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Dark energy equation of state and anthropic selection
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We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude
and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects.
We find that, in some models, the most probable values of the slope are very small, implying that the dark
energy density stays constant to very high accuracy throughout cosmological evolution. In other models,
however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied,
leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter
case, the effective equation of state varies appreciably with the redshift, leading to a number of testable
predictions.
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I. INTRODUCTION

It has long been suggested that both the old fine-tun
problem of the cosmological constant as well as the puz
of the time coincidence may find a natural explanat
through anthropic selection effects, in scenarios where
dark energy densityrD is a random variable@1–16#. This
possibility can be easily realized in the context of inflatio
ary cosmology, where the local value ofrD may be deter-
mined by stochastic quantum processes. These proce
may lead to rather different values ofrD in distant regions of
the Universe, separated by length scales much larger tha
present Hubble radius.

A simple implementation of this idea is obtained@6,17# by
assuming that the dark energy is due to a scalar fieldf
~different from the inflaton field! with a very flat potential
V(f), which has a simple zero atf5f0 with a nonvanish-
ing slopes[uV8(f0)u:

V~f!52s~f2f0!1O@~f2f0!2#, ~1!

where we have assumed for definiteness thatV8(f0),0. All
that is required is that the slow-roll conditions

uV8u&H0
2M P , uV9u&H0

2 ~2!

are satisfied for values of the potential in the relatively n
row range

uVu&103M P
2H0

2 . ~3!

HereH0 is the present expansion rate andM P is the reduced
Planck mass, and we are adopting the convention that
contributions to the vacuum energy~such as a true cosmo
logical term! are included in the definition ofV(f). Larger
values of uVu are uninteresting, since they would severe
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interfere with structure formation and with the emergence
suitable observers. During inflation, the value of the sca
field f is randomized by quantum fluctuations, and after
flation it stays almost frozen due to the flatness of the pot
tial. Thus, the local value of the dark energy densityrD
'V(f) will vary from place to place, but it will stay almos
constant in time. In this situation, the probability for meas
ing a particular value ofrD is determined by a combinatio
of inflationary dynamics and anthropic selection effects.
we shall see in the next section, this approach to the cos
logical constant problems shows remarkable agreement
observations, even with the crudest of assumptions.

The purpose of the present paper is to extend this ana
to scenarios where the slopes of the potential is itself a
random variable. LikerD , the measured value of the slop
could be determined by a combination of inflationary d
namics and anthropic selection effects. A very large slo
would cause a big crunch much before any observers
develop. If the distribution which is obtained after inflatio
favors large values ofs, then a value of the slope whic
marginally satisfies~2! could be the most probable one
observe @15,16,18#. Marginal slow-roll entails the conse
quence that the effective equation of state depends appr
bly on redshift,pD5ws(z)rD , through a functionws which
contains a single parameter: the value of the slopes in our
region of the Universe. Thus, the equation of state~and its
time evolution! may ultimately be determined by the cond
tion that galaxy formation and the emergence of suitable
servers is marginally allowed before the big crunch happe
Some observational signatures of models with a marg
slope have been discussed in@15,18,19,21#.

In Sec. II we review the case of variablerD at fixeds. In
Sec. III we discuss two-field models of dark energy, whe
both rD and s are random variables. Our conclusions a
summarized in Sec. IV.
©2004 The American Physical Society21-1
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II. VARIABLE rD

A. Prior distribution

As mentioned in the Introduction, a theory with variab
rD can be obtained from a scalar field with a very flat p
tential, as in Eq.~1!. During inflation, the fieldf undergoes
a random walk of step sizedf;H for each time interval
dt;H21, where H is the expansion rate during inflation
The steps are taken independently on each horizon volu
and this leads to spatial variation off. The potential is very
flat, and appreciable spatial variation ofrD after thermaliza-
tion will only occur on scales much larger than the presen
observable Universe.

In the limiting case when the potential is absolutely fl
the rate of expansion of the Universe does not depend on
value of the fieldf. Then, because of the Brownian motio
of the fieldf during eternal inflation, the field takes all po
sible values with equal probability. In other words, the v
ume distribution of the fieldf at thermalization does no
depend on the value of the field and takes the form

dP* }df. ~4!

When one takes into account that the potential is not enti
flat, the situation becomes more complicated. The probab
distribution acquires somef dependence, which may be se
sitive to a particular choice of the measure of probability
an eternally inflating universe. This is a rather delicate iss
see, e.g.@23,24#, but the final results may not be very sen
tive to it because of the extreme flatness of the potent
suitable for the description of dark energy. It has been arg
in @17# that for a particular choice of the measure, and p
vided that certain generic conditions are satisfied, the volu
distribution of the fieldf at thermalization preserves th
simple form~4! in the narrow range of anthropic interest~3!.
We shall return to this issue in a bit more detail in the n
section, where the case with several dark energy field
considered. As we shall see, additional subtleties arise in
context which require further discussion. For the rest of t
section, we shall assume that we are indeed in the situa
where the flat distribution~4! is valid.

From the end of inflation until the present time, the field
heavily overdamped and remains almost frozen, giving
nearly time-independent contribution torD . Thus, the
‘‘prior’’ distribution for the dark energy density is given by

dP* }
drD

uV8~f!u
. ~5!

Consider, for illustration, the simplest linear potential

V~f!5af1rL . ~6!

HererL is a true cosmological constant. It is important th
the cosmological constant can be removed fromV(f) by a
simple redefinition of the fieldf: f→f2rL /a. If the
slope of the potential is sufficiently small~as in most of the
models of dark energy!,

a&102120M p
3 , ~7!
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then, according to Eq.~2!, the field f practically does not
change during the last 1010 years, its kinetic energy is very
small. Therefore at the present stage of the evolution of
Universe its total potential energyV(f) acts nearly like a
cosmological constant. Independently ofrL , this effective
cosmological constant can take all possible values, includ
the presently observed extremely small valueL
;102120M p

4 .
Similarly, one may consider a model

V~f!5
1

2
m2f21rL . ~8!

