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We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude
and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects.
We find that, in some models, the most probable values of the slope are very small, implying that the dark
energy density stays constant to very high accuracy throughout cosmological evolution. In other models,
however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied,
leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter
case, the effective equation of state varies appreciably with the redshift, leading to a number of testable

predictions.
DOI: 10.1103/PhysRevD.69.063521 PACS nuni§er98.80.Cq
I. INTRODUCTION interfere with structure formation and with the emergence of

suitable observers. During inflation, the value of the scalar

It has long been suggested that both the old fine-tunindield ¢ is randomized by quantum fluctuations, and after in-
problem of the cosmological constant as well as the puzzlgation it stays almost frozen due to the flatness of the poten-
of the time coincidence may find a natural explanationtial. Thus, the local value of the dark energy density
through anthropic selection effects, in scenarios where th&\/(@ will vary from place to place, but it will stay almost
dark energy densityp, is a random variabl¢1-16]. This  constant in time. In this situation, the probability for measur-
possibility can be easily realized in the context of inflation-ing a particular value opp is determined by a combination
ary cosmology, where the local value pf may be deter- of inflationary dynamics and anthropic selection effects. As
mined by stochastic quantum processes. These processge shall see in the next section, this approach to the cosmo-
may lead to rather different values @f in distant regions of |ogical constant problems shows remarkable agreement with
the Universe, separated by length scales much larger than ti@servations, even with the crudest of assumptions.
present Hubble radius. The purpose of the present paper is to extend this analysis

A simple implementation of this idea is obtaing17]by  to scenarios where the slopeof the potential is itself a
assuming that the dark energy is due to a scalar field random variable. Likep, the measured value of the slope
(different from the inflaton fieldwith a very flat potential could be determined by a combination of inflationary dy-
V(¢), which has a simple zero &= ¢, with a nonvanish-  namics and anthropic selection effects. A very large slope

ing slopes= |V’ (¢)|: would cause a big crunch much before any observers can
) develop. If the distribution which is obtained after inflation
V(¢)==s(¢=¢o)+OL(¢—¢0)°], @) favors large values o§, then a value of the slope which

marginally satisfies(2) could be the most probable one to
observe[15,16,18. Marginal slow-roll entails the conse-
quence that the effective equation of state depends apprecia-
|V’|SH§MP, |V”|SHS 2) bly on redsh@ft,pDzws(z)pD, through a functiorwg yvhich
contains a single parameter: the value of the slgpe our
are satisfied for values of the potential in the relatively narregion of the Universe. Thus, the equation of stated its
row range time evolution may ultimately be determined by the condi-
tion that galaxy formation and the emergence of suitable ob-
|V|510°’M,23H§. (3) servers is marginally allowed before the big crunch happens.
Some observational signatures of models with a marginal
HereH, is the present expansion rate avig is the reduced slope have been discussedi5,18,19,21
Planck mass, and we are adopting the convention that any In Sec. Il we review the case of variakhg at fixeds. In
contributions to the vacuum energguch as a true cosmo- Sec. Il we discuss two-field models of dark energy, where
logical term are included in the definition 0f(¢). Larger  both pp and s are random variables. Our conclusions are
values of|V| are uninteresting, since they would severelysummarized in Sec. IV.

where we have assumed for definiteness YH#tp) <0. All
that is required is that the slow-roll conditions
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Il. VARIABLE pp then, according to Eq2), the field ¢ practically does not

change during the last ¥Qyears, its kinetic energy is very

small. Therefore at the present stage of the evolution of the
As mentioned in the Introduction, a theory with variable Unijverse its total potential energy(¢) acts nearly like a

pp can be obtained from a scalar field with a very flat po-cosmological constant. Independently @f , this effective

tential, as in Eq(1). During inflation, the field$ undergoes cosmological constant can take all possible values, including

a random walk of step sizé¢~H for each time interval the presently observed extremely small valua
St~H™1, whereH is the expansion rate during inflation. — 101204

The steps are taken independently on each horizon volume, simjlarly, one may consider a model

and this leads to spatial variation ¢f The potential is very

flat, and appreciable spatial variation @f after thermaliza- -

tion will only occur on scales much larger than the presently V()= Pl ¢t pa- ®
observable Universe.

In the limiting case when the potential is absolutely flat,Here p, is a true cosmological constant, apdp, <0, so
the rate of expansion of the Universe does not depend on th@at, just as in the modéb), it is possible to havépp| very
value of the field¢. Then, because of the Brownian motion small even if the constarjp,| is very large. Equatior{2)
of the field ¢ during eternal inflation, the field takes all pos- leads to the conditiofl7]
sible values with equal probability. In other words, the vol-
ume distribution of the field$ at thermalization does not |u|=10712M3|p,| Y2 9)
depend on the value of the field and takes the form

A. Prior distribution

Note that the bounds o and . do not correspond to a fine
dP, cde. (4)  tuning, but just to a strong suppression. Possible mechanisms

) o . that could naturally account for such small values of param-
When one takes into account that the potential is not entirelars have been discussed 17,18,20,25— 2]

flgt, Fhe 'situation.becomes more complicateq. The probability pe potential vanishes ak,=—2p, /12, and it can be

distribution acquires somé dependence, which may be sen- easily checked that in the vicinity of this point we have

sitive to a particular choice of the measure of probability in

an eternally inflating universe. This is a rather delicate issue, [V'(¢)|=s[1+O(pp/pa)], (10)

see, e.9[23,24), but the final results may not be very sensi-

tive to it because of the extreme flatness of the potentialsvheresis the slope ath= ¢, andpp~V(¢). Since the true

suitable for the description of dark energy. It has been arguedosmological constant is expected to be large in absolute

in [17] that for a particular choice of the measure, and provalue, we havey<p, , and thusv’(¢)~const in the range

vided that certain generic conditions are satisfied, the volumef interest, so the potential should be well approximated by a

distribution of the field¢ at thermalization preserves the linear function(1). Substitution into(5) yields

simple form(4) in the narrow range of anthropic intergs}.

