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Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the
neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of
stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that,
at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors
associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation
from a large effective cosmological constant down to the observed value. Here, we analyze this possibility in
some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range
forces. Because of that, the Coleman–de Luccia~CdL! instanton for coincident brane nucleation may not exist,
unless there is some short range interaction that keeps the branes together. If the CdL instanton exists, we find
that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off
even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum.
If, on the contrary, the CdL instanton does not exist, coincident brane nucleation may still proceed through a
‘‘static’’ instanton, representing pair creation of critical bubbles—a process somewhat analogous to thermal
activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the
pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the
temperature approaches zero. Such a static instanton may be well suited for the ‘‘saltatory’’ relaxation scenario
proposed by Feng et al.
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I. INTRODUCTION

It has long been recognized that the effective cosmolo
cal constantLe f f may have contributions from a four-form
field F, and that in such case

Le f f5~F2/2!1L ~1!

may vary in space and time due to brane nucleation eve
This has led to various proposals for solving the cosmolo
cal constant problem, starting with the pioneering work
Brown and Teitelboim@1#. These authors considered a co
mological scenario whereLe f f is initially very large and
positive, due to a largeF2 term. The additive constantL in
~1! is assumed to be negative, but not fine-tuned in any w
so its absolute value is expected to be of the order of so
cutoff scale to the fourth power. During the cosmologic
evolution, Le f f is ‘‘neutralized’’ through successive nucle
ation of closed 2-branes~charged with respect to the form
field!, which decrease the value ofF, until eventuallyLe f f is
relaxed down to the small observed value,Lobs.

One problem with the original scenario is that neutraliz
tion must proceed in very small steps, so that any initia
largeLe f f can be brought toLobs without overshooting into
negative values. For that, the charge of the branes shoul
tiny, ensuring thatDLe f f&Lobs at each step. Also, the nucle
ation rate must be very small, or else the present vacu
0556-2821/2004/69~8!/083510~22!/$22.50 69 0835
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would quickly decay. These two constraints make the rel
ation process extremely slow on a cosmological time sc
Meanwhile, ordinary matter in the universe is exponentia
diluted by the quasi–de Sitter expansion, resulting in a d
appointing empty universe.

Recently, Feng, March-Russell, Sethi, and Wilcz
~FMSW! @2# have suggested that nucleation of coincide
branes may offer a solution to the ‘‘empty universe’’ pro
lem. Their proposal can be summarized as follows. In
context of M theory, a stack ofk coincident D-branes sup
ports a number of low energy degrees of freedom, co
sponding to aU(k) super Yang-Mills~SYM! theory living
on the worldsheet. Consequently, the nucleation rate of
incident branes should be accompanied by large degene
factors, and could in principle be enhanced with respec
the nucleation of single branes. The charge of a stack
branes can be very large even if the individual charges
small, facilitating quick jumps fromLe f f to Lobs. In this
way, neutralization might proceed very rapidly, perhaps
just a few ‘‘multiple’’ steps of the right size. Finally, the
stability of the present vacuum could be due to gravitatio
suppression of the nucleation rate@1,3#.

FMSW argued, rather heuristically, that the nucleati
rate of coincident branes should be enhanced by a facto
the form

D;eS, ~2!
©2004 The American Physical Society10-1
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whereS is the entropy of the worldsheet SYM fields. Th
entropy was estimated through simple thermodynamic a
ments, as

S;g* R2T2, ~3!

whereg* is the effective number of worldsheet field degre
of freedom, andR is the size of the brane at the time
nucleation. However it remained unclear in@2# which tem-
peratureT should be used for the worldsheet degrees of fr
dom. Brane nucleation takes place in an ambient de S
~dS! space characterized by a Gibbons-Hawking tempera
To}Le f f

1/2 . The region inside the closed brane has a sma
value of the effective cosmological constant, and is theref
characterized by a smaller temperatureTi . Feng et al. con-
sidered two alternative possibilities for the temperature
the worldsheet degrees of freedom:T1;To and T2
;(ToTi)

1/2. The proposed enhancement of the nucleat
rate and the resulting cosmological scenarios are quite di
ent in both cases, and therefore it seems important to try
clarify the issue of which temperature is the relevant one

The purpose of this paper is to present a more form
derivation of the nucleation rate corresponding to multi
brane nucleation. As we shall see, the temperature rele
for the worldsheet degrees of freedom is in fact determi
by the internal geometry of the worldsheet@4#. For the
Coleman–de Luccia~CdL! instanton, this worldsheet is
211 dimensional de Sitter space of radiusR, and the corre-
sponding temperature isT;R21. When substituted into the
naive expression~3!, this leads toS;g* , independent ofR
~and hence of the ambient dS temperatures!. As we shall see,
the actual result has a certain dependence onR due to the
anomalous infrared behavior of light fields in the lower d
mensional de Sitter space, but this results only in a ra
mild dependence on the ambient dS temperatures.

We shall also see that de Sitter space allows for a ‘‘sta
instanton that may be quite relevant to the nucleation of
incident branes. This is analogous to the instanton for th
mal activation in flat space. It has a higher Euclidean act
than the CdL solution, and hence~ignoring the degenerac
factor! it seems to represent a subdominant channel of de
However, we shall argue that, depending on the short
tance behavior of the interactions amongst the branes,
CdL instanton for coincident brane nucleation may sim
not exist, and in this situation the static instanton may be
relevant one. In several respects, the static instanton app
to be better suited to the neutralization scenario propose
Feng et al. than the CdL one.

The paper is organized as follows. In Sec. II we revi
different proposals for neutralization ofLe f f via brane nucle-
ation. Section III contains a discussion of coincident bra
in 4 spacetime dimensions. These are obtained from dim
sional reduction of type IIA supergravity in ten dimension
In the 4 dimensional picture, the gravitational and four-fo
forces are both repulsive. However, the two are exactly b
anced by the attractive force mediated by the scalar dila
In Secs. IV and V we discuss the stabilization of the dilat
which is required in a more realistic scenario. After the di
ton acquires a mass, the remaining long range forces
08351
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repulsive, rendering the stack of coincident branes unsta
or metastable at best. This has important implications, si
the instanton for nucleation of coincident branes will on
exist provided that some mechanism causes an attractiv
terbrane force at short distances.

Section IV contains a description of the CdL instanton
nucleation of coincident branes, highlighting a few limitin
cases of interest. In Sec. VII we discuss the correspond
degeneracy factor in the nucleation rate, and we show tha
dependence on the ambient de Sitter temperatures is ra
mild. We also include a heuristic interpretation of this res
based on the observation that the relevant temperature fo
worldsheet degrees of freedom is determined by the inve
of the radius of the instanton. Implications for the scenario
@2# are briefly discussed.

Section VIII is devoted to a study of the ‘‘static’’ instan
ton, where the worldsheet has the topologyS23S1, and
where the intrinsic temperature is comparable toTo . In this
case, the dependence of the nucleation rate on the am
dS temperature is exponential. Coincident brane nuclea
can be unsuppressed at largeTo but strongly suppressed a
present. Our conclusions are summarized in Sec. IX. So
technical discussions are left to the Appendices.

To conclude this Introduction, a disclaimer may be use
For most of the paper, we shall work directly in four dime
sions, and our discussion will be certainly less than rigoro
from the string theory point of view. In particular, we sha
model the degrees of freedom of a stack ofk coincident
2-branes by a weakly coupledU(k) gauge theory on the
worldsheet. This may or may not correspond to a true dim
sional reduction from M theory, but it should at least rep
sent some of the broad features of the degeneracy facto

II. NEUTRALIZATION VERSUS RANDOMIZATION

In four dimensions, a four-form can be written asFmnrs

5FA2gemnrs whereg is the determinant of the metric an
e is the Levi-Civita symbol. This field has no propagatin
degrees of freedom, since in the absence of sources the e
tion of motion d* F50 implies thatF is a constant. This
simply gives a contribution to the effective cosmologic
constant that gets added to the true cosmological constan
vacuum energy densityL,

Le f f5
F2

2
1L. ~4!

Four-forms may couple to ‘‘charged’’ 2-dimensional e
tended sources, or 2-branes, through a term of the form

qE
S
A, ~5!

where the integral is over the worldsheet of the extend
object andA is the 3-form potential (F5dA). In this case,
F changes by

DF5q ~6!

across a brane of chargeq. Consequently,F can decay
through nucleation of closed spherical branes. The proce
0-2
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COINCIDENT BRANE NUCLEATION AND THE . . . PHYSICAL REVIEW D 69, 083510 ~2004!
analogous to pair creation in the presence of an electric fi
and very similar to false vacuum decay in field theory@5#.
The closed brane is the boundary of a newly formed ‘‘tru
vacuum bubble, where the field strength differs from t
original value by the amount~6!. After nucleation, the radius
of the bubble grows with constant proper acceleration,
the volume occupied by the new phase keeps increas
Further nucleation events take place in the region with a
F, loweringLe f f even further. In the absence of gravity, th
‘‘neutralization’’ would proceed as long asF.q/2, wiping
out any large initial value ofF2 and leaving us with a large
negative cosmological constantLe f f

f inal;L1O(q2). Of
course, this is not what we want.

Gravitational effects can improve the picture dramatica
@1#. In particular, tunneling from flat or anti–de Sitter spa
~with a negative cosmological constant! is forbidden pro-
vided that the squared tension of the branes is sufficie
large compared with the jumpDLe f f;qF in energy density
across the brane,

s2.~4/3!qFMp
2 . ~7!

Heres is the brane tension andM p
251/(8pG) is the square

of the reduced Planck mass. This gravitational ‘‘shutdow
of brane nucleation could be useful, since an initially lar
Le f f may eventually get ‘‘neutralized’’ to a value that
much smaller thanL in absolute value@1#. Suppose that the
true cosmological constant is negativeL,0. As long as
Le f f.0, branes keep nucleating. But once a vacuum w
Le f f<0 is reached, the process stops provided that Eq.~7! is
satisfied. After that, the vacuum becomes absolutely sta
Brown and Teitelboim conjectured that we may live in o
such vacuum, where the effective cosmological constan
expected to be of the order of the energy density gap
tween neighboring vacua

uLe f f
f inalu;FDF;quLu1/2. ~8!

In this vacuum,uFu;uLu1/2, and the huge negative bare co
mological constant is almost completely cancelled by theF2

contribution in the final state.
For sufficiently small chargeq, Eq. ~8! leads to a suppres

sion of uLe f f
f inalu relative to the true vacuum energyuLu,

which might be helpful in solving the ‘‘old’’ fine tuning
problem of the cosmological constant. Particle physics m
els suggestuLu*(TeV)4. Hence, we need

q&10235~eV!2, ~9!

so that the final valueuLe f f
f inalu is consistent with the observe

value uLe f f
obsu;10211(eV)4. The constraint~9! seems rather

demanding, since in the context of supergravity we wo
expectq to be closer to the Planck scale. This is the so-ca
‘‘gap problem.’’ FMSW argued that the smallness of t
charge could be due to the wrapping of branes on dege
ating cycles in the extra dimensions. A successful implem
tation of this idea has not yet been presented, but some p
sibility arguments have been given in Ref.@2#. Alternatively,
in a different context, it has been suggested that branes
08351
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a very tiny chargeq may arise due to symmetries of th
theory. An explicit example was given in Ref.@6#, where the
branes are not fundamental objects but domain walls o
broken discrete symmetry. This same symmetry suppre
the coupling of the domain walls to the four-formF without
any fine-tuning of parameters~see also Ref.@7# for a fuller
discussion!.