Here rL is a true cosmological constant, andm2rL,0, so
that, just as in the model~6!, it is possible to haveurDu very
small even if the constanturLu is very large. Equation~2!
leads to the condition@17#

umu&102120M P
3 urLu21/2. ~9!

Note that the bounds ona andm do not correspond to a fine
tuning, but just to a strong suppression. Possible mechan
that could naturally account for such small values of para
eters have been discussed in@17,18,20,25–27#.

The potential vanishes atf0522rL /m2, and it can be
easily checked that in the vicinity of this point we have

uV8~f!u5s@11O~rD /rL!#, ~10!

wheres is the slope atf5f0 andrD'V(f). Since the true
cosmological constant is expected to be large in abso
value, we haverD!rL , and thusV8(f)'const in the range
of interest, so the potential should be well approximated b
linear function~1!. Substitution into~5! yields

dP* }drD . ~11!

This means that all values of the dark energy density in
range~3! are equiprobablea priori.

A linear potential as a simple model for dark energy w
first considered in@6#. Later it has been argued that this for
of the potential is generic in the narrow anthropic ran
@16,18,25#.

It is instructive to compare these models to the more
ditional models of dark energy, with potentials of the ty
e2cQ or Q2b, whereQ is the quintessence field@28#. Ge-
nerically, the potential of the quintessence field contains a
a cosmological constantV0, which, a priori, can be arbi-
trarily large and can have either sign. Thus, these models
not solve the cosmological constant problem. They also
not solve the coincidence problem, unless one fine tunes
parameters of the potential.

Since the quintessence potentials become asymptotic
very flat, the scalar fieldQ also experiences quantum fluc
tuations during inflation. Therefore, in these simple mode
one should expect that the typical value of the quintesse
field becomes indefinitely large in the process of eternal
flation. As a result, these models become completely in
tinguishable from the theory with a simple cosmologic
constantV0.
1-2
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One can solve all of these problems, including the cosm
logical constant problem, by adding the interaction of t
field Q with the curvature scalar,jRQ2, and by multiplying
the quintessence potential byfn, wheref is a massless field
@17#. In the simplest casen51 the potential of the quintes
sence models@28# in the regime whenQ changes very
slowly starts looking very similar to our simple linear mod
~1!. Because of the new term;fV0, one can solve the cos
mological constant problem in the same way as in the mo
with the linear potential@6#. The modified quintessenc
model will have some features distinguishing it from t
model ~1!, but overall it will be much more complicated.

B. Full distribution

The distributionP* (rD) cannot be interpreted directly a
the probability for measuring a particular value ofrD . If
urDu is too large, so that it dominates prior to the gala
formation epochtG;1010 yrs, then it will preclude the very
existence of observers, and hence will never be measure
order to implement this selection effect quantitatively,
seems reasonable to assume that we are typical observe
the ensemble of all observers in our thermalized region.
probability for measuring a particular value ofrD can thus
be taken to be proportional to the number of civilizations
the Universe which measure that value ofrD , and we have
@8,16#

dP~rD!}E dMNciv~rD ,M !n~rD ,M !dP* ~rD!. ~12!

Here, n(rD ,M )dM is the number density of galaxies o
mass in the intervaldM which will ever form in regions
where the dark energy density takes the valuerD , andNciv
is the number of civilizations per galaxy. As a rough appro
mation we may assume that the integral is dominated
giant galaxies like the Milky Way, with massM;MG
;1012M ( , and thatNciv does not depend significantly o
rD . For M*MG , we may takeNciv to be proportional to
the number of stars in the galaxy, or to the mass of
galaxy,Nciv(M )}M . Thus, the probability for measuring
particular value ofrD is proportional to the fraction of matte
f (M.MG ,rD) which clusters in objects larger thanMG in
regions with this value ofrD . In the Press-Schechter ap
proximation for determining the fraction of clustered mat
in a LCDM model, and restricting attention to positive va
ues ofrD , one finds@10,16#

dP~rD!} f ~M.MG ,rD!drD}erfc@ .80y1/3#dy. ~13!

Here, we have introduced the variabley which is linearly
related to the dark energy density

y5FF~VD0 /Vm0!

s0~MG! G3 rD

rD0
,

wheres0(MG) is the present linearized density contrast
the galactic scale,Vm01VD051, VD0 is the present value
of VD in our local region, and the functionF(x) is given by
06352
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F~x!5
5

6
S 11x

x
D 1/2E

0

x dw

w1/6~11w!3/2. ~14!

The distribution ~13! predicts that .33,y,6.0 with 68%
confidence and .043,y,16 at 95% confidence level. Th
observed value ofy, given by

y05FF~VD0 /Vm0!

s0~MG! G3

~15!

is thus expected to fall into these intervals at 1s and 2s
confidence levels, respectively. The boundaries of the in
vals define curves in theVD0-s0 plane. These curves ar
shown in Fig. 1, where instead of using the present den
contrasts0(MG) on the galactic scale, we use the more
miliar quantity s8. For a given value ofVD0 , s8 can be
obtained froms0(MG) if the cosmological parameters suc
as the spectral index of density perturbationsn, the dimen-
sionless Hubble constanth and the baryon fractionVb are
known. For these parameters we have taken the central
ues given by WMAP,n5.99,h5.72, andVb5.047 @29#.
Also shown in the same plot are the values inferred fr
WMAP for s8 andVD0, which fall well within the anthropic
predictions at the 95% confidence level. Given the simplic
of the assumptions which have been made, the agreem
between predictions and observations seems quite rem
able.

