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We study how black hole superradiance appears in string microscopic models of rotating black holes. In
order to disentangle superradiance from finite-temperature effects, we consider an extremal, rotating D1-
D5-P black hole that has an ergosphere and is not supersymmetric. We explain how the microscopic dual
accounts for the superradiant ergosphere of this black hole. The bound 0<!<m�H on superradiant
mode frequencies is argued to be a consequence of Fermi-Dirac statistics for the spin-carrying degrees of
freedom in the dual conformal field theory. We also compute the superradiant emission rates from both
sides of the correspondence, and show their agreement.
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I. INTRODUCTION

The microscopic string theory of black holes provides an
accurate statistical counting of the Bekenstein-Hawking
entropy [1–6] and a microscopic picture of Hawking ra-
diation [7–11] at least for some classes of black holes. In
the present paper we address how this microscopic theory
also accounts for a characteristic phenomenon of rotating
black holes: the black hole superradiance.

Superradiance is a phenomenon associated to the pres-
ence of an ergoregion around the black hole [12–19]. Since
the Killing vector that defines the energy measured by
asymptotic observers becomes spacelike within the ergo-
surface, it follows that in the ergoregion there can exist
excitations with negative energy relative to infinity. So if
we scatter a wave off the black hole, this wave can excite
negative-energy modes that may subsequently fall into the
horizon. To an asymptotic observer this will appear as a
positive energy flux coming out of the horizon, and the
scattered wave can emerge with higher amplitude than the
impinging wave: this is known as superradiant scattering.
If an incident wave �� f�r; ��e�i!t�im�, with energy
!> 0 and angular momentum number m, scatters off a
black hole with horizon angular velocity �H, the require-
ment that a negative-energy flux crosses the horizon to-
wards the future is

 0<!<m�H: (1.1)

Only modes satisfying this condition can undergo super-
radiant amplification.

Superradiant scattering can be regarded as stimulated
emission, and, just like the latter (classical) process is
related by detailed balance to (quantum) spontaneous
emission, rotating black holes are also known to sponta-
neously emit superradiant modes within the range (1.1), in
a process closely related to Hawking radiation. These carry

away energy, but also angular momentum off the black
hole. In our microscopic picture it is convenient to first
describe the process of spontaneous superradiant emission,
and then infer the stimulated emission.

When the black hole temperature is different from zero it
is difficult to disentangle spontaneous superradiant emis-
sion from thermal Hawking radiation—in fact both be-
come part of one and the same phenomenon. In this paper,
however, we are interested only in the microphysics behind
the presence of an ergoregion and the existence of super-
radiant modes (1.1). So we will investigate the spontaneous
emission from an extremal, i.e., zero-temperature, rotating
black hole, for which thermal Hawking radiation is absent.
Since the black hole has a ‘‘cold’’ ergoregion, we refer to it
as an ergo-cold black hole. This will allow us to isolate
superradiance: only modes that satisfy (1.1) will be emit-
ted. Note, however, that after the emission of superradiant
quanta begins, the angular momentum will be reduced
below its maximal value and the black hole will be driven
away from extremality, so thermal Hawking radiation will
promptly set in. It is the onset of the decay that will give us
more neatly the microscopic basis of the superradiant
bound (1.1).

There have been previous papers dealing with emission
rates from rotating black holes and the microscopic calcu-
lations that match them [9,18,20,21] (see [22,23] for a
review), in some cases discussing, more or less directly,
aspects of superradiance. Typically, these papers have
computed the absorption cross sections for a nonextremal
black hole and for its microscopic finite-temperature dual.
Even if these results exhibit essential agreement between
both sides, we feel that the long calculations involved, and
the mixing with thermal Hawking radiation, hide some
very simple microphysics behind (1.1). We hope to clarify
the microscopic origin of the ergoregion and provide a
simple interpretation of the superradiant modes in it. We
shall follow mostly a suggestion advanced in [5], making it
more precise and quantitative. A salient conclusion of our
analysis is a clear understanding of the bound (1.1) as
essentially a consequence of Fermi-Dirac statistics for
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the microscopic degrees of freedom that give the black hole
its angular momentum.

The paper is structured as follows. The main ideas are
introduced first in a fairly self-contained and elementary
discussion, while the technically most involved analysis is
postponed to later sections. So, Sec. II begins with a
qualitative review of the microscopic model of D1-D5-P
black holes, with and without ergospheres, and then pro-
ceeds to derive (1.1) from simple microscopic considera-
tions. The detailed calculations of absorption rates, which
are needed for other quantitative aspects of superradiance,
are studied at the supergravity level in Sec. III. This is an
extension of previous analyses of radiation from the D1-
D5-P black holes studied at length in [20,21]. We do
generalize their results to include momentum for the bulk
scalar. The microscopic side is then developed in Sec. IV.
Here we first establish the details of the identification of the
dual conformal field theory (CFT) state, compute the mi-
croscopic absorption cross section, and compare to the
supergravity results. Section V concludes with a qualitative
discussion of how our picture accounts for superradiance in
other systems with ‘‘cold ergoregions.’’ The appendix
contains an analysis of how the near-horizon geometry
encodes information about the possibility of superradiance
in the full geometry.

