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Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the
neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of
stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that,
at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors
associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation
from a large effective cosmological constant down to the observed value. Here, we analyze this possibility in
some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range
forces. Because of that, the Coleman—de Lu¢Cidl) instanton for coincident brane nucleation may not exist,
unless there is some short range interaction that keeps the branes together. If the CdL instanton exists, we find
that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off
even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum.
If, on the contrary, the CdL instanton does not exist, coincident brane nucleation may still proceed through a
“static” instanton, representing pair creation of critical bubbles—a process somewhat analogous to thermal
activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the
pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the
temperature approaches zero. Such a static instanton may be well suited for the “saltatory” relaxation scenario
proposed by Feng et al.
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[. INTRODUCTION would quickly decay. These two constraints make the relax-

ation process extremely slow on a cosmological time scale.

It has long been recognized that the effective cosmologiMeanwhile, ordinary matter in the universe is exponentially
cal constantA.¢; may have contributions from a four-form diluted by the quasi—de Sitter expansion, resulting in a dis-

field F, and that in such case appointing empty universe.
Recently, Feng, March-Russell, Sethi, and Wilczek
Aets=(F?12)+ A (1) (FMSW) [2] have suggested that nucleation of coincident

branes may offer a solution to the “empty universe” prob-

may vary in space and time due to brane nucleation event®m. Their proposal can be summarized as follows. In the
This has led to various proposals for solving the cosmologicontext of M theory, a stack df coincident D-branes sup-
cal constant problem, starting with the pioneering work ofports a number of low energy degrees of freedom, corre-
Brown and Teitelboin{1]. These authors considered a cos-sponding to aJ(k) super Yang-Mills(SYM) theory living
mological scenario wheré\ . is initially very large and on the worldsheet. Consequently, the nucleation rate of co-
positive, due to a largé? term. The additive constarit in incident branes should be accompanied by large degeneracy
(1) is assumed to be negative, but not fine-tuned in any wayfactors, and could in principle be enhanced with respect to
so its absolute value is expected to be of the order of som#e nucleation of single branes. The charge of a stack of
cutoff scale to the fourth power. During the cosmologicalbranes can be very large even if the individual charges are
evolution, A4 is “neutralized” through successive nucle- small, facilitating quick jumps from\¢¢; to Agps. In this
ation of closed 2-brane&harged with respect to the form way, neutralization might proceed very rapidly, perhaps in
field), which decrease the value Bf until eventuallyA .;;is  Just a few “multiple” steps of the right size. Finally, the
relaxed down to the small observed valug,,.. stability of the present vacuum could be due to gravitational

One problem with the original scenario is that neutraliza-Suppression of the nucleation rdte3].
tion must proceed in very small steps, so that any initially FMSW argued, rather heuristically, that the nucleation
large A ¢4 can be brought ta\ ., without overshooting into  rate of coincident branes should be enhanced by a factor of
negative values. For that, the charge of the branes should fiiae form
tiny, ensuring that\ A .= A ;s at each step. Also, the nucle-
ation rate must be very small, or else the present vacuum D~eS, (2
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where S is the entropy of the worldsheet SYM fields. This repulsive, rendering the stack of coincident branes unstable,
entropy was estimated through simple thermodynamic arguer metastable at best. This has important implications, since
ments, as the instanton for nucleation of coincident branes will only
exist provided that some mechanism causes an attractive in-
S~g, R*T?, (3)  terbrane force at short distances.
Section IV contains a description of the CdL instanton for

whereg, is the effective number of worldsheet field degreeSnUCIeatior_‘ of coincident branes, highlighting a few Iimiting
of freedom. andR is the size of the brane at the time of cases of interest. In Sec. VII we discuss the corresponding
nucleation ’However it remained unclear[®] which tem- degeneracy factor in the nucleation rate, and we show that its

peraturel should be used for the worldsheet degrees of freege_pendence on the ambient. d? Sitter temperatures Is rather
dom. Brane nucleation takes place in an ambient de Sitté?"ld' We also include a heuristic interpretation of this result

(dS) space characterized by a Gibbons-Hawking temperaturgased on the observation that the relevant temperature for the
T mAl/fo The region inside the closed brane has a smalleY"orIdSheet degrees of freedom is determined by the inverse
[0} err-

value of the effective cosmological constant, and is therefor ;]tg?er%?;g; nggsu'gssé?jmon' Implications for the scenario of
characterized by a smaller temperatdire Feng et al. con- y :

sidered two alternative possibilities for the temperature Ottonsevt\:/ﬂzrevtlrl:elsvy:r\l/ocl’stﬁget? r?aztutﬂ)é Otgtr:j Esgtanscl lrésrfgn—
the worldsheet degrees of freedonT;~T, and T, ’ P ’

~(T.T)Y2 The proposed enhancement of the nucleationWhere the intrinsic temperature is comparabld o In this

rate and the resulting cosmological scenarios are quite diffel=a>¢ the dependence of the nucleation rate on the ambient

ent in both cases, and therefore it seems important to try angis temperature is exponential, Coincident brane nucleation

clarify the issue of which temperature is the relevant one. C?ngﬁt ugiﬂpggﬁifui?oﬁ;lg:ggszﬁ;t;zggg i‘:‘]uggzzes‘li(edsitme
The purpose of this paper is to present a more forma; ) C

derivation of the nucleation rate corresponding to multiple echnical dlscuss[ons are Ief't to the.App.endlces.

brane nucleation. As we shall see, the temperature releva To conclude this Introduction, a dlscl_a|mer may be L.JserI'
for the worldsheet degrees of freedom is in fact determine(?.tor mOSt(;)f thedpaper, we sr;lag work d_|r|ectlly n fr?ur d_|men-
by the internal geometry of the worldshegt]. For the fsmns,han our |hscu33|on. Wi ¢ e certainly e_sslt an rlg%rollljs
Coleman—de LuccidCdL) instanton, this worldsheet is a rom the string theory point of view. In particu ar, we sha
2+1 dimensional de Sitter space of radiRsand the corre- model the degrees of freedom of a stack kotoincident
sponding temperature iB~R™ 1. When substituted into the 2-branes by a weakly coupled(k) gauge theory on t_he
naive expressiof®), this leads toS~g, , independent oR V\(orldsheet. Thls may or may not cor_respond to a true dimen-
(and hence of the ambient dS temperaturas we shall see, sional reduction from M theory, but it should at least repre-
the actual result has a certain dependenckaiue to the sent some of the broad features of the degeneracy factors.
anomalous infrared behavior of light fields in the lower di-

mensional de Sitter space, but this results only in a rather Il. NEUTRALIZATION VERSUS RANDOMIZATION

mild dependence on the ambient dS temperatures. In four dimensions, a four-form can be written &,

We shall also see that de Sitter space allows for a “static”  _ —— . : :
instanton that may be quite relevant to the nucleation of co-~ FV—gey,,, wheregis the determinant of the metric and

incident branes. This is analogous to the instanton for ther is the Levi-Civita symbol. This field has no propagating

mal activation in flat space. It has a higher Euclidean actior?jegrees of freedom, since in the absence of sources the equa-

: : .o : i
than the CdL solution, and hencignoring the degeneracy tion of motion d* F=0 implies thatF is a constant. This

factor it seems to represent a subdominant channel of deca _|mply gives a contribution to the effective cosmological

However, we shall argue that, depending on the short disconstant that gets added to the true cosmological constant, or
tance behavior of the interactions amongst the branes, thécUUM energy density,

CdL instanton for coincident brane nucleation may simply F2

not exist, and in this situation the static instanton may be the Aeff=7+A. (4)
relevant one. In several respects, the static instanton appears

to be better suited to the neutralization scenario proposed byour-forms may couple to “charged” 2-dimensional ex-

Feng et al. than the CdL one. tended sources, or 2-branes, through a term of the form
The paper is organized as follows. In Sec. Il we review

different proposals for neutralization &f,¢ via brane nucle- qJ' A (5)

ation. Section Il contains a discussion of coincident branes 577

in 4 spacetime dimensions. These are obtained from dimen- . )

sional reduction of type IIA supergravity in ten dimensions.Where the integral is over the worldsheet of the extended
In the 4 dimensional picture, the gravitational and four-formobject andA is the 3-form potential {=d.4). In this case,
forces are both repulsive. However, the two are exactly balE changes by

anced by the attractive force mediated by the scalar dilaton. AF=q 6)

In Secs. IV and V we discuss the stabilization of the dilaton,

which is required in a more realistic scenario. After the dila-across a brane of chargg ConsequentlyF can decay

ton acquires a mass, the remaining long range forces atérough nucleation of closed spherical branes. The process is
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analogous to pair creation in the presence of an electric fieldy very tiny chargeq may arise due to symmetries of the
and very similar to false vacuum decay in field the@By.  theory. An explicit example was given in R¢6], where the
The closed brane is the boundary of a newly formed “true”branes are not fundamental objects but domain walls of a
vacuum bubble, where the field strength differs from theproken discrete symmetry. This same symmetry suppresses
original value by the amouri6). After nucleation, the radius  the coupling of the domain walls to the four-fofnwithout
of the bubble grows with constant proper acceleration, an@ny fine-tuning of parametefsee also Ref[7] for a fuller
the volume occupied by the new phase keeps increasingjiscussion
Further nucleation events take place in the region with a low A more severe problem of the Brown-Teitelboim neutral-
F, lowering A¢(; even further. In the absence of gravity, this j;a4on scenario is the “empty universe” problem, which we
“neutralization” would proce%d as long d8>q/2, wiping  giscussed in the Introduction. By combining the condition
out any large initial value of” and leaving us with alarge ) yith the stability condition(7), it can be shown that the
negative cosmological constandeii ~A+0(A%). Of  {ine required to reach the valu8) is huge compared with
COUrse, .th|_s Is not what we want. . . the age of the univerdd]. By the time the effective cosmo-
Gravitational effects can improve the picture dramat|callyIogical constant would be wiped out, all other forms of mat-
ter would have also been diluted exponentially, in clear con-

[1]. In particular, tunneling from flat or anti—de Sitter space
(with a negative cosmological constans forbidden pro- . . . ;
vided that the squared tension of the branes is sufficientlﬂadm'?n \.N'th observations. Furthermorg, t.he endpomt.of
eutralization would be a state with vanishing or negative
effective cosmological constant, whereas the observed value

large compared with the jJumf A .ss~qF in energy density
across the brane, , >
A28 is positive.
02>(4/3)q|:|\/|’2)_ 7) One way around the empty universe problem is to con-
sider a slightly different scenario, where the effective cosmo-

Here o is the brane tension arM§=1/(87rG) is the square logical constant is “randomized{rather than neutralized
of the reduced Planck mass. This gravitational “shutdown”during inflation. Assume, for simplicity, that the energy scale
of brane nucleation could be useful, since an initially largeof inflation is much larger tham\A.¢¢. In an inflationary
Agss may eventually get “neutralized” to a value that is phase, brane nucleation processes may increase as well as
much smaller thar in absolute valu¢l]. Suppose that the decrease the value & [4]. Thus,A ¢ will randomly fluc-
true cosmological constant is negative<0. As long as tuate up and down the ladder as a result of brane nucleation.
Acs>0, branes keep nucleating. But once a vacuum withnflation is generically eternal to the future and there is an
Ac¢r=<0 is reached, the process stops provided thalBds  unlimited amount of time available for the randomization
satisfied. After that, the vacuum becomes abSOIUter Stabl%rocess to take p|ace before therma"za‘lﬁé]] Assume that
Brown and Teitelboim conjectured that we may live in onethe tunneling barriers are sufficiently high, so that no nucle-
such vacuum, where the effective cosmological constant igijon events happen in the last 60 e-foldings of inflation, or
expected to be of the order of the energy density gap b&gyring the hot phase after thermalization up to the present
tween neighboring vacua time. In this scenario there is no empty universe problem: the
local value ofA ¢ is decided many e-foldings before the end
of inflation, and a wide range of values &f; will be found
in distant regions of the universe, separated from each other

mological constant is almost completely cancelled byRRe by distances much Iarger than the present Hubble rad.|us.
contribution in the final state. Some of these regions will just happen to have a very tiny