We shall return to this issue in a bit more detail in the next dP, =dpp . (13)

section, where the case with several dark energy fields is o

considered. As we shall see, additional subtleties arise in thdthis means that all values of the dark energy density in the

context which require further discussion. For the rest of thig@nge(3) are equiprobable priori.

section, we shall assume that we are indeed in the situation A linear potential as a simple model for dark energy was

where the flat distributiort4) is valid. first conS|dere_d |r|_16]. Later_ it has been argued that thls form
From the end of inflation until the present time, the field jsOf the potential is generic in the narrow anthropic range

heavily overdamped and remains almost frozen, giving 516’1.8’.25- .

nearly time-independent contribution tp,. Thus, the It is instructive to compare these models to the more tra-

“prior” distribution for the dark energy density is given by ditional models of dark energy, with potentials of the type
e °Q or Q #, whereQ is the quintessence fiel®8]. Ge-

dpp nerically, the potential of the quintessence field contains also
Py e — . (5 a cosmological constanty, which, a priori, can be arbi-
V()] trarily large and can have either sign. Thus, these models do

not solve the cosmological constant problem. They also do
not solve the coincidence problem, unless one fine tunes the
V(d)=ad+p,. (6) parameters of the potential.

Since the quintessence potentials become asymptotically
Herep, is a true cosmological constant. It is important thatvery flat, the scalar fieldQ also experiences quantum fluc-
the cosmological constant can be removed f\d() by a  tuations during inflation. Therefore, in these simple models,
simple redefinition of the fieldp: ¢—¢d—p,/a. If the  one should expect that the typical value of the quintessence
slope of the potential is sufficiently sma#s in most of the field becomes indefinitely large in the process of eternal in-

Consider, for illustration, the simplest linear potential

models of dark energy flation. As a result, these models become completely indis-
a3 tinguishable from the theory with a simple cosmological
a=10"1M3, (7)  constantv,.
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One can solve all of these problems, including the cosmo-
logical constant problem, by adding the interaction of the
field Q with the curvature scalatRQ?, and by multiplying
the quintessence potential gy, where¢ is a massless field
[17]. In the simplest case=1 the potential of the quintes-
sence model428] in the regime whenQ changes very o
slowly starts looking very similar to our simple linear model
(1). Because of the new term ¢V, one can solve the cos-
mological constant problem in the same way as in the model
with the linear potentiall6]. The modified quintessence
model will have some features distinguishing it from the
model (1), but overall it will be much more complicated. 0.

=2

N Y 0N

o O O O

Qpo
B. Full distribution
. . ) FIG. 1. Comparison of anthropic predictions with observations.

The dIStI’.Il.()UtIOHP*(pD) qannot be |.nterpreted directly as The curves represent the boundaries of the G8&tid) and 95%
the probablllty for measuring a partlcular_ value @6. If  (gashegconfidence level regions predicted by the distributid®).
lpp| is too large, so that it dominates prior to the galaxyThe cross represents the values inferred from Wilkinson Microwave
formation epocttg~10' yrs, then it will preclude the very Anisotropy Probg WMAP) observations, with & error bars.
existence of observers, and hence will never be measured. In

order to implement this selection effect quantitatively, it 112

) . 5/1+x x dw
seems reasonable to assume that we are typical observers in F(x)=— f _ (14)
the ensemble of all observers in our thermalized region. The 6\ x owe(1+w)3?

probability for measuring a particular value pf can thus

be taken to be proportional to the number of civilizations inT¢ distribution (13) predicts that .33 y<6.0 with 68%
the Universe which measure that valuepgf, and we have  confidence and .0438y<16 at 95% confidence level. The

[8,16] observed value of, given by
AP(po)= | AMNe, (b MIN(pp M)P, (o). (12 F (/) |?
Yo=u | — o (15
oo(Mg)

Here, n(pp,M)dM is the number density of galaxies of

mass in the intervalM which will ever form in regions s thys expected to fall into these intervals at &nd 2r
where the dark energy density takes the valge andNci,  confidence levels, respectively. The boundaries of the inter-
is th_e number of civilizations per gal_axy. As a rough_appr0X|-Va|S define curves in th€y,-o, plane. These curves are
mation we may assume that the integral is dominated bypown in Fig. 1, where instead of using the present density
g|antzgaIaX|es like the Milky Way, with mas$1~Mg  contrastoy(Mg) on the galactic scale, we use the more fa-
~10”Mo, and thatN;, does not depend significantly on jjiar quantity 0. For a given value of)p,, o can be
pp- ForM=Mg, we may takeN,;, to be proportional 10 gpiained fromay(Mg) if the cosmological parameters such
the number of stars in the galaxy, or to the mass of the the spectral index of density perturbationghe dimen-
galaxy, N, (M)M. Thus, the probability for measuring a gjonjess Hubble constaftand the baryon fractios), are
particular value opy, is proportional to the fraction of matter nown. For these parameters we have taken the central val-
f(M>MG:pD) yvh|ch clusters in objects larger théng in ues given by WMAPn=.99h=.72, andQ,=.047 [29].
regions with this value opp . In the Press-Schechter ap- ajso shown in the same plot are the values inferred from
proximation for determining the fraction of clustered matter\y\ap for og andQ 5, which fall well within the anthropic
in a ACDM model, and restricting attention to positive val- predictions at the 95% confidence level. Given the simplicity
ues ofpp, one findg10,16 of the assumptions which have been made, the agreement
s between predictions and observations seems quite remark-
dP(pp)*f(M>Mg,pp)dpp>erfd.80y~~]dy. (13)  gple.