For negative values ofrD , the structure formation pro
ceeds as usual until the timetD;(GurDu)21/2, when the mat-
ter densityrm becomes comparable tourDu. At the moment
when rm5urDu, the universe stops its expansion and sta
recontraction. The effect of a negativerD is in many ways
similar to the effect of the slope, and to avoid duplication,
shall not discuss it here. Interested readers are referre
Refs. @15,16#, where it is argued that the probability forrD
,0 is less or comparable to that ofrD.0. In the following
discussion we shall focus on the positive values ofrD .

FIG. 1. Comparison of anthropic predictions with observatio
The curves represent the boundaries of the 68%~solid! and 95%
~dashed! confidence level regions predicted by the distribution~13!.
The cross represents the values inferred from Wilkinson Microw
Anisotropy Probe~WMAP! observations, with 2s error bars.
1-3
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III. VARIABLE rD AND SLOPE

In Ref. @16# two of the present authors considered seve
predictions of the anthropic approach to the cosmolog
constant problems, including the one we have just discus
in the previous section. Two other predictions were that
equation of state should be that of a cosmological const
w521, and that the Universe would recollapse, but n
before a trillion years. The latter predictions were based
the premise that, in a generic model, the slow-roll condit
~2! is more likely to be satisfied by excess, by many orders
magnitude, rather than marginally. This seems clear i
model such as~8!, where the slow-roll parameter is fixed
and a strong suppression ofm is required by the constrain
~9!. If the suppression is due to some symmetry, then i
natural to expect that this symmetry will make the poten
flat by excess rather than marginally. Indeed, the symm
only knows about microphysics, and a marginal valueumu
;102120M P

3 urLu21/2 would itself represent a coincidence~or
tuning! which requires separate explanation.

However, a marginal value of the slow-roll parame
may be obtained more naturally in models where the slop
itself a random variable, by invoking again anthropic sel
tion effects. It was pointed out in@16# that if the prior distri-
bution favors larges, then the most probable values ofs
could be the marginal ones. However, the authors of@16#
argued~as we will show, incorrectly! that the prior distribu-
tion after inflation necessarily favors smalls, and concluded
that the equation of statew521 should be expected in th
general case. Dimopoulos and Thomas@18# suggested, on the
contrary, that the prior should generally favor larges, but
offered no explicit model to justify this claim. Here, we sha
examine this issue in detail in the context of a spec
model.

A. Prior distribution

A variable slope is easily obtained by considering a mo
where we have several fieldswa instead of just one, so tha
on the hypersurfaceV(w1 ,w2 , . . . ,wn)50 the gradient
s(w)[u¹Vu depends onwa . During inflation, quantum fluc-
tuations cause a random walk in field space which cove
distanceuDwau;H(Ht)1/2 in time t, whereH is the inflation-
ary expansion rate. If we start with some probability dist
bution dP* (wa ,t i) at some initial timet i , the random walk
causes ‘‘diffusion’’ of probability in field space, which tend
to flatten the distribution as inflation proceeds. Hence, if
neglect the effect of the fieldswa on the expansion of the
universe, we should expect that the volume distribution
the time of thermalization is given by

dP* ~wa!})
a

dwa . ~16!

In general, however, the potential of the dark energy fie
V(wa) does contribute to the expansion, producing a n
trivial dependence ofP* onwa . Even thoughV is very small
compared with the inflationary energy scale~at least in the
anthropically interesting range!, it causes a ‘‘differential ex-
pansion’’ which may accumulate during many e-foldings,
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asing the distribution towards values of the field whe
V(wa) is larger. This is simply because the volume of regio
where the potential is larger grows faster. This leads t
field-dependent distribution,

dP* ~wa!5F~wa!)
a

dwa . ~17!

In a region of sizeDw in the field space, the characterist
quantum diffusion time is of the ordertq;(Dw)2/H3, and
the time scale on which the differential expansion becom
important is tde;(DH)21;HM p

2/DV;HM p
2/u¹wVuDw.

Diffusion will make the functionF(wa) very smooth~or
nearly constant! on scalesDw smaller than the smearin
scale

Dwsmear;HS HM p
2

u¹wVu D
1/3

, ~18!

which is obtained by settingtde;tq @30#. On larger scales,F
will generally have a nontrivial dependence onwa .

In the case we discussed in Sec. II, where there is a si
dark energy fieldf, one can argue that since the anthrop
range forrD is rather narrow, the corresponding range off
is also limited, and may easily be smaller than the smea
range~18!. This has been used@16,17# in order to justify the
use of the flat distribution~4! under certain generic condi
tions. However, this justification becomes less clear when
have several dark energy fields, since the anthropic ra
does not necessarily correspond to a small compact regio
the field space, andF can vary significantly along the non
compact directions.

Not much can be said aboutF in general, since its form
depends on the overall shape of the inflaton and dark en
potential.~For a given potential, and with additional assum
tions about the measure,F can in principle be calculated b
solving a suitable Fokker-Planck equation in the formali
of stochastic inflation@22–24#!. To simplify our subsequen
discussion, here we shall restrict ourselves to the case w
differential expansion is negligible in the field range of i
terest. This is achieved for instance through a potential of
form

U~c,wa!5U~c!1 f ~c!V~wa!, ~19!

wherec is the inflaton andwa are the dark energy fields. Th
function f (c) is normalized to unity in the thermalize
phase, so that the potentialV(wa) becomes the dark energ
density. If f (c) is sufficiently small in the range ofc corre-
sponding to most of the inflationary phase, then the differ
tial expansion can be neglected and the prior distribution w
take the form~4!.

The minimal number of fields required to account f
variation ofrD ands is n52. In this case,s5(V,1

2 1V,2
2 )1/2

and

dP* }dw1dw2}uJu21drDds, ~20!

where the JacobianJ is given by
1-4
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J[
]~V,s!