A more severe problem of the Brown-Teitelboim neutr
ization scenario is the ‘‘empty universe’’ problem, which w
discussed in the Introduction. By combining the conditi
~9! with the stability condition~7!, it can be shown that the
time required to reach the value~8! is huge compared with
the age of the universe@1#. By the time the effective cosmo
logical constant would be wiped out, all other forms of ma
ter would have also been diluted exponentially, in clear c
tradiction with observations. Furthermore, the endpoint
neutralization would be a state with vanishing or negat
effective cosmological constant, whereas the observed v
Le f f

obs is positive.
One way around the empty universe problem is to c

sider a slightly different scenario, where the effective cosm
logical constant is ‘‘randomized’’~rather than neutralized!
during inflation. Assume, for simplicity, that the energy sca
of inflation is much larger thanDLe f f . In an inflationary
phase, brane nucleation processes may increase as w
decrease the value ofF2 @4#. Thus,Le f f will randomly fluc-
tuate up and down the ladder as a result of brane nuclea
Inflation is generically eternal to the future and there is
unlimited amount of time available for the randomizatio
process to take place before thermalization@4#. Assume that
the tunneling barriers are sufficiently high, so that no nuc
ation events happen in the last 60 e-foldings of inflation,
during the hot phase after thermalization up to the pres
time. In this scenario there is no empty universe problem:
local value ofLe f f is decided many e-foldings before the en
of inflation, and a wide range of values ofLe f f will be found
in distant regions of the universe, separated from each o
by distances much larger than the present Hubble rad
Some of these regions will just happen to have a very t
Le f f . In combination with anthropic selection effects, th
approach may be used to explain the smallness of the
served effective cosmological constant@4,6,8,9#. This may
also explain the so-called cosmic time coincidence, or w
do we happen to live at the time when an effective cosm
logical constant starts dominating@4,9,10#.

Bousso and Polchinski@11# have proposed a somewh
related ‘‘randomization’’ scenario, which, moreover, does n
rely on branes with the exceedingly small chargeq satisfying
~9!. In the context of string theory one may expect not ju
one but many different four-form fluxesFi coupled to branes
with different chargesqi . Each one of these fluxes is qua
tized in units of the charge, so thatFi5niqi . In this case, the
condition for a generic negative cosmological constant to
compensated for by the fluxes isuLe f fu5u( i 51

J (qi
2ni

2)/2
1Lu&Lobs. The larger the number of different fluxes, th
denser is the discretuum of possible values ofLe f f , and the
easier it is to find a set of values ofni such that the above
0-3
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inequality is satisfied. A sufficiently dense discretuum is ty
cally obtained provided that the number of fluxes is su
ciently largeJ;100, even if the individual chargesqi are
Planckian~a smaller number of fluxesJ*6 may be enough
in a scenario with large extra dimensions, where the cha
qi are suppressed with respect to the Planck scale by a l
internal volume effect!. In the Bousso-Polchinski mode
Le f f is typically very large, and drives an exponential expa
sion at a very high energy scale. Suppose we start wi
single exponentially expanding domain characterized b
set of integers$ni%. Whenever a brane of typej nucleates in
this region, the integernj will change by one unit inside o
the brane. The newly formed region will itself expand exp
nentially, creating a huge new domain. The nucleation
further branes within this region will cause an endless r
dom walk of the values of$ni%, which will sample the whole
discretuum of values ofLe f f . Eventually, a bubble will
nucleate whereLe f f is comparable to the observed valu
The nucleation of this last bubble is still a high energy p
cess, which kicks some inflaton field off its minimum, a
starts a short period of inflation within this last bubble. Th
period of ‘‘ordinary’’ inflation is necessary in order to pro
duce the entropy we observe, thereby avoiding the em
universe problem. Of course, some anthropic input is s
necessary in this approach in order to explain why, out of
discretuum of possibilities, we live in a vacuum with sm
Le f f .

Nucleation of coincident branes would drastically mod
the neutralization scenario of Brown and Teitelboim, as w
as the randomization scenarios sketched above. As prop
in @2#, in the case of neutralization, this modification m
lead to a solution of the empty universe problem. In t
randomization scenarios there is no such problem, and
unclear whether an enhancement of the multiple brane nu
ation rate is desirable at all. This enhancement would trig
large jumps in the effective cosmological constant, mak
the calculation of its spatial distribution more complicat
than that for single brane nucleation. Thus, it is of interes
understand the conditions under which multiple brane nu
ation is allowed, and what are the degeneracy factors
might enhance their nucleation rate relative to the nuclea
of single branes. Before addressing this issue, it will be c
venient to present a short discussion of coincident brane

III. COINCIDENT BRANES IN 4D

In the context of string theory, one may consider stacks
k coincident D-p-branes. Each brane in the stack has cha
q with respect to the form fieldA. Thus, in four noncompac
dimensions, a pair of parallel 2-branes repel each other w
a constant force per unit area given by

f q5q2/2, ~10!

due to the four-form field interaction. In the ten dimension
theory, the repulsive force due toA is balanced with other
contributions from the closed string sector, such as the gr
ton and dilaton. As a result, there are no net forces amo
the different branes on the stack.
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It is in principle possible to maintain this delicate balan
by suitable compactification from 10 to 4 dimensions. In 4
the branes look like domain walls, and their interacti
through the ordinary graviton leads to a mutual repuls
force given by@12#

f s53s2/4M p
2 . ~11!

Hence, both forces given by~10! and ~11! tend to push the
branes apart from each other. On the other hand, some o
higher dimensional gravitational degrees of freedom are r
resented by scalars in 4D, and these, together with the d
ton, lead to attractive forces.

A. Dimensional reduction

Let us first consider the case of D-2-branes in 10 dim
sional type IIA supergravity. The relevant part of the action
given by ~see e.g.@13#!

S105
M10

8

2 E d10xAG Fe22f@R14~¹f!2#2
1

234!
F̂ 2G

2T2E
S
d3jAGSe2f1q̂2E

S
d3jÂ. ~12!

Here AG and AGS are the determinants of the 10 dime
sional metricGAB and of the metric induced on the world
sheetS, respectively, whereasR is the Ricci scalar corre-
sponding toGAB . The carets on the four-form, the gaug
potential, and the corresponding charge are introduced in
der to distinguish them from the four dimensional ones t
will be used below, and which differ from those by consta
normalization factors. Compactifying on a Calabi-Yau ma
fold K through the ansatz

ds10
2 5e2f26cgmndxmdxn1e2cdK6

2 ,

where the Greek indices run from 0 to 3, we readily obta
the following four-dimensional action:

S45
M p

2

2 E d4xAgHR2
2

7
~]ŵ !22

6

7
~]ŝ !22

1

234!
e22ŵF̂ 2J

2T2E
S
d3jAgeŵ1q̂2E

S
Â. ~13!

HereM p
25M10

8 V6, whereV6 is the coordinate volume of the
manifold K, R is the Ricci scalar for the metricg, and we
have introduced two linear combinations of the internal v
ume modulusc and the dilatonf

ŵ52f29c, ŝ5f2c.

The field ŝ decouples from the branes, and shall be igno
in what follows. In Ref.@2#, a different expression was give
for the dimensionally reduced action, because no modu
was introduced for the size of the internal space. However
we shall see, such modulus is necessary for the cancella
of forces among the branes.
0-4
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A more direct route to the 4-dimensional theory~13!,
which will be slightly more convenient for our discussion,
to start directly from 11-dimensional supergravity and co
pactify on a 7 dimensional internal space. The action
eleven dimensions is given by

S115
M11

9

2 E d11xAGFR2
1

234!
F̂2G

2T2E
S
d3jAGS1q̂2E

S
Â ~14!

whereT25q̂252pM11
3 . Introducing the ansatz

ds11
2 5e27ĉgmndxmdxn1e2ĉdV7

2 , ~15!

with a Ricci flat internal manifold, we find

S45
M p

2

2 E d4xAgHR2
2

7
~]ŵ !22

1

234!
e22ŵF̂2J 1•••,

~16!

whereM p
25M11

9 V7 and

ŵ52
21

2
ĉ.

Not surprisingly, this has the same form as~13!, since after
all the 10-dimensional Lagrangian can be obtained from
11-dimensional one by compactifying on a circle.

Equation ~16! is a particular case of the slightly mor
general action in four dimensions:

S45
1

2E d4xAgH M p
2@R2~]w!2#2

1

4!
e22awF 2J

2sE
S
d3jAgeaw1qE

S
A. ~17!

The parametera characterizes the scalar charge of the bra
As we shall see below, linearizing inw aroundw50, it can
be easily shown that the scalar force is given by

f e52e2/2, ~18!

where we have introduced the scalar charge

e[as/M p . ~19!

Thus, from~10!, ~11!, and ~18!, the branes will be in indif-
ferent equilibrium provided that the following relation hold

Q2[Fe22q2

2
2

3s2

4M p
2G50. ~20!

From ~19!, this condition can be rewritten as

q5S a22
3

2D 1/2 s

M p
. ~21!
08351
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Note that the case of type IIA supergravity discussed abo
corresponds toa5A7/2, q5(A2/M p)q̂2, and s5T2 @note
that Â5(A2/M p)A]. Therefore ~21! is satisfied provided
that T25q̂2, the usual Bogomol’nyi-Prasad-Sommerfie
~BPS! condition.

B. Multiple brane solutions

Multiple brane solutions to~17! can easily be constructe
provided that~21! is satisfied. In the bulk, the equation o
motion for A leads to

Fabgd5Fe2awAgeabgd ,

whereF is a constant ande is the Levi-Civita symbol. At the
branes, this constant jumps by the amount

DF5q.

It can be checked that the remaining equations of motion
the scalar and the gravitational field follow from the actio

S45(
i
E

i
d4xAgH M p

2

2
@R2~]w!2#2Vi~w!J

2sE
S
d3jAg eaw, ~22!

where

Vi~w!5
Fi

2

2
e2aw, ~23!

and the sum is over the regions with different values ofF.
With the metric ansatz

ds25w2~z!habdxadxb1dz2,

where Latin indices run from 0 to 2, the solution is given

e2aw5ci6
a2

~a223/2!1/2

uFi u

M p

z, ~24!

and

w~z!5e2w/2a. ~25!

Hereci are integration constants. These, and the sign op
in ~24!, must be chosen so that the junction conditions for
gravitational field and for the scalar field are satisfied at
branes. For the gravity part, the condition is@14#

@Kab#524pGs eawgab , ~26!

where @Kab# is the difference of extrinsic curvature on th
two sides of the brane andgab is the worldsheet metric. In
the present case, this reduces to

Fw8

w
G52

s

2M p
2 eaw. ~27!
0-5
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For the scalar field, the junction condition that follows fro
the equation of motion at the brane reduces to

@w8#5a
s

M p
2 eaw, ~28!

which is consistent with~27! and ~25!. For instance, a solu
tion with two branes separated by a distanced is given by
flat space (w51,w50) in the region between the branes, a
by

e2aw512a2
s

M p
2 ~ uzu2d/2! ~ uzu.d/2! ~29!

in the exterior region~see Fig. 1!. The solution correspond
to two branes of chargeq interpolating between regions wit
F5q andF52q, separated by a region withF50.

Note that the solution~29! contains a singularity at a dis
tancez;M p

2/a2s ~where the warp factorw and the volume
of the internal space vanish!. In what follows, however, we
shall not be interested in flat, infinite branes, such as the o
discussed above. Rather, we shall be interested in com
instanton solutions of finite size, in a theory with a stabiliz
dilaton. In this case, the singularities due to linear potent
of the form~29! should not arise, but the solutions discuss
above should remain a good description in the vicinity of
branes. Another consequence of stabilizing the dilaton is
the perfect balance of forces amongst the branes will
spoiled at distances larger than the inverse mass of
moduli, as we now discuss.

