minkowski space to the hyperbolsik
724G ©  Fig. 1
:())n the other hand, the charge of the black hole changes now X2+Y2+22—T2=% (13)
10 and the regiorx>0 is the interior of the hyperboloi?
Q=2,_[A,(x=8) = A,(x=0)] +Y2+Z72-T2<1/A% Sections at constarftare spheres, so
the spatial geometry of the wall is spherical. In fact, the
2 &4 intrinsic geometry of the wall is precisely that of de Sitter
- q_A2T (E4—E3)(E4— &) (E4— &) (7 space in 2-1 dimensions, as is evident from E®).
Now we add the black holes, by allowing fan>0. In
but, to leading order imA, we still haveQ=q. this casey= +« is a singularity, surrounded by at least one
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B. Thermodynamics of a black hole on the wall

The conventional definitions for the mass of the black
hole, e.g., ADM, cannot be applied to a spacetime such as
X= the present one, which is not asymptotically flat. Neverthe-
less, black hole thermodynamics can be used to give a pre-
scription for the mass. This approach was put to ugé @,
where it was shown to yield very satisfactory results. The
method consists of identifying the black hole entropy using
the area formul&= A,,/4G, and the temperaturgin terms
of the surface gravityx, T=«/27. Then, the first law of
thermodynamicgin the absence of charge

SM=T&S (14)

can be integrated to give the black hole md&sFor sim-
plicity, we choose to set to zero the black hole charge in this
subsection. This means tha@i(x)=1—x2—2mAx, and ¢;

— —oo, but we remain consistent with the notation so far,
i.e., y=|&,| corresponds to the location of the black hole
black hole horizon ay=|£,| (and an inner black hole hori- horizon, Osx=¢&,, etc? _ _

zony=|&| if q#0). This implies that, if the black hole is The calculation of the area is straightforward,

not too large, we can get a good approximation for its posi-

tion on the wall by looking at the trajectories of points at — [Poa— _
large positive valugs of in ?he metric(9]). In particulgr, the Apn f AX AN Gooely=1e; =2
central singularity of the black hole, git= + is mapped to

FIG. 1. Conformal diagram for the embedding of the hyperbolic
surfacex=0 in Minkowski spacetimegcircles in this picture are
actually spheres The thick lines correspond tg= +c, which
track the world lines of the black holes in ti@metric.

Agp (& dX
A% Jo (x+|éa])?

Y24+272=0, X2-T2=1/A%, ie., X==\T?+1/A?, Y=Z =2A_"2"L. (15)
=0. At any given instanT, these aréwo points at antipodal A% &€+ &)

points on the domain wall. Therefore, the WBH metric actu- . . .

ally describes two black holes at antipodal points of a spheri] N€ factor of 2/in the second line arises from the double-

cal domain wall. It is easy to see that the black holes must pgided character of the vyall. . .

oppositely charged. _The surface gravity is computed relatlvg to the t|m_eI|ke
Note that the domain wall not only eliminates the string K|.II|ng vector ;. In or(jer fgr it to have the right dimension-

from the spacetime, but it also cuts off the acceleration ho/ity, We have to multiply it by a factor oA, x=Ad;, and

2_ v ; ; i ati
rizon and turns it into a horizon of finite area. The entireN®N&“=Xx,;,x* "/2. With this normalization foy one also
construction is depicted in Fig. 2. recovers the standard result for the temperature of the

Finally, another interesting point is that, as arguef2i, Schwarzschild—de Sitter black hole on the brdBe The
the black holes will neither swallow up the brane, nor slide®Sult i
off of it. The latter was argued on the basis of the elastic

restoring force that the brane exerts on the black hole. Below T= AlF (&)l = AlG (&)l . (16)
we will give an alternative, thermodynamic argument for this Am Am
feature.

In order to perform the integration of the first law it is
convenient to introduce the auxiliary variable

|&]
z=—. 1
&4 (17
[ The limit where the black holes are absemt=0, corre-
identify sponds taz—cc. On the other hand, there is a lower bound
for z imposed by the fact thaG(x) must have three real

roots. This requiresnA< 1/3y/3, hence] §2|>\/§ andz>2
(when this bound is saturated the black hole and acceleration
horizons coincidg Therefore the range faris 2<z<o.