II. MICROPHYSICS OF COLD ERGOREGIONS

We begin by introducing the microscopic picture of
superradiance and then provide a simple derivation and
interpretation of the bound (1.1) for the ergo-cold black
hole.

A. Qualitative microscopic origin of the ergoregion

Our basic picture applies to any black hole that
admits an ‘‘effective string’’ description, i.e., to which
AdS3=CFT2 duality applies,1 but for definiteness we focus,
for the most part, on the D1-D5-P system, which describes
a class of near-supersymmetric five-dimensional black
holes. We shall begin by reviewing in qualitative terms
the microscopic picture of several kinds of D1-D5-P black
holes.

The D1 and D5-branes form a bound state whose low-
energy dynamics is described by a 1� 1-dimensional field
theory along their common worldvolume directions (the
other four directions wrap a small T4 or K3). It is a non-
chiral conformal field theory with (4, 4) supersymmetry,
i.e., both the left- and right-moving sectors are supersym-
metric. Supersymmetry itself will not play any essential
role in our discussion, but the existence of fermionic ex-
citations in at least one of the two chiral sectors is impor-
tant. For large numbers N1, N5, of D1 and D5 branes, the

central charge of both sectors is c � 6N1N5. The CFT can
have left- and right-moving excitations, with levels L0 and
�L0, corresponding to open string excitations propagating
along the worldvolume of the branes. These give rise to a
linear momentum P.

When the spatial direction along this D1-D5-P system is
compactified on a circle of size 2�R (much larger than the
other compact directions), we obtain a five-dimensional
configuration. Typically, the state corresponding to a black
hole has both sectors populated by thermal ensembles of
excitations with temperatures TL and TR. If the two sectors
interact only very weakly, the total entropy, energy, and
momentum are S � SL � SR, E � PL � PR, and P �
PL � PR, with quantized momenta PL;R � NL;R=R. Since
T�1
L;R � �@SL;R=@PL;R� � 2�@SL;R=@E�P, it follows that the

actual temperature T�1
H � �@S=@E�P of the entire configu-

ration is

 T�1
H � 1

2�T
�1
L � T

�1
R �: (2.1)

If any of the two sectors is in a ground state (either TL or TR
vanish), the temperature of the entire system vanishes.

The simplest black hole corresponds to a thermal en-
semble of excitations in only one of the two sectors, say the
right-moving one. Supersymmetry of the left sector is then
preserved, and TL � TH � 0. This is the static supersym-
metric extremal black hole of Ref. [1] (see Fig. 1(a)). If
both sectors are excited, then generically the system has
TH � 0. An open string excitation from the left sector can
combine with an open string from the right sector, and form
a closed string that propagates away into the bulk of space-
time (see Fig. 1(b)). This is the microscopic counterpart of
the Hawking emission at temperature TH [2,24].

To include rotation, we take into account that the fermi-
onic excitations of the left and right sectors are charged
under the R-symmetry group SU�2�L � SU�2�R of the
supersymmetric CFT. These R-symmetries generate the
five-dimensional spatial rotation group SO�4� ’ SU�2�L �
SU�2�R. So the R-charge corresponds to spacetime angular
momentum, JL or JR, respectively, for left and right fer-
mions. If many of these fermions are coherently polarized
we obtain a macroscopically large angular momentum.
This projection into definite polarization shifts the levels as

 L0 � NL �
6J2

L

c
; �L0 � NR �

6J2
R

c
; (2.2)

and, in particular, the total entropy and temperature are
reduced.

Observe now that there are two distinct ways of achiev-
ing an extremal (TH � 0) rotating black hole. In the first
one we set, say, NL � 0 � JL (so half of the supersymme-
try is preserved), �L0 > 0, and some of the right-moving
fermions polarized to give JR � 0 [25]. Since only one of
the two sectors is excited, the left- and right-moving open
strings cannot combine to emit a closed string (see
Fig. 1(c)). This fits nicely with the property that the horizon

1And even to some that may not, like in [5], although in this
case the bound (1.1) is recovered only up to numerical factors.
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of the corresponding black hole remains static relative to
asymptotic observers: since �L � �R � 0 there is no
ergosphere nor superradiant emission, even if JR � 0.

The second, less studied way to achieve a zero-
temperature rotating black hole is by having the right-
moving sector contain only polarized fermions that fill
energy levels up until the Fermi level. This occurs when

 NR �
6J2

R

c
: (2.3)

This is a ground state, �L0 � 0, at fixed JR, with zero
entropy and at zero temperature. The left-moving sector
is assumed to be thermally excited, with L0 > 0: this
provides for the entropy. Both sectors can carry angular
momentum, so, in contrast to the supersymmetric case, the
total angular momentum need not be self-dual nor anti-
self-dual. More importantly, even if the system is at zero
temperature, both left- and right-moving open strings are
present and can annihilate to emit a closed string (see
Fig. 1(d)). Since the right-moving open string necessarily

carries spin, so will also the emitted radiation. This is,
qualitatively, what we expect from superradiant emission.
In fact, the corresponding black hole possesses an ergo-
sphere and superradiant emission is present. So we have
found a qualitative microscopic picture for the superra-
diance from the ergo-cold black hole [5].