IV. STABILIZING THE MODULI

As it stands, the dimensionally reduced supergravity
grangian~13! @or its generalization~17!# is not useful for
discussing the neutralization of the cosmological const
The Lagrangian does not include the bare cosmological t
L, which is precisely the subject of our interest, and the te
proportional toF2 does not behave as an effective cosm
logical constant, but rather as an exponential potential fo
modulusw ~which is not flat enough to mimick the vacuu

FIG. 1. Configuration of two parallel branes.
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energy1!. A more realistic model is obtained by introducing
stabilization mechanism that fixes the expectation value
w, and gives it some massm. Oncew is stabilized theF2

term does behave as a contribution toLe f f . Stabilization is
also desirable because the dilaton and the radion mo
~corresponding to the size of extra dimensions! mediate sca-
lar interactions of gravitational strength, which are sever
constrained by observations. The study of mechanisms
stabilization is currently an active topic of research~see e.g.
Refs.@16,17# and references therein!. Although the details of
stabilization will not be too important in our subsequent d
cussion, it may be nevertheless illustrative to have in min
specific toy mechanism~for which we do not claim any rig-
orous justification in the context of string theory!.

The general problem is that the potential~23! has no mini-
mum and leads to a runaway dilaton. In order to creat
minimum, let us consider two contributions that may
added to~23!. First of all, instead of using a Ricci flat inter
nal manifold in ~15! we may compactify on an Einstei
manifold, with

Rab
V 56Kgab

V . ~30!

Upon dimensional reduction, the curvatureK contributes an
exponential term to the effective potential forw. However,
this will still not be sufficient for stabilizing the internal vol
ume in an interesting way. In fact, as shown by Maldace
and Nunez@18#, there are no static compactifications of th
classical supergravity Lagrangian with a positive effect
four-dimensional cosmological constantLe f f.0, and so far
we have added nothing to the classical Lagrangian. Thus
order to implement the four dimensional situation of our
terest, a third term related to quantum corrections has to
considered. Following Candelas and Weinberg@19#, we may
consider the Casimir energy of bulk fields~we are of course
assuming that supersymmetry is broken, so that the Cas
contributions of bosons and fermions do not cancel e
other exactly!.

In the example considered by Candelas and Weinb
@19#, besides the Casimir energy term, a higher dimensio
cosmological termL41n was used, and the internal manifo
was taken to be a space of constant positive curvatureK
51). In 11D supergravity a cosmological constant is n
allowed, so here we use theF2 flux instead. Also, we will

1Exponential potentials such as the one appearing in~22! have
been thoroughly studied in the literature, and it is known that th
can drive cosmological solutions with a power-law scale fac
@15#. Such attractor solutions are approached for a wide rang
initial conditions, and the resulting expansion can be acceleratin
decelerating, depending on whethera2,1/2 or a2.1/2. For a2

,3/2 the cosmological scale factor approachesa(t);t1/2a2
, where

t is cosmological time. This solution corresponds to an effect
equation of statep5@(4a2/3)21#r, where the ratio of kinetic and
potential energies of the scalar fieldw remains constant. In our case
from ~21!, we needa2.3/2 and therefore the kinetic term becom
completely dominant in the long run, which leads top51r.
Hence, by itself, theF2 term does not behave like an effectiv
cosmological constant.
0-6
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COINCIDENT BRANE NUCLEATION AND THE . . . PHYSICAL REVIEW D 69, 083510 ~2004!
need to compactify on a negatively curved internal manif
(K521), or else the dilaton would be stabilized at negat
Le f f .

The versatility of negatively curved compactifications h
been stressed in Ref.@20#. In particular, they have the inter
esting property of rigidity, which means they do not lead
other moduli besides the size of the internal space. Com
hyperbolic manifolds~CHM! can be obtained from the max
mally symmetric negatively curved spaceH7 through iden-
tifications by a discrete isometry groupG. The volume of
H7 /G is given by

V75r c
7eg, ~31!

wherer c is the curvature radius of the manifold, related
the curvature parameter in~30! by K521/r c

2 . The factoreg

depends on the topology, and it is bounded below but
above. IfL is the largest distance around the manifold, th
for L@r c/2 we haveeg;e6L/r c. The Kaluza-Klein ~KK !
spectrum in this manifold is believed to have a mass g
bounded below bymKK;e2ĉr c

21 . From the 11 dimensiona
point of view the Casimir energy density scales like

rC
(11)5CmKK

11 5Ce211ĉr c
211. ~32!

The factorC can be estimated by naive dimensional analy
asC;bn, wheren;103 is the number of physical polariza
tions of bulk fields, andb is some small one-loop facto
This factor will depend on the precise topology of the co
pact hyperbolic manifold, but it could plausibly be in th
rangeb;102221024. Hence, the parameterC could be of
order one. Explicit calculations for different choices of t
manifold H7 /G have not been performed, and are well b
yond the scope of the present paper~see e.g. Ref.@21# and
references therein!. In what follows we shall leaveC un-
specified, assuming that a compactification exists whereuCu
*1. Multiplying the higher dimensional energy densityrC

(11)

given in~32! by the size of the internal manifold,V7e7ĉ, and
by a factore214ĉ that arises from the four-dimensional vo
ume element in going to the Einstein frame, the effect
potential that appears in Eq.~22! gets replaced by

Vi~w!5221M11
9 V7Ke29ĉ1CV7r c

211e218ĉ1
Fi

2

2
e221ĉ,

~33!

where we have also added the curvature contribution. H
ĉ52(2/21)aw, wherea5A7/2.

We can always adopt the convention thatr c51/M11,
since a change ofr c→e2lr c can be reabsorbed by a shift
ĉ→ĉ1l and a constant re-scaling of the four-dimensio
metric gmn→e7lgmn ~in this frame, the curvature of th
manifold is of the order of the higher dimensional Plan
scale foruĉu&1). SinceFi5niq, whereni is an integer and
q5(A2/M p)q̂252A2pM11

3 /M p , we have
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Vi~w!5M p
2M11

2 F21e29ĉ1Ce218ĉ14p2ni
2S M11

M p
D 4

e221ĉG .
~34!

As illustrated by Eq.~31! a large value ofV7 in units of r c
51/M11 can be obtained by using a manifold with suf
ciently complicated topology. SinceM p

25M11
9 V75M11

2 eg,
the factor (M11/M p)45e22g in the last term of~34! can be
rather small. The scaleM11 could be as low as theTeV, in
which case that factor can be as low as 10264. Moreover, as
emphasized in Ref.@20#, this can be achieved for CHM eve
if the linear sizeL of the internal manifold is not very much
larger thanr c . In Fig. 2 we plot the effective potential fo
C5220, e2g51023 and values of ni5485, 487,
489 and 491.

When a single brane nucleates, it changesni by one unit,
and hence changes the value of the effective potential at
minimum ~changing therefore the effective cosmologic
constant!. If the discretuum of values ofFi were sufficiently
dense, then there would always be one of the minima of
effective potential where the vacuum energy is sufficien
small to match observations. In the case we have consid
here, the discretuum is not dense enough. The cancella
between the last term in~33! and the other two requiresni
;(M p /M11)

2, and so the gap between levels nearVi50 can
be estimated asDVi;M11

4 , which is far too large. This situ-
ation can be remedied by considering 5M branes wrap
around 3-cycles in the internal space. As emphasized
Bousso and Polchinski@11#, these are coupled~with different
charges! to additional fluxes, and a large number of flux
will result in a much denser spectrum. Alternatively, FMS
have suggested that the branes may wrap a degener
cycle @2#, in which case the individual charges might them
selves be exponentially smaller than the fundamental sc
resulting also in a sufficiently dense discretuum.

Before closing this section, we should note that the lo
tion where the modulus sits is basically determined by
competition between the two first terms in~33!, correspond-
ing to curvature and Casimir energy. The physical curvat
radius of the internal space is therefore stabilized atr phys

5r ce
ĉ;M11

21C1/(D22), where D511 is the spacetime di
mension. Thus, unless the constantC in Eq. ~32! is exceed-

FIG. 2. The effective potential~34!, for different values of the
integerni which characterizes the quantized flux of the four-formF.
0-7
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J. GARRIGA AND A. MEGEVAND PHYSICAL REVIEW D69, 083510 ~2004!
ingly large, the compactification scale is comparable to
inverse of the higher dimensional cut-off scaleM11. In such
a case the semiclassical analysis that we have enterta
above is not justified, since higher order corrections will
just as important as the one loop effect that we have
cluded. This appears to be a generic problem when we tr
stabilize by making the curvature and the Casimir ter
comparable, as in the Candelas and Weinberg example@19#.
There, the problem was not quite as poignant, since the
stantC could be made very large by adding a sufficient nu
ber of fields~also, as it is clear from the above estimate
r phys, the problem is somewhat milder if the number of ex
dimensions is smaller!. Here we shall not dwell on this prob
lem, since the main purpose of the above discussion is ju
illustrate the role of the four-form in obtaining a discretuu
of states. For more fundamental approaches to moduli st
lization in the present context, the reader is referred to R
@16# and references therein. Our ensuing discussion will
largely independent of the details of the stabilization mec
nism.

V. INTERBRANE FORCES

Inevitably, the stabilization ofw spoils the perfect balanc
of forces. At distances larger than the inverse of the mas
the modulusm21, the remaining gravitational and four-form
interactions are both repulsive, and lead to a linear poten
per unit surface of the form

V~d!'2Fq2

2
1

3s2

4M p
2Gd ~d@m21! ~35!

whered is the distance between the branes.
To investigate the behavior of the interaction potentia

distances shorter thanm21, let us first consider the situatio
where gravity and the 3-form gauge potentialA are ignored,
and the branes interact only through a scalar fieldw of mass
m. The action is given by

S52
M p

2

2 E d4x@~]w!21m2w2#2sE
S
d3jAg eaw.

~36!

The solution with a single brane on the planez50 has the
cusp profile

w5w0 e2muzu, ~37!

wherew0 is a solution of

w0 e2aw052
as

2mMp
2 [2

e

2mMp

. ~38!

The energy per unit area of this configuration is given by

s15s eaw01
M p

2

2 E dz~w821m2w2!5s eaw01mMp
2w0

2 .

~39!

For small charge and tension, we have
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4m
~e2!2ms!.

Due to the scalar field dressing, the effective tension of
brane, denoted bys1, is smaller than the parameters that
appears in the action. This effect becomes more dramat
we place a large numberk of branes on top of each othe
Since boths ande scale likek, the effective tension of the
stack is given by

sk'kFs2k
e2

4mG ~k e2!2ms!, ~40!

which grows withk but less than linearly. In the limit of very
largek, using~38! with s replaced byks we have

sk'
ms2

e2 ln2S ke2

2ms
D ~k e2@2ms! ~41!

and so the tension almost saturates, growing only logar
mically with k. This last expression should not be taken t
literally, however, since in~36! we are neglecting gravita
tional effects. As shown above, nonlinear effects of grav
become important at a distance given byM p

2/a2sk , which

in the limit given by ~41! is smaller thanm21. Hence the
cusp solution~37!, which has typical width;m21, will re-
ceive sizable gravitational corrections in the limit of largek.
Nevertheless, it still seems likely that the effective tension
the stack of branes will grow withk much slower than lin-
early. Physically, the reason is that the scalar charge of
stack increases withk. According to~28!, this means that the
cusp in the fieldw on the branes grows stronger, which
turn means that the value of the fieldw0 on the branes has to
be further displaced into negative values. Hence, the br
contribution to the effective tensionkseaf0 shows only a
very modest growth withk, and the tension for largek is in
fact dominated by the potential and gradient energy of
scalar near the brane.