]~w1 ,w2!
5s21eabV,aV,bcV,c ~21!

andV,a[]V/]wa .
A simple example is given by

V5af1U~x!1rL , ~22!

wherefa5(f,x), a is a constant coefficient andrL is the
cosmological constant.’’ This model can be considered a
generalized combination of two models described by Eqs.~6!
and~8!. The cosmological constantrL can be removed from
this potential by redefinition of the fieldf, just as in the
model ~6!. Thus the probability to live in the Universe wit
an effective cosmological constantrD does not depend on
the true cosmological constantrL , so in the future we will
drop it in the expression forV.

The properties of the corresponding probability distrib
tion can be easily understood by expressing it in terms of
variablesrD andx. This gives

dP* }drDdx, ~23!

where we have used the Jacobian](V,x)/](f,x)5]V/]f
5a5const. Thus, for a given interval ofrD , all values ofx
are equally probable. If the range ofx is unbounded, then the
character of the distribution is determined largely by t
asymptotic behavior ofU(x). If U8(x) is a growing func-
tion of x, then at largex the slope iss'uU8(x)u, and the
probability is dominated by large values of the slope. F
example, in the simplest caseU(x)}x2 we haves}x, and
all values ofs are equally probable~for sufficiently larges).
Alternatively, if U8(x)→0 at uxu→`, then the values5a is
favored.

For a potential of the form

V5af1
b

n
xn, ~24!

wherea, b andn are constants, the slope is given by

s5~a21b2x2(n21)!1/2, ~25!

and the Jacobian~21! is

J}x2n23/s}s21~s22a2!(2n23)/2(n21). ~26!

Note that this expression depends only ons, but not onrD ,
and thus the distribution factorizes

dP* 5P* ~s!dsdrD , ~27!

with

P* ~s!}s~s22a2!2(2n23)/2(n21). ~28!

Then, away from a small range ofs near zero, the distribu
tion ~28! has a power-law form

P* ~s!}s21s1/(n21). ~29!
06352
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These results are applicable for the investigation of the
fective cosmological constant produced by the fieldsf andx
if these fields satisfy the slow roll conditions~2!. The slow
roll conditions for the fieldf, just as in the model~6!, re-
quire thata&H0

2;102120 in units M p51, see Eq.~7!, and
the same logic as above leads us to expect this conditio
be satisfied by excess, that is,a!102120. The slow roll con-
ditions with respect to the fieldx require a more detailed
investigation. One can show that forn.1 and b@rD
;102120 the slow roll conditions for the fieldx are satisfied
at the present stage of the evolution of the Universe onl
U(x)!rD . This makes the fieldx irrelevant and returns us
back to the one-field case, where we expectw521. The
situation is more interesting fora, b&rD;102120. In this
case the slow-roll conditions for the fieldx are satisfied for
xn21&b21102120. At the upper bound of this region, th
slow-roll conditions are only marginally satisfied, whic
leads to a substantial deviation ofw from 21.

Different behaviors ofP* (s) can now be obtained with a
suitable choice of the parametern. For n→`, P* (s)}s21,
so all logarithmic intervals ofs are equally probable.~This
distribution is also obtained if the power lawbxn is replaced
by an exponential functionebx.! For n.1, the distribution
favors large values ofs, and if n is chosen close to 1, the
probability growth towards larges can be made arbitrarily
fast. With n.1, the prior distribution is non-integrable a
larges, but in the next section we shall see that an effect
cutoff is introduced by the galactic density fact
n(rD ,MG), so the full distribution~12! is integrable.

For readers who are concerned about the appearanc
non-integrable distributions, even at an intermediate stag
the analysis, we note that the divergence comes fromx
→` and does not occur in models where the potential
the form ~24! only in a finite range ofx. In fact, Eq.~24!
with n52 can be thought of as an expansion of a mo
general potential~22! in powers ofx near an extremum o
U(x).

Finally, for n,1, small values ofs are favored, and
again, by choosingn close to but below 1, the distribution
can be made arbitrarily steep. In this case, the distribu
~28! is non-integrable ats5a. This singularity is not
smoothed out by the galactic density factor, and the pre
tion of models withn,1 is that s5a with probability P
51. Sincea is expected to be very small, this prediction
observationally indistinguishable froms50. Once again, the
divergence can be cut off if the power-law form of the p
tential ~24! applies only in a finite range ofx.

B. Galactic density

The probability distribution for measuring given values
rD ands is given by a straightforward generalization of E
~12!,

dP~rD ,s!}E dMNciv~rD ,s,M !n~rD ,s,M !dP* ~rD ,s!.

~30!

If the prior distributiondP* favors small values ofs, then
1-5
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we expect the fieldswa to be deep in the slow roll regime. I
this case,Nciv andn are practically independent ofs, and we
recover the results of Sec. II.

Suppose now that the prior favors large values ofs. To
simplify the discussion, we shall assume that the prior dis
bution has a factorized form~24! with a power-law distribu-
tion for s,

P* ~s!}sb, ~31!

b.21. For potentials of the form~24!, b is simply related
to the power indexn, b5(22n)/(n21). ~Note thatb50
for n52, which is arguably the simplest choice.! As before,
we shall assume that the integral in~30! is dominated by
giant galaxies of massM*MG . Assuming also that for such
galaxies

Nciv~rD ,s,M !5Mnciv~rD ,s!,

wherenciv is the number of civilizations per unit mass, w
have

dP~rD ,s![P~rD ,s!dsdrD}nciv~rD ,s!

3 f ~rD ,s,M.MG!sbdsdrD . ~32!