Notice that here we are out of thermodynamic equilibrium, in the
FIG. 2. Construction of the domain wall by gluing two copies of sense that the temperature of the black hole and acceleration hori-
the regionx>0 along the surfac&=0. The wall tension results zons are different. This poses no problem at this point, but see Sec.
from the non-vanishing extrinsic curvature of this surface. VI for more on this.
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In terms ofz we have S/Sp
72— S/8
zc—z+1 0 max
54:7, |§2|=\/27—z+1, (18
z(z—1)
mA=_— 3’ 1
2(z°—z+1)
and M
Mmax
S= 27T2 ZZ FIG. 3. The entropy of a black hole on the wa],compared to
GA® (1+2)%(2z—-1)’ the entropy of a black hole away from the wah=4=GM2. No-
tice S> S, for all allowed values oM. The maximum values cor-
A Z2-z-2 19 respond t@—2.
=— . 19
A [2_511 . .
TVz-ztl rather to exchanging, and &5, i.e., the black hole and ac-

celeration horizons. For<z<2, the plot in Fig. 3 would
extend to yield the entrop§area of the acceleration horizon,
for a given black hole mass.
dMm ds The second remark concerns an aspect of the shape of
4z Taz (200 black holes on branes discussed in R&B]. There, it was
argued that large black holes in the four dimensional RS
can now be integrated, with the condition thdt=0 for m  brane-world have the shape of a pancake, the horizon being
=0, i.e., forz—c. In this way we find that the black hole flattened and having a small extent away from the brane. Is
mass is there anything similar in the present context? It would appear
that there is not, at least not anything as drastic asl @.

In the range 2 z<, mandSdecrease monotonically with
z, while T grows monotonically with it. The first law

1/1 VZP—z+1 The crucial difference is that in the situation studied 18],

M= G_A(E_Z 5217 1) 2D the geometry of the brane was not asymptotically de Sitter,
but instead, asymptotically flat. The “black pancakes” cor-

Let us examine what these formulas yield for small blackresponded tan A becoming larger than 1{B. We have ex-
holes, up to next to leading order mA. Using Eq.(2), plicitly excluded this from our analysis: the reason is that for
mA=1/3/3 the black hole horizon and the acceleration ho-
M= T( 1— EmAJr O(mzAz)) rizon (which yields the cosmological de Sitter horizon on the

G 4 ' brane become coincident, and fanA>1/3,/3 there is no

— black hole on the brane, but rather a naked singularity. This

Tm obstruction obviously disappears for the asymptotically flat

S= G (1-5mA+O(m?A?). (22) brane of[16], and in that case the horizon on the brane can

grow arbitrarily large. There are no “black pancakes” in our

If we now express the entropy in terms of the physical massetting, and all our black holes are roughly spherical. On the

M, and the wall tensiomr, other hand, if there were a negative cosmological constant in

B ) 5 anr2 2 the bulk, but a positive cosmological constant induced on the

S=47GM*(1+57G°0cM+0O(G*"M“0%)).  (23)  prane, the cosmological brane horizon would be larger than

in the present setting, and the upper limit on the size of the
lack holes would be higher.

The leading order result reproduces the standard formula f
Schwarzschild black holes. The first correction tells us that,
for a given black hole mass, the entropy will be higher if it is
on a wall, than if it is away from it. This feature persists

throughout the entire range of masses, as exhibited in Fig. 3. Having described in detail the wall-black hole spacetime
Hence, it is thermodynamically favored for a black hole toin the limit of infinitesimal wall thickness, we now proceed
stick to the wall, in accord with the above mentioned factio demonstrate how the distributional wall, with the black
that black holes do not slide off of the wall. hole on it, can consistently arise as a limit of a physical,
We end this analysis with two remarks related to the ex{ield-theoretical topological defect. This is needed to estab-
istence of an upper limit for the size of the black holes on thejsh the analytic approximation which will be used to derive

wall. First, one may notice that can be allowed a range the gravitational back reaction of the wall on the spacetime.
wider than considered above, namely, one can also have 1 We will use a genera| field theory Lagrangian for the