Let us now look at the interaction potential between tw
branes separated from each other. For simplicity, we s
restrict our attention to the case of small scalar chargee2

!2ms. Then, the last term in~36! is well approximated by
its linearized expression:

S52
M p

2

2 E d4x@~]w!21m2w2#2E
S
d3jAg~s1eMpw!.

~42!

Placing the two branes atz56d/2, the solution for the sca
lar field has the ‘‘Golden Gate’’ profile shown in Fig. 3:

w52
e

mMp
e2md/2 coshmz, uzu,d/2

w52
e

mMp
cosh~md/2!e2muzu, uzu.d/2 . ~43!

The energy per unit area of this configuration, as a funct
of the interbrane distance, is given by
0-8
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COINCIDENT BRANE NUCLEATION AND THE . . . PHYSICAL REVIEW D 69, 083510 ~2004!
s2~d!52s12
e2

2m
e2md. ~44!

From this expression, and adding the long range contr
tions from gravity and the four-form, the interaction potent
per unit surface is given by

V~d!52Fq2

2
1

3s2

4M p
2Gd2

e2

2m
e2md.

At short distances, this takes the form

V~d!52
e2

2m
1Q2d2

me2

4
d21••• ~45!

where the parameter

Q2[Fe22q2

2
2

3s2

4M p
2G , ~46!

was introduced in~20!. As shown in Sec. III, dimensiona
reduction from the supergravity Lagrangian with BP
charges givesQ250. In this case, the linear term in~45!
disappears. The quadratic term is negative, which means
the stack of coincident branes is unstable and tends to
solve. Thus the stabilization of the modulusw seems to make
the superposition of branes an unstable configuration.

As we shall see in more detail in Sec. VII, stacks
branes in marginal or unstable equilibrium will not be app
priate for constructing instantons, since in particular th
would have too many negative modes. The instanton is o
meaningful if the branes attract each other. The above an
sis shows that at the classical level, the branes with B
values of the charges would not attract each other, and
sequently the nucleation of coincident branes is not allow
at least in the semiclassical description.

There may be several escape routes to this conclusion
instance, after supersymmetry breaking, the charges of
branes get renormalized, and it is possible that the corre
charges satisfyQ2.0. In this case the branes in the sta
would attract each other with a linear potential. Other mec
nisms by which nearby branes attract each other are conc
able, but here we shall not try to pursue their study. It sho
be emphasized, however, that this remains an important o

FIG. 3. Profile of a massive dilaton in the presence of t
branes.
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question that needs to be addressed in order to justify
semiclassical description of coincident brane nucleation
Sec. VII, where we discuss the degeneracy factor, we s
simply postulate that an attractive interaction exists at sh
distances.

VI. COLEMAN –DE LUCCIA „CDL … INSTANTONS

The brane nucleation rate per unit volume is given by
expression of the form@5#

G5De2B, ~47!

whereB5SE(I )2SE(B). HereSE(I ) is the Euclidean action
of the instanton corresponding to the decay of the four-fo
field, andSE(B) is the action for the background solutio
before nucleation. The prefactorD will be discussed in the
next section. The formal expression~47! can be used both in
flat space and in curved space. Also, it can be used at ze
at finite temperature. The difference is in the type of insta
ton and background solutions to be used in each case.

In this section, we shall concentrate in the maxima
symmetric instanton. In flat space, this represents the de
of a metastable vacuum at zero temperature. The Euclid
solution can be described as follows@5#. At infinity, the field
strength takes the valueFo , which plays the role of a false
vacuum. Near the origin, we haveF5Fi5Fo2q. This plays
the role of a true vacuum phase. Both phases are sepa
by the Euclidean worldsheet of the brane, which is a thr
sphere of radius

R5
3s

e
. ~48!

Heres is the tension of the brane and

e5
1

2
~Fo

22Fi
2!5q@Fo2~q/2!# ~49!

is the jump in the energy density across the brane. The
ference in Euclidean actions between the instanton and
background solution is given in this case by@5#

B( f lat)'
27p2

2

s4

e3 . ~50!

If instead of considering a single brane, we are looking at
nucleation ofk coincident branes, an analogous solution
the Euclidean equations of motion should be considered.
only difference is that the effective charge is a factor ok
higher, and the effective tension is also higher by appro
mately the same factor. Using~40!, we should replace

e→ek5kq@Fo2~kq/2!#,

s→sk'k@s2~ke2/4m!#, ~51!

in Eq. ~50! for the ‘‘bounce’’ action. As shown in Sec. V, th
approximate form ofsk is valid when the second term in th
r.h.s. of ~51! is small compared with the first. In the mod
considered in Sec. IV, the modulus is stabilized with a m
0-9
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J. GARRIGA AND A. MEGEVAND PHYSICAL REVIEW D69, 083510 ~2004!
of order m;M11. This may be regarded as a conservat
upper bound for the general case. Sincee5as/M p , the con-
dition (ke2/4m)!s requires

k!
1

a2 S M11
3

s
D S M p

M11
D 2

. ~52!

For larger k, gravitational corrections to the brane profi
become important on a length scale comparable to the
verse mass of the dilaton, as we discussed in the prece
section. In this case the instanton solution will depend on
detailed dynamics of the dilaton near the brane. The inve
gation of these dilatonic instantons is per se an interes
problem, which we leave for further research. Here, for s
plicity, we shall assume a scenario where eithers!M11

3 ,
due perhaps to the wrapping of branes on a degenera
cycle, or where the extra dimensions are relatively large
that M p@M11, and we shall restrict attention to instanto
where the number of branes is bounded by~52!. This gives

Bk
( f lat)'

27p2

2

ks4

q3@Fo2~kq/2!#3 . ~53!

Nucleation in flat space is impossible when the number
branes is too large, since otherwise we would be jumping
vacua with a higher energy density. Therefore, we must
strict ourselves tok,2Fo /q. In fact, the minimum value of
Fi is achieved for the largestk satisfying k,(Fo /q)
1(1/2). Note that the action increases faster than linearly
we increase the number of branesk, but we still have

Bk
( f lat);kB( f lat)

throughout this range.
When gravity is taken into account, the maximally sym

metric instanton was given by Coleman and De Luccia@3#. It
is constructed by gluing two different de Sitter solutions~that
is, two four-spheres! at the worldsheet of the brane, which
still a three-sphere. The instanton is sketched in Fig. 4.
four-spheres have the radiiHo

21 andHi
21 , where

Ho
25

Le f f

3M P
2

, Hi
25

Le f f2e

3M P
2

, ~54!

FIG. 4. Coleman–de Luccia instanton, which is obtained
gluing together two different four-spheres of radiiHo

21 andHi
21 at

the worldsheet of the brane, itself a three-sphere.
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are the Hubble rates of the de Sitter phases before and
the nucleation event, respectively. Here, and in what follo
we are assuming that the effective cosmological constan
still positive after nucleation, since these are the final sta
we are interested in. The bubble radius at the time of nu
ation ~which coincides with the radius of the three-sphere! is
bounded by 0,R,Ho

21 . Analytic expressions forR are
given in Refs.@1,3#. The general expression is cumbersom
and not particularly illuminating, so we shall concentrate
a few limiting cases of interest.

As discussed in Sec. III, the gravitational field of a bra
is repulsive, and is characterized by an ‘‘acceleration’’
orders/M P

2 . This gravitational field will be negligible pro-
vided that the corresponding Rindler radius~or inverse of the
acceleration! is much larger than the radiusR of the Euclid-
ean worldsheet, which in turn is smaller thanHo

21 :

s!M P
2Ho . ~55!

In this regime, we can distinguish two cases. ForsHo /e
!1, the radius of the Euclidean worldsheet is much sma
than the de Sitter radius, and the flat space expression~50!
holds. In the opposite limit,sHo /e@1, we have (Ho

21

2R)!Ho
21 and

B(wall)'2p2sHo
23 . ~56!

The vacuum energy differencee is unimportant in this case
and the action coincides with that for domain wall nucleati
@22#.

Finally, the gravitational field of the brane is importa
when

s@M P
2Ho . ~57!

In this case, the radius of the worldsheet is given byR
'(1/2pGs), and

B(wall)'
p

GHo
2 . ~58!

In this limit, the action of the instanton is much smaller th
the action of the background, and this is the reason why~58!
is independent of the tension. The same arguments app
course to the instantons with coincident branes, and the
responding expressions for the action and radii in the diff
ent regimes are summarized in Table I.

y

TABLE I. Values of the radiusR of the Coleman–de Luccia
instanton and the corresponding bounce actionB in different limits.
0-10
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VII. THE PREFACTOR FOR CDL INSTANTONS

The prefactorD in Eq. ~47! is given by@5#

D5
Z8

ZB
. ~59!

Here Z and ZB are the Gaussian integrals of small fluctu
tions around the instanton and the background solutions
spectively. Expanding all brane and bulk fields~which we
generically denote byf) around the instanton config
uration f I as f5f I1( jdf j , we have SE@f#5SE@ I #
1S(2)@ I ,df j #1•••, whereS(2) includes the terms quadrati
in df j . At the one loop order we have

Z85E P jD8~df j !e
2S(2)

.

In the functional integral, there are some directions that c
respond to spacetime translations of the instanton.
primes in the numerator of~59! and in the preceding equa
tion indicate that the translational zero modes are exclu
from the integration, and replaced by the correspond
spacetime volume. The latter is subsequently factored ou
order to obtain a nucleation rate per unit time and volum

The degrees of freedom that live on the brane will mak
contribution to the numerator but not to the denomina
Consider, for instance, a free bosonic fieldF of massmF

living on the worldsheet. Its contribution to the prefactor

DF5ZF5e2WF5E DFe*g1/2F(D22mF
2 )Fd3j.

Here the integral in the exponent is over the Euclide
worldsheet of the brane. If we havek2 of such fields, their
effect on the nucleation rate is to replace

Bk→Bk1k2WF , ~60!

in the naive expression for the nucleation rate,G;e2Bk, a
replacement which can become very important as we
crease the number of fields. This is, in essence, the obse
tion made by Feng et al. that the large number of worldsh
fields might strongly affect the nucleation rate.

A. Scalars

The Euclidean worldsheet in the Coleman–de Luccia
stanton is a 3-sphere. Determinantal prefactors due to sc
fields were considered in some detail in Ref.@23#. They are
given by

WF52zR8 ~22!1~y2/2!ln~sinpy!2
1

p2E
0

py

x ln~sinx!dx,

~61!

wherey2512mF
2 R2 andzR is the usual Riemann zeta func

tion. For instance, the contribution of a conformally coupl
scalar field can be obtained by takingmF

2 5(3/4)R22, which
gives
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Wc52zR8 ~22!1
1

8
ln 22

7

16p2 zR~3!'0.0638.

Hence, the effective degeneracy factor contributed by a c
formal scalar field is given by

Dc'e2Wc'0.94,1. ~62!

The first thing to note is that this factor is not an enhan
ment, but a suppression. Hence, the prefactor cannot sim
be thought of as the exponential of an entropy. More gen
ally, from Eq. ~61!, the prefactor is independent of the e
pansion rate of the ambient de Sitter space. This has im
cations for the scenario proposed by FMSW, as we s
discuss in the next section.