B. Microscopic derivation of the superradiant
frequency bound

We can be more quantitative and recover the superra-
diant frequency bound from this microscopic picture. In
five spacetime dimensions the black hole can rotate in two
independent planes and if we label the rotation angles on
these planes by� and  then the bound (1.1) is generalized
to

 0<!<m��� �m � ; (2.4)

where ��; are the horizon angular velocities on each
rotation plane, and m�; the corresponding angular mo-

(a)

(c)

(b)

(d)

FIG. 1. Four different kinds of black hole in the ‘‘effective string’’ picture. The excitations of the two chiral sectors, with levels L0

(left-moving) and �L0 (right-moving), correspond to open strings attached to the brane bound state. (a) Supersymmetric static black
hole: L0 � 0, �L0 � NR: only the right-moving sector is excited. (b) Near-supersymmetric static black hole: L0 � NL > 0, �L0 �
NR > 0. Left- and right-moving excitations can annihilate to emit a closed string: this is Hawking radiation. (c) Supersymmetric
rotating black hole: L0 � 0, �L0 � NR � 6J2

R=c > 0. The coherent polarization of right-moving fermions yields a macroscopic (self-
dual) angular momentum JR. In the absence of left-moving open strings, there cannot be any radiation of closed strings, hence there is
no Hawking nor superradiant emission. (d) Ergo-cold black hole: L0 > 0, and �L0 � NR � 6J2

R=c � 0 with NR > 0. The right-moving
sector is a Fermi sea of polarized fermionic excitations, so the temperature vanishes. Open strings in this sector can interact with those
in the left sector and emit closed strings that carry angular momentum: the black hole possesses a superradiant ergosphere. The
superradiant bound on modes (1.1) is directly related to the energy of the Fermi level, and thus is a consequence of Fermi-Dirac
statistics for the excitations of the CFT.

MICROSCOPIC THEORY OF BLACK HOLE SUPERRADIANCE PHYSICAL REVIEW D 77, 064018 (2008)

064018-3



mentum (‘‘magnetic’’) quantum numbers. We may instead
use the left and right Euler angles  L;R � ��  , in terms
of which the bound is

 0<!<mL�L �mR�R; (2.5)

with mL;R �
1
2 �m� �m � and �L;R � �� �� . This is

slightly more convenient, since as we saw above these
angles diagonalize the R-charges (i.e., target-space spins)
of the left- and right-moving fermions of the CFT.

The ergo-cold black hole described above has �R � 0
and �L � 0 (although JL need not vanish). So the bound is

 0<!<mR�R; (2.6)

i.e., mL does not limit the frequencies. We wish to derive
Eq. (2.6) from our microscopic picture.

To begin with, we can easily obtain that at zero tem-
perature only one of �L, �R, can be different from zero.
The two sectors of the CFT have negligible interaction, so
S�E;P; JL; JR� � SL�EL; JL� � SR�ER; JR�. For each sec-
tor we have a chemical potential �L;R associated to the
respective R-charges, i.e., JL;R, through

 

�L;R

TL;R
� �

�
@SL;R
@JL;R

�
EL;R

: (2.7)

The angular velocities of the total system are in turn

 

�L;R

TH
� �

�
@S�E;P; JL; JR�

@JL;R

�
E;P
; (2.8)

where TH is the total system’s temperature (2.1). Hence

 �L;R �
TH
TL;R

�L;R; (2.9)

and in the extremal limit in which TR ! 0,

 �R ! 2�R; �L ! 0: (2.10)

As we explained above, for the ergo-cold black hole we
take the right sector of the CFT to be populated by polar-
ized fermions filling up to the Fermi level, so their number
density distribution is a step function

 ���; jR� � ��jR�R � ��: (2.11)

Here � is the energy and jR the R-charge of the fermion,
i.e., spin in SU�2�R, which in general can be 	1=2. We
assume that in the state (2.11) they are all polarized with
jR � �1=2, to achieve maximum angular momentum; see
(2.3). Using the chemical potential �R introduced above,
the Fermi energy is

 �Fermi �
�R

2
�

�R

4
: (2.12)

In this state it is possible to have a collision of left- and
right-moving open strings creating a closed string massless
scalar mode. Our aim is to show that if this scalar has
frequency ! and angular momentum numbers ‘, mR, and

mL, then ! must lie in the range (2.6). In order for the
scalar to escape to infinity its energy must be positive, so
we need only derive the upper bound in (2.6).

The interaction vertex involves bosonic and fermionic
open strings from each sector, in either the initial or final
states. But the spin of the scalar is provided only by
fermions. For a given ‘ the angular momentum of the
scalar is in the �‘=2; ‘=2� representation of SU�2�L �
SU�2�R, i.e., jmLj; jmRj 
 ‘=2, so we need ‘ fermionic
open strings from each sector to match the spin quantum
numbers of the scalar. A minimal scalar at s-wave (‘ � 0)
couples to an operator of conformal dimension (1, 1),
typically of the form @�X@�X, i.e., one boson from each
sector. Then, at the ‘th partial wave it will couple to this
boson pair and to the ‘ fermion pairs. Additional bosons
may be involved, but then the amplitudes are suppressed by
higher powers of the coupling and the frequency, although
we need not assume their absence.