For sufficiently small charge, Eq.(8) leads to a suppres- Agss. In combination with anthropic selection effects, this

sion of |A£ifnfa|| relative to the true vacuum energy|, approach may be used to explain the smallness of the ob-

which might be helpful in solving the “old” fine tuning Served effective cosmological constddi6,8,9. This may
problem of the cosmological constant. Particle physics mod@lSo explain the so-called cosmic time coincidence, or why

|ADA | ~FAF~q|A|Y2 ®)

In this vacuum|F|~|A|*?, and the huge negative bare cos-

els suggestA|=(TeV)*. Hence, we need do we happen to live at the time when an effective cosmo-
logical constant starts dominating,9,10.
q=10 33(eV)?, (9) Bousso and PolchinsKill] have proposed a somewhat

' related “randomization” scenario, which, moreover, does not
so that the final valumg{‘fﬁﬂ is consistent with the observed rely on branes with the exceedingly small chaggeatisfying
value | A%’ ~10"*(eV)*. The constrain({9) seems rather (9). In the context of string theory one may expect not just
demanding, since in the context of supergravity we wouldone but many different four-form fluxeés coupled to branes
expectq to be closer to the Planck scale. This is the so-calledvith different charges); . Each one of these fluxes is quan-
“gap problem.” FMSW argued that the smallness of thetized in units of the charge, so thai=n;q; . In this case, the
charge could be due to the wrapping of branes on degenegondition for a generic negative cosmological constant to be
ating cycles in the extra dimensions. A successful implemeneompensated for by the fluxes i8\qr=|2{_,(q?n?)/2
tation of this idea has not yet been presented, but some plau-A|<A,,s. The larger the number of different fluxes, the
sibility arguments have been given in REZ]. Alternatively,  denser is the discretuum of possible values\gf;, and the
in a different context, it has been suggested that branes witbasier it is to find a set of values aof such that the above
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inequality is satisfied. A sufficiently dense discretuum is typi- It is in principle possible to maintain this delicate balance
cally obtained provided that the number of fluxes is suffi-by suitable compactification from 10 to 4 dimensions. In 4D,
ciently largeJ~100, even if the individual chargeg are the branes look like domain walls, and their interaction
Planckian(a smaller number of fluxe3=6 may be enough through the ordinary graviton leads to a mutual repulsive
in a scenario with large extra dimensions, where the chargeferce given by[12]

g; are suppressed with respect to the Planck scale by a large

internal volume effedt In the Bousso-Polchinski model, f,=30%/4M}. (13)

Acssis typically very large, and drives an exponential expan-

sion at a very high energy scale. Suppose we start with 5€nce, both forces given b0) and(11) tend to push the
single exponentially expanding domain characterized by ranes apart from each other. On the other hand, some of the

set of integergn;}. Whenever a brane of tygenucleates in igher dimensional g.ravitational degrees of freedo_m are rep-
this region, the integen; will change by one unit inside of resented by scalars in 4D, and these, together with the dila-

the brane. The newly formed region will itself expand expo-1o": léad to attractive forces.
nentially, creating a huge new domain. The nucleation of _ _ _
further branes within this region will cause an endless ran- A. Dimensional reduction

dom walk of the values ofn;}, which will sample the whole Let us first consider the case of D-2-branes in 10 dimen-

discretuum of values of\¢¢;. Eventually, a bubble will  sjonal type IIA supergravity. The relevant part of the action is

nucleate where\ .¢; is comparable to the observed value. given by (see e.g[13])

The nucleation of this last bubble is still a high energy pro-

cess, which kicks some inflaton field off its minimum, and Mfo 1

starts a short period of inflation within this last bubble. This SlozTJ d'%/G

period of “ordinary” inflation is necessary in order to pro-

duce the entropy we observe, thereby avoiding the empty 3 PR 3,7

universe problem. Of course, some anthropic input is still _T2Ld §\/G_2e ¢’+q2Ld ¢A. (12

necessary in this approach in order to explain why, out of the

discretuum of possibilities, we live in a vacuum with small Here \/G and \/G_z are the determinants of the 10 dimen-

Aefs- sional metricG,g and of the metric induced on the world-
Nucleation of coincident branes would drastically modify sheetS,, respectively, whereaR is the Ricci scalar corre-

the neutralization scenario of Brown and Teitelboim, as We||5p0nding tOGAB' The carets on the four-form, the gauge

as the randomization scenarios sketched above. As proposggtential, and the corresponding charge are introduced in or-

in [2], in the case of neutralization, this modification may der to distinguish them from the four dimensional ones that

lead to a solution of the empty universe problem. In thewill be used below, and which differ from those by constant

randomization scenarios there is no such problem, and it iformalization factors. Compactifying on a Calabi-Yau mani-

unclear whether an enhancement of the multiple brane nuclgold K through the ansatz

ation rate is desirable at all. This enhancement would trigger

large jumps in the effective cosmological constant, making dst= e?$~%g, dx*dx"+e*’d K2,

the calculation of its spatial distribution more complicated

than that for single brane nucleation. Thus, it is of interest tovhere the Greek indices run from 0 to 3, we readily obtain

understand the conditions under which multiple brane nuclethe following four-dimensional action:

ation is allowed, and what are the degeneracy factors that

e 2[R+4(V¢)?]— F?

2X4]

2
might enhance their nucleation rate relative to the nucleation, _Mp [, 2 ., 6l s
of single branes. Before addressing this issue, it will be conr-é 2 d x\/§ R 7(&@ 7(‘?0) 2><4!e F
venient to present a short discussion of coincident branes.
—TZJ' d3§\/§e¢+62f A (13)
ll. COINCIDENT BRANES IN 4D 2 3

In the context of string theory, one may consider stacks 0HereM§= Mfove, whereVg is the coordinate volume of the
k coincident Dp-branes. Each brane in the stack has chargenanifold K, R is the Ricci scalar for the metrig, and we
g with respect to the form fieldl. Thus, in four noncompact have introduced two linear combinations of the internal vol-
dimensions, a pair of parallel 2-branes repel each other withme modulusy and the dilatong
a constant force per unit area given by

¢=2¢=9¢, o=¢—.
fq=09%/2, (10
The field o decouples from the branes, and shall be ignored

due to the four-form field interaction. In the ten dimensionalin what follows. In Ref[2], a different expression was given
theory, the repulsive force due td is balanced with other for the dimensionally reduced action, because no modulus
contributions from the closed string sector, such as the graviwas introduced for the size of the internal space. However, as
ton and dilaton. As a result, there are no net forces amongste shall see, such modulus is necessary for the cancellation
the different branes on the stack. of forces among the branes.
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Note that the case of type IIA supergravity discussed above,

which will be slightly more convenient for our discussion, is corresponds tar=\7/2, q=(1/2/M p){h, ando=T, [note
to start directly from 11-dimensional supergravity and COM-=p At A=(2IM 2)A]. Therefore (21) is satisfied provided

pactify on a 7 dimensional internal space. The action in

eleven dimensions is given by

M3 1 .
Sn=711f dllx\/E[R— }"2}

2X4l

-T, Ld3§\/Gz+EI2 Lﬁt (14)

whereT,=q,=27M3,. Introducing the ansatz
ds,=e 7lg,, dx dx+e2/d0?2, (15)

with a Ricci flat internal manifold, we find
S =M—f’f d*x\g| R— z(<f)2— L ezipel
42 7'7%) T oxan ’

(16)

whereMj=M3,V; and

Not surprisingly, this has the same form @$), since after

that T2=E12, the usual Bogomol'nyi-Prasad-Sommerfield
(BP9 condition.

B. Multiple brane solutions

Multiple brane solutions t§17) can easily be constructed
provided that(21) is satisfied. In the bulk, the equation of
motion for A leads to

‘7:a,8y5: FeZa(p \/aeaﬂyé‘i

whereF is a constant and is the Levi-Civita symbol. At the
branes, this constant jumps by the amount

AF=q.

It can be checked that the remaining equations of motion for
the scalar and the gravitational field follow from the action

MZ
Si=2 Jid“xfg[f[n—(a«p)z]—vi(@)
(22

o[ weie
3

where

all the 10-dimensional Lagrangian can be obtained from the

11-dimensional one by compactifying on a circle.
Equation (16) is a particular case of the slightly more
general action in four dimensions:

1 1
S4=§f d4X\/§[M§[R—((9¢)Z]—Ee‘z‘“"}"z

—oLd3§\/;/e"‘P+qLA. (17)

The parametew characterizes the scalar charge of the brane.

As we shall see below, linearizing ip arounde=0, it can
be easily shown that the scalar force is given by

fo=—¢e2/2, (18
where we have introduced the scalar charge
e=ao/M,. (19

Thus, from(10), (11), and(18), the branes will be in indif-
ferent equilibrium provided that the following relation holds:

e’—q? 302
’= 2 = (20)
2 aMg
From (19), this condition can be rewritten as
3 1/2 o
= 2— — _—
q ( a 2) M, (21

2
|
_eza‘P’

. 23

Vi(e)=

and the sum is over the regions with different valued-of
With the metric ansatz

ds?=w?(z) p,pdx3dxP+d 2,

where Latin indices run from 0 to 2, the solution is given by

a? |Fil
e W=ct—— —7, (24)
(=312 My
and
w(z)=e #?, (25)

Herec; are integration constants. These, and the sign option
in (24), must be chosen so that the junction conditions for the
gravitational field and for the scalar field are satisfied at the
branes. For the gravity part, the condition ig}]

[Kap]=—47Go " yqp, (26)
where[K,,] is the difference of extrinsic curvature on the
two sides of the brane ang,, is the worldsheet metric. In
the present case, this reduces to

el

o
— ——— %%,

2 (27)
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energy). A more realistic model is obtained by introducing a
F=gq F=0 F=—g stabilization mechanism that fixes the expectation value of
¢, and gives it some mass. Once¢ is stabilized theF?
term does behave as a contributionAtg;s. Stabilization is
also desirable because the dilaton and the radion moduli
(corresponding to the size of extra dimensjomediate sca-
lar interactions of gravitational strength, which are severely
constrained by observations. The study of mechanisms for
d stabilization is currently an active topic of reseafshe e.g.
Refs.[16,17] and references thergirAlthough the details of
stabilization will not be too important in our subsequent dis-
cussion, it may be nevertheless illustrative to have in mind a
specific toy mechanisrtfor which we do not claim any rig-
FIG. 1. Configuration of two parallel branes. orous justification in the context of string theary
The general problem is that the potenti2B) has no mini-

mum and leads to a runaway dilaton. In order to create a
For the scalar field, the junction condition that follows from minimum, let us consider two contributions that may be
the equation of motion at the brane reduces to added to(23). First of all, instead of using a Ricci flat inter-
nal manifold in (15 we may compactify on an Einstein
manifold, with

e~

g
"= a— e, 28
REVE 28 RO —6Kgl . 30
Upon dimensional reduction, the curvatufecontributes an
exponential term to the effective potential for However,
this will still not be sufficient for stabilizing the internal vol-
ume in an interesting way. In fact, as shown by Maldacena
and NuneZ 18], there are no static compactifications of the
o classical supergravity Lagrangian with a positive effective
e =1-a>— (|7-di2) (|z>d/2) (290  four-dimensional cosmological constaht;>0, and so far
S we have added nothing to the classical Lagrangian. Thus, in
order to implement the four dimensional situation of our in-

in the exterior regior(see Fig. 1 The solution corresponds terest, a third term related to quantum corrections has to be
to two branes of charge interpolating between regions with considered. Following Candelas and Weinbgr§], we may
F=q andF=—q, separated by a region wifa=0. consider the Casimir energy of bulk fieldse are of course