Here,f is the fraction of matter which clusters in galaxies
size bigger thanMG . This fraction depends on the relativ
magnitude of three characteristic times: the galaxy forma
time scaletG;1010 yrs, the onset of vacuum-like dark en
ergy dominationtD;(GrD)21/2, and the recollapse time
scalets due to the slope of the potential~we shall estimatets
shortly!. If s is so small thatts is the largest of the three
times, then the growth of density fluctuations effective
halts at tD , and the comoving density of galaxies can
estimated as in Sec. II. No matter how small, the slope ev
tually causes the field to roll down to negative values of
potential, ending in a big crunch. In the contracting pha
the density fluctuations start growing again, and one mi
think that any galaxies that failed to form att,tD would
form then. However, ‘‘galaxies’’ that form at this epoch a
likely to be very different from what we call ‘‘galaxies’’ now
At tD,t,ts , the dark energy density remains nearly co
stant, while matter densityrm decreases exponentially wit
time, so att;ts it is suppressed by an exponential fact
Moreover, in the course of the recollapse, the energy of
scalar field grows much faster than that of matter, andrm /rD
is further suppressed@31#. Hence, the contribution of nonre
ativistic matter~like CDM or baryons! to the mass of bound
objects formed during the recollapse is utterly negligible.

If tD is the largest of the three times, then the exponen
suppression period is absent, but the rest of the above
cussion still applies, and fort@ts the universe becomes sc
lar field dominated. Even at the onset of recollapse,t;ts ,
galaxies as we know them may not be formed. In our par
the Universe, structure formation effectively stopped at
;tD , and the existing structures evolved more or less
isolation. This may account for the fact that disks of gia
galaxies take their grand-design spiral form only relativ
late, atz;0.3. On the other hand, in a recollapsing unive
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the clustering hierarchy only speeds up att*ts , and quies-
cent disks which may be necessary for the evolution of fr
ile creatures like ourselves may never be formed.

This discussion suggests that fortD,ts , the fraction of
matter clustered in galaxies can be estimated as

f ~rD ,s,M.MG!; f ~rD ,M.MG! ~ tD,ts!, ~33!

where f (rD ,M.MG)[ f (r D,0,M.MG) is the same which
we used in the previous section, which can be read off fr
~13!. In the opposite case,tD.ts , we expect that the densit
of habitable galaxies does not exceed the density of gala
size halos that collapsed prior tots . To estimate this density
we shall need an estimate ofts .

The field equation forw has the form

ẅ13~ ȧ/a!ẇ5s, ~34!

wherea(t) is the scale factor. As long as the dark energy
subdominant, we havea(t)}t2/3, and the solution of~34! is
w5w (0)1 1

6 st2, where we have imposed the initial conditio
ẇ→0 at t→0. The dark energy density is then

rD~ t !5
1

2
ẇ22sw5rD

(0)2
1

9
s2t2. ~35!

Assuming first thatts,tD , we can disregardrD
(0) , and the

recollapse begins when the second term in~35! becomes
comparable to the matter densityrm;1/Gt2,

ts;~M p /s!1/2. ~36!

Alternatively, if the recollapse occurs after dark ener
domination, then, forrD.0, a(t)}exp(HDt) with HD
;(GrD)1/2. ~Note that forrD,0, the regimets@tD does
not exist.! The solution of Eq. ~34! is then w5w (0)

1(s/3HD)t, and the dark energy density is

rD~ t !5rD
(0)2

s2

3HD
t. ~37!

This equation applies as long asrD remains nearly constant
Recollapse begins when the second term in Eq.~37! becomes
comparable to the first,

ts;
HDrD

s2 ;
rD

3/2

M ps2 . ~38!

The boundary between the two regimes is

ts;tD : s;rD /M p . ~39!

Now, it follows from Eq.~36! that the matter density atts is
rm(ts);sMp , assumingts&tD . This suggests that the frac
tion of matter in habitable galaxies in this regime is bound
by

f ~rD ,s,M.MG!& f ~sMp ,M.MG! ~ tD.ts!. ~40!

In the estimates below, we shall use the value that satur
this inequality.
1-6
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We note finally that the dark energy densityrD in Eqs.
~30!, ~32! should be understood as the value ofrD immedi-
ately after inflation, that is, the quantity denoted byrD

(0) in
Eqs.~35!, ~37!.

C. The number of civilizations

To estimate the dependence of the number of civilizati
per unit massnciv on rD ands, we now have to consider th
role of two other characteristic time scales:t* ;(223)
31010 yrs—the time scale on which most of the main s
quence stars believed to be suitable for life explode as
giants~see@11,32# for more discussion and references!, and
t I—the characteristic time needed for intelligent observer
evolve.t I is not likely to be much smaller thant* , since then
it is not clear why it took so long for intelligence to develo
on Earth. Carter@33# has argued thatt I@t* , since the coin-
cidencet I;t* is unlikely, considering that the evolution o
life and the evolution of stars are governed by complet
different processes. Note, however, that some seemingly
likely coincidences may occur due to anthropic selecti
tG;tD being one example. Livio@32# has suggested a simp
model illustrating howt I;t* could arise. In any case,
seems reasonable to assume that

t I*t* . ~41!

The timet* exceedstG by only a factor;3, but it will help
to clarify the following discussion if we proceed as thou
t* @tG . This is justified in part by the fact that we will b
comparing densities, which depend quadratically on time

Observers can exist only in the time interval

tG,t,min$ts ,t* %, ~42!

and since according to Eq.~41! this interval is shorter than
t I , the numbernciv is suppressed by a certain factor. Assu
ing that the origin of intelligent life is due to a single an
very infrequent random event which has some constant p
ability to occur per unit time, we have

nciv}min$ts ,t* %2tG . ~43!

In practice, many steps are necessary for the developme
intelligent life, some of them occurring much more fr
quently than others. Assuming that, out of the total num
of steps, there arek of them with typical frequencies smalle
than 1/@min$ts ,t* %2tG#, then Eq.~43! should be modified
to

nciv}~min$ts ,t* %2tG!k. ~44!