For our system, the right-sector open strings in the initial
state in the interaction can only be fermionic with jR �
�1=2. The fermions in the final state can have either jR �
	1=2: we take the numbers of each kind of these to be n	,
so the number of initial fermions from the right sector is
‘� n� � n�. The balance of angular momentum in the
interaction is then

 

1
2 �‘� n� � n�� � mR �

1
2n� �

1
2n�; (2.13)

i.e., the closed string is emitted with

 mR �
‘
2
� n�: (2.14)

We will not need to consider any specific properties of the
left-moving modes in our analysis.

Both the left and right sectors contribute an equal
amount !=2 to the energy of the emitted closed string—
otherwise the latter would carry the difference as a net
momentum: this more general case will be dealt with later
below. The energy budget of the interaction in the right
sector is then

 !�f�inR �
!
2
�!�f�out

R �!�b�R ; (2.15)

where f and b denote fermionic and bosonic open strings.
In the left-hand side of this equation we have the energy of
the ‘� n� � n� initial fermions. Since their energy levels
are bounded above by the Fermi energy (2.12), we have

 !�f�inR 
 �‘� n� � n���Fermi � �‘� n� � n��
�R

4
:

(2.16)

As for the final fermions, the energies of the n� fermions
with jR � �1=2 are not constrained other than to be
positive: they may fill states with less or more energy
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than �Fermi. But the n� fermions with jR � �1=2 must
have energies above the Fermi level, since in the initial
configuration the levels below �Fermi are all filled with
positive-spin fermions. This sets a lower bound

 !�f�out
R > n�

�R

4
: (2.17)

The energy of the bosonic open strings is only constrained
to be positive, !�b�R > 0. Then, Eq. (2.15), together with
(2.14), (2.16), and (2.17), yields the inequality

 !<mR�R �
n�
2

�R 
 mR�R; (2.18)

which reproduces exactly the superradiant bound (2.6)
derived for the rotating black hole.2 Note that this result
follows essentially from Pauli’s exclusion principle for the
polarized fermions in the initial state: the superradiant
bound on frequencies is a consequence of Fermi-Dirac
statistics for the carriers of angular momentum in the
dual CFT.

Note that at least one bosonic open string must appear in
the right sector in the final state, so the system will not
remain extremal after it begins to radiate. This is also just
like we anticipated from the supergravity side.

The left-moving fermions, which can contribute arbi-
trarily to mL, have not played any role in this derivation.
This is in accord with the fact that when �L � 0 (even if
JL � 0), mL does not appear in the macroscopically de-
rived bound (2.4).

C. Four-dimensional black holes

This analysis applies almost immediately to the four-
dimensional black holes described by a dual chiral (0, 4)
CFT. Only the right sector is supersymmetric so the R-
symmetry consists of a single SU�2� group. This corre-
sponds to the four-dimensional rotation group SU�2� ’
SO�3�. Again, non-Bogomol’nyi-Prasad-Sommerfield
(BPS) extremal rotating black holes exist, with four
charges, that possess an ergosphere and the accompanying
superradiant modes satisfying (1.1). The dual microscopic
state is essentially the same as above: the right sector is
filled up to �Fermi � �H=4 with fermions with j � �1=2,
while the left sector is in a thermal ensemble and accounts
for the entropy. The emission of a closed string massless
scalar with quantum numbers �!; ‘;m� involves 2‘ right-
sector fermions since now jmj 
 ‘. So (2.14) is replaced
by

 m � ‘� n�: (2.19)

There is also one boson from the right sector in the final
state of the interaction. From the left sector the only
requirement is an operator of conformal dimension �L �
1� ‘. Following the steps above we find

 !<m�H �
n�
2

�H 
 m�H: (2.20)

Thus Eq. (1.1) has been derived microscopically for this
ergo-cold black hole.

D. No superradiant emission of linear momentum

We can also consider the emission of closed strings that
carry away some of the momentum P of the D1-D5-P
system. This is also of interest, as the momentum corre-
sponds to one of the three charges of the black hole and
there is a charge-ergoregion associated to it. From the six-
dimensional perspective, the horizon of the black string is
moving with velocity VH along the string direction y, and
the superradiance bound for a mode � exp��i!t� ipy�
imL L � imR R� is modified to

 p <!<mL�L �mR�R � pVH: (2.21)

In the non-BPS extremal rotating limit that we study, the
black hole has �L ! 0. For a generic D1-D5-P black hole
the velocity is jVHj 
 1, but we are particularly interested
in the decoupling limit in which the D1 and D5 charges of
the black hole are much larger than its momentum or the
energy above the BPS bound. In this limit, the ergo-cold
black hole has VH ! 1, so the bound becomes

 0<!� p <mR�R: (2.22)

We can easily derive this again from microscopic con-
siderations. First note that the first law of thermodynamics
gives

 

VH
TH
� �

�
@S
@P

�
E
: (2.23)

Reasoning as we did when deriving (2.1) for a two-sector
system, we find

 VH �
TH
2
�T�1
R � T

�1
L � �

TL � TR
TL � TR

; (2.24)

so VH ! 1 when TR ! 0. Also observe that in any case
jVHj 
 1.