) ) S For negative values ofp, the structure formation pro-

Here, we have introduced the variablewhich is linearly  ceeds as usual until the timg~ (G|pp|) ~Y2 when the mat-

related to the dark energy density ter densityp,, becomes comparable tpp|. At the moment
3 when p,,=|pp|, the universe stops its expansion and starts

_ F(Q2po/Qmo) Po recontraction. The effect of a negatipg is in many ways
oo(Mg) oo’ similar to the effect of the slope, and to avoid duplication, we

shall not discuss it here. Interested readers are referred to
whereoo(Mg) is the present linearized density contrast onRefs.[15,16], where it is argued that the probability fpg
the galactic scaleQ) o+ Qpo=1, Qpg is the present value <0 is less or comparable to that pf,>0. In the following
of Qp in our local region, and the functidf(x) is given by  discussion we shall focus on the positive valuep f

063521-3



GARRIGA, LINDE, AND VILENKIN PHYSICAL REVIEW D 69, 063521 (2004

Ill. VARIABLE pp AND SLOPE asing the distribution towards values of the field where
In Ref.[16] two of the present authors considered severalv("oa) Is larger. This is simply because the volume of regions

L ) .__Where the potential is larger grows faster. This leads to a
predictions of the anthropic approach to the cosmologlcai Id-dependent distribution
constant problems, including the one we have just discussed® P '
in the previous section. Two other predictions were that the
equation of state should be that of a cosmological constant, dP, (¢)=F(e) I de,. (17)
w=-—1, and that the Universe would recollapse, but not a
before a trillion years. The latter predictions were based on . _ . i -
the premise that, in a generic model, the slow-roll condition" & region of §|zeA.<p n the field space, the Czhargcter|stlc
(2) is more likely to be satisfied by excess, by many orders ofit@ntum diffusion time is of the order,~(A¢)“/H", and
magnitude, rather than marginally. This seems clear in éhe time scale on which t_hle dlfferzentlal expa2n5|on becomes
model such ag8), where the slow-roll parameter is fixed, IMportant is 7qe~(AH) " *~HM/AV~HM/|[V,V|A¢.
and a strong suppression pfis required by the constraint Diffusion will make the functionF(¢,) very smooth(or
(9). If the suppression is due to some symmetry, then it i'early constanton scalesA¢ smaller than the smearing
natural to expect that this symmetry will make the potentialScale
flat by excess rather than marginally. Indeed, the symmetry
only knows about microphysics, and a marginal valu¢
~10*?M3|p,| 2 would itself represent a coincidengar
tuning) which requires separate explanation.

However, a marginal value of the slow-roll parameterWhich is obtained by settingye~ 7, [30]. On larger scales;

may be obtained more naturally in models where the slope iill generally have a nontrivial dependence @g.
itself a random variable, by invoking again anthropic selec- In the case we discussed in Sec. II, where there is a single
tion effects. It was pointed out ifL6] that if the prior distri- ~ dark energy fieldp, one can argue that since the anthropic
bution favors larges, then the most probable values sf range forpp is rather narrow, the corresponding rangegof
could be the marginal ones. However, the author$16f is also limited, and may easily be smaller than the smearing
argued(as we will show, incorrectlythat the prior distribu- range(18). This has been usdd6,17] in order to justify the
tion after inflation necessarily favors smaland concluded use of the flat distributiort4) under certain generic condi-
that the equation of state=—1 should be expected in the tions. However, this justification becomes less clear when we
general case. Dimopoulos and Thorfié8] suggested, on the have several dark energy fields, since the anthropic range
contrary, that the prior should generally favor largebut ~ does not necessarily correspond to a small compact region in
offered no explicit model to justify this claim. Here, we shall the field space, an# can vary significantly along the non-

examine this issue in detail in the context of a specificcompact directions. _ o
model. Not much can be said abo&tin general, since its form

depends on the overall shape of the inflaton and dark energy
A. Prior distribution potential.(For a given potentia!, anq vv_ith additional assump-
tions about the measurE,can in principle be calculated by
Avariable slope is easily obtained by considering a modekolving a suitable Fokker-Planck equation in the formalism
where we have several fields, instead of just one, so that of stochastic inflatiof22—24)). To simplify our subsequent
on the hypersurface/(¢1,¢, ...,¢n)=0 the gradient discussion, here we shall restrict ourselves to the case where
s(¢)=|VV| depends orp, . During inflation, quantum fluc- differential expansion is negligible in the field range of in-

tuations cause a random walk in field space which covers gerest. This is achieved for instance through a potential of the
distancg A p,|~H(Ht)Y2in time t, whereH is the inflation-  form

ary expansion rate. If we start with some probability distri-

butiondP, (¢,,t;) at some initial timet;, the random walk U o) =U()+T(h)V (), (19
causes “diffusion” of probability in field space, which tends

to flatten the distribution as inflation proceeds. Hence, if wewherey is the inflaton andp, are the dark energy fields. The
neglect the effect of the fieldg, on the expansion of the function f(¢) is normalized to unity in the thermalized
universe, we should expect that the volume distribution aphase, so that the potenti(¢,) becomes the dark energy

HMZ| 2

I
Psmear |Vzpv|

the time of thermalization is given by density. Iff(¢) is sufficiently small in the range af corre-
sponding to most of the inflationary phase, then the differen-
tial expansion can be neglected and the prior distribution will
d'P*((pa)OCI;[ dea- (16) take the form(4).

The minimal number of fields required to account for
In general, however, the potential of the dark energy fields/ariation of pp andsis n=2. In this cases=(V?1+ v?2)1’2
V(¢,) does contribute to the expansion, producing a nonand
trivial dependence dP, on ¢, . Even thoughV is very small
compared with the inflationary energy scéd least in the dP, xde,de,|J| " tdppds, (20)
anthropically interesting rangeit causes a “differential ex-
pansion” which may accumulate during many e-foldings, bi-where the Jacobiadis given by
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J IV.5) eV LV poV (21)
=——-=5 "¢
N e1,92) abT.atbete
andV ,=dV/dep,.
A simple example is given by
V=a¢p+U(x)+pa, (22

where¢,=(¢,x), ais a constant coefficient ang, is the

cosmological constant.” This model can be considered as

generalized combination of two models described by Ejs.
and(8). The cosmological constapt, can be removed from
this potential by redefinition of the fielgp, just as in the

model (6). Thus the probability to live in the Universe with
an effective cosmological constapt does not depend on

the true cosmological constapj, , so in the future we will
drop it in the expression fov.