<z=<2 without encountering any singular behavior. How- wa||:
ever, while the limitz—2 from above corresponds A
—1/3,/3 from below, going to &z<2 does not correspond

to having largemA (since we still have three real roptdut

IIl. THIN WALL APPROXIMATION

€
BWGLDV\,:W[WZ(VaX)Z—V(X)], (24)
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where the symmetry breaking potentiahas a discrete set of up to OM ~?), since the derivatives o, differ from zero
degenerate minima, and we have rescaled the scalar fiekignificantly only forz = O(1). Thus we see that a thin wall

X(=®/7) by the symmetry breaking parameter The pa-

can be painted on to a black hole solution, as confirmed by

rametere=8mG7? represents the gravitational strength of the numerical work if18].

the domain wall, being the energy density per unit area, and However, since we expect our gravitating wall-black hole
w represents the inverse mass of the scalar after symmetgystem to have a metric of the forth), we have to see how
breaking, which will also characterize the width of the wall to paint the wall onto th€ metric, which at first sight is a
defect within the theory. Without loss of generality, we will rather different looking beast, however, if we change coor-

fix our units by settingv=1. The wall equations

109V

UX+ 5 —<=0

29X (25

have the first integrak’2=V(X) in Minkowski spacetime,
which has an implicit solution

X dX
_Z_Zo,

xe \W(X)

(26)

where Xg=X(zp) is the false vacuum. For example, in the

A ®* kink model,w= 1/y/A =1, and the above integré26)
gives the usual kink solution centered ap: X=tanhg
—Z), which has an energy per unit area

o 8¢
87TGO':26‘f sechz=—.

» 3 (27)

Now let us consider the wall equation®5) in the
Reissner-Nordstra background

QZ

1-—+
r r?

2M 2\ -1
dg?= dtz—(l——+Q—2

r r

X dr?—r?d6*—r?sinf6de?, (28)

whereM, andQ are measured in “wall” units(i.e.,w=1)

rather than Planck units, and the numerical valueGoin
wall units has been absorbed irtbandQ. This gives for the

scalarX:
M
1-—|X,
r

1oV
029X

2
Xt T

2M 2
PR
r r

1 cotd
+FX’60+ r—ZX

(29)
Recall that for the case of the vorte8], the fields were

very well approximated as functions ofsiné, therefore,

guessing the AnsatX= X(z)=X(r cosé), we find that

2MZ? 272
N Q

2Mz
3 4 +

OX=—X"| 1— X', (30
r

r r

Now, noting thatr is strictly greater thaiM outside the ho-

rizon of an RN black hole, we see that thelependent terms

in Eq. (30) are of orderzM ~2 or z22M 2. Therefore, if the

dinates via
t=A"%, r=1Ay, and 6=Lxsdx/m (32)
then
9

2m .
ds?=[1+Arx(6)] 2 (1— - r—z—A2r2>dt2

dr?

_( 2m o

—r2d6?—r2G(x)d¢?|.
1-—+ r—z—AZrz)

r
(32)

We see therefore that the variabtas basically co®, and
therefore we guess that=x/Ay. Substituting this into the
wave operator foX gives

—OX=X"(1+A2)’[G(x)+A?Z’F(y)]+ X'A(1+Az)
X[2G(x) +2AzF(y)(2+Az)+ (yG'(x)

—xF'(y)(1+Az)]. (33

We now need to consider what the “thin wall” approxima-
tion means in the context of tH@ metric. Clearly we expect
the black hole horizon radius to be large in these units, i.e.,
Al&|<1, however, recall that for a self-gravitating domain
wall, there is a limit to wall formation given by the size of
the spontaneously compactified spacetime, which corre-
sponds to the acceleration horizon. Therefore, although we
are not at this point considering gravitational back reaction,
we will also work in the rgime of large acceleration radius,
i.e., A|&;|<1. Now, the wall fields differ significantly from
their vacuum values foz~1, and the values ofy are
bounded by the black hole horizon, and the acceleration ho-
rizon 1<|&;|<y<|&,|. Thereforex<Ay<1 in the core of

the wall. Meanwhile, the maximum value B{y) is at most

of order|&,|?, hence we see that
—OX=X"+0(A). (34

SoX=Xy(2) is indeed a good approximation to the solution
of the field equation in th€ metric background.