In general, the degeneracy factor will depend onR and on
the mass of the particle. For light minimally coupled scala
Eq. ~61! gives

Ds'
ezR8(22)

p1/2mFR
~mFR!1!. ~63!

There can be a strong enhancement in the nucleation ra
there are very light scalar fields. In the limitmF→0 the
factor goes to infinity. This is because a massless scalar h
normalizable zero mode on the sphere, corresponding to
symmetryF→F1const. In this case, the zero mode mu
be treated as a collective coordinate. The nucleation rat
proportional to the rangedF of the field F, because the
bubbles can nucleate with any average value of the sc
field with equal probability@23#

Ds~mF
2 50!5 lim

mF
2 →0

@mFDs~mF!#~pR3!1/2dF

5ezR8(22)R1/2dF. ~64!

Finally, for large mass the expression~61! leads to

Ds'exp~pmF
3 R3/6! ~mFR@1!. ~65!

The exponent of this expression can be interpreted a
renormalization of the tension of the stack of branes, due
the heavy scalars living on it@24#. Indeed, the effective po
tential for a scalar field in 211 dimensions in the flat spac
limit is proportional tomF

3 , and the factor ofR3 is just due
to the volume of the worldsheet. The factorDs is plotted in
Fig. 5 for different values ofmFR.

Note that there is an enhancement both at small an
large mass, but the two have very different origin. The la
value of ~63! for light fields can be interpreted as a pha
space enhancement. As we shall discuss in Sec. VII D, qu
tum fluctuations of fields living on the worldsheet of th
brane are characterized by a temperatureT51/2pR. The
corresponding fluctuations in the potential term are of or
mF

2 F2;T3, which corresponds to a root mean squared
pectation value forF of the order
0-11
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dF;
1

mR3/2
. ~66!

Equation~63! is recovered if we insert the range~66! in Eq.
~64!. The lighter the field, the larger is the phase space fa
dF, and the larger is the nucleation rate. FormFR@1 this
argument cannot be used, since the field does not behav
effectively massless. In that limit the field decouples, as
should, and its effect is felt as a renormalization of the
rameters in the Lagrangian. For a scalar field, the lead
effect is to renormalize the tension of the brane, making
lower ~see Appendix A!. This causes an exponential e
hancement of the nucleation rate.

B. U„k… fields

Besides scalar fields, gauge bosons and fermions may
on a brane. At low energies, the field content on a stack
coincident branes will be model dependent. The idea is th
will correspond to a gauge theory whose symmetry is
hanced when branes are coincident, giving rise to a la
number of light species on the worldsheet. The details of
theory, however, will depend on whether we start from
branes that descend directly from the ten dimensions
from higher dimensional p-branes wraped on (p22)-cycles.
They will also depend on the details of compactificatio
Rather than building a particular scenario from first pr
ciples, here we shall try to gain some intuition by consid
ing a toy model directly in four dimensions. The degrees
freedom on the stack ofk coincident branes will be bluntly
modeled by a weakly coupled SUSYU(k) gauge theory on
the 211 dimensional worldsheet. This contains aU(k)
gauge field, (k221) scalar degrees of freedom in the adjo
representation ofSU(k), and a scalar singlet; plus the corr
sponding fermionic degrees of freedom. The action for
worldsheet fields is given by

FIG. 5. Contribution of a scalar field to the prefactorD in the
nucleation rate~47!, as a function of its massmF ~measured in units
of the inverse radius of the instanton!. At low mass, the enhance
ment is due to large phase space: bubbles can nucleate with v
of the field in the range~66!, which becomes larger for smalle
masses. The enhancement at large mass can be understood
finite renormalization of the brane tension.
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2
Tr~FmnFmn!

1Tr~DmfDmf!1V~f!1•••G , ~67!

where the ellipsis indicate the terms containing fermio
Here Fmn is the field strength of the gauge fieldAm

5Aa
mla , wherela are the generators ofU(k), normalized

by Tr(lalb)5dab/2, andf5fala , wherefa are real sca-
lar fields (a,b51, . . . ,k2). By analogy with the well known
case of D-branes in 10 dimensions, we shall assume th
the coincident branes are flat~as in the case when there is n
external four-form field!, then the theory is supersymmetr
and all degrees of freedom are massless. The scalar fieldf is
a Hermitian matrix and can always be diagonalized by
suitableU(k) gauge transformation,f5diag(w1 , . . . ,wk).
The eigenvaluesw i , i 51, . . . ,k are then interpreted as th
positions of the different parallel branes along an axis p
pendicular to them~if the codimension of the branes wer
higher, there would be additional scalar matrices repres
ing the positions of the branes along the additional ortho
nal directions, but here we are interested in the case of c
mension one!. In the supersymmetric case, the potential
the scalar field vanishes,V(f)50. However, for nonflat
branes, the displacement of the stack of branes no lon
behaves as an exactly massless field@23,25#, but one which
couples to a combination of the worldsheet and extrin
curvatures, as well as to the background four-form fie
Also, after moduli stabilization, the forces amongst bran
are nonvanishing, and this also contributes to the poten
for the relative displacements of the different branes. Th
as we shall see, there will be a nonvanishing poten
V(f)Þ0 in the physical situation of our interest.

When the positions are not coincident, theU(k) symme-
try breaks to a smaller group because some of the ga
bosons acquire massesmA

25(g2/2)(w i2w j )
2. There are al-

ways at leastk massless vectors~corresponding to Maxwell
theory on the individual branes on the stack! and the remain-
ing k22k have double degeneracy. For example, in the c
of a single brane, the scalar field will represent the Goldst
mode of the broken translational symmetry, associated
transverse displacement of the brane. For the case of
branes, there are two such scalars. One of them,w15(w1

1w2)/A2, will corresponds to simultaneous motion of bo
branes, and is a singlet underSU(2). The other one,w2

5(w12w2)/A2, will correspond to relative motion of the
branes and it transforms underSU(2). When the two branes
move apart,f2 acquires an expectation value and two of t
gauge bosons get a mass, breaking the symmetryU(2)
→U(1)3U(1).

The case of interest to us is not a flat brane, but the wo
volume of the 2-brane in the CdL instanton, which forms
3-sphere of radiusR. In this situation, we do not expect th
theory to be supersymmetric~in particular, corrections to the
effective action will appear at one loop, which will be relate
in fact to the determinantal prefactor in the nucleation ra!.
The case of a single brane is very similar to the case o

ues

as a
0-12
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vacuum bubble, and in that case we know that the transv
displacements correspond to a scalar field of negative m
squared@23,25#

m1
2 523R22. ~68!

The origin and precise value of this mass term can be un
stood geometrically, since it leads to four normalizable z
modes which are the spherical harmonics withl 51. These
correspond to the four space-time translational modes of
instanton, which have to be treated as collective coordina
This scalar field has also a single negative mode, whic
the constantl 50 mode. A negative mode is precisely what
needed for an instanton to contribute to the imaginary par
the vacuum energy, and hence to contribute to false vac
decay@5#. Integrating out the transverse displacement of
brane gives a determinantal prefactor of the form@23#

D15
s2R2

4
ezR8 (22)V, ~69!

whereV5VT is the spacetime volume. The prefactor in t
nucleation rate~47! per unit time and volume is obtaine
after dividing byV. The above argument neglects gravi
and it is a good approximation whens0!M p

2Ho . The case
of strong gravitys0@M p

2Ho is far more complicated, sinc
one has to integrate over fluctuations of the gravitatio
field in the bulk, and is left for further research.

If there are 2 coincident branes, then there are two in
pendent transverse displacements corresponding to th
genvaluesw1 and w2. The ‘‘center of mass’’ displacemen
w1 behaves just like in the case of a single brane. The
thogonal combinationw2 represents the brane separatio
and the two-brane instanton will only be relevant if this se
ond combination acquires a positive mass through so
mechanism, so that there is a single negative mode, not
and four normalizable zero modes in total. In other wor
the branes must attract each other. As shown in Sec. V, if
branes have BPS charges, they in fact tend to repel e
other once the dilaton is stabilized, and the configurat
with coincident branes is unstable. In this case, we do
expect that there will be any instanton representing
nucleation of multiple branes.

One possible way out of this conclusion is to assume
the charges are different from their BPS values, due to
persymmetry breaking effects, so that the sumQ2 defined in
Eq. ~46! is positive. In that case, the two branes attract e
other with a linear potential. The canonical fieldw2 is re-
lated to the interbrane distanced by uw2u5s1/2d. Hence, the
interbrane potential~45! takes the form

V~w2!5Q2s21/2uw2u2
me2

4s
w2

2 1•••. ~70!

This potential is attractive at small distances, and has a m
mum atw25wm;Q2s1/2/me2. Classically, the branes wil
attract at short distances. However, there is a danger that
will be separated by quantum fluctuations. As we discus
in the preceding subsection~and we will argue more a
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length in Sec. VII D! quantum fluctuations of fields living on
the worldsheet of the brane are characterized by a temp
tureT51/2pR. The fluctuations in the potential are of ord
V;T3, and these correspond to a root mean squared ex
tation value forw2 of the order

dw2;s1/2/R3Q2. ~71!

The stability of the two-brane instanton requires thatdw2

!wm . Otherwise, unsuppressed quantum fluctuations t
the field over the barrier and the distance between the bra
starts growing without bound. This requires

Q4@
me2

R3 . ~72!

If this condition is satisfied, thenw2 is trapped near the
origin, and the branes stay together. It can be shown tha
Q4@sR25 the field behaves as approximately massless
the range given by~71!, so from~64! its contribution to the
prefactor can be estimated as

D2;R1/2dw2;
s1/2

R5/2Q2
. ~73!

As in the case of the massive field discussed in the prece
section, this expression is only justified whenD2@1. If Q2

is too large, then the field will not behave as massless in
range~71!, and we expect that forQ4@sR25 the sole effect
of the field will be to renormalize the coefficients of oper
tors such as the brane tension in the classical Lagrangian
inconvenient feature of the linear potential~70! is that is
nonanalytic at the origin, and hence an explicit calculation
the limit of large slope is not straightforward. Moreover, w
cannot write down an expression for it in terms of the mat
operatorf, but just in terms of its eigenvaluesw i .

Another possibility, which is more tractable from the fo
mal point of view, is to assume that there is an attract
interbrane potential which is quadratic at short distanc
That is, as in~70! with Q250 but with a positive coefficient
in front of the second term. In terms of the eigenvaluesw i ,
which represent the displacements of the branes, we ass
the following expression for the potential

V~w j !5m1
2 w1

2 1
1

2k
m2

2 (
i j

~w i2w j !
21•••, ~74!

wherew15k21/2( i 51
k w i5k21/2Tr(f) andm1

2 523R22 @as
given in Eq.~68!#, while m2

2 .0 is a new parameter which
characterizes the attractive interaction at short distances
terms of the fieldf, we can write the potential as

V~f!5m1
2 k21~Tr f!21m2

2 @Tr f22k21~Tr f!2#

5
1

2
m1

2 f1
21

1

2
m2

2 (
b52

k2

fb
2 , ~75!

where in the last equality we have expandedf5fala in the
basis of generatorsla , and we have usedl15(2k)21/21 and
0-13
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Tr lb50 for b52, . . . ,k2. In the symmetric phase~and as-
sumingm2R!1) each one of the adjoint fieldsfb will con-
tribute a determinantal prefactor of the form

D2'
ezR8(22)

p1/2m2R
, ~m2R!1! ~76!

where we have used~63!. This shows a somewhat milde
dependence inR than in the case of a linear interaction b
tween branes, given in Eq.~73!, but still of power law form.
In the limit of large massD2'exp(pm2

3 R3/6), which as
discussed before amounts to a finite renormalization of
brane tension.

Aside from scalars, we should also consider the contri
tions from gauge bosons and fermions. For the case
3-sphere, these have been studied in Ref.@24#. For vectors of
massmA , the result is

WA52
1

2
logS g2R

4p2D 2 logS sinh~pmAR!

pmAR
D 2E

0

mAR

y2
d

dy

3 log~sinhpy!dy2zR8 ~22!12zR8 ~0!, ~77!

where g is the gauge coupling, which is dimensionful
three dimensions. When the branes are coincident, the th
is in the symmetric phase and the gauge bosons are mas
A massless gauge boson gives a contribution of the form

DA5e2WA5gR1/2ezR8 (22) ~mA50!, ~78!

which again behaves as a power ofR. A Dirac fermion of
massmC yields the contribution@24#

WC5
1

4
log cosh~pmR!1pE

0

mR

u2 tanh~pu!du

12zR8 ~22,1/2!2
1

2
zR8 ~0,1/2!. ~79!