PHYSICAL REVIEW D 69, 063521 (2004

These results are applicable for the investigation of the ef-
fective cosmological constant produced by the fiebdsnd y

if these fields satisfy the slow roll conditiori). The slow

roll conditions for the field®, just as in the mode(6), re-
quire thata<H3~10 *?%in units M ,=1, see Eq(7), and

the same logic as above leads us to expect this condition to
be satisfied by excess, that <10 % The slow roll con-
ditions with respect to the fielgy require a more detailed
investigation. One can show that for>1 and b>pp

a 10 '?°the slow roll conditions for the fielg are satisfied

at the present stage of the evolution of the Universe only if
U(x)<<pp. This makes the fielg, irrelevant and returns us
back to the one-field case, where we expeet —1. The
situation is more interesting faa, b=<pp~10~12% In this
case the slow-roll conditions for the fiejd are satisfied for

X" 1=b 110 %0 At the upper bound of this region, the
slow-roll conditions are only marginally satisfied, which

The properties of the corresponding probability distribu-leads to a substantial deviation wffrom — 1.
tion can be easily understood by expressing it in terms of the Different behaviors ofP, (s) can now be obtained with a

variablespp andy. This gives
dP, «dppdy, (23

where we have used the Jacobi&V,x)/d(¢,x)=dVIdp
=a=const. Thus, for a given interval gfy, all values ofy

suitable choice of the parameter For n—o, P, (s)xs™ 1,

so all logarithmic intervals o§ are equally probablgThis
distribution is also obtained if the power lawy" is replaced
by an exponential functioe®X.) For n>1, the distribution
favors large values o$, and if n is chosen close to 1, the
probability growth towards large can be made arbitrarily

are equally probable. If the range pfis unbounded, then the  tast With n>1, the prior distribution is non-integrable at
character of the distribution is determined largely by thelarges, but in the next section we shall see that an effective

asymptotic behavior ob(x). If U'(x) is a growing func-
tion of y, then at largey the slope iss~|U’(x)|, and the

probability is dominated by large values of the slope. For

example, in the simplest cas#( )= x> we havesx y, and
all values ofs are equally probablé&or sufficiently larges).
Alternatively, if U’ (x)—0 at|x|—c, then the valus=a is
favored.

For a potential of the form

b
V=a¢+ ﬁ)(“, (24

wherea, b andn are constants, the slope is given by

S:(a2+ bZXZ(nfl))lIZ, (25)
and the JacobiafRl) is
JocXZ“*?’/socs*l(sz—az)(Z”*3)’2(”*1), (26)

Note that this expression depends onlyspibut not onpp,
and thus the distribution factorizes

dP, =P, (s)dsdpp, (27

with

2)=(2n-3)/2(0-1)

P, (s)xs(s’—a (29

Then, away from a small range efnear zero, the distribu-
tion (28) has a power-law form

P, (s)oxcs™ ts¥(n—1), (29

cutoff is introduced by the galactic density factor
n(pp,Mg), so the full distribution(12) is integrable.

For readers who are concerned about the appearance of
non-integrable distributions, even at an intermediate stage of
the analysis, we note that the divergence comes fypm
—oo and does not occur in models where the potential has
the form (24) only in a finite range ofy. In fact, Eq.(24)
with n=2 can be thought of as an expansion of a more
general potentia(22) in powers ofy near an extremum of
U(x)-

Finally, for n<1, small values ofs are favored, and
again, by choosing close to but below 1, the distribution
can be made arbitrarily steep. In this case, the distribution
(28) is non-integrable ats=a. This singularity is not
smoothed out by the galactic density factor, and the predic-
tion of models withn<1 is thats=a with probability P
=1. Sincea is expected to be very small, this prediction is
observationally indistinguishable froe=0. Once again, the
divergence can be cut off if the power-law form of the po-
tential (24) applies only in a finite range of.

B. Galactic density

The probability distribution for measuring given values of
pp andsis given by a straightforward generalization of Eq.
(12),

dp(pD ,S)OCJ dMNCiU(pD 1SiM)n(pD 1SIM)dP*(pD ,S).
(30)

If the prior distributiondP, favors small values o§, then
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we expect the fields, to be deep in the slow roll regime. In the clustering hierarchy only speeds uptaity, and quies-
this caseN¢;, andn are practically independent sfand we  cent disks which may be necessary for the evolution of frag-
recover the results of Sec. Il. ile creatures like ourselves may never be formed.

Suppose now that the prior favors large valuess.ofo This discussion suggests that fiy<ts, the fraction of
simplify the discussion, we shall assume that the prior distriimatter clustered in galaxies can be estimated as

bution has a factorized forrf24) with a power-law distribu-
tion for s, f(pp,S;M>Mg)~f(pp,M>Mg) (tp<ty), (33

P, (s)=sP, (31) wheref(pp ,M>Mg)=f(rp,0M>My) is the same which
we used in the previous section, which can be read off from

B>—1. For potentials of the forn24), 3 is simply related (13). In the opposite casép>ts, we expect that the density
to the power indexn, B=(2—n)/(n—1). (Note that3=0  Of habitable galaxies does not exceed the density of galactic-
for n=2, which is arguably the simplest choic@s before, ~ Size halos that collap_sed prior to. To estimate this density,
we shall assume that the integral (80) is dominated by ~We shall need an estimate tf.
giant galaxies of maslél =M. Assuming also that for such ~ The field equation fok has the form
galaxies . . .
pt+3(ala)p=s, (34)