Note that the solutioi29) contains a singularity at a dis- 2SSuming that supersymmetry is broken, so that the Casimir
tancez~ M2/ o2o (where the warp factow and the volume contributions of bosons and fermions do not cancel each

of the internal space vanishin what follows, however, we other ehxactly | idered b del d inb
shall not be interested in flat, infinite branes, such as the oneg I the example considered by Candelas and Weinberg

discussed above. Rather, we shall be interested in comp 9l, besi(_jes the Casimir energy term, a higher dimen_sional
instanton solutions of finite size, in a theory with a stabilizegc0Smological term\ ., was used, and the internal manifold

dilaton. In this case, the singularities due to linear potentialdVaS taken to be a space of constant positive curvatdre (
of the form(29) should not arise, but the solutions discussed— 1) [N 11D supergravity a cosmological constant is not
above should remain a good description in the vicinity of the2/lowed, so here we use thie flux instead. Also, we will
branes. Another consequence of stabilizing the dilaton is that

the perfect balance of forces amongst the branes will be

spoiled at distances larger than the inverse mass of the EXPonential potentials such as the one appearin@® have
moduli. as we now discuss. been thoroughly studied in the literature, and it is known that they

can drive cosmological solutions with a power-law scale factor
[15]. Such attractor solutions are approached for a wide range of
IV. STABILIZING THE MODULI initial conditions, and the resulting expansion can be accelerating or

) . . ) decelerating, depending on whethef<1/2 or a®>>1/2. For o?
As it stands, the dimensionally reduced supergravity La— 35 the cosmological scale factor approachég Y2, where

grangian(13) [or its generalization(17)] is not useful for " cosmological time. This solution corresponds to an effective
discussing the neutralization of the cosmological constantyquation of state=[ (4a2/3)— 1]p, where the ratio of kinetic and
The Lagrangian does not include the bare cosmological terftential energies of the scalar figidremains constant. In our case,

A, which is precizsely the subject of our interest, and the ternrom (21), we needx?>3/2 and therefore the kinetic term becomes
proportional toF< does not behave as an effective cosmo-completely dominant in the long run, which leads po- +p.

logical constant, but rather as an exponential potential for &ence, by itself, theF? term does not behave like an effective
moduluse (which is not flat enough to mimick the vacuum cosmological constant.

which is consistent with{27) and(25). For instance, a solu-
tion with two branes separated by a distancis given by
flat space w=1,0=0) in the region between the branes, and
by
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need to compactify on a negatively curved internal manifold \%
(K=—1), or else the dilaton would be stabilized at negative 30
Aes.

The versatility of negatively curved compactifications has 25

been stressed in RER0]. In particular, they have the inter-

esting property of rigidity, which means they do not lead to

other moduli besides the size of the internal space. Compact 15

hyperbolic manifold§CHM) can be obtained from the maxi-

mally symmetric negatively curved spatk through iden-

tifications by a discrete isometry grodp. The volume of 5

H, /T is given by -
-0.2-0.1 0.1 0.2 0.3 0.4 O.5¢

20

V,=rle, 31
e (3Y) FIG. 2. The effective potentigl34), for different values of the

) ) ) integern; which characterizes the quantized flux of the four-fd¥fm
wherer is the curvature radius of the manifold, related to

the curvature parameter {80) by K= — 1/r§. The factore” A A YIRE: A
d P — N2M 2 -9y — 18 2.2 T o1y
epends on the topology, and it is bounded below but notV;(¢)=M M7, 21e """+ Ce +47n; IR e
above. IfL is the largest distance around the manifold, then p
for L>r./2 we havee”~e5""c. The Kaluza-Klein(KK) (34)
spectrum in this manifold is believed to have a mass gap, . .
bounded below byngx~e~“r; 1. From the 11 dimensional és illustrated by Eq@l) a large \_/alue olv, in units ofrg _
point of view the Casimir energy density scales like =1My, can be obtained by using a maryfold W'tzh suffi-
ciently complicated topology. Sinc#l;=M7,V;=M7,€e”,
T the factor (\/Ill/Mp)“:e*Z“/ in the last term of34) can be
ptP=Cmg=Ce Mt (32 rather small. The scalbly; could be as low as th&eV, in
which case that factor can be as low as 40 Moreover, as
The factorC can be estimated by naive dimensional analysig€mphasized in Ref20], this can be achieved for CHM even
asC~ Bv, wherev~10® is the number of physical polariza- if the linear sizeL of the internal manifold is not very much
tions of bulk fields, and3 is some small one-loop factor. larger thanr.. In Fig. 2 we plot the effective potential for
This factor will depend on the precise topology of the com-C=—20, e 7=10"° and values of n;=485, 487,
pact hyperbolic manifold, but it could plausibly be in the 489 and 491.
range3~10 2—10 . Hence, the paramet& could be of When a single brane nucleates, it changeby one unit,
order one. Explicit calculations for different choices of theand hence changes the value of the effective potential at the
manifold H, /T have not been performed, and are well be-minimum (changing therefore the effective cosmological
yond the scope of the present pageee e.g. Refl21] and  constank If the discretuum of values d¥; were sufficiently
references therejn In what follows we shall leaveC un-  dense, then there would always be one of the minima of the
specified, assuming that a compactification exists whefe effective potential where the vacuum energy is sufficiently
=1. Multiplying the higher dimensional energy dengify? ~ small to match observations. In the case we have considered
given in(32) by the size of the internal manifoltf;e”%, and here, the discretuum is not dense enough. The ca_ncellatlon
by a factore %/ that arises from the four-dimensional vol- between the last term i(83) and the other two requires
ya ~(M,/Mj,)?, and so the gap between levels néar0 can

urr:e ilta]n;ﬁntt In going tOEth(; Emtsteln Ifran;nje,b the eﬁeCt'Vebe estimated aAVi~M‘1‘1, which is far too large. This situ-
potential that appears in E(22) gets replaced by ation can be remedied by considering 5M branes wrapped
e2 around 3-cycles in the internal space. As emphasized by
a9 11 a] i ond Bousso and Polchinski1], these are couple@vith different
Vi(¢)=—21M 21V7Ke 9¢+Cv7rc He 1%+ 7e =, chargeg to additional fluxes, and a large number of fluxes
(33)  will result in a much denser spectrum. Alternatively, FMSW
have suggested that the branes may wrap a degenerating

where we have also added the curvature contribution. Hergf\l‘zgzk])’ei”e)‘("”gﬁzniijf t:; ;ﬂgirviﬂ:all t%f;alrgﬁganr;igm z;lh:g]e
J=—(2121)ae, wherea=7/2. p y ,

. resulting also in a sufficiently dense discretuum.
We can always adopt the convention that=1/M,4, g y

. h of e b bsorbed b hift i Before closing this section, we should note that the loca-
since a change al.—€ " can be reabsorbed by a ShitIN tj5 \where the modulus sits is basically determined by the

P— 1:.07”\ and a constant re-scaling of the four-dimensionalcompetition between the two first terms @3), correspond-
metric g,,,—e"g,, (in this frame, the curvature of the ing to curvature and Casimir energy. The physical curvature
manifold ’I\S of the order of the hlgher dimensional P|aanradiu§ of the internal space is therefore Stabi”zediﬁws
scale for|¢/|=1). SinceF;=n;q, wheren; is an integer and =rce‘f’~Ml‘fcl’(D‘2), where D=11 is the spacetime di-
q=(1/2/M)a,=2y27M}/M,,, we have mension. Thus, unless the consté&hin Eq. (32) is exceed-
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ingly large, the compactification scale is comparable to the e? )
inverse of the higher dimensional cut-off scélg;. In such oy~o— oo (e7<2mo).
a case the semiclassical analysis that we have entertained

above is not justified, since higher order corrections will bepye to the scalar field dressing, the effective tension of the
just as important as the one loop effect that we have inprane, denoted by, is smaller than the parameterthat
cluded. This appears to be a generic problem when we try tgppears in the action. This effect becomes more dramatic if
stabilize by making the curvature and the Casimir termsye place a large numbér of branes on top of each other.

comparable, as in the Candelas and Weinberg exafifle  since boths ande scale likek, the effective tension of the
There, the problem was not quite as poignant, since the cortack is given by

stantC could be made very large by adding a sufficient num-

ber of fields(also, as it is clear from the above estimate of

' bhys, the problem is somewhat milder if the number of extra o=k
dimensions is smallgrHere we shall not dwell on this prob-

lem, since the main purpose of the above discussion is just t@hich grows withk but less than linearly. In the limit of very
illustrate the role of the four-form in obtaining a discretuum jargek, using(38) with o replaced byko we have

of states. For more fundamental approaches to moduli stabi-

lization in the present context, the reader is referred to Refs. mo? 5 ke?
[16] and references therein. Our ensuing discussion will be o o (k €’>2mo) (41)
largely independent of the details of the stabilization mecha-

nism. and so the tension almost saturates, growing only logarith-
mically with k. This last expression should not be taken too
V. INTERBRANE FORCES literally, however, since in36) we are neglecting gravita-

Inevitably, the stabilization op spoils the perfect balance tional effects. As shown above, nonlinear effects of gravity

. . . 2 .
of forces. At distances larger than the inverse of the mass J}ecome- lmp(?rtant ata d!stance given Mﬁf‘f i, which
the modulusm™2, the remaining gravitational and four-form in the limit given by (41) is smaller thanm™". Hence the

interactions are both repulsive, and lead to a linear potentigiusp solution(37), which has typical width~m~*, will re-
per unit surface of the form ceive sizable gravitational corrections in the limit of laige

Nevertheless, it still seems likely that the effective tension of

e2
a’-km} (k €€<2mo), (40)

~—-In
e2

2 307 the stack of branes will grow witk much slower than lin-
V(d)~— 57 Ve d (d>m™ (35 early. Physically, the reason is that the scalar charge of the
p stack increases witkk According to(28), this means that the
whered is the distance between the branes. cusp in the fieldp on the branes grows stronger, which in

To investigate the behavior of the interaction potential afUrn means that the value of the figjg on the branes has to
distances shorter than™2, let us first consider the situation P€ further displaced into negative values. Hence, the brane
where gravity and the 3-form gauge potentifire ignored contribution to the effective tensiokoe*® shows only a

and the branes interact only through a scalar fieldf mass V€Y modest growth wittk, and the tension for largleis in
m. The action is given by fact dominated by the potential and gradient energy of the

scalar near the brane.
Mr2> Let us now look at the interaction potential between two
S=- 7[ d*x[(d¢)?+ mZQDZ]—UJ d3¢\ye. branes separated from each other. For simplicity, we shall
* (36) restrict our attention to the case of small scalar chaege,
<2mo. Then, the last term i636) is well approximated by

The solution with a single brane on the plane0 has the its linearized expression:
cusp profile

M2
e=goe M4, 37) S=—7pf d4X[(<7<P)2+m2<p2]—Ld?’fx/?(aJreMpcp).

where ¢, is a solution of (42)

o e Placing the two branes at= +d/2, the solution for the sca-
—@pg— _ - _ lar field has the “Golden Gate” profile shown in Fig. 3:
®o e 2 . (38)
2mMg 2mM,

The energy per unit area of this configuration is given by $=- mMpeimdlz coshmz, |z[<di2
Mrza 120 202 2 2 __ ¢ d2)e~m |z|>d/2 (43
a'1=(rea“’0+7f dz(¢'“+m*p?) =0 e+ mMgeg . P= mM, cosiimd’2)e , 12 :
(39 : . . : .
The energy per unit area of this configuration, as a function
For small charge and tension, we have of the interbrane distance, is given by
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question that needs to be addressed in order to justify the
semiclassical description of coincident brane nucleation. In
¥ d Sec. VII, where we discuss the degeneracy factor, we shall
simply postulate that an attractive interaction exists at short
distances.