Equation~44! assumes also that the steps which are nee
to generate intelligence will produce the desired effect
gardless of their time separation. This will not be the situ
tion if there are relatively frequent catastrophes which oc
at intervals shorter than (min$ts ,t* %2tG), and which are
serious enough to erase memory of any previously achie
steps. In this case, a linear expression such as Eq.~43! is
more appropriate.
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Our current knowledge about the number of stepsk is
very poor, and opinions differ quite vastly. Carter@33# has
argued that the effective upper bound to the total time b
logical evolution can proceed on Earth,tb , is likely to be in
the rangetb2te&te /k, wherete;t* is the actual time intel-
ligent life has taken to develop on Earth. This formula r
flects the fact that if many unlikely steps are necessary, t
we are likely to have exhausted most of the available ti
before the emergence of intelligent life. Ifk is large, Carter’s
formula seems to indicate that some catastrophe is awa
right around the corner which will erase life from Ear
within a time scale of ordertb2te!t* . Carter rejected this
possibility, and concluded thatk.2 was not very likely.
However, Barrow and Tipler@5# have argued that there is n
reason to reject a relatively imminent doom caused, for
stance, by some instability in the evolution of the Earth
atmosphere. This may rendertb2te much shorter thant* ,
and in this case there is no reason to expect thatk should be
small. Cosmic doom of the type we discuss in this pape
yet another way of obtainingtb2te!t* , sincetb,ts and ts
can in principle be smaller thant* . Qualitatively, however,
our results will not depend strongly onk, and for the rest of
the discussion we shall just takek51.

The right-hand side of Eq.~43! takes different forms, de-
pending on the relative magnitude ofts ,tD and t* . For ts
.t* , nciv is independent ofs andrD ,

nciv;const ~ ts.t* !. ~45!

For tG!ts,t* , nciv}ts , and using Eqs.~36!,~38!, we have

nciv}s21/2 ~ ts,t* ,tD!, ~46!

nciv}rD
3/2s22 ~ tD,ts,t* !. ~47!

The boundaries between the different regimes are given
Eq. ~39! and by

ts;t* ~rD,1/Gt
*
2 !: s;M p /t

*
2 , ~48!

ts;t* ~rD.1/Gt
*
2 !: s;rD

3/4~M pt* !21/2. ~49!

The corresponding areas in thes-rD plane are sketched~not
to scale! in Fig. 2. In our approximation, the factornciv
vanishes forts,tG . ~In a more realistic treatment, the den
sity of galaxies would not strictly vanish for small values
ts . Galaxies would still be formed at high peaks of the de
sity field, but their number density would be exponentia
suppressed.! The boundaryts;tG is homotetic to the bound
ary ts;t* in the s-rD plane. Fors.rD /M P it simply cor-
responds to the vertical line ats;M P /tG

2 , and for s
,rD /M P it follows the curve

s;rD
3/4~M PtG!21/2. ~50!

The behavior ofnciv as a function ofrD ands is illustrated
in Fig. 3. In this and the following figures,rD is expressed in
units of rG[rm(tG)5(4/3)M p

2tG
22 , where tG5t recs rec

23/2.
Here,s rec is the density contrast on the galactic scale at
time of recombination. Roughly speaking,rG is the matter
1-7
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density at the time when the galaxies form, sincetG is the
time it takes for the linearized density contrast to beco
equal to 1 in the absence of a dark energy component. W
these definitions, the variabley which we used in Sec. II is
the same asrD /rG .

D. Full distribution

We can now outline the general features of the full dis
bution ~32!. The effect of the galactic density facto
n(rD ,s,MG) is, roughly, to cut off the distribution outsid
the square regionrD&1/GtG

2 , s&M p /tG
2 . ~These bound-

aries correspond totD;tG and ts;tG , respectively.! The
fall-off, however, is rather mild, andn(rD ,s,MG) extends
significantly outside the square. The cutoff is sharper in ths
direction, due to the rapid decline ofnciv with s. In region I
P}sb, in region IIP}sb2(1/2), in region III P}sb22, and in

FIG. 2. Regions in thes-rD plane, illustrating the different be
haviors ofnciv with s.

FIG. 3. Sketch ofnciv as a function ofs andrD . For definite-
ness, we have usedt* 53tG . The slopes is in units of rG /M p ,
whereasrD is in units ofrG.
06352
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region IV P'0. The distributionP for b50 @n52 in Eq.
~24!# is illustrated in Fig. 4. The ‘‘logarithmic’’ distribution
srDP(rD ,s) is illustrated in Figs. 5 and 6, forb50 andb
52, respectively.

For 21/2,b,1, the distributionsrDP(rD ,s) is peaked
along the line separating regions I and III~which corre-
sponds tots;t* ). As we cross this ‘‘mountain range,’’ mov
ing towards larger values ofs, the probability function drops
in region III. The range terminates at pointA where regions
I–III meet. For21,b,21/2, the range continues beyon
point A along the boundary between regions I and II.

The probability distribution forrD can be obtained by
integrating overs,

P~rD!5E P~rD ,s!ds. ~51!

The character of this distribution depends on the value ofb.

FIG. 4. The distributionP(s,rD) as a function ofs andrD , for
b50 @which corresponds ton52 for a dark energy potential of the
form given in Eq.~24!#. As in Fig. 3, rD is in units of rG . The
variabley which we used in Sec. II is the same asrD /rG .

FIG. 5. The distributionsrDP(s,rD) as a function ofs andrD ,
for b50 ~i.e. n52). Same conventions as in Fig. 4.
1-8
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DARK ENERGY EQUATION OF STATE AND ANTHROPIC . . . PHYSICAL REVIEW D 69, 063521 ~2004!
For b'21 or smaller, the prior distribution is peaked o
a very narrow strip nears50 in thes-rD plane. This strip is
well within the flat plateau innciv at low s ~see Fig. 3!. In
this case, integration overs just produces a constant facto
independent ofrD , and the posterior distribution coincide
with the distributionP(rD) which is obtained for a true cos
mological constant~s50!, given in ~13!. For b in the range
21,b&1, but not too close to21, higher values ofs
come into play. As shown in Fig. 3, the plateau innciv is
broader in thes direction at highrD , and this feature is
inherited by the functionP(s,rD) ~shown in Fig. 4 forb
50). Thus, the integration overs biases the distribution~51!
towards largerrD , relative to the case of a true cosmologic
constant. This effect gets stronger asb increases.