The left- and right-moving open strings that interact to
emit a closed string of frequency ! and momentum p do
not in this case have the same energy, but instead

 �L;R �
!	 p

2
: (2.25)

We can follow now the same arguments for the right-sector
dynamics that we used above, only changing !=2! �R.

2The bound is as close as possible to saturation when n� � 0,
the boson energy !�b�R is minimal (set by the gap �1=N1N5R),
and all fermions are the closest possible to the Fermi energy (i.e.,
within �1=N1N5R of it). If n� > 0 then this closest value to the
bound cannot be achieved.
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Hence we obtain

 !� p <mR�R: (2.26)

In order to complete the derivation of (2.22) we need only
notice that if the closed string is to arrive at infinity as an
on-shell, propagating state, it must satisfy!> 0 and!2 �
p2 � 0, i.e., ! � jpj � p.

This implies that there cannot be any superradiant emis-
sion of linear momentum (i.e., P charge in five dimensions)
unless angular momentum is radiated as well. This is in
spite of the fact that in the black hole geometry there is a
momentum ergoregion, even in the absence of rotation.
From the supergravity point of view, the reason for this
difference between the emission of linear and angular
momentum is that in the former case the contribution to
the effective potential for scalar propagation coming from
the momentum does not fall off at infinity but creates an
asymptotic potential barrier of height p, so if !< jpj the
wave is asymptotically exponentially suppressed.

Put another way, in a Kaluza-Klein (KK) reduction to
five dimensions the scalar has mass jpj and a propagating
wave at infinity must satisfy!> jpj. So a would-be super-
radiant momentum mode, satisfying !< pVH, cannot
escape to infinity since VH 
 1: if emitted, it gets reflected
back off to the black hole by the effective potential. In
contrast, the centrifugal potential barriers fall off faster at
large distances: the spin does not affect the dispersion
relation of the wave at infinity. From the microscopic
perspective, there is a possible interaction vertex for the
emission of a scalar with linear momentum and zero
angular momentum: take an initial state with only a left-
moving boson, and a final state with a right-moving boson
and a bulk scalar. However, in this case the scalar would
have !< jpj and therefore could only exist as a virtual
excitation.3

E. Superradiant amplification, extremal and
nonextremal

We have obtained a microscopic picture for the sponta-
neous emission of superradiant scalars off an extremal non-
BPS rotating black hole—the ergo-cold black hole. It is
clear now that, if there is an incident flux of this scalar field
on the black hole, then those modes that satisfy the bound
(1.1) will undergo stimulated emission. This is simply the
familiar phenomenon that the amplitude to emit a boson is
amplified by a factor

�������������
N � 1
p

if the state to which the
system decays already contains N bosons. That is, super-
radiant amplification follows conventionally from the rela-
tion between Einstein’s A and B coefficients. For a

classical incident wave, i.e., with large bosonic occupation
number N, the stimulated emission is then a classical
process.

In more detail, in our system at zero temperature we
have argued that superradiant modes, and only them, can
be emitted and have a finite decay rate �‘m�!�. Moreover,
the system cannot absorb any superradiant mode: if in the
argument that lead to the superradiant bound (2.6) we
change the scalar from the final to the initial state, i.e.,
!! �!, mR ! �mR, we see that absorption of this
scalar can only happen when !>mR�R. So, for an inci-
dent flux F in, detailed balance yields a total absorption
cross section of superradiant modes �‘m�!� �
��‘m�!�=F in < 0.

The absorption cross -section determines the ratio be-
tween the outgoing and ingoing fluxes as

 

F out

F in
� 1�

!3

�‘� 1�24�
�‘m (2.27)

(this is the relation in five dimensions, see [11] for generic
dimension). Superradiant modes, and only them, have
�‘m < 0, and therefore yield F out >F in, as desired.

This argument shows that the extremal rotating system
that we study exhibits classical stimulated amplification for
those modes that it can spontaneously decay into, i.e.,
modes that satisfy (2.6). What happens away from extrem-
ality? In this case, the system can spontaneously emit
modes of any frequency by the microscopic dual of
Hawking radiation. Why, then, is there superradiant am-
plification only for modes that satisfy (2.6)? The reason is
known: the first law, applied to an emission process from
the black hole with �E � �! and �J � �m, states that

 

	
8�G

�AH � ��!�m�H�: (2.28)

Then, the classical stimulated emission of a mode with
!>m�H would violate the area law �AH � 0 [15]. So,
classically, the emission of such nonsuperradiant modes is
strictly forbidden, while microscopically it is allowed but
statistically suppressed by a factor

 e�S � e��!�m�H�=TH : (2.29)

This is of course the Boltzmann factor for Hawking
radiation.