IV. EXTREMAL HORIZONS EXPEL THICK WALLS

thickness of the wall is much less than the black hole horizon Having argued the existence of the domain wall solution

size, i.e.,M>1, we see thaK= Xy(2), whereX, is the flat

in the black hole background for large mass black holes, we

space solution of Eq26), will solve the equations of motion will now consider the special case of an extremal black hole,
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for which the inner and outer horizons coincide. First con-(for X ,>0). But we now see that iM2<1/2, any turning
sider the extremal RN black hole point of X , is a minimum, which is inconsistent witK ,
=0 at #=0,7. Therefore forM2<1/2, the only possible
M2 2 M\ 2 9 249 2. 2 solution isX=0 on the horizon, i.e., expulsion must occur.
ds’= 1= dti={ 1= -] dri=ridé°—r sirfgdg?. By continuity, we in fact expect the true limit oM? for
(35) expulsion to be somewhat higher than 1/2, although numeri-
cal work would be required to establish the true bound. For
For the cosmic string, or a pure flux p-brane, a phenomenothe C metric, the argument is slightly more involved, how-
of “flux expulsion” occurs for sufficiently small mass black ever, using thed-coordinate as defined in E¢31) we can
holes, namely, the defect ceases to penetrate the black halerive a similarly weak bound for expulsion Asé,|>1.
horizon, and instead wraps around it with the horizon re- Now let us examine the regioM?>1/2. If a stable ex-
maining in the symmetric phase across all of its area. If suclpelling solution exists, we expect that in the region near the
a phenomenon occurs with the domain wall, this would mearorizon, it monotonically relaxes to a kink solution as we
that X=0 over the event horizon, and all of the nontrivial move away from the horizon, namel¥ , remains of the
field dynamics of the wall would occur in the exterior region. same sigriwithout loss of generality we will tak¥ ,>0 for
Although the above thin wall approximation indicates thatr>M). Let us consider the full field equations in a neigh-
for large mass black holes there is a solution with the wallborhood of the horizon such thett M + 8/M and|X|< é for
intersecting the black hole, it gives no indication of whatsome small parametes:
might happen foM=<0O(1).
Indeed, a simple argument gives us a first indication that X 4p= —CotoX 43— 2M2X—[(r —M)?X ] .+ O(4).
at least very small extremal black holes sitting well inside (41)
the wall will expel it. Deep inside the core of the wall the
potential terms are very small compared to the gradien
terms, so we neglect them. In this approximation, we now tr how.thatxyg(,,xyoo(,so andX 444=0 on{/2,m] for M?
to solve the wall equations in the RN background, i.e., Eq. /2 hence,
(29) with the RHS set to zero. Given that, in the absence of
y

Fy consideringd derivatives of this equation, it is possible to

. . . . a a a a
a black hole, the solution for a wall in the region close to its — —) <x(7-r)<—x’0<—) (42)
center isX~z—z,, we try the ansatX=b(r)cosé, and ob- 4 2 2 2
tain the equation
and
(r2=2Mr+Q?b"+2(r—M)b’—2b=0, (36 . -
. . _ _ Z|X,00(7T)|<X,0(§)<§|X,90(7T)|- (43
which admitsb=r —M as the regular solution at the horizon,

€ Combining these inequalities, and reading Xff,() from

X=~(r—M)cosé. 37y E4-(4D gives

2\ 2 77_2,\/|2

M
X(m)<X(m)< 7

We see that if the black hole is not extremal, the# 0 on 16

the horizon, butX will vanish on an extremal horizon. We
now derive a more precise and rigorous boundNrfor i.e., 2lr<1/\J2<M<4/m. Therefore, ifM >4/m there can
which the wall must be expelled from the black hole. . .
. ) . . be no such expelling solution.
Suppose there is a solution to the equations of motion
which penetrates the horizon, then on the horizon the field