For the massless case, theR dependent terms vanish and w
have

DC5221/4e(3/2)zR8 (22) ~mC50!, ~80!

which is a constant independent of the radiusR.

C. Nucleation rate

Collecting all one-loop contributions, the prefactor in E
~47! due to the weakly coupledU(k) gauge theory in the
unbroken phase is given by

D5
D1

V
~D2!k221~DA!k2

~DC!k2
. ~81!

Using ~69!, ~76!, ~78!, and ~80! we are led to a nucleation
rate per unit volume of the form
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Gk'
p1/2m2sk

2

4
R3S e7zR8 (22)g2

A2pm2
2 R

D k2/2

e2Bk ~m2R!1!,

~82!

whereBk is the corresponding bounce action for the nuc
ation of k coincident branes. Note that theR dependence of
the prefactor is simply as a power law. Here we have u
the form~76! for the scalar contributionD2 , corresponding
to an attractive interaction amongst branes which is quadr
at short distances, with a curvature of the potential char
terized by some mass parameterm2 .2 The prefactor in Eq.
~82! has the exponential dependence onk2 which counts the
number of worldsheet field degrees of freedom, while
Euclidean actionBk behaves approximately linearly withk.
Hence, as suggested in Ref.@2#, the prefactor can be quite
important in determining the nucleation rate.

In the scenario proposed in Ref.@2# it was also desirable
that the enhancement in the nucleation rate would switch
at the present time, in order to prevent the vacuum fr
decaying further. Unfortunately, the expression~82! does not
seem to have this property. The prefactor depends only
the radiusR, which is itself a function of various parameter
such as the brane tension, the charge and the ambient ex
sion rate, as summarized in Table I. According to~82!, an
enhancement of the nucleation rate of coincident branes
occur for

R;MinH 3sk

ek
,Ho

21 ,
4M p

2

sk
J !~g/m2!2, ~83!

where we have used the results of Table I in the first st
Consider first the situation whereskM p

22!Ho . Note that
even in the regime whenR'H0

21 , the dependence of th
degeneracy factor on the corresponding dS temperatur
only power law, and not exponential as suggested in Ref.@2#.
Also, it is clear the stability of our vacuum is not guarante
by the smallness of the present expansion rate. The enha
ment will persist provided thatsk /ek!(g/m2)2, even if the
ambient de Sitter temperature vanishes. More worrisom
the fact that for sufficiently largek we enter the regime
whereskM p

22@Ho . In that case, we have

R;M p
2/sk ,

which can get smaller and smaller as we increase the num
of coincident branes, eventually leading to a catastrophic
cay rate, regardless of the value ofHo .

The expression~82! for the nucleation rate is valid fo
m2R!1. In the opposite limit,m2R@1, the scalars de-
couple, contributing a finite renormalization of the para
eters in the action~such as the brane tension and induc
Newton’s constant!. For completeness, this is discussed

2If we assume instead a linear interaction at short distances

should use~73! and the behavior changes toD}R(9/2)22k2
, but in

any case the dependence is still a power of the radiusR.
0-14
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Appendix A, where it is shown that the renormalization
parameters can have a very significant impact on the nu
ation rate.

D. Discussion: Temperature of a vacuum bubble

In Ref. @2#, the prefactor in the nucleation rate for th
nucleation of coincident branes was estimated as an ent
enhancement

D;eS,

where, from dimensional analysis, the entropy was estima
asS}T2R2 per field degree of freedom. The factorR2 is due
to the area of the bubble, andT is some effective tempera
ture. Although the interpretation of the prefactor as the
ponential of an entropy should not be taken too literally,
us try and phrase the results of the preceding subsectio
this intuitive language.

A particle detector following a geodesic in a de Sitt
space responds as if it was at rest in a thermal bath in
space, at the temperatureTo5Ho/2p. It should be kept in
mind, however, that the dS invariant quantum state is in
a pure state, and hence rather different from a true ther
state. For instance, any two detectors in geodesic rela
motion observe the same temperature, with a perfectly
tropic distribution. This is a consequence of de Sitter inva
ance, and is in contrast with the situation in a thermal bath
flat space, where moving observers detect a tempera
blue-shift in the direction of their motion relative to the bat

The fields living on a nucleated brane will experien
some thermal effects too. The bubble is embedded in a
space characterized by a temperatureTo . The interior of the
bubble is also a dS space characterized by a different ex
sion rate, with corresponding temperatureTi . The existence
of two different de Sitter spaces in contact with the brane
the authors of Ref.@2# to consider two different possibilitie
for the effective temperature of the fields on the braneT
5To andT5(ToTi)

1/2. However, there is in fact no ambigu
ity in the temperature of such fields@4#, which is determined
as follows.

The worldsheet of the brane is anS3 of radius R, the
Euclidean de Sitter space in 211 dimensions. If interactions
with bulk fields are neglected, brane fields are only sensi
to the geometry of the worldsheet, and do not know ab
the properties of the ambient space. In this approximat
the relevant temperature is clearly the intrinsic tempera
of the lower dimensional de Sitter space,

TR51/2pR. ~84!

This conclusion remains unchanged when we include in
actions with bulk fields. The simplest way to see this is
consider the limiting case where gravity can be ignored
the nucleation takes place in a flat space. There, the amb
temperature vanishesTo50, but the fields on the brane wi
feel the temperatureTR , because the nucleated brane e
pands with constant accelerationa51/R. An accelerating
observer in the Minkowski vacuum will detect a Rindl
temperatureTR5a/2p, which happens to coincide with th
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intrinsic worldsheet temperature. Hence, the de Si
vacuum in the 211 dimensional worldsheet is in equilibrium
with the Minkowski vacuum in the bulk. This conclusion
quite general, and applies also to bubbles nucleating in
Sitter. The CdL instanton has anO(4) symmetry under Eu-
clidean rotations. This becomes anO(3,1) symmetry after
analytic continuation into Lorentzian time. The quantu
state after bubble nucleation is expected to inherit this sy
metry@5,26,27#, and the only way to achieve it is if the field
on the brane are in their intrinsic de Sitter vacuum, which
characterized by temperatureTR .

Note thatTR is a relatively high temperature. The radiu
of the instanton is always smaller thanHo

21 ~see Table I!, and
thereforeTR is strictly larger thanTo andTi . Nevertheless,
the productk2TR

2R2;k2, and hence the ‘‘entropy enhance
ment,’’ is independent of the ambient de Sitter temperatu
As shown in the previous subsections, the independenc
the prefactorD on the ambient expansion rate is only a
proximate, due to the anomalous behavior of light fields
de Sitter space. This introduces a dependence of the effe
actionWe f f52 logD on the radiusR of the instanton~which
in turn may depend onHo in certain regimes!. This depen-
dence, however, is quite different from the one proposed
Ref. @2#, where it was suggested that the nucleation rate
coincident branes would be enhanced at highHo , and would
switch off at lowHo due to the drop in ambient temperatur
What we find instead is that, if the CdL instanton for nuc
ation of coincident branes really exists, then the correspo
ing degeneracy factor does not necessarily switch off.

We shall return to a discussion of this point in the co
cluding section. Before that, let us turn our attention to
different instanton, which may be relevant to the FMSW s
nario.

VIII. PAIR CREATION OF CRITICAL BUBBLES

Euclidean de Sitter space is compact in all spacetime
rections, and~as we just discussed! it behaves in some re
spects as a system at finite temperature. One may then
whether there are instantons similar to the thermal one
flat space. These correspond to static bubbles, in unst
equilibrium between expansion and collapse.

Static instantons withO(3) symmetry have previously
been considered in a variety of contexts, notably for the
scription of false vacuum decay in the presence of a bl
hole ~see e.g. Refs.@28,29# and references therein!. The par-
ticular instanton we shall consider corresponds to pair c
ation of critical bubbles in de Sitter, and to our knowledge
does not seem to have received much attention in the p
This is perhaps not surprising, since its action is higher th
that of the action for the maximally symmetric CdL insta
ton. However, if the CdL instanton does not exist for coin
dent branes, the static one may turn out to be relevant o
the degeneracy factors are taken into account.

A. The instanton solution

The energy of a critical bubble is different from zero, a
consequently, the metric outside of the bubble is no lon
0-15
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FIG. 6. Static instanton in de Sitter space. The left figure shows the geometry induced on the planer ,t, while keeping angular coordinate
fixed, whereas the right figure shows the geometry induced on the planer ,f, keepingu andt fixed. The vertical direction corresponds to th
coordinater, common to both pictures. The cosmological horizon is atr 5r 1 , the brane is atr 5R, and r 50 is the center of the static
bubble of the new phase.
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pure de Sitter, but Schwarzschild–de Sitter~SdS!. The in-
stanton is a solution of the Euclidean equations of moti
with two metrics glued together at the locus of the wa
which is a surface of constantr in the static chart of SdS~see
Fig. 6!. The metric outside is given by

ds25 f o~r !dt21 f o
21~r !dr21r 2dV2, ~85!

wheredV25du21sin2udf2, and

f o~r !5S 12
2GM

r
2Ho

2r 2D . ~86!

The metric inside is given by

ds25C2f i~r !dt21 f i
21~r !dr21r 2dV2, ~87!

where

f i~r !5~12Hi
2r 2!, ~88!

corresponding to a de Sitter solution. The constantC is
determined by the condition that on the brane~i.e., at r
5R) the two metrics must agree, which leads toC
5@ f o(R)/ f i(R)#1/2.

The parametersM andR depend onsk , Ho andHi . Their
values are determined by the junction conditions at the br
@14#,

@Kab#524pGskgab , ~89!

where@Kab# is the difference in the extrinsic curvatureKab
5(1/2)f 1/2] rgab on the two sides andgab is the worldsheet
metric. Equation~89! gives rise to the junction conditions,

@g#524pGsk , @g8#50, ~90!

where we have introduced the new functiong(r )
5 f 1/2(r )/r . Using Eqs.~86! and ~88!, we have

gogo852
1

r 3
1

3GM

r 4
, gigi852

1

r 3
. ~91!

Hence, using ~90!, go8(R)5gi8(R)523M /4pskR
4, and

thengi(R) andgo(R) are easily obtained from Eqs.~91!:
08351
,
,

e

gi~R!5
4pskR

3M
, go~R!5gi~R!S 12

3GM

R D . ~92!