N S\ M)=Muy; ,S), . .
civ(Po )=Mveiv(pp.S) wherea(t) is the scale factor. As long as the dark energy is

. - . . H 2/3 H H
where v, is the number of civilizations per unit mass, we Subdominant, we hava(t)et*, and the solution of34) is
have o=o¢+%st?, where we have imposed the initial condition

¢—0 att—0. The dark energy density is then

dp(les)EP(pDrs)depDOCVCiv(pD!S) 1 1
xf(pp,s;M>Mg)sPdsdpp.  (32) pD(t)=§¢2—s<p=pD<°>— §s2t2. (35)

I—!ere,f. is the fraction of _matter yvhich clusters in galaxie; of Assuming first that <ty ,
size bigger tharM . This fraction depends on the relative
magnitude of three characteristic times: the galaxy formatio
time scaletg~10% yrs, the onset of vacuum-like dark en-
ergy dominationtp~(Gpp) Y2, and the recollapse time te~ (M, /)2 (36)
scalet due to the slope of the potentiale shall estimateé,

shortly). If sis so small thatt is the largest of the three Alternatively, if the recollapse occurs after dark energy
times, then the growth of density fluctuations effectivelydomination, then, forpp>0, a(t)*xexpHpt) with Hp
halts attp, and the comoving density of galaxies can be~(Gpp)"% (Note that forpp <0, the regimets>ty does
estimated as in Sec. II. No matter how small, the slope everfot exist) The solution of Eq.(34) is then ¢=¢®
tually causes the field to roll down to negative values of thet (s/3Hp)t, and the dark energy density is

potential, ending in a big crunch. In the contracting phase,
the density fluctuations start growing again, and one might
think that any galaxies that failed to form &ty would
form then. However, “galaxies” that form at this epoch are _ ) . )
likely to be very different from what we call “galaxies” now, 1his équation applies as long ag remains nearly constant.
At to<t<t,, the dark energy density remains nearly con-Recollapse begins vyhen the second term in(Bd. becomes
stant, while matter density,, decreases exponentially with comparable to the first,

time, so att~t; it is suppressed by an exponential factor.
Moreover, in the course of the recollapse, the energy of the

we can disregarg® , and the
recollapse begins when the second term(38) becomes
r?:omparable to the matter densjiy,~ 1/Gt?,

S2
_ (0)_
po(t)=pp 3HDt- (37)

312
Hppp Pp

scalar field grows much faster than that of matter, apéiop 2 Mt 39
is further suppressd@®1]. Hence, the contribution of nonrel-
ativistic matter(like CDM or baryon$ to the mass of bound The boundary between the two regimes is
objects formed during the recollapse is utterly negligible. _
If tp is the largest of the three times, then the exponential ts~to:  S~pp/My. (39)

suppression period is absent, but the rest of the above di
cussion still applies, and fde-tg the universe becomes sca-
lar field dominated. Even at the onset of recollagset,
galaxies as we know them may not be formed. In our part o
the Universe, structure formation effectively stoppedt at
~tp, and the existing structures evolved more or Ies_s in f(pp,s;M>Mg)=f(sM,,M>M¢) (tp>ty). (40)
isolation. This may account for the fact that disks of giant

galaxies take their grand-design spiral form only relativelyln the estimates below, we shall use the value that saturates
late, atz~0.3. On the other hand, in a recollapsing universethis inequality.

?\Tow, it follows from Eq.(36) that the matter density &f is
pm(ts) ~SM,, assumingg=<tp . This suggests that the frac-
ion of matter in habitable galaxies in this regime is bounded
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We note finally that the dark energy densjiy in Eqs. Our current knowledge about the number of st&pis
(30), (32 should be understood as the valuepgfimmedi-  very poor, and opinions differ quite vastly. Car{&3] has
ately after inflation, that is, the quantity denoted 4’ in  argued that the effective upper bound to the total time bio-
Egs.(35), (37). logical evolution can proceed on Eart, is likely to be in
the range,—t.<t./k, wheret.~t, is the actual time intel-
ligent life has taken to develop on Earth. This formula re-
. ... flects the fact that if many unlikely steps are necessary, then

To estimate the dependence of the number of civilizationgye are likely to have exhausted most of the available time
per unit mass/¢;, on pp ands, we now have to consider the pefore the emergence of intelligent life.Kis large, Carter’s
role of two other characteristic time scalelg~(2-3)  formula seems to indicate that some catastrophe is awaiting
X 10" yrs—the time scale on which most of the main se-right around the corner which will erase life from Earth
qguence stars believed to be suitable for life explode as regithin a time scale of ordet, — t,<t, . Carter rejected this
giants(see[11,32 for more discussion and referengeand possibility, and concluded tha>2 was not very likely.
t,—the characteristic time needed for intelligent observers tq4owever, Barrow and Tipleli5] have argued that there is no
evolve.t, is not likely to be much smaller thag , since then  reason to reject a relatively imminent doom caused, for in-
it is not clear why it took so long for intelligence to develop stance, by some instability in the evolution of the Earth’s
on Earth. Cartef33] has argued thai>t, , since the coin-  atmosphere. This may rendgy—t, much shorter than, ,
cidencet,~t, is unlikely, considering that the evolution of and in this case there is no reason to expectktstould be
life and the evolution of stars are governed by completelysmall. Cosmic doom of the type we discuss in this paper is
different processes. Note, however, that some seemingly URret another way of obtainint, —te<t, , sincet, <t andts
likely coincidences may occur due to anthropic selectiongan in principle be smaller thary . Qualitatively, however,
tg~1tp being one example. Livif32] has suggested a simple oyr results will not depend strongly dg and for the rest of
model illustrating howt,~t, could arise. In any case, it the discussion we shall just take= 1.
seems reasonable to assume that The right-hand side of Eq43) takes different forms, de-

t =t (41) pending on t_he relative magnitude tof,tp andt, . Fortg
1= % >t,, v, IS independent o$ and pp ,

C. The number of civilizations

The timet, exceeddg by only a factor~3, but it will help Ve, ~Const (t>t,). (45)
to clarify the following discussion if we proceed as though e s
t,>tg. This is justified in part by the fact that we will be Fortg<t.<t, , v.,*ts, and using Eqs(36),(38), we have
comparing densities, which depend quadratically on time.