X(r), (44)

equations become V. GRAVITATIONAL BACK REACTION
5 5 First let us briefly recall the self-gravitating domain wall.
X, gg= — COtOX »+2M“X(X*—1), (38 In wall-based coordinates the metric can be written in the

form
i.e., an ODE forX in terms of 4. Taking the derivative gives

ds?=a?(z)[dt?—e®{(dx?>+dy?)]—dZ, (45)
X goo= —COtOX go+ X J[cSEO+2M2(3X?—1)]. (39

where the functiomA(z), and the constarit, can be deter-
Now, any nontrivial solution will satisfyX(7/2)=0 which ~ mined analytically as a power series dnthe leading order
implies thatX ,,(m/2)=0. Without loss of generality we values being
may suppose thaX 4(7/2)>0, so thatX , has a maximum
(minimum) at /2 for M2> 1/2 (M?<1/2) since Eq.(39) a(Z):l_EJZdZ,JZ dZ'V(Xo(2"))
implies that at any turning point of , 0 0

X 9g9=X J[€sCO+2M?(3X?*—1)]>X [1—-2M?]

w0 =1- g[4log coslz+tanifz], (463
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* ’ ’ 2¢ 0 1 2 ’ ’
k=efo dz'V(Xy(z ))=?, (46b) Ro= EQ F'(y)—2F"(y)QQ ,—G'(x)QQ ,—[G(x)

_ 2 _ 2
the explicit forms being those for thed* kink. Note that X(QQ = 305) +F(y) (24, =30 ] (529

the change in extrinsic curvature from one side of the kink to
the other is[a’]|=—4€/3= —47Go from Eq. (27) as re- R?
quired by the Israel junction conditions. Comparing this with ¢
Eq. (5) for the WBH solution, we see that we must have the
acceleration parametei=2¢/3 for consistency with the
self-gravitating thick wall.

In general, our thick-WBH metric will take the form

%QZG”(X) —2G'(x)QQ ,—F'(y)QQ ,—[G(X)

X (00 4, —305)+F(y)(2Q ,,—303)]  (52b

1
Ri=5Q2G"(x)~2G’ ()00~ F' ()20 ,~[3G(x)

ds’=Q " ?[E2dt*—B2dy*—D?dx*— C%d¢?], (4

[ g el X(QQ 4= Q3 +F(y)(QQ 1y —307)] (520
where to leading ordex= X, and Eq.(47) takes the form of
Eq. (1). We will now perform a linearized calculation ia
=3A/2, the energy of the wall, writing)l=Q,+ AQ, etc.,

whereQ,/Q,=0(1) near the core of the wall, and tends to

RY= %QZF”(y) —2F'(y)QQ ,—G'(x)QQ ,—[G(x)

zero away from the core. X(QQ = 305) +3F(Y)(QQ ,,~ 03] (520
Let us start by calculating the stress energy of the
Xo-field: Q
Ry=—0 (520
1\ 2
XoxXox= — G(X)A(|x| +y)? %o = —Xg?
9" Roxox y Ay 0 The Einstein equation&1) then suggest
(483
Q=A(f+y), (53
1\ 2
-z
9¥YXoyXoy= —F(Y)A%(|X| +y)? y 0) wheref,=x|. Inputting this ansatz gives
=0((Ayn)?). (480) L Re_RY=G(A2 Aot X
Yh 2(Ri R =G(X)A%y(1+A|Z)f = 3 secHAy
Since the gauge potential for the Maxwell field is unaltered (549

by the presence of the wall, its energy momentum tensor
remains formally the same: 1

S(RI-R)=F(y)A%y(1+Alz)f ,,=O(A%)  (54b)
Towo =Tl =0 =T =—Tiwe. (49

1

5 (R§—R9)—q2Q*
Therefore the Einstein equations for the wall, 2
=A2(y+)[(1+3mA x|+ 29%2A%x3) (f — x f
Rap=26X X p— VX0t T (50 (v + HIA+SMAX]+2a AN (F =)
—yf +3mAY|x|—f+yf,)+q?A?

become, to leading order i, X[(x2— f2)(f+3y)—2y3f ]
Y

3A =0(A?). 54¢)
RI—0°Q*=R{+0°0*= — —-V(X) A (549
Using[25], Eq. (549 has solution

=R}—q*Q*+0(A?)