'}
Y

VI. COLEMAN —DE LUCCIA (CDL) INSTANTONS

/—\ The brane nucleation rate per unit volume is given by an

expression of the forrf5]

I'=De 8, (47

FIG. 3. Profile of a massive dilaton in the presence of tWOWhereB=SE(I)—SE(B). HereSx(1) is the Euclidean action

branes. of the instanton corresponding to the decay of the four-form
) field, and Sg(B) is the action for the background solution
oo(d)=20,— e_efmd. (44) before ngcleation. The prefactﬁr_will be discussed in th_e
2m next section. The formal expressi¢fi7) can be used both in

) ) ) . flat space and in curved space. Also, it can be used at zero or
From this expression, and adding the long range contribuy; finite temperature. The difference is in the type of instan-
tions from gravity and the four-form, the interaction potential o, and background solutions to be used in each case.

per unit surface is given by In this section, we shall concentrate in the maximally
2 342 o2 symmetric instanton. In flat space, this represents the decay
Wd)=—| —+—|d— —e ™ of a metastable vacuum at zero temperature. The Euclidean
2 4M§ 2m solution can be described as follof. At infinity, the field
strength takes the valug,, which plays the role of a false
At short distances, this takes the form vacuum. Near the origin, we ha¥e=F;=F,—q. This plays
) 2 the role of a true vacuum phase. Both phases are separated
Wd)=— e_+de_ m_d2+ o (45) by the Euclidean worldsheet of the brane, which is a three-
2m 4 sphere of radius
where the parameter 30
R=—. (48
, e2—q2 302 €
Q"= 2 4_an : (49 Hereo is the tension of the brane and
was introduced in20). As shown in Sec. lll, dimensional e=%(F§—Fi2)=q[Fo—(q/2)] (49)

reduction from the supergravity Lagrangian with BPS

charges give€Q?=0. In this case, the linear term i@5) )

disappears. The quadratic term is negative, which means thi the jump in the energy density across the brane. The dif-
the stack of coincident branes is unstable and tends to dise €NC€ I Euclidean actions between the instanton and the

solve. Thus the stabilization of the modulgseems to make Packground solution is given in this case [13}

the superposition of branes an unstable configuration. 27m2 o
As we shall see in more detail in Sec. VII, stacks of pflah~ (50)
branes in marginal or unstable equilibrium will not be appro- 2 €

priate for constructing instantons, since in particular these . o , .

would have too many negative modes. The instanton is onl}f instead of considering a single brane, we are looking at the
meaningful if the branes attract each other. The above analjlucléation ofk coincident branes, an analogous solution of

sis shows that at the classical level, the branes with Bp&'€ Euclidean equations of motion should be considered. The
values of the charges would not attract each other, and cofNly difference is that the effective charge is a factorkof

sequently the nucleation of coincident branes is not allowedgher, and the effective tension is also higher by approxi-
at least in the semiclassical description. mately the same factor. Using0), we should replace

There may be several escape routes to this conclusion. For = KA[E.— (ka2
instance, after supersymmetry breaking, the charges of the e a=kdlFo (ka/2)],
branes get renormalized, and it is possible that the corrected o— o ~K[o— (ke¥4m)], (51)

charges satisff9?>0. In this case the branes in the stack

would attract each other with a linear potential. Other mechain Eq. (50) for the “bounce” action. As shown in Sec. V, the
nisms by which nearby branes attract each other are conceigpproximate form ofr, is valid when the second term in the
able, but here we shall not try to pursue their study. It should.h.s. of(51) is small compared with the first. In the model
be emphasized, however, that this remains an important opasonsidered in Sec. 1V, the modulus is stabilized with a mass
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H, hiaiie TABLE |. Values of the radiusR of the Coleman—de Luccia
instanton and the corresponding bounce acBan different limits.
oy <M’H, o >MoH,
H; o Hyle, <1 R~=30,/¢, R~127Gay
B”"Biﬂm)
o Hole>1 R~H," B~m/GH}
B=~2mloH,>

FIG. 4. Coleman—de Luccia instanton, which is obtained by
gluing together two different four-spheres of raHij * andH; * at ~ are the Hubble rates of the de Sitter phases before and after

the worldsheet of the brane, itself a three-sphere. the nucleation event, respectively. Here, and in what follows,

we are assuming that the effective cosmological constant is
of orderm~M ;. This may be regarded as a conservativestill positive after nucleation, since these are the final states
upper bound for the general case. Sieeeao/M, the con-  we are interested in. The bubble radius at the time of nucle-

dition (ke?/4m)< o requires ation (which coincides with the radius of the three-sphése
bounded by &R<Hgl. Analytic expressions foR are

1 Mfl M, 2 given in Refs[1,3]. The general expression is cumbersome

k< 2\ 5 (M_n) (52 and not particularly illuminating, so we shall concentrate on

a few limiting cases of interest.

For largerk, gravitational corrections to the brane profile As discussed in Sec. Ill, the gravitational field of a brane

become important on a length scale comparable to the > repuIS|v2e, an.d IS charf';\cterlz_ed by_ an accglgranon of
verse mass of the dilaton, as we discussed in the precedifjdero/Mp . This gravitational field will be negligible pro-
section. In this case the instanton solution will depend on th&!ded that the corresponding Rindler radios inverse of the
detailed dynamics of the dilaton near the brane. The invest@ccelerationis much larger than the raduRof_tlhe Euclid-
gation of these dilatonic instantons is per se an interestin§an Worldsheet, which in turn is smaller theig *:

problem, which we leave for further research. Here, for sim- )

plicity, we shall assume a scenario where eithegM:,, o<MpH,. (59)
due perhaps to the wrapping of branes on a degeneratin

cycle, or where the extra dimensions are relatively large, s
that M,>M,;, and we shall restrict attention to instantons
where the number of branes is bounded(68). This gives

this regime, we can distinguish two cases. fedil,/e
<1, the radius of the Euclidean worldsheet is much smaller
than the de Sitter radius, and the flat space expre<5ion
holds. In the opposite limitoH,/e>1, we have H,*
g(flat 277 ko 53 —~R)<H,* and
2 gF-(ka2)P? B~ 2 723 56

Nucleation in flat space is impossible when the number Otl'he vacuum energy differenaeis unimportant in this case

branes IS too '?fge' since othenm;e we would be jumping t%nd the action coincides with that for domain wall nucleation
vacua with a higher energy density. Therefore, we must rer

) L [22].
strict ourselves t&<<2F,/q. In fact, the minimum value of . s ; i
F. is achieved for the largesk satisfying k<(F,/q) Finally, the gravitational field of the brane is important
+(1/2). Note that the action increases faster than linearly as
we increase the number of brankesut we still have U>M§,Ho. (57)

g(flat) _} g(flat ) ) o
k In this case, the radius of the worldsheet is given Ry

throughout this range. ~(1/2mGo), and

When gravity is taken into account, the maximally sym-
metric instanton was given by Coleman and De Lu¢8ialt g(wall) T (58)
is constructed by gluing two different de Sitter solutidgtiat G Hﬁ '
is, two four-spheresat the worldsheet of the brane, which is
still a three-sphere. The instanton is sketched in Fig. 4. Then this limit, the action of the instanton is much smaller than

four-spheres have the radii, * andH; !, where the action of the background, and this is the reason 8By
is independent of the tension. The same arguments apply of
Ags Agii—€ course to the instantons with coincident branes, and the cor-
H2= ) H2= — (54  responding expressions for the action and radii in the differ-
3Mp 3Mp ent regimes are summarized in Table I.
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VII. THE PREFACTOR FOR CDL INSTANTONS 1 7

The prefactoD in Eq. (47) is given by[5] We=—{r(—2)+ §|n 2= 1672 {r(3)~0.0638.

D= £ (59) Hence, the effective degeneracy factor contributed by a con-
Zg' formal scalar field is given by
Here Z and Zg are the Gaussian integrals of small fluctua- D.~e We=0.94<1. (62

tions around the instanton and the background solutions re-

spectively. Expanding all brane and bulk fieldshich we  The first thing to note is that this factor is not an enhance-
generically denote by¢) around the instanton config- ment, but a suppression. Hence, the prefactor cannot simply
uration ¢ as ¢:¢|+2j5%j_1 we have Se[#]=Se[l]  pe thought of as the exponential of an entropy. More gener-
+S@[1,8¢;1+ - - -, whereS? includes the terms quadratic ally, from Eq. (61), the prefactor is independent of the ex-

in 5¢; . At the one loop order we have pansion rate of the ambient de Sitter space. This has impli-
cations for the scenario proposed by FMSW, as we shall
Z,:J H-D’(5¢-)e‘s(2). discuss in the next section.
! ! In general, the degeneracy factor will dependroand on

) i o the mass of the particle. For light minimally coupled scalars,
In the functional integral, there are some directions that COrEq, (61) gives

respond to spacetime translations of the instanton. The

primes in the numerator d69) and in the preceding equa- tw'(~2)
tion indicate that the translational zero modes are excluded D~ e (mpR<1). (63)
from the integration, and replaced by the corresponding mmeR

spacetime volume. The latter is subsequently factored out in
order to obtain a nucleation rate per unit time and volume. There can be a strong enhancement in the nucleation rate if
The degrees of freedom that live on the brane will make ahere are very light scalar fields. In the limit,—0 the

contribution to the numerator but not to the denominatorfactor goes to infinity. This is because a massless scalar has a

Consider, for instance, a free bosonic figkdof massmg  normalizable zero mode on the sphere, corresponding to the

living on the worldsheet. Its contribution to the prefactor is symmetry® — @+ const. In this case, the zero mode must
be treated as a collective coordinate. The nucleation rate is

DqFan:e_W‘I’:j Dq)efyllztp(Az—mfp)<pd3§. proportional to the rang@b of the field ®, because the

bubbles can nucleate with any average value of the scalar

_ . _ . field with equal probability 23]
Here the integral in the exponent is over the Euclidean
worldsheet of the brgne. If we haké of such fields, their Ds(mczp=0)= lim [meDy(mg)](7RE)Y25d
effect on the nucleation rate is to replace w2 0
D

Bk—> Bk+ kZer Il (60) = egR’(fz)Rl/25<D. (64)

in the naive expression for the nucleation rdte; e B« a . .
. : ._Finally, for large mass the expressi®i) leads to
replacement which can become very important as we in-

crease the number of fields. This is, in essence, the observa-
tion made by Feng et al. that the large number of worldsheet
fields might strongly affect the nucleation rate.