Observers can exist only in the time interval vein®S M2 (<t ,tp), (46)

to<t<min{ts,t,}, (42) Vi, PpaPsT?  (tp<te<t,). (47)

and since according to E@41) this interval is shorter than The boundaries between the different regimes are given by
t,;, the numbew,;, is suppressed by a certain factor. Assum-Eg. (39) and by
ing that the origin of intelligent life is due to a single and ) )
very infrequent random event which has some constant prob- ts~ty  (pp<1Gty): s~Mylty, (48)
ability to occur per unit time, we have
te~t,  (pp>1GEE): s~pdi(Myt,) Y2 (49
veip e Mints, ty } —tg. (43
The corresponding areas in thepp plane are sketcheghot
In practice, many steps are necessary for the development & scale in Fig. 2. In our approximation, the factar;,
intelligent life, some of them occurring much more fre- vanishes fot;<ts. (In a more realistic treatment, the den-
quently than others. Assuming that, out of the total numbesgity of galaxies would not strictly vanish for small values of
of steps, there ark of them with typical frequencies smaller ts. Galaxies would still be formed at high peaks of the den-
than 1fmin{t.,t,}—tg], then Eq.(43) should be modified sity field, but their number density would be exponentially
to suppressedl.The boundants~tg is homotetic to the bound-
ary ts~t, in the s-pp plane. Fors>pp/Mp it simply cor-
Veip® (Min{tg,t, 1 —tg)k. (44  responds to the vertical line @~Mp/t3, and for s
<pp /My it follows the curve
Equation(44) assumes also that the steps which are needed
to generate intelligence will produce the desired effect re- s~p%’4(MptG)*1’2. (50
gardless of their time separation. This will not be the situa-
tion if there are relatively frequent catastrophes which occuihe behavior ofv;, as a function opp andsiis illustrated
at intervals shorter than (nfity,t,}—tg), and which are in Fig. 3. In this and the following figurepy, is expressed in
serious enough to erase memory of any previously achievednits of pg=pn(tc)=(4/3)M gtgz, where tG=trchr_e3c/2-
steps. In this case, a linear expression such as(&).is  Here, o, is the density contrast on the galactic scale at the
more appropriate. time of recombination. Roughly speakingg is the matter
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PD
ts ~ by ts~tg ts~tip
2 /42
Mp/te ¢
v
Vejp = 0

S FIG. 4. The distributiorP(s,pp) as a function ot andpp, for

Mp/t? Mp[t%, B=0 [which corresponds to=2 for a dark energy potential of the
form given in Eq.(24)]. As in Fig. 3, pp is in units of pg. The
FIG. 2. Regions in thes-pp plane, illustrating the different be- variabley which we used in Sec. Il is the same @s/pg .
haviors ofv;, with s.

region IV P~0. The distribution for =0 [n=2 in Eq.
(24)] is illustrated in Fig. 4. The “logarithmic” distribution
ppP(pp ,S) is illustrated in Figs. 5 and 6, fg8=0 andg
=2, respectively.

For —1/2<B<1, the distributiorsppP(pp ,S) is peaked
along the line separating regions | and (Which corre-
sponds td,~t, ). As we cross this “mountain range,” mov-
D. Full distribution ing towards larger values &f the probability function drops

We can now outline the general features of the full distri-in region Ill. The range terminates at poitwhere regions
bution (32). The effect of the galactic density factor |-Ill meet. For—1<pg<—1/2, the range continues beyond
n(pp,S,Mg) is, roughly, to cut off the distribution outside POINtA along the boundary between regions | and II.
the square regiompp= 1/Gté, ssMp/té. (These bound- The _probab|I|ty distribution forpp can be obtained by
aries correspond top~tg and t~tg, respectively. The INtegrating oves,
fall-off, however, is rather mild, and(pp,S,Mg) extends
significantly outside the square. The cutoff is sharper irsthe P(pp)= f P(pp ,s)ds. (51)
direction, due to the rapid decline of;, with s. In region |
PocsP, in region 1Pxsf~(2) in region Il Pxsf~2, and in

density at the time when the galaxies form, sitgeis the
time it takes for the linearized density contrast to becom
equal to 1 in the absence of a dark energy component. Wit
these definitions, the variablewhich we used in Sec. Il is
the same app/pg .

The character of this distribution depends on the valug.of

Veiv

FIG. 3. Sketch ofy., as a function ok and pp . For definite-
ness, we have useg =3tg. The slopes is in units of pg /M, FIG. 5. The distributiorsppP(S,pp) as a function ok andpp ,
whereaspp, is in units of pg. for 8=0 (i.e. n=2). Same conventions as in Fig. 4.
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0.01 0.1 1 10 100

FIG. 7. The distributiornppP(pp) as a function ofpp /pg for
different values ofB. The solid line represents the standard case
FIG. 6. The distributionsppP(s,pp) for =2 (i.e. n=4/3).  Wherepp is a true cosmological constant. This is recovered in the

The rest of parameter values and conventions are as in Figs. 4 a§@S€ thaig=—1, since in this case the prior distribution has a
5. non-integrable peak &=0, where the slope of the potential van-

ishes. Also plotted are the casgs —.9,—.5,0,.5,1,2(dashed lines,

o where higherB corresponds to longer dasheShe peak of the
For B~—1 or smaller, the prior distribution is peaked 0N distribution shifts to highepp as g is increased.