Sometimes the existence of the superradiant frequency
bound (1.1) is presented as a consequence of the area law.
But we see that the latter is important only in constraining
the classical, macroscopic process. Entropic considerations
did not play any role in our microscopic analysis, which
nevertheless shows that the superradiant bound on modes
holds strictly at the microscopic level for emission at zero
temperature.

3An alternative interpretation is in terms of charge super-
radiance: an extremal Reissner-Nordstrom black hole can spon-
taneously emit particles of charge e and mass m only if jej>m
[26]. In our case, the five-dimensional mass and KK electric
charge of the particles are both equal to p.
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III. EMISSION RATES: SUPERGRAVITYANALYSIS

The preceding analysis has provided a qualitative origin
of the superradiant ergoregion in rotating black holes at
zero temperature. We have also given a quantitative ele-
mentary derivation of the superradiant frequency bound. A
more precise match between the two descriptions is ob-
tained when one considers the actual emission rates.

To do so, in this section we carry out the supergravity
computation of absorption cross sections and Hawking and
superradiant emission rates for a minimal scalar. We con-
sider the most general case where the black hole has all
charges and rotations turned on, and the scalar has generic
quantum numbers for the frequency, spins, and linear
momentum along the S1 string direction. At the end of
the section we particularize to the ergo-cold black hole in
order to isolate the effects of the ergosphere.

A. The D1-D5-P family of black holes

The D1-D5-P black hole solutions belong to type IIB
supergravity compactified to five dimensions on T4 � S1.
The T4 is assumed to be much smaller than the S1 so we
view the system as a six-dimensional black string. The
most general solution is described by eight parameters: a
parameter M0 that measures deviation away from super-
symmetry; two spin parameters for rotation in two orthogo-
nal planes, a1; a2; three ‘‘boost’’ parameters, �1, �5, �p,
which fix the D1-brane, D5-brane, and momentum
charges, respectively; and two moduli: the radius R of
the S1, and the volume V of the T4. We choose units
such that the five-dimensional Newton constant is G5 �
G10=2�RV � �=4.

The metric of the six-dimensional black string is
[21,27,28]

 

ds2 � �
f������������
H1H5

p �dt2 � dy2� �
M0������������
H1H5

p �spdy� cpdt�
2 �

������������
H1H5

p �
r2dr2

�r2 � a2
1��r

2 � a2
2� �M0r2 � d�

2

�

�

� ������������
H1H5

p
� �a2

2 � a
2
1�
�H1 �H5 � f�cos2�������������

H1H5

p

�
cos2�d 2 �

� ������������
H1H5

p
� �a2

2 � a
2
1�
�H1 �H5 � f�sin2�������������

H1H5

p

�
sin2�d�2

�
M0������������
H1H5

p �a1cos2�d � a2sin2�d��2 �
2M0cos2�������������
H1H5

p �a1c1c5cp � a2s1s5sp�dt� �a2s1s5cp � a1c1c5sp�dy�d 

�
2M0sin2�������������
H1H5

p �a2c1c5cp � a1s1s5sp�dt� �a1s1s5cp � a2c1c5sp�dy�d�; (3.1)

where we use the notation ci � cosh�i, si � sinh�i, and
 

f�r� � r2 � a2
1sin2�� a2

2cos2�;

Hi�r� � f�r� �M0s2
i ; with i � 1; 5;

g�r� � �r2 � a2
1��r

2 � a2
2� �M0r2:

(3.2)

The dilaton and 2-form Ramond-Ramond (RR) gauge
potential will not be needed and can be found in [28].
We assume without loss of generality4

 a1 � a2 � 0: (3.3)

Depending on the value of the parameters, the geometry
can describe a black hole, a naked singularity, a smooth
soliton, or a conical singularity [29]. The black hole family
of solutions is described by the rangeM0 � �a1 � a2�

2 and
has horizons at g�r� � 0,

 r2
	 �

1
2�M0 � a

2
1 � a

2
2� 	

1
2

�����������������������������������������������������
�M0 � a

2
1 � a

2
2�

2 � 4a2
1a

2
2

q
:

(3.4)

We are particularly interested in the existence of an
ergoregion, whose properties were discussed in [29]. The
norm of the Killing vector @t,

 j@tj
2 � �

f�M0c2
p������������

H1H5

p ; (3.5)

becomes spacelike for f�r�<M0c2
p. This defines a six-

dimensional ergoregion, which includes not only the ef-
fects of rotation but also of the linear motion of the string.
As we mentioned above, and will prove below, the latter
does not actually contribute to superradiance. It is therefore
more convenient to consider the vector 
 � @t � tanh�p@y
such that, upon dimensional reduction (so linear momen-
tum becomes charge), its orbits define static asymptotic
observers in the five-dimensional black hole geometry, and
whose causal character is therefore associated to the rota-
tion ergosphere. Specifically, its norm

 j
j2 � �
f�M0������������
H1H5

p ; (3.6)

becomes spacelike for f�r�<M0 so a rotational ergo-
sphere appears at f�r� � M0.