D~exp 7m3R%/6) (muR>1). (65)

The exponent of this expression can be interpreted as a
renormalization of the tension of the stack of branes, due to
the heavy scalars living on [24]. Indeed, the effective po-
The Euclidean worldsheet in the Coleman—de Luccia intential for a scalar field in 21 dimensions in the flat space
stanton is a 3-sphere. Determinantal prefactors due to scal@it is proportional tomj,, and the factor oR® is just due
fields were considered in some detail in R&X3]. They are o the volume of the worldsheet. The fac®g is plotted in

A. Scalars

given by Fig. 5 for different values ofngR.
1 Note that there is an enhancement both at small and at
/ : kb4 : | but the two have very different origin. The large
Wa=—{h(—2)+(y2/2)l ——f | arge mass, 1 T y di 9 9
@ tr(=2)+ (y7/2)In(sinry) w2Jo xIn(sinx)dx, value of (63) for light fields can be interpreted as a phase

(61)  space enhancement. As we shall discuss in Sec. VII D, quan-
tum fluctuations of fields living on the worldsheet of the
wherey2=1—m§,R2 and{p is the usual Riemann zeta func- brane are characterized by a temperatlirel/27R. The
tion. For instance, the contribution of a conformally coupledcorresponding fluctuations in the potential term are of order
scalar field can be obtained by taking,= (3/4)R™2, which m3 ®2~ T3, which corresponds to a root mean squared ex-
gives pectation value forb of the order
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Dy 1
Ssym=— f Vyd®g S TR, Fe)
10
8 +Tr(D,¢D*d)+ V() +--- |, (67
6
4 where the ellipsis indicate the terms containing fermions.
Here F,, is the field strength of the gauge field*
2 =ALN,, whereh, are the generators d&f(k), normalized
by Tr(Ng\p) = dap/2, andep= ¢\ 5, Wheree, are real sca-
me R lar fields @,b=1, ... k?). By analogy with the well known

0.5 1 1.5 2 ; . . .
case of D-branes in 10 dimensions, we shall assume that if

FIG. 5. Contribution of a scalar field to the prefac®@rin the  the coincident branes are fl@s in the case when there is no
nucleation rat€47), as a function of its magss,, (measured in units  external four-form fielfl then the theory is supersymmetric
of the inverse radius of the instanjor\t low mass, the enhance- gnd all degrees of freedom are massless. The scalarfield
ment is due to large phase space: bubbles can nucleate with valugsHermitian matrix and can always be diagonalized by a

of the field in the rangd&66), which becomes larger for smaller suitableU (k) gauge transformationp=diag(e;, . . . ).
masses. The gnh_ancement at large mass can be understood a$if eigenvalues;, i=1, ... k are then interpreted as the
finite renormalization of the brane tension. positions of the different parallel branes along an axis per-
pendicular to themif the codimension of the branes were
1 higher, there would be additional scalar matrices represent-
5P~ ) (66)  ing the positions of the branes along the additional orthogo-
mRe/2 nal directions, but here we are interested in the case of codi-

mension ong In the supersymmetric case, the potential for
the scalar field vanishe3/(¢)=0. However, for nonflat
Equation(63) is recovered if we insert the rang&6) in Eq.  branes, the displacement of the stack of branes no longer
(64). The lighter the field, the larger is the phase space factobehaves as an exactly massless fj@@,25, but one which
6®, and the larger is the nucleation rate. FagR>1 this  couples to a combination of the worldsheet and extrinsic
argument cannot be used, since the field does not behave asrvatures, as well as to the background four-form field.
effectively massless. In that limit the field decouples, as itAlso, after moduli stabilization, the forces amongst branes
should, and its effect is felt as a renormalization of the paare nonvanishing, and this also contributes to the potential
rameters in the Lagrangian. For a scalar field, the leadindgor the relative displacements of the different branes. Thus,
effect is to renormalize the tension of the brane, making itas we shall see, there will be a nonvanishing potential
lower (see Appendix A This causes an exponential en- V(¢)#0 in the physical situation of our interest.
hancement of the nucleation rate. When the positions are not coincident, tH¢k) symme-
try breaks to a smaller group because some of the gauge
_ bosons acquire masse§=(92/2)(<pi—<pj)2. There are al-
B. U(k) fields ways at leask massless vectorgorresponding to Maxwell
Besides scalar fields, gauge bosons and fermions may livé@eory on the individual branes on the staakd the remain-
on a brane. At low energies, the field content on a stack oing k?—k have double degeneracy. For example, in the case
coincident branes will be model dependent. The idea is that #f a single brane, the scalar field will represent the Goldstone
will correspond to a gauge theory whose symmetry is enmode of the broken translational symmetry, associated to
hanced when branes are coincident, giving rise to a largtransverse displacement of the brane. For the case of two
number of light species on the worldsheet. The details of théranes, there are two such scalars. One of them= (¢,
theory, however, will depend on whether we start from 2D+ ©,)/\/2, will corresponds to simultaneous motion of both
branes that descend directly from the ten dimensions, dfranes, and is a singlet und8tJ(2). The other one,p_
from higher dimensional p-branes wraped gn-(2)-cycles. =(¢;— ¢,)/+/2, will correspond to relative motion of the
They will also depend on the details of compactification.branes and it transforms und&tJ(2). When the two branes
Rather than building a particular scenario from first prin-move apart¢_ acquires an expectation value and two of the
ciples, here we shall try to gain some intuition by consider-gauge bosons get a mass, breaking the symméif®)
ing a toy model directly in four dimensions. The degrees of—U(1)xU(1).
freedom on the stack df coincident branes will be bluntly The case of interest to us is not a flat brane, but the world-
modeled by a weakly coupled SUSY(k) gauge theory on volume of the 2-brane in the CdL instanton, which forms a
the 2+1 dimensional worldsheet. This contains k) 3-sphere of radiuf. In this situation, we do not expect the
gauge field, k*— 1) scalar degrees of freedom in the adjointtheory to be supersymmetriin particular, corrections to the
representation dU(k), and a scalar singlet; plus the corre- effective action will appear at one loop, which will be related
sponding fermionic degrees of freedom. The action for then fact to the determinantal prefactor in the nucleation)rate
worldsheet fields is given by The case of a single brane is very similar to the case of a
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vacuum bubble, and in that case we know that the transverdength in Sec. VII D quantum fluctuations of fields living on
displacements correspond to a scalar field of negative maske worldsheet of the brane are characterized by a tempera-

squared 23,25 ture T=1/27R. The fluctuations in the potential are of order
) V~T3, and these correspond to a root mean squared expec-
m:=-3R7% (68) tation value fore_ of the order
The origin and precise value of this mass term can be under- S¢_~aR3Q%. (71)

stood geometrically, since it leads to four normalizable zero - ) ]

modes which are the spherical harmonics withl. These 1he stability of the two-brane instanton requires thgt
correspond to the four space-time translational modes of th& #m- Otherwise, unsuppressed quantum fluctuations take
instanton, which have to be treated as collective coordinate&e field over the barrier and the distance between the branes

This scalar field has also a single negative mode, which i§tarts growing without bound. This requires

the constant=0 mode. A negative mode is precisely what is me
needed for an instanton to contribute to the imaginary part of 4s
; Q*> —. (72
the vacuum energy, and hence to contribute to false vacuum R
decay[5]. Integrating out the transverse displacement of the o o _
brane gives a determinantal prefactor of the f¢@8] If this condition is satisfied, therp_ is trapped near the

origin, and the branes stay together. It can be shown that for
, Q%>R ° the field behaves as approximately massless in
etr72)Q, (69 the range given by71), so from(64) its contribution to the
prefactor can be estimated as

whereQ)=VT is the spacetime volume. The prefactor in the
nucleation rate(47) per unit time and volume is obtained 12 7
S : D_~RY6¢_~ .

after dividing by Q). The above argument neglects gravity, R52Q2
and it is a good approximation whm=b<M§Ho. The case
of strong gravityo,> M,ZJHO is far more complicated, since As in the case of the massive field discussed in the preceding
one has to integrate over fluctuations of the gravitationabection, this expression is only justified whBn >1. If Q?
field in the bulk, and is left for further research. is too large, then the field will not behave as massless in the

If there are 2 coincident branes, then there are two inderange(71), and we expect that fa@*> R the sole effect
pendent transverse displacements corresponding to the eaf the field will be to renormalize the coefficients of opera-
genvaluesp; and ¢,. The “center of mass” displacement tors such as the brane tension in the classical Lagrangian. An
¢, behaves just like in the case of a single brane. The orinconvenient feature of the linear potenti@O) is that is
thogonal combinationp_ represents the brane separation,nonanalytic at the origin, and hence an explicit calculation in
and the two-brane instanton will only be relevant if this sec-the limit of large slope is not straightforward. Moreover, we
ond combination acquires a positive mass through someannot write down an expression for it in terms of the matrix
mechanism, so that there is a single negative mode, not twoperatore, but just in terms of its eigenvalues .
and four normalizable zero modes in total. In other words, Another possibility, which is more tractable from the for-
the branes must attract each other. As shown in Sec. V, if thenal point of view, is to assume that there is an attractive
branes have BPS charges, they in fact tend to repel eadhterbrane potential which is quadratic at short distances.
other once the dilaton is stabilized, and the configurationThat is, as in(70) with Q?=0 but with a positive coefficient
with coincident branes is unstable. In this case, we do noin front of the second term. In terms of the eigenvalges
expect that there will be any instanton representing thavhich represent the displacements of the branes, we assume
nucleation of multiple branes. the following expression for the potential

One possible way out of this conclusion is to assume that
the charges are different from their BPS values, due to su-
persymmetry breaking effects, so that the sQfdefined in
Eq. (46) is positive. In that case, the two branes attract each
other with a linear potential. The canonical fiefd is re-  whereg, =k Y25k o, =k 2Tr($) andm? = —3R 2 [as
lated to the interbrane distandéoy |¢_|=o*%d. Hence, the given in Eq.(68)], while m? >0 is a new parameter which
interbrane potential45) takes the form characterizes the attractive interaction at short distances. In

terms of the field$, we can write the potential as

o?R?
D,=

1/2

(73

1
Vg)=mlel+opm’ 2 (i=e)’+---, (74

B m

Ve )=Q% Vg [ —¢+ . (70) V() =m2 k(T ¢)2+m2 [ Tr p2—k~ L(Tr ¢)?]