a very narrow strip nea=0 in thes-pp plane. This strip is

well within the flat p|ateau imciu at low s (see F|g 3 In <.48. Second, we should take into account that the prediC'

this case, integra’[ion ngjust produces a constant factor tions represented in FlgS 1 through 8 refer to the value of the

independent opp, and the posterior distribution coincides dark energy density, at some very early time, when the

with the d|str|but|0n’]3(pD) which is obtained for a true cos- scalar field is still frozen by the cosmic eXpanSion. For val-

mological constants=0), given in(13). For 8 in the range  Ues 0fs=pg/Mp, the initial value ofpp may be larger than

—1<B=1, but not too close to-1, higher values os the value at the present time by a sizable fraction. For in-

come into play. As shown in Fig. 3, the plateauig, is stancg, if the slops is such thgt the kinetic and potential

broader in thes direction at highpp, and this feature is €nergies of the dark energy field are approximately equal

inherited by the functiorP(s,pp) (shown in Fig. 4 forg today (Whl_ch may be conS|d(_ered a rz_ither extreme case, al-

—0). Thus, the integration ovevbiases the distributiosl) ~ though still marginally consistent with observatioft])

towards largepp, , relative to the case of a true cosmological ©ne finds that the dark energy density at very early times had

constant. This effect gets stronger @sncreases. to be Iarg_er by roughly a factor o_f 2. Hence, the initial value
Finally, for 8> 1, the distribution is pushed to the largest ©f Pp/pc in our region of the Universe may well have been

possible values of. For =2, the distributiorspp (s, pp) anywhgre in the _range_.&ysl. The upper bound in this

is plotted in Fig. 6. The probability is concentrated betweerf@nge is compatible with a value =1 (but not much

the curveste~t, andts~tg. If the value of 8 is further ~ highep at the 2-o level.

increased, the distribution gets packed more towards

~tg, corresponding to Eq50). Larger 3 means that larger

sis favored by the prior distribution, and from EO0), this

means that the posterior distribution is peaked at even large 1.5

pp - The logarithmic distributiorvyP(pp) is shown in Fig.

7, for different values of3, ranging from—1 to 2. The peak

is indeed found to shift to larger values @f as we increase g

B

Figure 8 shows the b= and 2o bounds on the variable
y=pp/pg as predicted by Eq(51), as a function of the -0 P
parameterB in the prior distribution. The central value in- )
ferred from WMAP observations igy,~0.1, which forg>
—.5 lies outside the 2r confidence level region. However, 0.1 1

t".VO things shoulq be noted beforg jumping to conclusions. FIG. 8. 1 (solid) and 2o (dashed bounds on the value of the
First of all, there is a large uncertainty in the measured Va'“@ariabley=pD Ips, as predicted by Eq51), as a function of the

of y in our region of the universe. For instance, assuming thgarameters in the prior distribution. Like in the previous figures,
WMAP central values for the spectral index=.99, the di- |, "is the dark energy density at very early times, angis the

mensionless Hubble constam-.72 and the baryon fraction matter density at the time of galaxy formation. The central value
(,~.047, and taking into account the-2r error bars for inferred from WMAP observations ig~0.1, assuming that the
og and{)p (depicted as a cross in Fig),we find from Eq.  dark energy density has remained approximately constant through
(15) that the observed value oflies in the range .04y,  cosmological evolution up to the present time.

1
.5
0
5

pp/pc
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Given the rough nature of our model and the uncertaintieparameter in the dark energy equation of state. If the values
in the data, our conclusions must be regarded as very pref these parameters turn out to be different, the curves in Fig.
liminary. Nevertheless, our results do suggest that low valueg may shift significantly, putting some pressure on the an-
of B=—0.5 should give a better agreement with the datathropic explanation.

This leaves two possibilities: eithgg<<—1, in which case Also, we must consider the fact that we are quite ignorant
the probability is sharply peaked s#0, and all predictions  about the conditions which are needed for the emergence of
of Ref.[16] for models with a fixed slope remain in force, or observers, an obvious drawback of the anthropic approach.
—1<p=1, and then the recollapse is most likely to occur atHowever, if we can encode some of this ignorance in a few
ts~t, . Sincet, is comparable to the present age of theunknown physical parameters, we are in a position where we
Universe, we can already expect to observe the signs of thgan predict something about the values of such parameters.

slowdown of the cosmic expansion. By comparing the theoretical anthropic predictions with ob-
servations, we can find best fit estimates for the parameters,
IV. CONCLUSIONS which may hopefully be confirmed some day by independent

means. We have assumed throughout this paper that observ-

The possibility that the smallness of the observed effecers emerge predominantly in giant galaxies such as the Milky
tive cosmological constant, as well as the puzzle of the tim&Vay. This may be a reasonable assumption, but it is not an
coincidence, may be attributed to anthropic selection effectestablished fact by any means. Had we assumed that observ-
is rather tantalizing. To implement this idea, one assumeers emerge predominantly in smaller galaxies, which form
that pp is a random variable which takes different values inearlier on, the agreement with the data would become much
different parts of the univergghis could be due to stochastic worse. This reasoning was used in Réf] to argue that the
quantum processes which took place during inflgtiddb-  conditions for observers to emerge will be found predomi-
servers cannot live in regions whepg is too large, since nantly in giant galaxies which complete their formation at
galaxies cannot form there, so we should not be surprised agdshift of orderz~ 1, but not much higher. This prediction
the smallness of the observeg . Also, a simple analysis seems hard to check at present, but hopefully much more
suggests that most observers will find themselves in regionwill be known in the not so distant future about the proper-
which marginally allow the formation of suitable structuresties of galaxies to confirm it or dispel it.
(e.g. galaxies of the type where observers are most likely to In this paper we have considered models where the dark
emerge. This would explain the time coincidence. energy is due to the potential energy of several scalar fields.