The Arnowitt-Deser-Misner (ADM) mass M, the angu-
lar momenta �J�; J �, and the gauge charges �Q1; Q5; Qp�

are

4The simultaneous exchange a1 ! �a1, �p ! ��p, y! �y,
and  ! � is a symmetry of the solution. The same is true for
a2 ! �a2, �p ! ��p, y! �y, and�! ��. So the solutions
with a1a2 
 0 are physically equivalent to the solutions with
a1a2 � 0. For definiteness we assume the latter.

MICROSCOPIC THEORY OF BLACK HOLE SUPERRADIANCE PHYSICAL REVIEW D 77, 064018 (2008)

064018-7



 

M �
M0

2
cosh�2�1� � cosh�2�5� � cosh�2�p��;

J� � M0�a2c1c5cp � a1s1s5sp�;

J � M0�a1c1c5cp � a2s1s5sp�;

Qi � M0sici; i � 1; 5; p:

(3.7)

The horizon angular velocities ��; along the Cartan
angles of SO�4�, �, and  , are more conveniently written
in terms of the Euler left and right rotations in U�1�L �
U�1�R � SU�2�L � SU�2�R ’ SO�4�,

 ��; �
1

2
��R 	�L�;

�R;L �
2�
�H

a2 	 a1

M0 � �a2 	 a1�
2�1=2

:
(3.8)

Following [20], from the surface gravities of the inner and
outer horizons 		 we introduce the temperatures �L;R �
1=TL;R
 

�R;L �
2�
	�
	

2�
	�

;

1

		
�
M0

2

� c1c5cp � s1s5sp
M0 � �a2 � a1�

2�1=2

	
c1c5cp � s1s5sp

M0 � �a2 � a1�
2�1=2

�
:

(3.9)

Observe that the Hawking temperature of the outer horizon
is related to TL;R as in (2.1). Similarly, from the areas of the
inner and outer horizons we introduce SL;R such that
 

S � SL � SR;

SR;L � �M0�c1c5cp � s1s5sp�M0 � �a2 	 a1�
2�1=2:

(3.10)

The horizon of the black string is also moving relative to
asymptotic observers that follow orbits of @t. We can
compute the linear velocities for both the inner and outer
horizons

 V	 �
�M0

�H

� c1c5sp � s1s5cp
M0 � �a2 � a1�

2�1=2

	
c1c5sp � s1s5cp

M0 � �a2 � a1�
2�1=2

�
; (3.11)

and introduce

 VR;L � �
�H
�R;L

�V� 	 V��: (3.12)

In terms of these, the velocity of the outer horizon, V�,
which we also denote as VH, is

 VH � �
TH
2

�
VL
TL
�
VR
TR

�
: (3.13)

These velocities become much simpler in the decoupling
limit where the D1 and D5 boosts are very large so the
system is near supersymmetric, the numbers of anti-D1 and

anti-D5 branes are suppressed, and we can make contact
with the dual CFT. In this regime we approximate c1;5 ’
s1;5 ’ e�1;5=2 and we find that

 VL;R ! 	1; (3.14)

which is microscopically interpreted as the fact that the
momentum excitations are chiral and massless.5 Observe
that in this regime we recover Eq. (2.24), which we had
derived from the microscopic two-sector system. The role
that the inner horizon plays in defining the microscopic
magnitudes associated to the two chiral sectors, empha-
sized in [20], is very intriguing and not well understood.

During the remainder of this section we will not need to
restrict ourselves to this near-supersymmetric regime. But
our main interest lies in extremal rotating black hole
solutions. These correspond to degenerate horizons, which
appear when the two roots r	 coincide. From (3.4) we
identify two possibilities:

(i) The BPS black hole.
Obtained by taking the limit M0 ! 0, a1;2 ! 0,
keeping the mass, angular momenta, and charges
finite, which requires �1;5;p ! 1. In this limit
 

TR ! 0; TL � 0; SR ! 0; SL � 0;

�L;R ! 0; �VR; VL ! VH ! 1: (3.15)

Also, J� � J ! 0, the BPS bound is saturated, the
solution is supersymmetric, and the timelike Killing
vector that becomes null at the horizon is globally
defined, so there is no ergoregion. This is also clear
from (3.6). This is the Breckenridge-Myers-Peet-
Vafa (BMPV) black hole.

(ii) The ergo-cold black hole.
Obtained in the limit

 M0 ! �a1 � a2�
2; (3.16)

in which TH ! 0 but now keeping �R � 0. Since
M0 � 0 the BPS bound is not saturated and super-
symmetry is absent. In this limit,
 

TR ! 0; TL � 0; SR ! 0; SL � 0;

�L ! 0; �R � 0; �VR ! VH; (3.17)

while VL takes no particular value (unless we take
the decoupling limit) and the conserved charges M,
Qi, and J ;� are unconstrained other than by the
extremality condition. The horizon does rotate rela-
tive to asymptotic observers, and there is an ergo-
sphere, determined by f�r� � �a1 � a2�

2; see (3.6).
Observe that in contrast to the BMPV solution, J�
and J are independent of each other.

The BMPV black hole has been thoroughly studied, and it
will only serve us to emphasize the differences with the

5We are taking left velocities and momenta as positive.
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ergo-cold black hole, which is our system of choice for the
study of superradiance.