x 1 X
_ %(R§+q204)+O(A2). 5D f=AylIn coshA—y+ ZtanhZA—y : (55)

) . o o note that whilef ,=O(A), fyy=(f—xfyx)/y=O(A2), and
Since in Eq(1) the variation of the extrinsic curvature due to tne Einstein equations are satisfied to leading ordeX. in
the wall is primarily carried by, with E§=B2=F(y) un- Therefore, the topological kink solution smooths out the
affected, andC3=D,%=G(x) only affected atO(x®)  shell-like singularity of the infinitesimal domain wall in
=0(A%?®) we guess thaE,B,C,D will effectively take  much the same way as the topological local vortex solution
their background values, in which case we find that the Riccemooths out the delta-function singularity in the AFV and
tensor is other metrics.
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VI. NUCLEATION OF BLACK HOLES ON WALLS

Both cosmic strings and domain walls are objects with a
tension that tends to make them unstable to snapping or
forming holes on them. In the absence of gravity, they may
be protected against such instabilities by the topology of the
field configuration that gives rise to them. However, it has
been known for some time now that even topologically
stable vortices are unstable to snapping by forming a pair of
black holes at their end poinfg]. This is a quantum tunnel-
ing process, mediated by an instanton obtained from the Eu-
C“dear.] cont!nugtlon of the sar@metrllc_ asin Eq(l).. FIG. 4. The instanton process for nucleation of a domain wall

An |.n.vest|g_at|on of a related instability for. domain walls with black holes on it. The lower half-sphere is half the Euclidean
was initiated in[27]. It was found that domain walls could jnstanton, which then tunnels to real time and the hyperbolic expan-
nucleate black holes at a finite distance from them. That is, gjon of the wall. The black holes are created as a particle-
spherical domain wall that is accelerating in an otherwiseantiparticle pair. An identification of this geometry to a copy of
empty Minkowski spacésuch as we have described in Egs. itself along the boundary=0 must be performed, as in Fig. 2.
(11)-(13)] may tunnel to a configuration where it encloses a

black hole. Actually, given the double-sided nature of the A A
wall, it encloses two black holes, one on each side of the B== = . (56)
wall. It should be noted that the description of such tunneling G'(¢3) [G'(&)

process is not without its qualms, since given the compact . . _
nature of the Euclidean solutions involved, the walhd the ~ The second equality cannot be fulfilled unless we appropri-
entire universe with jt must be annihilated before giving ately restrict the parameters of the solution. Specifically, this

way to the configuration where the wall encloses the blacduation requireg; — &, — &5+ £,=0. The physical interpre-
hole3 tation of this constraint is simple, and corresponds to a con-

dition of thermal equilibrium: the temperature of the black
ole must be the same as the one induced by the acceleration
orizon. A neutral black horizon is smaller, hence hotter,
than an acceleration horizon, and as a consequence the above
. equation has no solutions ¢f=0. If charge is added to the
dubbed f[hmole-punc,thnechams.,m. bﬁ';\ck hole, its temperaturea{:an be Iowe?ed and then tuned to
The final state will be precisely the one we have beerTm;ttch the acceleration temperature. One could also consider

describing in the previous sections: an accelerating Spheric%lxtremal black holes, for which, = &, so that the black hole

do_main wall with a pair of black holes grafted at antipodal horizon does not restrigg. This can be accommodated eas-
points on the wall. The black holes d_o not swallov_v_the bran_e"y in what follows, and does not lead to qualitatively new
hence the holes do not grow. Again, the transition to thlsresuItS

configuration involves a quantum fluctuation where the ini- The hole-punch instanton thus constructsee Fig. 4 is
tial domain Wa". 'S ann|h|lated_,'to be re.created back. W't.h thecompletely non-singulasave for the smoothable singularity
black holes on it. The probability for this to happen is given

i fi . ion. b h h id 'at the location of the wal] and it is also compact, which
n !rst approxmajpn, y g:[p (l,_IO)]’ where ,t e Euclidean considerably facilitates the calculation of its action. The lat-
actionl of the initial configuratior(the wall without a black

ter can be computed directly by pl ing the explicit form of
hole) is subtracted from the Euclidean actibrof the final hu I y by plugging Xpiet

state with the black holes on the walle are assuming no- the solution into

boundary conditions for the wave functions of the corre- 1

sponding universegs Alternatively, exp—(I—1g)] can be |:__f d4x\/§(R_|:2)+gf d3xh (57)
viewed as the ratio of the probabilities to nucleate a domain 16m

wall with and without black holes riding on it.