A pressing question regarding this scenario is whether it i$n the case of a single field, one assumes that the potential
possible at all to check its validity. In R€f16], two of the  has a simple zero ab= ¢, with nonvanishing slops (ob-
present authors ventured a few generic predictions of theervers necessarily measure field values closggtodue to
anthropic approach to the cosmological constant problemsnthropic selection If the slope is such that the slow-roll
In particular, following up on the work of Martel, Shapiro condition(2) is satisfied by excess, then the equation of state
and Weinberd10], it was argued that the variabjg defined  will be indistinguishable from that of a true cosmological
in Eqg. (15) should bey,>.07 with 95% probability. Assum- constant. But if(2) is satisfied only marginally, then there
ing a cosmic background explorer normalized scale invarianvill be substantial evolution of the equation of state param-
spectrum of density perturbations, together with existing eseter w(z) with redshift. In models where the dark energy
timates for the baryon density, the anthropic argument sugfield has several components, both the dark energy density
gested that the vacuum energy density parameter should g and the slope of the potential become random variables
somewhat larger thaf)lp=.7, or that the dimensionless which take different values in distant regions of the Universe
Hubble rate should be somewhat smaller than.7. In Sec.  (separated by distances larger than the present Hubble ra-
Il we have updated the comparison of predictions with ob-dius). The functionw(z) (which is entirely determined byp
servations by using the cosmological parameters as obtainethd s) will therefore be different in each one of these re-
from WMAP. Figure 1 shows confidence level plots fop gions.
andog, corresponding to the1o and 2— ¢ anthropic pre- It was argued in Ref.16] that in the case of a single dark
dictions, together with the values inferred from WMAP. energy field, the slow roll condition€) were likely to be

The agreement with current data is rather encouragingsatisfied by excess, by many orders of magnitude, rather than
and it will be interesting to see how it evolves as the level ofmarginally. This leads to the predictions that the equation of
precision increases. Note that the confidence level regions istate of dark energy ipp=—pp With very high accuracy,
Fig. 1 are rather broad. This corresponds to a genuine largand that the local universe will re-collapse, but not before
variance in the cosmic distribution @f; . Hence, one may another trillion years. It was also claimed that in generic two
be led to the conclusion that future observations will notfield models one should expect that small slopes would be
bring much excitement, since the overall picture will remainfavored by the prior distribution, leading to the same predic-
qualitatively the same even if the observational error barsions as in the case of a single field. However, the latter
shrink by a large factor. Nevertheless, we should recall that aonclusion was based on an incorrect analysis of the prior
number of assumptions went into Fig. 1. For instance, walistribution, which we have amended in the present paper.
assumed that the spectral index for scalar fluctuations, the The prior distribution for the fields at the moment of ther-
Hubble constant and the baryon fraction are given by themalization can be obtained in principle from the inflationary
WMAP central values. We have also used-—1 for the  dynamics. In the case of a single field, the anthropically al-
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lowed range(3) corresponds to a rather limited region in prior favors a large slope. In this case we find that the Uni-
field space, and one can argueder rather mild assump- verse is likely to turn around into contraction on a time scale
tions) that the prior distribution of the field will be almost flat comparable to the lifetime of the Sun. This is a quite exciting
within that range[17,25. On the other hand, in the case prospect since it may lead to a potentially observable time-
where the dark energy potential involves several fields, thelependent equation of stdt&5,18,19,21
range(3) may correspond to a non-compact region in field We finally comment on the string theory motivated pic-
space, and the prior distribution may be slowly varying in theture of a “discretuum” of flux compactifications with differ-
non-compact directions. In this situation, the determinatiorent values ofpp [13]. Recent work indicates that string
of the prior distribution from first principles is technically far theory does admit vacua with positiyg, [34] and that the
more involved(and may require in general some further as-corresponding spectrum pf, may be rather deng85], sug-
sumptions about the choice of the measure in an eternallyesting the possibility of anthropic selectipt3,36,37. We
inflating universg¢ Nevertheless, as argued in Sec. Ill, a flatnote, however, that a dense spectrum of possible values for
distribution in field space can still be expected provided thap, is only a necessary, but not a sufficient condition for
the dark energy potential is sufficiently flat during inflation, explaining the value we actually observe. The probability
so that its effect on the expansion can be completely nedistribution P(pp) depends on the prior distribution
glected. In this situation, we have shown that there is a clasg, (pp), and in order to obtain reasonable agreement with
of models where the prior distribution favors small slofies  observations, the prior should not be too different from the
which case the conclusions ¢16] hold) but there is an flat distribution (4). However, nearby values gy in the
equally broad class of models where large values of the slopgiscretuum picture correspond to very different values of the
are favoreda priori. fluxes. The parts of the Universe with different valuespgf

The measured value sfis restricted by anthropic consid- will have very different evolution histories, and one might
erations, since if it is too large, the local region of the uni-expect that their probabilities will also be rather different.
verse re-collapses before any observers have time to emergene arguments we gave in Secs. | and lll A for a flat prior
In Sec. Ill we have attempted to quantify this selection ef-distribution do not apply to this case. Calculation of prob-
fect, and we have obtained posterior probability distributionsabilities in the discretuum remains an important problem for
for pp ands. The problem of estimating the abundance offuture research.
observers in regions with given values@f ands has been
split into two parts. In Sec. Ill B we have discussed how the
abundance of suitable galaxies is determined as a function of
pp ands, and in Sec. Il C, we have analyzed how the num- The work by A.L. was supported by NSF grant PHY-
ber of civilizations may depend on these parameters. There 3244728 and by the Templeton Foundation Grant No. 938-
of course much room for improvement in these estimatesCOS273. The work by J.G. was supported by CICYT Re-
but even at the rough level at which they stand, they dsearch Projects FPA2002-3598, FPA2002-00748, and
illustrate the fact that a posterior distribution which favors aDURSI 2001-SGR-0061. The work by A.V. was supported
marginal slope can easily be obtained in models where thby the National Science Foundation.
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