From ~86! and ~88! we have

go
2~R!5

1

R2
2

2GM

R3
2Ho

2 , gi
2~R!5

1

R2
2Hi

2 . ~93!

Inserting~92! in ~93! we finally obtain a quadratic equatio
for gi(R)[x. The solution is

x5
e

4sk

1
3sk

16M p
2

1F S e

4sk

1
3sk

16M p
2D 2

1
Hi

2

2 G 1/2

, ~94!

where we have usedHo
22Hi

258pGe/35e/3M p
2 . Then the

parametersM andR are given in terms ofx by

R225x21Hi
2 , M54pskR/3x. ~95!

This concludes the construction of the instanton solution
given values of the physical parameterssk , Ho andHi .

The equation f o(r )50 has three real solutions fo
27Ho

2M2G2,1. One of them, sayr 2 , is negative and the
other two are positive. The two positive roots correspond
the black hole and cosmological horizons. We call them
spectivelyr s and r 1 . Therefore we can write

f o~r !52
Ho

2

r
~r 2r 2!~r 2r s!~r 2r 1!. ~96!

Of course, in our instanton the horizon atr s is not present,
since the exterior metric is matched to an interior metric
somer 5R.r s ~see Fig. 6!. For r ,R the metric is just a ball
of de Sitter in the static chart, and it is regular down to t
center of symmetry atr 50. In general, the size of the cos
mological horizon is given by

Hor 15
2

A3
cosS w1p

3 D , ~97!

where we have introduced the angle
0-16
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w52arctanA 1

27Ho
2M2G2

21. ~98!

In the limit M→0 the anglew→2p/2, andHor 1→1.
According to Eq. ~92!, at the brane we havef o(R)

5x2(R23GM)2, so the equationf o(R)50 has a double
zero instead of two different roots. This means that the rad
of the instanton will coincide with the radius of one of th
horizons only in the special case where both horizons h
the same size,r s5r 15R53GM. In the limit r s5r 1 the
exterior metric becomes the Nariai solution@30,31#, which
has r 5(A3Ho)21. Note that in the limit 3GM
→(A3Ho)21, w→0 andHor 1→1/A3, as expected.

Like in the case of instantons describing the production
black holes@30# or monopoles@22# in de Sitter metric, the
instanton presented here describes the creation ofpairs of
bubbles. As we shall see, the Euclidean solution is perio
in the time direction, so that time runs on a circleS1 ~see Fig.
6!. The geometry at the time of nucleation is obtained
slicing the compact instanton through a smooth space
surface that cuts theS1 factor at two places, say,t50 and
t5p. The resulting geometry contains two different bubb
separated by a distance comparable to the inverse expa
rate.

B. Temperature and action

In order to calculate the temperature of the worldshee
the static instanton we must first find the time periodicityb.
This is determined by the regularity of the Euclidean me
at the cosmological horizon. Forr→r 1 , we have

f o~r !'A2S 12
r

r 1
D , ~99!

where

A25Ho
2~r 12r 2!~r 12r s!53Ho

2r 1
2 21. ~100!

In terms of the new coordinates

r5
2r 1

A
A12

r

r 1
, f5

A2

2r 1
t, ~101!

the metric~85! for r→r 1 reads

ds25r2df21dr21r 1
2 dV2, ~102!

so it is clear thatf is an angle, 0<f<2p, and t varies in
the range 0<t<4pr 1 /A2. Therefore the value ofb is

b5
4pr 1

3Ho
2r 1

2 21
5

2pr 1
2

r 123GM
. ~103!

The temperature of the worldsheet instanton is given by
proper time periodicity bR[*0

b f o
1/2(R)dt5 f o

1/2(R)b
5C fi

1/2(R)b. Hence, the inverse temperature is given by
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e

bR52pxr1
2 R23GM

r 123GM
. ~104!

We shall also be interested in the Euclidean action, wh
turns out to have a rather simple expression in terms ofr 1 .
This is derived in Appendix B, where it is shown that th
difference in Euclidean actions between the instanton and
background solutions is given by

B5
p

GHo
2
~12r 1

2 Ho
2!. ~105!

C. Some limiting cases

Let us start with the case of low tension branes,sk /M p
2

!Ho ,Ho2Hi . In this case the parameterx is large com-
pared withHo , R.x21 is small, andGMHo!1. In this
limit the anglew in Eq. ~98! is close to2p/2 and Hor 1

.1. We have

B.
2p

Ho

16psk
3

3e2
, bR.

2p

Ho

. ~106!

This is just the flat space expression for the energy o
critical bubble, multiplied by Euclidean time periodicity o
the low curvature de Sitter space in which this bubble
embedded.

Next, we may consider the case of intermediate tens
Ho2Hi!sk /M p

2!Ho ,Hi . In this case, x'Hi /A2, R
'(A3x)21, Hor 1'12GMHo , with GMHo!1, and we
have

B'
16p2

3A3

sk

Ho
3 , bR'

2p

A3Ho

. ~107!

In this case, the difference in pressure between inside
outside of the brane is insignificant compared with the bra
tension term, which is balanced against collapse by the c
mological expansion.

Finally, in the limit of very largesk we find that 3GM
becomes larger thanR, namely, 3GM→4R/3. This means
that f o(R) vanishes for some valuesk5smax, given below
in Eq. ~118!, so it is not sensible to consider the limit of ver
largesk but just the limitsk→smax. As we have mentioned
@see the discussion below Eq.~96!#, the exterior metric in
this limit corresponds to the Nariai solution, withr s5r 1

5(A3Ho)21. Replacing this value in~105! we find readily

B5
2p

3GHo
2

. ~108!

It is interesting to compare this value ofB with the corre-
sponding one for the nucleation of black holes in the same
Sitter universe. This is described by the Nariai instan
@30#, which has the bounce action
0-17
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BN5
p

3GHo
2

. ~109!

Note that the differenceB2BN5p/3GHo
25Abh/4G, where

Abh54pr s
2 is the area of the black hole horizon in the Nar

solution. Hence, the probability of nucleating black ho
divided by the probability of nucleating brane configuratio
characterized by the same mass parameter is just the e
nential of the black hole entropy, as expected from gen
considerations~in this argument, we are of course neglecti
the entropy stored in the field degrees of freedom living
the branes, which will only show up when the determinan
prefactor in the nucleation rate is evaluated!.

Let us consider the value ofbR in the limit sk→smax.
This is a singular limit in Eq.~104! due to the simultaneou
vanishing of numerator and denominator. Thus we will ne
to change to more appropriate coordinates. The fact thar s
5r 1 does not mean, though, that both horizons coinci
since the coordinatesr ,t become inadequate in this cas
Near this limit the metric outside takes the form~85!, with

f o~r !'A2S 12
r

r 1
D2S 12

r

r 1
D 2

, ~110!

and r'r 1 , plus higher orders inA. The constantA is the
same parameter defined in~100!, but in this limit tends to
zero, A25A3Ho(r 12r s). Now we define new coordinate
c andl by

cosc512
2

A2
S 12

r

r 1
D , l5

A2

2
t, ~111!

so that the metric becomes

ds25sin2cdl21r 1
2 dc21r 1

2 dV2. ~112!

In these coordinates the cosmological horizon is atc50 and
the black hole horizon is atc5p. Now in the limitA→0 we
just replacer 15(A3Ho)21.

We must determine the positioncR of the brane, which is
given as before by the matching conditions~89!, where now
the metric outside is~112!. So, on the brane, we have

dssk

2 5sin2 cRdl21r 1
2 dV2 ~113!

5 f i~R!dt821R2dV2 ~114!

and the extrinsic curvature on the outside of the brane
2(1/2)]cgab , with g005sin2 c and gVV5r 1

2 , i.e., K00

52(1/r 1)g00 cotc,KVV50. The curvature inside is a

beforeK005g00] r f i
1/2 and KVV5gVV f i

1/2/r , with f i(r )5(1
2Hi

2r 2), so the Israel conditions give

2
1

r 1
cotcR2~ f i

1/2!8uR524pGsk , ~115!

f i
1/2~R!/R54pGsk . ~116!
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These equations are easily solved and give

sincR5S 3Ho
22Hi

2

6Ho
22Hi

2D 1/2

, ~117!

sk5smax52M p
2A3Ho

22Hi
2, ~118!

so Hi must be less thanA3Ho . Now regularity at the cos-
mological horizonc.0 implies that 0<l/r 1<2p, so bR
5sin(cR)2pr1 . Hence,

bR5
2p

A3Ho

S 3Ho
22Hi

2

6Ho
22Hi

2D 1/2

. ~119!

Thus, also in this case, the effective temperature of the fi
degrees of freedom living on the worldsheet will be of ord
H0 or higher.

D. The prefactor for static instantons

In flat space, and at finite temperatureT@ek /sk , the in-
stanton which is relevant for vacuum decay is static a
spherically symmetric in the spatial directions. The fluctu
tions are periodic in Euclidean time, with periodicityb
51/T. The worldsheet of the brane has the topologyS1

3S2, where theS1 is the direction of imaginary time, and
the S2 is the boundary of the ‘‘critical’’ bubble, a close
brane in unstable equilibrium between expansion and
lapse~this is in contrast with the zero temperature instant
where the worldsheet is a 3-sphere!. The radius of the critical
bubble is given by

Rb5
2sk

ek
,

and the difference of the instanton action and the action
the background is given by

Bb5bE(0),

whereE(0)5(4p/3)skRb
2 is the classical energy of the criti

cal bubble. The one loop quantum correction can be writ
as ~see e.g. Ref.@32#!

WF5bFF5b~EF2TSF!. ~120!

HereFF denotes the free energy andEF is the correction to
the energy of the critical bubble due to the fieldF. This
includes the zero point energy ofF in the presence of the
bubble, as well as the thermal contributions. Finally,SF is
the entropy. Thus, the nucleation rate takes the form

Gb5De2Bb;e2(Bb1k2WF);e2bF;e2E/TeS,

whereE5E(0)1k2EF is the total energy,F5E(0)1k2FF is
the total free energy, andS5k2SF is the total entropy. Thus
for thermal instantons the determinant prefactor does ind
include the exponential of the entropy. This is, however,
the only role of the prefactor, since there is also some c
rection to the energy of the bubble.
0-18
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Consider, for simplicity a massless fieldF. At sufficiently
high temperatureT@Rb

21 , the entropy behaves asSF

}T2Rb
2 . From SF52]FF /]T, it follows that FF

'2TSF/3. Hence

Gb5De2Bb;e2Bbe1k2SF/3.

In this case, the prefactor clearly represents an ‘‘entropy
hancement.’’ On the other hand, at lower temperatures,
not clear whether the prefactor represents an enhanceme
a suppression. At temperatures comparable toRb

21 , the
vacuum energy term can be as important as the thermal
tributions, and the logarithm of the prefactorD can have
either sign.

The case of the static instanton in de Sitter space is so
what close to this low temperature situation, and without
explicit calculation it is not clear whether the prefactor re
resents an enhancement or a suppression of the nucle
rate. An interesting possibility would be that at sufficien
high Gibbons-Hawking temperatureTo;Ho , the thermal
contribution may be sufficient to restore the symmetry, c
ating the desired attractive force amongst the branes. Th
currently under research.