k2

This potential is attractive at small distances, and has a maxi- 1,0, 2 2
mum ate_ = ¢,~Q?%c)mé?. Classically, the branes will =Mt szbzz P (75)
attract at short distances. However, there is a danger that they
will be separated by quantum fluctuations. As we discussedhere in the last equality we have expandk€ ¢\ 5 in the
in the preceding subsectiotand we will argue more at basis of generators,, and we have used, = (2k) 21 and
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Tra,=0 forb=2, ... k2. In the symmetric phas@nd as- m2m o2 e74e(*2)92 K272
sumingm_R<1) each one of the adjoint fields, will con- T~ — ok 3( ) e Bk (m_R<1),
tribute a determinantal prefactor of the form 4 V2mm? R
(82
egR,(fz)
Do~—p—— (m R<1) (76)  whereBy is the corresponding bounce action for the nucle-
7 m_R ation ofk coincident branes. Note that tfedependence of

the prefactor is simply as a power law. Here we have used
where we have use(63). This shows a somewhat milder the form(76) for the scalar contributio® _, corresponding
dependence iR than in the case of a linear interaction be- o an attractive interaction amongst branes which is quadratic
tween branes, given in E73), but still of power law form.  at short distances, with a curvature of the potential charac-
In the limit of large massD_~exp@m’R¥6), which as terized by some mass parameter .2 The prefactor in Eq.
discussed before amounts to a finite renormalization of th@gz) has the exponential dependencekarwhich counts the
brane tension. number of worldsheet field degrees of freedom, while the

Aside from scalars, we should also consider the contribugyclidean actiorB, behaves approximately linearly with

tions from gauge bosons and fermions. For the case of Bence, as suggested in RE2], the prefactor can be quite
3-sphere, these have been studied in R&f]. For vectors of important in determining the nucleation rate.

massmy, the result is In the scenario proposed in RéR] it was also desirable
) _ that the enhancement in the nucleation rate would switch off
1 g°R sinh(mmpR) mR  d at the present time, in order to prevent the vacuum from
Wp=—log| ——| —log _f y - decaying further. Unfortunately, the expressig8) does not
2 A MR 0 dy .
seem to have this property. The prefactor depends only on
Xlog(sinhmy)dy—{Rr(—2)+24(0), (77)  the radiusR, which is itself a function of various parameters,

such as the brane tension, the charge and the ambient expan-
where g is the gauge coupling, which is dimensionful in Sion rate, as summarized in Table I. According(82), an
three dimensions. When the branes are coincident, the theoffhancement of the nucleation rate of coincident branes will
is in the symmetric phase and the gauge bosons are masslegscur for
A massless gauge boson gives a contribution of the form
(30, AM? )

DAzefwAzgRlIZeg’;q(fZ) (mA=O), (78) R~Min E_k'Ho ’U_k <(g/m_) ) (83)
which again behaves as a powerRfA Dirac fermion of where we have used the results of Table | in the first step.
massmy, yields the contributiorj24] Consider first the situation wherekM‘;2<H0. Note that
even in the regime WheR%Hgl, the dependence of the
degeneracy factor on the corresponding dS temperature is
only power law, and not exponential as suggested in [Réf.
Also, it is clear the stability of our vacuum is not guaranteed
by the smallness of the present expansion rate. The enhance-
ment will persist provided that, /e, <(g/m_)?, even if the
ambient de Sitter temperature vanishes. More worrisome is

For the massless case, tRelependent terms vanish and we the fact that for sufficiently larg& we enter the regime

1 mR
Wy = log costimmR) + Wfo u? tanH 7ru)du

1
+205(~2,112)~ 5 (R(0,112), (79

have whereayM, ?>H,. In that case, we have
' 2
Dy=2" B2 (m,=0), (80) R~ Nlp/a'k,
which is a constant independent of the radris which can get smaller and smaller as we increase the number

of coincident branes, eventually leading to a catastrophic de-
cay rate, regardless of the valueldf .

The expression(82) for the nucleation rate is valid for
Collecting all one-loop contributions, the prefactor in Eq. m_R<1. In the opposite limitm_R>1, the scalars de-
(47) due to the weakly coupletd (k) gauge theory in the couple, contributing a finite renormalization of the param-
unbroken phase is given by eters in the actior{such as the brane tension and induced

Newton’s constant For completeness, this is discussed in

C. Nucleation rate

D=2 (D_)¥ (D) (Dy) . (81

21f we assume instead a linear interaction at short distances, we

Using (69), (76), (78), and (80) we are led to a nucleation should usg(73) and the behavior changes BR(®2~2€ byt in
rate per unit volume of the form any case the dependence is still a power of the rallius
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Appendix A, where it is shown that the renormalization of intrinsic worldsheet temperature. Hence, the de Sitter
parameters can have a very significant impact on the nuclesacuum in the 21 dimensional worldsheet is in equilibrium

ation rate. with the Minkowski vacuum in the bulk. This conclusion is
quite general, and applies also to bubbles nucleating in de
D. Discussion: Temperature of a vacuum bubble Sitter. The CdL instanton has &\(4) symmetry under Eu-

. . clidean rotations. This becomes &1(3,1) symmetry after
In Ref. [2], the prefactor in the nucleation rate for the 5 4ic continuation into Lorentzian time. The quantum
nucleation of coincident branes was estimated as an entroRyaye after bubble nucleation is expected to inherit this sym-
enhancement metry[5,26,27, and the only way to achieve it is if the fields
D~eS, on the brane are in their intrinsic de Sitter vacuum, which is
characterized by temperatufg.

where, from dimensional analysis, the entropy was estimated Note thatTg is a relatively high temperature. The radius
asS« T2R? per field degree of freedom. The fac®? is due of the instanton is always smaller thtalrgl (see Table)l, and

to the area of the bubble, aridis some effective tempera- thereforeTg is strictly larger tharl, andT;. Nevertheless,
ture. Although the interpretation of the prefactor as the exthe productk’TZR?~k?, and hence the “entropy enhance-
ponential of an entropy should not be taken too literally, letment,” is independent of the ambient de Sitter temperature.
us try and phrase the results of the preceding subsection s shown in the previous subsections, the independence of
this intuitive language. the prefactorD on the ambient expansion rate is only ap-

A particle detector following a geodesic in a de Sitter proximate, due to the anomalous behavior of light fields in
space responds as if it was at rest in a thermal bath in flade Sitter space. This introduces a dependence of the effective
space, at the temperatufg=H/27. It should be kept in actionW,¢= —logD on the radiusk of the instantor{which
mind, however, that the dS invariant quantum state is in facin turn may depend oil, in certain regimes This depen-

a pure state, and hence rather different from a true thermalence, however, is quite different from the one proposed in
state. For instance, any two detectors in geodesic relativBef. [2], where it was suggested that the nucleation rate of
motion observe the same temperature, with a perfectly isosoincident branes would be enhanced at hifgh and would
tropic distribution. This is a consequence of de Sitter invari-switch off at lowH, due to the drop in ambient temperature.
ance, and is in contrast with the situation in a thermal bath inWhat we find instead is that, if the CdL instanton for nucle-
flat space, where moving observers detect a temperatuigion of coincident branes really exists, then the correspond-
blue-shift in the direction of their motion relative to the bath. ing degeneracy factor does not necessarily switch off.

The fields living on a nucleated brane will experience We shall return to a discussion of this point in the con-
some thermal effects too. The bubble is embedded in a d6luding section. Before that, let us turn our attention to a
space characterized by a temperaflige The interior of the different instanton, which may be relevant to the FMSW sce-
bubble is also a dS space characterized by a different expanario.
sion rate, with corresponding temperatdre The existence
of two different de Sitter spaces in contact with the brane led
the authors of Ref.2] to consider two different possibilities
for the effective temperature of the fields on the brahe: Euclidean de Sitter space is compact in all spacetime di-
=T, andT=(T,T;)¥2 However, there is in fact no ambigu- rections, andas we just discussgdt behaves in some re-
ity in the temperature of such fieldi4], which is determined spects as a system at finite temperature. One may then ask
as follows. whether there are instantons similar to the thermal ones in

The worldsheet of the brane is &% of radiusR, the flat space. These correspond to static bubbles, in unstable
Euclidean de Sitter space int4 dimensions. If interactions equilibrium between expansion and collapse.
with bulk fields are neglected, brane fields are only sensitive Static instantons withO(3) symmetry have previously
to the geometry of the worldsheet, and do not know aboubeen considered in a variety of contexts, notably for the de-
the properties of the ambient space. In this approximationscription of false vacuum decay in the presence of a black
the relevant temperature is clearly the intrinsic temperaturéole (see e.g. Ref428,29 and references thergiriThe par-

VIIl. PAIR CREATION OF CRITICAL BUBBLES

of the lower dimensional de Sitter space, ticular instanton we shall consider corresponds to pair cre-
ation of critical bubbles in de Sitter, and to our knowledge it
Tr=127R. (84  does not seem to have received much attention in the past.

_ _ ' _ ~ This is perhaps not surprising, since its action is higher than
This conclusion remains unchanged when we include interthat of the action for the maximally symmetric CdL instan-
actions with bulk fields. The simplest way to see this is toton. However, if the CdL instanton does not exist for coinci-

consider the limiting case where gravity can be ignored an@ent branes, the static one may turn out to be relevant once
the nucleation takes place in a flat space. There, the ambietie degeneracy factors are taken into account.

temperature vanishélg,= 0, but the fields on the brane will
feel the temperatur@ r, because the nucleated brane ex-
pands with constant accelerati@=1/R. An accelerating
observer in the Minkowski vacuum will detect a Rindler The energy of a critical bubble is different from zero, and
temperaturel g=a/27, which happens to coincide with the consequently, the metric outside of the bubble is no longer

A. The instanton solution

083510-15



J. GARRIGA AND A. MEGEVAND

b i
T+
== o &
Y
|
“ T\

PHYSICAL REVIEW D69, 083510(2004

T+

FIG. 6. Static instanton in de Sitter space. The left figure shows the geometry induced on thetplaie keeping angular coordinates
fixed, whereas the right figure shows the geometry induced on the plén&eepingd andt fixed. The vertical direction corresponds to the
coordinater, common to both pictures. The cosmological horizon is-at . , the brane is at=R, andr=0 is the center of the static

bubble of the new phase.

pure de Sitter, but Schwarzschild—de Sitt&dS. The in-

stanton is a solution of the Euclidean equations of motion,
with two metrics glued together at the locus of the wall,

which is a surface of constanin the static chart of Sd&ee
Fig. 6). The metric outside is given by

dg?="f,(r)dt>+f, 1(r)dr?+r2dQ?, (85)
wheredQ2=d#?+ sirfad¢?, and
2GM
fo(r)= 1—T—Hor ) (86)
The metric inside is given by
ds?=C?f;(r)dt?+ f. }(r)dr?+r2dQ?, (87
where
fi(r)=(1-Hfr?), (89)

corresponding to a de Sitter solution. The const@nis
determined by the condition that on the brafe., atr
=R) the two metrics must agree, which leads @
=[f(RI/fi(R)]*2

The parameter andR depend onr,, H, andH; . Their

4’770'kR
3M

3GM
6i(R)= , go(R>=gi<R>(1—T). (92

From (86) and (88) we have

5 1 2GM
go(R)_;_ R3

1
—HZ, gi(RI=——H{. (93
R

Inserting(92) in (93) we finally obtain a quadratic equation
for g;(R)=x. The solution is

2 1/2

(99

i
+_
2

€ 3oy
X=—+
40’k

€ 3oy

40y 16M}

2
16M;

where we have used’—H?=87Ge/3=€/3M}. Then the
parameterdM andR are given in terms ok by
R 2=x?>+H?, M=4moR/3x. (95)
This concludes the construction of the instanton solution for
given values of the physical parameters, H, andH;.
The equationf,(r)=0 has three real solutions for
27H§MZGZ<1. One of them, say_, is negative and the

values are determined by the junction conditions at the branether two are positive. The two positive roots correspond to