Let us proceed to construct the wall-black-hole instanton(G=1). This expression, in fact, can be further simplified
After continuationt— i 7, in order to get the correct signature on-shell by use of the equations of motion which allow one
we restrict the range of to — &;<y<—§&,. The end points to eliminate, sayR in favor of F2 and the wall action. Al-
of this interval are spherical boltéwo-dimensional fixed ternatively, one can use the on-shell equafid8]
point sets ofd,) and in order to avoid the appearance of
conical singularities at them the Euclidean time coordinate 1
has to be periodically identified,~ 7+ 3, in such a way that I=- Z(Aacc+ Apn), (58)

This instability of the domain wall, however, is not quite
the analogue of the snapping string. Instead, we shall de-
scribe now how black holes can forom a domain walleven
on a topologically stable one-an instability that might be

which gives the action in terms of the area of the horizons,
3This is familiar also from processes of black hole nucleation inwhich are all finite in the present solution. Both methods
an inflating univers¢29]. yield, of course, the same result, but the latter is perhaps
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slightly simpler. The area of the black hole horizon has al-black holes, and therefore will be heavily suppressed. In con-
ready been computed in EA.5), and that of the acceleration trast, in the hole-punch process the black hole nMss a
horizon is, analogously, parameter that can be varied independently-ofrherefore,
Eq. (63) can be made arbitrarily sméllWe conclude that
ZA_‘P £q (59) domain walls will preferentially nucleate small black holes
A? E4(E3—&y) on them, rather than large ones inside them.
_ _ One might still be interested in comparing the processes
Collecting all terms, we obtain where the domain walls nucleate black holes with the same
features—we take the black holes to be extremal or nearly
__ 1 4é4 1 " 1 extremal. To this effect, we should compare E&p) to the
8o’ IG' (&) E3(E3—&4)  Ex&—€&0)) nucleation rate of gnearly extremal charged black hole
(60) inside the wall. In that cas@/ is again fixed in terms ofr,
M=Q=1/(87c), and
On the other hand, the action for a domain wall instanton

Aace™

(without black holesis o 3 3 § M
1 I IO_327702 40 (65
lo=— 8mwo?’ (61) again smaller than Eq63). However, this result is exact,

whereas corrections to E¢63) (which can be seen to lower
and, as we said, the rate for nucleating holes on the wall igs value will be quite important since we are supposed to be
~exd —(1—1g)]. The resulting expression is not too illumi- taking mA=27M o= 1/4, not a small number. And, in any
nating, but it simplifies in the limit of small black holes, event, the hole-punch process can form nearly extremal

M,Q<ox1/A, black holes much smaller than this, which will be less sup-
1 pressed.
— (1 _ 2 2
|= " g2 (17 8mMo+ O(M%0™) (62) VIl. CONCLUSIONS
(recall that the black holes are nearly extremalMe-Q). In this paper we have considered the problem of having a
Hence, black hole sitting on a topological domain wall, necessarily
M including the gravitational back reaction. A domain wall has
| —lg= ot (63 a very strong effect on the spacetime surrounding it, causing

a compactification of spatial sections. We started by deriving
the metric for an infinitesimally thin domain wall bisecting a

which, we observe, is a positive quantity. Nucleation of . N
: ; black hole, using th&€ metric in a recently developed con-
black holes is exponentially suppressed, as was to be ex;

pected. It may be observed that, to this order, ofly, con- struction[16]. The global structure of this spacetime is the

: 2 : _interior of two hyperboloids in a Lorentzian spacetirisee
D T Loy Y Conles 0 e 6. 2 wih wo scclerating black hols “gue 0 thse
X y walls. If the horizons are identified, then the black holes are

We have demonstrated how, in addition to the process of . P )
nucleation of black holegnclosed bya wall described in joined by a wormhole—this indeed happens if the black