Finally, for b@1, the distribution is pushed to the large
possible values ofs. For b52, the distributionsrDP(s,rD)
is plotted in Fig. 6. The probability is concentrated betwe
the curvests;t* and ts;tG . If the value ofb is further
increased, the distribution gets packed more towardsts
;tG , corresponding to Eq.~50!. Largerb means that large
s is favored by the prior distribution, and from Eq.~50!, this
means that the posterior distribution is peaked at even la
rD . The logarithmic distributionrDP(rD) is shown in Fig.
7, for different values ofb, ranging from21 to 2. The peak
is indeed found to shift to larger values ofrD as we increase
b.

Figure 8 shows the 1-s and 2-s bounds on the variable
y5rD /rG as predicted by Eq.~51!, as a function of the
parameterb in the prior distribution. The central value in
ferred from WMAP observations isy0'0.1, which forb.
2.5 lies outside the 2-s confidence level region. Howeve
two things should be noted before jumping to conclusio
First of all, there is a large uncertainty in the measured va
of y in our region of the universe. For instance, assuming
WMAP central values for the spectral indexn'.99, the di-
mensionless Hubble constanth'.72 and the baryon fraction
Vb'.047, and taking into account the 22s error bars for
s8 andVD ~depicted as a cross in Fig. 1!, we find from Eq.
~15! that the observed value ofy lies in the range .04,y0

FIG. 6. The distributionsrDP(s,rD) for b52 ~i.e. n54/3).
The rest of parameter values and conventions are as in Figs. 4
5.
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,.48. Second, we should take into account that the pre
tions represented in Figs. 1 through 8 refer to the value of
dark energy densityrD at some very early time, when th
scalar field is still frozen by the cosmic expansion. For v
ues ofs*rG /M P , the initial value ofrD may be larger than
the value at the present time by a sizable fraction. For
stance, if the slopes is such that the kinetic and potentia
energies of the dark energy field are approximately eq
today ~which may be considered a rather extreme case,
though still marginally consistent with observations@19#!
one finds that the dark energy density at very early times
to be larger by roughly a factor of 2. Hence, the initial val
of rD /rG in our region of the Universe may well have bee
anywhere in the range .04&y&1. The upper bound in this
range is compatible with a value ofb&1 ~but not much
higher! at the 22s level.

nd

FIG. 7. The distributionrDP(rD) as a function ofrD /rG for
different values ofb. The solid line represents the standard ca
whererD is a true cosmological constant. This is recovered in
case thatb521, since in this case the prior distribution has
non-integrable peak ats50, where the slope of the potential van
ishes. Also plotted are the casesb52.9,2.5,0,.5,1,2~dashed lines,
where higherb corresponds to longer dashes!. The peak of the
distribution shifts to higherrD asb is increased.

FIG. 8. 1-s ~solid! and 2-s ~dashed! bounds on the value of the
variabley5rD /rG , as predicted by Eq.~51!, as a function of the
parameterb in the prior distribution. Like in the previous figures
rD is the dark energy density at very early times, andrG is the
matter density at the time of galaxy formation. The central va
inferred from WMAP observations isy'0.1, assuming that the
dark energy density has remained approximately constant thro
cosmological evolution up to the present time.
1-9
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GARRIGA, LINDE, AND VILENKIN PHYSICAL REVIEW D 69, 063521 ~2004!
Given the rough nature of our model and the uncertain
in the data, our conclusions must be regarded as very
liminary. Nevertheless, our results do suggest that low va
of b&20.5 should give a better agreement with the da
This leaves two possibilities: eitherb,21, in which case
the probability is sharply peaked ats'0, and all predictions
of Ref. @16# for models with a fixed slope remain in force, o
21,b&1, and then the recollapse is most likely to occur
ts;t* . Since t* is comparable to the present age of t
Universe, we can already expect to observe the signs of
slowdown of the cosmic expansion.

IV. CONCLUSIONS

The possibility that the smallness of the observed eff
tive cosmological constant, as well as the puzzle of the t
coincidence, may be attributed to anthropic selection effe
is rather tantalizing. To implement this idea, one assum
that rD is a random variable which takes different values
different parts of the universe~this could be due to stochast
quantum processes which took place during inflation!. Ob-
servers cannot live in regions whererD is too large, since
galaxies cannot form there, so we should not be surprise
the smallness of the observedrD . Also, a simple analysis
suggests that most observers will find themselves in reg
which marginally allow the formation of suitable structur
~e.g. galaxies of the type where observers are most likel
emerge!. This would explain the time coincidence.

A pressing question regarding this scenario is whether
possible at all to check its validity. In Ref.@16#, two of the
present authors ventured a few generic predictions of
anthropic approach to the cosmological constant proble
In particular, following up on the work of Martel, Shapir
and Weinberg@10#, it was argued that the variabley0 defined
in Eq. ~15! should bey0..07 with 95% probability. Assum-
ing a cosmic background explorer normalized scale invar
spectrum of density perturbations, together with existing
timates for the baryon density, the anthropic argument s
gested that the vacuum energy density parameter shoul
somewhat larger thanVD5.7, or that the dimensionles
Hubble rate should be somewhat smaller thanh5.7. In Sec.
II we have updated the comparison of predictions with o
servations by using the cosmological parameters as obta
from WMAP. Figure 1 shows confidence level plots forVD
ands8, corresponding to the 12s and 22s anthropic pre-
dictions, together with the values inferred from WMAP.