[14],
[Kap]l==47GoyYap, (89

where[K,,] is the difference in the extrinsic curvatukg,,
=(1/2)f29,g,p 0on the two sides ang,;, is the worldsheet
metric. Equation89) gives rise to the junction conditions,

[9']=0,

where we have introduced the new functiog(r)
=f2(r)/r. Using Eqgs.(86) and(88), we have

[g]=—-47Goy, (90

1 3GM 1

gogo:_r_3+ . :gigi:_r_s'

; (91)

Hence, using(90), g,(R)=g/(R)=—-3M/4maR* and
theng;(R) andg,(R) are easily obtained from Eqg1):

the black hole and cosmological horizons. We call them re-
spectivelyrg andr , . Therefore we can write

H2

fo()==—2(r=ro)(r=rgy(r=ry). (99

Of course, in our instanton the horizonratis not present,
since the exterior metric is matched to an interior metric at
somer =R>r (see Fig. 6. Forr <R the metric is just a ball

of de Sitter in the static chart, and it is regular down to the
center of symmetry at=0. In general, the size of the cos-
mological horizon is given by

2 +r
Hor . =— cos<¢

373

, (97)

where we have introduced the angle
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1 _, , R—=3GM 10
@=—arctan m—l. (98 Br= er+r+—SGM' (109
0

We shall also be interested in the Euclidean action, which
turns out to have a rather simple expression in terms,of
This is derived in Appendix B, where it is shown that the
difference in Euclidean actions between the instanton and the
Background solutions is given by

In the limit M —0 the anglep— — 7/2, andH,r , —1.
According to Eq.(92), at the brane we havé,(R)

=x?(R—3GM)?, so the equatiorf,(R)=0 has a double

zero instead of two different roots. This means that the radiu

of the instanton will coincide with the radius of one of the

horizons only in the special case where both horizons have -

the same sizets;=r , =R=3GM. In the limit rg=r, the B= 2(1—r§H§). (105)

exterior metric becomes the Nariai solutif®0,31], which GH
has r=(yJ3H,) " Note that in the Ilimit &M °
—(\3H,) 1, ¢—0 andH,r, —1/{/3, as expected.

Like in the case of instantons describing the production of
black holes[30] or monopoleqd22] in de Sitter metric, the Let us start with the case of low tension braneﬁ“\/ls
instanton presented here describes the creatiopaot of <H,,Ho—H;. In this case the parametaris large com-
bubbles. As we shall see, the Euclidean solution is periodigared withH,, R=x"1 is small, andGMH,<1. In this
in the time direction, so that time runs on a cirfe(see Fig.  |imit the angle¢ in Eq. (98) is close to— /2 andH,r .
6). The geometry at the time of nucleation is obtained by~1. \We have
slicing the compact instanton through a smooth spacelike

C. Some limiting cases

surface that cuts th&' factor at two places, say=0 and 2 16770& 20

t=. The resulting geometry contains two different bubbles B=— ot Br=—". (106
separated by a distance comparable to the inverse expansion Ho  3e Ho

rate.

This is just the flat space expression for the energy of a
critical bubble, multiplied by Euclidean time periodicity of
the low curvature de Sitter space in which this bubble is
In order to calculate the temperature of the worldsheet irembedded.

B. Temperature and action

the static instanton we must first find the time periodigity ~ Next, we may consider the case of intermediate tension
This is determmgd by the regularity of the Euclidean metrchO_Hi<Uk/MS< Ho,H;. In this case,x~H;/\2, R
at the cosmological horizon. For-r ., we have ~(y3%)"Y, Hor»~1—GMH,, with GMH,<1, and we

" have

f0<r)~A2(1—r—), (99
+ 1672 oy 27 (107
B% — 5, BR% I—— 10

where 3\/5 H3 \/§H0

AP=H3(r —r)(r.—r9=3Hri -1 (100  |n this case, the difference in pressure between inside and

) outside of the brane is insignificant compared with the brane

In terms of the new coordinates tension term, which is balanced against collapse by the cos-
mological expansion.

2y T . 2 10 Finally, in the limit of very largeo, we find that 3LM
P= A" r ¢= 2r, b (10D pecomes larger thaR, namely, & M—4R/3. This means
that f,(R) vanishes for some valug,= oy, given below
the metric(85) for r—r . reads in Eq.(118), so it is not sensible to consider the limit of very
large oy but just the limitoy— o max. AS We have mentioned
ds?=p?d¢?+dp?+r2dQ?, (102  [see the discussion below E(@6)], the exterior metric in

this limit corresponds to the Nariai solution, with=r ,
so it is clear thaip is an angle, & ¢<2m, andt varies in = (+/3H,) ~*. Replacing this value if105) we find readily
the range 8<t<4sr, /A2, Therefore the value o8 is

2

At 272 B (108

_ _ 3GH?
A 3HZ2-1 r,—3GM’ (103 ?

It is interesting to compare this value 8fwith the corre-
The temperature of the worldsheet instanton is given by theponding one for the nucleation of black holes in the same de
proper time periodicity Br=SAfYAR)dt=fY4R)B  Sitter universe. This is described by the Nariai instanton
=CfY%R)B. Hence, the inverse temperature is given by [30], which has the bounce action
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These equations are easily solved and give

v
By= . (109
" 3GH? 3H2-H2| ™
singp=| ——— 1, (117
Note that the differenc®—By= 7/3GH2=A,,/4G, where 6Ho—Hj

Apn=4mr2 is the area of the black hole horizon in the Nariai ) R
solution. Hence, the probability of nucleating black holes k= Tmax— 2Mp V3HG— HY, (118

divided by the probability of nucleating brane configurations

characterized by the same mass parameter is just the expe? Hi must be less tha'?/gH,o- Now regularity at the cos-
nential of the black hole entropy, as expected from generdhological horizony=0 implies that G=\/r. <2, so Bg
considerationgin this argument, we are of course neglecting =sin(yr)2nr . . Hence,

the entropy stored in the field degrees of freedom living on o 2\ 12

the branes, which will only show up when the determinantal = 2m [ 3Ho—H; 119
) : X R=

prefactor in the nucleation rate is evaluated /—3H0 6H2— H?

Let us consider the value @ in the limit oy— o max-

This is a singular limit in Eq(104) due to the simultaneous Thys, also in this case, the effective temperature of the field

vanishing of numerator and denominator. Thus we will needjegrees of freedom living on the worldsheet will be of order
to change to more appropriate coordinates. The factrthat  or higher.

=r, does not mean, though, that both horizons coincide,
since the coordinates,t become inadequate in this case. D. The prefactor for static instantons

Near this limit the metric outside takes the fofBb), with o i
In flat space, and at finite temperature- ¢,/ o, the in-

r\2 stanton which is relevant for vacuum decay is static and
)— ( 1- :) ' (110 spherically symmetric in the spatial directions. The fluctua-
tions are periodic in Euclidean time, with periodicify
andr~r . , plus higher orders i\ The constand is the ~ =1/T. The worldsheet of the brane has the topoldgly
same parameter defined {00, but in this limit tends to < S?, where theS" is the direction of imaginary time, and
zero,AZZ\/§Ho(r+_rs)_ Now we define new coordinates the S? is the boundary of the “critical” bubble, a closed

rs

fo(r)~A2<1—L

¢ and\ by brane in unstable equilibrium between expansion and col-
lapse(this is in contrast with the zero temperature instanton,
2 r A2 where the worldsheet is a 3-spherghe radius of the critical
cosy=1- —< 1- —) . N=—t, (112  bubble is given by
A2 r, 2
20'k
so that the metric becomes Rﬁ:E_ka
ds*=siryd\>+r2 dy?+r3d0% (112 and the difference of the instanton action and the action for

. ) i i the background is given by
In these coordinates the cosmological horizon igat0 and

the black hole horizon is at= 7. Now in the limitA—0 we B=BE®©),
just replacer . = (\3H,) . ©) 5. . .

We must determine the positiaf of the brane, which is WNereE™=(4m/3)o\R} is the classical energy of the criti-
given as before by the matching conditio@@®), where now cal bubble. The one loop quantum correction can be written
the metric outside i$112). So, on the brane, we have as(see e.g. Ref.32))

ds2 =Sir? yrdr2+ 1202 (13 Wa=BFo=BEs=TS). (120

HereF 4 denotes the free energy akg, is the correction to
=f;(R)dt'2+ R?d)? (114  the energy of the critical bubble due to the figldl This
includes the zero point energy df in the presence of the
and the extrinsic curvature on the outside of the brane igubble, as well as the thermal contributions. FinaBy, is
—(1/2)3,9ap, With goo=sir? ¢ and goo=r%, i.e, Koo  the entropy. Thus, the nucleation rate takes the form
=—(1/r;)ggo cOtif,Knn=0. The curvature inside is as
beforeK00= gooﬂrfillz and KQQ:gQinl/z/r, W|th f|(r):(1
- Hizrz), so the Israel conditions give

_ _ 2 _ _
I',=De By g~ (Bg+kWo) _ o= BF _g~ElTgS

whereE=E(®+k?E,, is the total energyF = E(®+k?F is
1 the total free energy, an®=k?S,, is the total entropy. Thus,
— —cotyr— (filfz)/|R: —47Goy, (115 for thermal instantons the determinant prefactor does indeed
r+ include the exponential of the entropy. This is, however, not
" the only role of the prefactor, since there is also some cor-
fi(R)/R=47Goy. (116 rection to the energy of the bubble.
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Consider, for simplicity a massless figld At sufficiently  there is a maximum value of the combined tension of the
high temperatureT>Rgl, the entropy behaves aS; brane&rk<amax~M§Ho, given in Eq.(118), beyond which
ocTzRé. From Sp=—0F4/dT, it follows that Fg the instanton simply does not exist. In this limit, the metric