[27], black holes can nucleaten the wall. The question holes are nucleated as a pair. We have used thermodynamics

arises of which instability the domain wall is more likely to to provide a definition for the mass of the black hole, which

. led us to conclude that it is entropically preferred to have the
undergo. The tW(.) processes are actually rather d|ffer.ent, ack hole on the wall, rather than away from it. We showed
one has to specify which final states one is comparing. "h ' :

. : ) . ow one can smooth out the “singular” behavior of the zero
ElzZ]eEt\;\;?sbrggl?%;Tstir:rs]%s(;ﬂgnw(glfreiéence for nucleation 0fthickness wall by using a core of a topological, and hence

thick, domain wall. Meanwhile for extreme black holes,
11/3M M while the picture is qualitatively the same, if the wall is thick

—lg=—%—— ~0.53—, (64) enough relative to the black holgoughly bigger than the
36 o black hole sizgthe black hole will expel its flux, in the sense

which would be smaller than E¢63) and hence the process that the scalar field forming the wall will remain in its false '
vacuum, restored-symmetry state on the event horizon. This

would appear to be less suppressed. However, there is a Cruﬁenomenon miaht have conseauences for anv brane-world
cial difference: in the configuration where the black hole isP 9 9 y

enclosed by the wall, the mass of the black hole is fixed to bénOdel in-which such charged black holes are possible—

M= (63mc) ! and hence cannot be varied independently.

of the tension of the wall. In fact, the geometry is that of the

Schwarzschild solution, with the wall sitting at a fixed radius *“The semiclassical approximation, however, will break down
r=3M. In other words, domain walls can only nucleate in- When the black hole mass reaches the Planck scale.

side them black holes of a certdilarge size. As aresult, the  50f all the situations considered {27] we are only taking the
process of27] can only lead to the formation of very large process for which the action is smaller.
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recall that these black holes are charged under a gauge fiekd on any surface at constant radius away from the brane, the
that isnot confined to the brane. If one tries to pull a small four-geometry is that of the Nariai instant®x S? (a lim-
extremal black hole out of the brane, it will not experienceiting case of the Euclidean Schwarzschild—de Sitter solu-
the same elastic restoring force that non-extremal black holet#on). Hence, the black object does not seem to be a black
suffer, so, apparently they might be able to slip off of thehole localized on the brane, but rather a black string extend-

brane into the bulk. ing throughout the bulk—note, however, that the authors of

The problem of black hole nucleation on the domain[30] argue otherwise. The size of the black objects nucleated
wall—the hole-punch process—is also analyzed and we contia this instanton is, as was the cas¢2f], fixed by the wall

clude it is more probable than the black hole nucleation awa

from the wall considered if27].

We want to conclude by discussing the possible extensio
of the results in this paper to one dimension higher, this is, t
the scenario with a three-brane in five dimensions, which i

pertinent for brane world models.

The first, and very serious, obstacle is the lack of an an

logue of theC metric solution in five dimensions. Even if it

is fairly safe to assume, on physical grounds, that such
spacetime must exist, no explicit construction of it has bee
found. Hence, the five dimensional analogue of the wall
black hole metric remains unknown. In contrast, there should"
be no problem in studying a black hole intersected by d
domain wall in five dimensions if the gravitational backreac-
tion of the latter is ignored. Including the backreaction in a
perturbative fashion might give some clues to the full solu-

%ension. This is, the mass of the black objech@ an inde-

endent parameter. In contrast, we have argued that, in the
ur dimensional setting, a domain wall can nucleate black
oles of arbitrarily small size—which are preferred over
arger black holes. It seems reasonable to assume that a simi-
ar process will be possible in five dimensions, and small

sPlack holes will be nucleated on the brane. Nevertheless,
notice that Euclidean regularity demanded that the black hole

ge endowed with charge with respect to a bulk gauge field.

uch gauge fields are not always present in brane world

models. The absence of an explicit wall-black hole solution

five dimensions leaves the door open to unexplored alter-
atives, but it might be that, if no such charges are allowed,

then the only possible instanton for nucleation of walls with

black objects on them, were that [F0].
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