The agreement with current data is rather encourag
and it will be interesting to see how it evolves as the leve
precision increases. Note that the confidence level region
Fig. 1 are rather broad. This corresponds to a genuine l
variance in the cosmic distribution ofrD . Hence, one may
be led to the conclusion that future observations will n
bring much excitement, since the overall picture will rema
qualitatively the same even if the observational error b
shrink by a large factor. Nevertheless, we should recall th
number of assumptions went into Fig. 1. For instance,
assumed that the spectral index for scalar fluctuations,
Hubble constant and the baryon fraction are given by
WMAP central values. We have also usedw'21 for the
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parameter in the dark energy equation of state. If the val
of these parameters turn out to be different, the curves in
1 may shift significantly, putting some pressure on the
thropic explanation.

Also, we must consider the fact that we are quite ignor
about the conditions which are needed for the emergenc
observers, an obvious drawback of the anthropic appro
However, if we can encode some of this ignorance in a f
unknown physical parameters, we are in a position where
can predict something about the values of such parame
By comparing the theoretical anthropic predictions with o
servations, we can find best fit estimates for the parame
which may hopefully be confirmed some day by independ
means. We have assumed throughout this paper that ob
ers emerge predominantly in giant galaxies such as the M
Way. This may be a reasonable assumption, but it is no
established fact by any means. Had we assumed that ob
ers emerge predominantly in smaller galaxies, which fo
earlier on, the agreement with the data would become m
worse. This reasoning was used in Ref.@16# to argue that the
conditions for observers to emerge will be found predom
nantly in giant galaxies which complete their formation
redshift of orderz;1, but not much higher. This predictio
seems hard to check at present, but hopefully much m
will be known in the not so distant future about the prop
ties of galaxies to confirm it or dispel it.

In this paper we have considered models where the d
energy is due to the potential energy of several scalar fie
In the case of a single field, one assumes that the pote
has a simple zero atf5f0 with nonvanishing slopes ~ob-
servers necessarily measure field values close tof0, due to
anthropic selection!. If the slope is such that the slow-ro
condition~2! is satisfied by excess, then the equation of st
will be indistinguishable from that of a true cosmologic
constant. But if~2! is satisfied only marginally, then ther
will be substantial evolution of the equation of state para
eter w(z) with redshift. In models where the dark energ
field has several components, both the dark energy den
rD and the slopes of the potential become random variabl
which take different values in distant regions of the Unive
~separated by distances larger than the present Hubble
dius!. The functionw(z) ~which is entirely determined byrD
and s) will therefore be different in each one of these r
gions.

It was argued in Ref.@16# that in the case of a single dar
energy field, the slow roll conditions~2! were likely to be
satisfied by excess, by many orders of magnitude, rather
marginally. This leads to the predictions that the equation
state of dark energy ispD52rD with very high accuracy,
and that the local universe will re-collapse, but not befo
another trillion years. It was also claimed that in generic t
field models one should expect that small slopes would
favored by the prior distribution, leading to the same pred
tions as in the case of a single field. However, the la
conclusion was based on an incorrect analysis of the p
distribution, which we have amended in the present pape

The prior distribution for the fields at the moment of the
malization can be obtained in principle from the inflationa
dynamics. In the case of a single field, the anthropically
1-10
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DARK ENERGY EQUATION OF STATE AND ANTHROPIC . . . PHYSICAL REVIEW D 69, 063521 ~2004!
lowed range~3! corresponds to a rather limited region
field space, and one can argue~under rather mild assump
tions! that the prior distribution of the field will be almost fla
within that range@17,25#. On the other hand, in the cas
where the dark energy potential involves several fields,
range~3! may correspond to a non-compact region in fie
space, and the prior distribution may be slowly varying in t
non-compact directions. In this situation, the determinat
of the prior distribution from first principles is technically fa
more involved~and may require in general some further a
sumptions about the choice of the measure in an etern
inflating universe!. Nevertheless, as argued in Sec. III, a fl
distribution in field space can still be expected provided t
the dark energy potential is sufficiently flat during inflatio
so that its effect on the expansion can be completely
glected. In this situation, we have shown that there is a c
of models where the prior distribution favors small slopes~in
which case the conclusions of@16# hold! but there is an
equally broad class of models where large values of the s
are favoreda priori.

The measured value ofs is restricted by anthropic consid
erations, since if it is too large, the local region of the u
verse re-collapses before any observers have time to em
In Sec. III we have attempted to quantify this selection
fect, and we have obtained posterior probability distributio
for rD and s. The problem of estimating the abundance
observers in regions with given values ofrD ands has been
split into two parts. In Sec. III B we have discussed how
abundance of suitable galaxies is determined as a functio
rD ands, and in Sec. III C, we have analyzed how the nu
ber of civilizations may depend on these parameters. The
of course much room for improvement in these estima
but even at the rough level at which they stand, they
illustrate the fact that a posterior distribution which favors
marginal slope can easily be obtained in models where
-

e,

ek
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prior favors a large slope. In this case we find that the U
verse is likely to turn around into contraction on a time sc
comparable to the lifetime of the Sun. This is a quite exciti
prospect since it may lead to a potentially observable tim
dependent equation of state@15,18,19,21#.

We finally comment on the string theory motivated pi
ture of a ‘‘discretuum’’ of flux compactifications with differ
ent values ofrD @13#. Recent work indicates that strin
theory does admit vacua with positiverD @34# and that the
corresponding spectrum ofrD may be rather dense@35#, sug-
gesting the possibility of anthropic selection@13,36,37#. We
note, however, that a dense spectrum of possible values
rD is only a necessary, but not a sufficient condition f
explaining the value we actually observe. The probabi
distribution P(rD) depends on the prior distributio
P* (rD), and in order to obtain reasonable agreement w
observations, the prior should not be too different from t
flat distribution ~4!. However, nearby values ofrD in the
discretuum picture correspond to very different values of
fluxes. The parts of the Universe with different values ofrD
will have very different evolution histories, and one mig
expect that their probabilities will also be rather differen
The arguments we gave in Secs. I and III A for a flat pr
distribution do not apply to this case. Calculation of pro
abilities in the discretuum remains an important problem
future research.
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