~—TS4/3. Hence outside of the branes approaches the Nariai solution.
From this observation, we can easily derive a bound on
F[,:De*B/we* Bpg+kSe/3, the maximum entropy which can be stored in the stack of

branes. Indeed, the static instanton represents a spherical
In this case, the prefactor clearly represents an “entropy enbubble in unstable equilibrium between undetered expansion
hancement.” On the other hand, at lower temperatures, it isr collapse into a black hole. The entropy can only increase
not clear whether the prefactor represents an enhancementwhen the stack of branes collapses, and hence the entropy of
a suppression. At temperatures comparableRgol, the  the coincident branes cannot exceed the entropy of the Nariai
vacuum energy term can be as important as the thermal coimlack hole. The stack of branes with tensiep— o .« has
tributions, and the logarithm of the prefactbr can have the same radius as the horizon of the Nariai black hole, and
either sign. so, the entropy of the stack of branes is bounded by one
The case of the static instanton in de Sitter space is somédeurth of its own area, in natural units. A corollary is that the
what close to this low temperature situation, and without amucleation rate of coincident branes in the limijt— o744 iS
explicit calculation it is not clear whether the prefactor rep-bounded above by the nucleation rate of Nariai black holes
resents an enhancement or a suppression of the nucleatiofithe same mass.
rate. An interesting possibility would be that at sufficiently
high Gibbons-Hawking temperaturé,~H,, the thermal IX. CONCLUSIONS AND DISCUSSION
contribution may be sufficient to restore the symmetry, cre-
ating the desired attractive force amongst the branes. This is In this paper we have investigated the possibility of coin-
currently under research. cident brane nucleation by a four-form field, in connection
The static instanton presented in this section may perhapgith string motivated scenarios for the neutralization of the
be better suited to the scenario proposed by Feng ¢2hl. effective cosmological constant.
than the Co|eman_de Luccia instanton_ |gnoring the degen_ In fOUr dimensions, and aﬁ:er the mOduli are Stabilized,
eracy factors, the action of the static instanton is alway$he branes repel each other at distances larger than the in-
larger than the action of the CdL instanton. In this sense, iverse mass of the moduli. At shorter distances, their interac-
seems to correspond to a subdominant decay channel. Hodjons will be model dependent, but in the simplest models the
ever, as we have discussed in previous Sectionsy it m|ght Welnranes do not attract at the classical level. In this Situation, it
be that the CdL instanton for multiple brane nucleation sim{s unclear whether the Coleman—de Luc(@l) instanton
ply does not exist because of the repulsive force amongst tHer nucleation of coincident branes really contributes to the
branes. This does not exclude the possibility that in the cas&@Mmiclassical decay rate, since it would have too many zero
of the static thermal instantons the symmetry is restored a@hodes and negative modes. _ _
high ambientand worldsheetdS temperature-Hy. In this Assuming that the CdLllnstanton exists for the nucleatlon
situation, the decay through nucleation of coincident brane§f coincident branesthat is, assuming an attractive short
would only be possible through the static instartxt.low ~ range interaction amongst the branes in the gtask have
H,, the thermal contribution might not be sufficient to re- investigated the degeneracy factor accompanying the for-
store the symmetry and stacks of branes may simply not holf?ula for the nucleation rate, due to the large number of
together, destroying the possibility of further decay by coin-worldsheet degrees of freedom. We have modeled such de-
cident brane nucleation. Also, the prefactor and the Euclidgrees of freedom by a weakly coupled SYW(k) gauge
ean action have an exponential dependence on the ambietﬁ'@Of}’, which is unbroken when the branes are coincident.
temperature~H,, and can be much suppressed at the'Ve find that the dggenerac_y factor does not depend very
present epoch, contributing to the stability of the presengtrongly on the ambient de Sitt@S) temperatures before or

vacuum(in contrast with the Coleman—de Luccia case after the nucleation event. Rather, it depends only on the
radius of the instanton. Hence the degeneracy factors can be

quite important even when the ambient dS temperature is as
low as it is today. This may indicate that nucleation of coin-
A potentially worrying aspect of coincident brane nucle- cident branes via the CdL instanton is in fact impossible,
ation in the CdL case is whether the degeneracy factor magtherwise the present vacuum would immediately decay.
grow without bound as we increase the number of brpes If the CdL instanton for coincident branes does not exist,
As we have seen, this will not happen for the case of thestacks of branes may still nucleate through a “static” instan-
static instanton discussed in this section, since nucleation dbn which represents pair creation of critical bubbles, in un-
coincident branes cannot involve arbitrarily lafgelndeed, stable equilibrium between expansion and collapse. This is
the analog of the instanton for thermal activation in flat
space. Despite the absence of a classical attractive force, the
3In the weak coupling limit, we have checked that indeed thebranes could be held together by thermal corrections to the
U(k) symmetry is not restored in the case of the CdL instantoninterbrane potential, which tend to favor the symmetric phase
[24]. (where branes are on top of each ojhdihe calculation of

E. An entropy bound
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this thermal effective potential for the static instanton is cur-inflation, and switch off somewhat before the end of it. This
rently under research. One may ask whether a similar synmmay impose certain constraints on the space of parameters
metry restoration may not happen for the CdL instanton. Irsuch as the tension and charges of the branes, or alterna-
this case the calculation has been done in ], where it  tively, on the ambient temperature below which the instanton
is shown that the one loop potential does not help restoringvith coincident branes simply does not existg. because
the symmetry. So it is conceivable that the branes may stickermal symmetry restoration is no longer effectivéso, it
together for the static instanton but not for the CdL instantonshould be clarified what might be the advantages of a salta-
in which case the former would be the relevant decay chantory “neutralization” scenario over the “randomization” sce-
nel. narios discussed in Sec. Il. A possible advantage is that sal-
To conclude, we have presented some evidence that tHatory relaxation operates very quickly, and hence it does not
“saltatory” relaxation scenario of Ref2] may be difficult to ~ require eternal inflation to take pla¢as required in the ran-
implement via the CdL instanton, since saltation would bedomization scenarigsA fuller discussion of these issues is
hard to stop at present. Rather, we have speculated thatl@ft for further research.
may be easier to implement through the static instanton. In
the scenarios proposed in REZ] for the saltatory relaxation ACKNOWLEDGMENTS
of the cosmological constant, two different possibilities were
suggested for the effective temperature of the worldsheet de- J-G. is grateful to Roberto Emparan and Alex Vilenkin for
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H; and H, are the expansion rates before and after nuclefio de Educacio y Cultura, Spain. The work by J.G. was
ation. We have shown that for the static instanton, the re|supported by CICYT Research Projects FPA2002-3598,
evant temperature is comparable to the ambient de SittdtPA2002-00748, and DURSI 2001-SGR-0061.
temperature~H, before the tunneling. Hence, the nucle-
ation rate of coincident branes would be unsupressed at large APPENDIX A: HEAVY FIELDS ON THE BRANES

ambient de Sitter temperature, but exponentially suppressed , ) ) )
at present, which is of course desirable. The expressiori82) for the nucleation rate is only valid

Clearly, many issues need to be addressed before a scd@ M-R<1. For completeness, here we shall discuss the
nario based on coincident brane nucleation can be used Nt M-R>1. In this case the heavy degrees of freedom
successfully explain the smallness of the observed cosmdélecouple, and they simply contribute a finite renormalization
logical constant. A considerable advance would be to undef the parameters in front of different operators in the clas-
stand why the largd o relaxes to the smalk ¢ instead of ~ Sical Lagrangian.

plunging directly into deep AdS spadéhe latter jump in- For scalar fields we have

volves a larger number of coincident branes and would be

rewarded by a larger degeneracy fagtdn Ref.[2] an ex- W = — st R3+ Zm R+... (A1)
planation was offered, based on a “uniquely weak” form of N 6 - 4 '

the anthropic principle. As explained in Sec. Il, any relax-

ation mechanism requires the gap\ in the discretuum of As discussed in Sec. VII, the first term in this expansion

Ao NOt to be much larger than ., (otherwise it becomes corresponds to a finite renormalization of the brane tension,
a problem to understand why, accidentally, there happens t&ultiplied by the worldvolume of the stack of branes. The

be an allowed vacuum so close to zero, &t;;=A,,s Second term correspond to a finite renormalization of the
<AA). In Ref.[2] it was proposed thah A =aA,,s with  coefficient in front of the worldsheet Ricci scalar. This term

a~1, saturating the above requirement. Then the allowedvas not present in the classical action we started with, but
Ags; would take values in the sequence.., (1 evidently it can be generated by quantum corrections. The
—a)Agps: Aobs: (1+a)Agps, (1+2a)Agps, ... . If we scalar contributiofAl) tends to decrease the tension of the

start from a largeA.¢;, then the enhancement of brane stack of branes. This tends to favor the nucleation rate at

nucleation for largé favors a jump to the lowest value in the largem_R, as represented in Fig. 5. However, whether an
above list which is still compatible with the existence of actual enhancement really occurs will be model dependent,
observers. FMSW suggested that the value &) A, may Since all massive species, and not just the scalars, contribute

a|ready be too small for observers to emerge, making thénne renormalizations of the parameters in the action. In
vacuum with the value\ 4, the favorite destination. Sec. VII we have assumed that there is an attractive short

Finally, one should try to embed this scenario in a cosmofange force amongst the branes, which we have modeled as a
logical context, taking into account the restrictions imposedMass term for the scalars representing the relative positions
by homogeneity and isotropy. If unsuppressed saltation hagf the branes. One may expect that the same mechanism
pened after inflation, then we would have seen signals of it ifvhich generates a potential for the scalars may generate
the microwave background. Indeed, bubbles that nucleate affasses also for their fermionic partners. Fr6rd), heavy
ter thermalization are still rather small at the time of decou-fermions give a contribution to the effective potential of the
pling, and we would see different domains with different form
values of A.¢; separated by fast moving stacks of branes,
which would presumably cause large perturbations in the EW -
gravitational potential. Hence, saltation should occur during 2"

T

6

m

m3,R3+ 5

myR+ - - - (m\pR>1) (AZ)
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per degree of freedom. This gives a positive renormalization

of the brane tensiofwhich tends to suppress the nucleation RNg=32mGpy\g+ 247TGUJ’ d3e\y oD (x—x(§)),

rate). In the special case where_=my,, the brane tension (B2)

does not renormalize, but each pair of fields will still con-

tribute a finite renormalization of the subleading tef¥V

=(3#/8)m_R which would suppress the nucleation rate.

Generically, however, scalars and fermions may wind up

with different massegsince supersymmetry is broken at o

some leve), and the tension will be renormalized. Dividing Se(h=-3 d3§\/;—f d*xpyg. (B3)

the leading term inW by the worldvolume V4IS®]

=2m?R3, each scalar and fermionic degree of freedom con-

tributes a brane tension renormalization of the form The first integral in(B3) is just the volume of a two-sphere
of radiusR times 8. The second integral itB3) splits into

and hence the instanton action is given by

md —m3 two contributions from the two regions,
\I} —
Ao~ W (A3) ]
ry
2 2
Similarly, there will be a renormalization of the induced Pifo Cdtdramr +POIR dtdr4ar (B4)

Newton’s constantGy on the worldsheet, of the order

AGy*~(my—m_) for each pair of heavy field species. 4 4

These changes will modify the instanton solution. Karo- =piCB5 TR+ p B m(rs —R%)
incident branes, the number of such fields grow&%sand 3 3

the effect of these finite renormalizations can be quite dra-

matic. The nucleation rate will take the form

(B5)

So the instanton action is
I~ 0?RAAGR)2% B (m_R>1)  (A4)
HE f5(R)
26 (R "

whereA~1 is a constant that depends on whether s¢one Se()= _27TR20_1:1/2( R)3—R?
all) of the fermionic species have decoupled or not. The °

bounce actio8;°" in the exponent is calculated by using the
renormalized values of the parametersAlF<O0, then the
renormalized tensionoy~ko+ (k?*—1)Ao sharply de-
creases for largé, leading to unsuppressed tunneling rate.
On the contrary, forAoc>0 the nucleation of coincident
branes is strongly suppressed.

—(r3 —R3>H—gﬁ (B6)
+ 2G "™

After some algebr&g(l) can be written in the simple form

APPENDIX B: EUCLIDEAN ACTION FOR THE STATIC w2
INSTANTON Se(l)=- G (B7)

The action is given b
g y The exponenB which gives the probability for brane nucle-

5 . R ation is the difference in Euclidean actions between instanton
SE(I):O'J' d f\/;+f d*x\g v~ Te-g/- (BD  and background. The action of the background is fBist
=—m/GH?2, so the difference in Euclidean actions leads to

On shell, the scalar curvature is given by Eqg. (105.
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