The static instanton presented in this section may perh
be better suited to the scenario proposed by Feng et al.@2#,
than the Coleman–de Luccia instanton. Ignoring the deg
eracy factors, the action of the static instanton is alw
larger than the action of the CdL instanton. In this sense
seems to correspond to a subdominant decay channel. H
ever, as we have discussed in previous sections, it might
be that the CdL instanton for multiple brane nucleation s
ply does not exist because of the repulsive force amongs
branes. This does not exclude the possibility that in the c
of the static thermal instantons the symmetry is restore
high ambient~and worldsheet! dS temperature;H0. In this
situation, the decay through nucleation of coincident bra
would only be possible through the static instanton.3 At low
Ho , the thermal contribution might not be sufficient to r
store the symmetry and stacks of branes may simply not h
together, destroying the possibility of further decay by co
cident brane nucleation. Also, the prefactor and the Euc
ean action have an exponential dependence on the am
temperature;Ho , and can be much suppressed at
present epoch, contributing to the stability of the pres
vacuum~in contrast with the Coleman–de Luccia case!.

E. An entropy bound

A potentially worrying aspect of coincident brane nuc
ation in the CdL case is whether the degeneracy factor m
grow without bound as we increase the number of branes@2#.
As we have seen, this will not happen for the case of
static instanton discussed in this section, since nucleatio
coincident branes cannot involve arbitrarily largek. Indeed,

3In the weak coupling limit, we have checked that indeed
U(k) symmetry is not restored in the case of the CdL instan
@24#.
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there is a maximum value of the combined tension of
branessk!smax;M p

2Ho , given in Eq.~118!, beyond which
the instanton simply does not exist. In this limit, the met
outside of the branes approaches the Nariai solution.

From this observation, we can easily derive a bound
the maximum entropy which can be stored in the stack
branes. Indeed, the static instanton represents a sphe
bubble in unstable equilibrium between undetered expan
or collapse into a black hole. The entropy can only incre
when the stack of branes collapses, and hence the entrop
the coincident branes cannot exceed the entropy of the N
black hole. The stack of branes with tensionsk→smax has
the same radius as the horizon of the Nariai black hole,
so, the entropy of the stack of branes is bounded by
fourth of its own area, in natural units. A corollary is that th
nucleation rate of coincident branes in the limitsk→smax is
bounded above by the nucleation rate of Nariai black ho
of the same mass.

IX. CONCLUSIONS AND DISCUSSION

In this paper we have investigated the possibility of co
cident brane nucleation by a four-form field, in connecti
with string motivated scenarios for the neutralization of t
effective cosmological constant.

In four dimensions, and after the moduli are stabilize
the branes repel each other at distances larger than th
verse mass of the moduli. At shorter distances, their inte
tions will be model dependent, but in the simplest models
branes do not attract at the classical level. In this situation
is unclear whether the Coleman–de Luccia~CdL! instanton
for nucleation of coincident branes really contributes to
semiclassical decay rate, since it would have too many z
modes and negative modes.

Assuming that the CdL instanton exists for the nucleat
of coincident branes~that is, assuming an attractive sho
range interaction amongst the branes in the stack!, we have
investigated the degeneracy factor accompanying the
mula for the nucleation rate, due to the large number
worldsheet degrees of freedom. We have modeled such
grees of freedom by a weakly coupled SYMU(k) gauge
theory, which is unbroken when the branes are coincid
We find that the degeneracy factor does not depend v
strongly on the ambient de Sitter~dS! temperatures before o
after the nucleation event. Rather, it depends only on
radius of the instanton. Hence the degeneracy factors ca
quite important even when the ambient dS temperature i
low as it is today. This may indicate that nucleation of co
cident branes via the CdL instanton is in fact impossib
otherwise the present vacuum would immediately decay.

If the CdL instanton for coincident branes does not ex
stacks of branes may still nucleate through a ‘‘static’’ insta
ton which represents pair creation of critical bubbles, in u
stable equilibrium between expansion and collapse. Thi
the analog of the instanton for thermal activation in fl
space. Despite the absence of a classical attractive force
branes could be held together by thermal corrections to
interbrane potential, which tend to favor the symmetric ph
~where branes are on top of each other!. The calculation of

e
n
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this thermal effective potential for the static instanton is c
rently under research. One may ask whether a similar s
metry restoration may not happen for the CdL instanton
this case the calculation has been done in Ref.@24#, where it
is shown that the one loop potential does not help resto
the symmetry. So it is conceivable that the branes may s
together for the static instanton but not for the CdL instant
in which case the former would be the relevant decay ch
nel.

To conclude, we have presented some evidence tha
‘‘saltatory’’ relaxation scenario of Ref.@2# may be difficult to
implement via the CdL instanton, since saltation would
hard to stop at present. Rather, we have speculated th
may be easier to implement through the static instanton
the scenarios proposed in Ref.@2# for the saltatory relaxation
of the cosmological constant, two different possibilities we
suggested for the effective temperature of the worldsheet
grees of freedom, namelyT1;Ho andT2;(HoHi)

1/2, where
Hi and Ho are the expansion rates before and after nu
ation. We have shown that for the static instanton, the
evant temperature is comparable to the ambient de S
temperature;Ho before the tunneling. Hence, the nucl
ation rate of coincident branes would be unsupressed at l
ambient de Sitter temperature, but exponentially suppres
at present, which is of course desirable.

Clearly, many issues need to be addressed before a
nario based on coincident brane nucleation can be use
successfully explain the smallness of the observed cos
logical constant. A considerable advance would be to un
stand why the largeLe f f relaxes to the smallLobs instead of
plunging directly into deep AdS space~the latter jump in-
volves a larger number of coincident branes and would
rewarded by a larger degeneracy factor!. In Ref. @2# an ex-
planation was offered, based on a ‘‘uniquely weak’’ form
the anthropic principle. As explained in Sec. II, any rela
ation mechanism requires the gapDL in the discretuum of
Le f f not to be much larger thanLobs ~otherwise it becomes
a problem to understand why, accidentally, there happen
be an allowed vacuum so close to zero, atLe f f5Lobs
!DL). In Ref. @2# it was proposed thatDL5aLobs with
a;1, saturating the above requirement. Then the allow
Le f f would take values in the sequence. . . , (1
2a)Lobs, Lobs, (11a)Lobs, (112a)Lobs, . . . . If we
start from a largeLe f f , then the enhancement of bran
nucleation for largek favors a jump to the lowest value in th
above list which is still compatible with the existence
observers. FMSW suggested that the value (12a)Lobs may
already be too small for observers to emerge, making
vacuum with the valueLobs the favorite destination.

Finally, one should try to embed this scenario in a cosm
logical context, taking into account the restrictions impos
by homogeneity and isotropy. If unsuppressed saltation h
pened after inflation, then we would have seen signals of
the microwave background. Indeed, bubbles that nucleate
ter thermalization are still rather small at the time of deco
pling, and we would see different domains with differe
values ofLe f f separated by fast moving stacks of bran
which would presumably cause large perturbations in
gravitational potential. Hence, saltation should occur dur
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inflation, and switch off somewhat before the end of it. Th
may impose certain constraints on the space of parame
such as the tension and charges of the branes, or alte
tively, on the ambient temperature below which the instan
with coincident branes simply does not exist~e.g. because
thermal symmetry restoration is no longer effective!. Also, it
should be clarified what might be the advantages of a sa
tory ‘‘neutralization’’ scenario over the ‘‘randomization’’ sce
narios discussed in Sec. II. A possible advantage is that
tatory relaxation operates very quickly, and hence it does
require eternal inflation to take place~as required in the ran
domization scenarios!. A fuller discussion of these issues
left for further research.
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APPENDIX A: HEAVY FIELDS ON THE BRANES

The expression~82! for the nucleation rate is only valid
for m2R!1. For completeness, here we shall discuss
limit m2R@1. In this case the heavy degrees of freedo
decouple, and they simply contribute a finite renormalizat
of the parameters in front of different operators in the cl
sical Lagrangian.

For scalar fields we have

W252
p

6
m2

3 R31
p

4
m2R1•••. ~A1!

As discussed in Sec. VII, the first term in this expansi
corresponds to a finite renormalization of the brane tens
multiplied by the worldvolume of the stack of branes. T
second term correspond to a finite renormalization of
coefficient in front of the worldsheet Ricci scalar. This ter
was not present in the classical action we started with,
evidently it can be generated by quantum corrections. T
scalar contribution~A1! tends to decrease the tension of t
stack of branes. This tends to favor the nucleation rate
large m2R, as represented in Fig. 5. However, whether
actual enhancement really occurs will be model depend
since all massive species, and not just the scalars, contri
finite renormalizations of the parameters in the action.
Sec. VII we have assumed that there is an attractive s
range force amongst the branes, which we have modeled
mass term for the scalars representing the relative posit
of the branes. One may expect that the same mechan
which generates a potential for the scalars may gene
masses also for their fermionic partners. From~79!, heavy
fermions give a contribution to the effective potential of t
form

1

2
WC51

p

6
mC

3 R31
p

8
mCR1••• ~mCR@1! ~A2!
0-20
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per degree of freedom. This gives a positive renormaliza
of the brane tension~which tends to suppress the nucleati
rate!. In the special case wherem25mC , the brane tension
does not renormalize, but each pair of fields will still co
tribute a finite renormalization of the subleading termDW
5(3p/8)m2R which would suppress the nucleation ra
Generically, however, scalars and fermions may wind
with different masses~since supersymmetry is broken
some level!, and the tension will be renormalized. Dividin
the leading term in W by the worldvolume Vol@S3#
52p2R3, each scalar and fermionic degree of freedom c
tributes a brane tension renormalization of the form

Ds'
mC

3 2m2
3

12p
. ~A3!

Similarly, there will be a renormalization of the induce
Newton’s constantGN on the worldsheet, of the orde
DGN

21;(mC2m2) for each pair of heavy field specie
These changes will modify the instanton solution. Fork co-
incident branes, the number of such fields grows ask2, and
the effect of these finite renormalizations can be quite d
matic. The nucleation rate will take the form

Gk;s2R2~Ag2R!k2/2e2Bk
ren

~m2R@1! ~A4!

whereA;1 is a constant that depends on whether some~or
all! of the fermionic species have decoupled or not. T
bounce actionBk

ren in the exponent is calculated by using th
renormalized values of the parameters. IfDs,0, then the
renormalized tensionsk;ks1(k221)Ds sharply de-
creases for largek, leading to unsuppressed tunneling ra
On the contrary, forDs.0 the nucleation of coinciden
branes is strongly suppressed.

APPENDIX B: EUCLIDEAN ACTION FOR THE STATIC
INSTANTON

The action is given by

SE~ I !5sE d3jAg1E d4xAgS rV2
R

16pGD . ~B1!

On shell, the scalar curvature is given by
c

08351
n

.
p

-

-

e

.

RAg532pGrVAg124pGsE d3jAgd (4)~x2x~j!!,

~B2!

and hence the instanton action is given by

SE~ I !52
s

2E d3jAg2E d4xrVAg. ~B3!

The first integral in~B3! is just the volume of a two-spher
of radiusR timesbR . The second integral in~B3! splits into
two contributions from the two regions,

r iE
0

R

Cdtdr4pr 21roE
R

r 1

dtdr4pr 2 ~B4!

5r iCb
4

3
pR31rob

4

3
p~r 1

3 2R3!

~B5!

So the instanton action is

SE~ I !522pR2s f o
1/2~R!b2R3

Hi
2

2G

f o
1/2~R!

f i
1/2~R!

b

2~r 1
3 2R3!

Ho
2

2G
b. ~B6!

After some algebraSE(I ) can be written in the simple form

SE~ I !52
pr 1

2

G
. ~B7!

The exponentB which gives the probability for brane nucle
ation is the difference in Euclidean actions between instan
and background. The action of the background is justSE

52p/GHo
2 , so the difference in Euclidean actions leads

Eq. ~105!.
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