B. Absorption cross section and emission rate

We consider a minimal scalar field, typically a graviton
with polarization in the internal T4 in the compactification
of the IIB theory to six dimensions. The field satisfies the
massless Klein-Gordon equation in the general three-
charge black string geometry,

 @��
�������
�g
p

g��@��� � 0: (3.18)

Introducing the ansatz

 � � exp�i!t� ipy� im  � im������h�r�;

(3.19)

and the separation constant �, the wave equation can be
separated. The angular equation is
 

1

sin2�
d
d�

�
sin2�

d
d�

�
�

�
��

m2
 

cos2�
�

m2
�

sin2�

� �!2 � p2��a2
1sin2�� a2

2cos2��
�
 � 0: (3.20)

This angular equation (plus regularity requirements) is a
Sturm-Liouville problem, and the solutions are higher-
dimensional spin-weighted spheroidal harmonics. We can
label the corresponding eigenvalues � with an index ‘,
��!� � �‘�!� and therefore the wave functions form a
complete set over the integer ‘. In the general case, the
problem consists of two coupled second order differential
equations: given some boundary conditions, one has to
compute simultaneously both values of ! and � that
satisfy these boundary conditions. However, for vanishing
a2
i we get the (five-dimensional) flat space result, � �
‘�‘� 2�, and the associated angular functions are given
by Jacobi polynomials. For nonzero, but small �!2 �
p2�a2

i we have

 � � ‘�‘� 2� �O�a2
i �!

2 � p2��: (3.21)

The integer ‘ is constrained to be ‘ � jm�j � jm j, and
can only take even (odd) values when jm�j � jm j is even
(odd) [30]—this follows from the fact that the scalar ‘th

wave is in the �‘=2; ‘=2� of SU�2�R � SU�2�L. The angular
coordinates �,  are periodic with period 2� so m�, m 

must take integer values. Our waves have positive fre-
quency !> 0.

The radial wave equation can be written in a form that is
particularly appropriate to find its solutions. Introduce the
new radial coordinate

 x �
r2 � 1

2 �r
2
� � r

2
��

r2
� � r

2
�

; (3.22)

which maps r � �r�; r�;1� $ x � ��1=2; 1=2;1�.
Introduce also

 mL;R �
1
2�m� �m �: (3.23)

The radial wave equation is then
 

@x

��
x�

1

2

��
x�

1

2

�
@xh

�
�

1

4
�!2 � p2��r2

� � r
2
��x

� ���U��h�
1

4

�
�2
�

�x� 1
2�
�

�2
�

�x� 1
2�

�
h � 0; (3.24)

where we defined
 

�	 �
!
		
�mL

�L

	�
�mR

�R

	�
� p

V	
	�

;

U � �!2 � p2�

�
1

2
�r2
� � r

2
�� �M0�s2

1 � s
2
5�

�
� �!cp � psp�2M0:

(3.25)

Equation (3.24) was first written (though in a much less
compact form) in [31]. For p � 0 there is no dynamics
associated to the sixth direction and (3.24) reduces to the
wave equation studied in [20] for the scattering of a neutral
scalar off the five-dimensional D1-D5-P black hole.

1. Near-region wave equation and solution

In the near region, the term p2�r2
� � r

2
��x is suppressed

and the radial wave equation reduces to

 

@x

��
x�

1

2

��
x�

1

2

�
@xh

�

�
1

4

�
����U� �

�2
�

�x� 1
2�
�

�2
�

�x� 1
2�

�
h � 0: (3.26)

To find the analytical solution of this equation, define the
new radial coordinate,

 z � x� 1
2;

r � �r�; r�;1� $ x � ��1=2; 1=2;1� $ z � �0; 1;1�;

(3.27)

and introduce the new wave function

 h � z�i�1=2����z� 1��i�1=2���F: (3.28)

The near-region radial wave equation can then be written
as

 

z�1� z�@2
zF� �1� i��� � 2� i��� � ����z�@zF

�

�
i
1

4
��� ����2� i��� � ���� � ���U�

�
F � 0;

(3.29)

which is a standard hypergeometric equation [32], z�1�
z�@2

zF� c� �a� b� 1�z�@zF� abF � 0, with
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a � ��
i
2
��� ����; b � 1� ��

i
2
��� � ���;

c � 1� i��; (3.30)

where we defined

 � � 1
2�1�

������������������������
1���U
p

�: (3.31)

Its most general solution in the neighborhood of z � 1 (i.e.,
r � r�) is Ain

Hz
�bF�b; b� c� 1; a� b� c� 1; z�1

z � �

Aout
H za�c�z� 1�c�a�bF�c� a; 1� a; c� a� b� 1; z�1

z �.
Using (3.28), one finds that the solution of the near-region
equation is

 

h � Ain
H

�
x�

1

2

�
�i�1=2���

�
x�

1

2

�
���i�1=2���

F
�
b; b� c� 1; a� b� c� 1;

x� 1
2

x� 1
2

�

� Aout
H

�
x�

1

2

�
�i�1=2���

�
x�

1

2

�
��
F
�
c� a; 1� a; c� a� b� 1;

x� 1
2

x� 1
2

�
: (3.32)

The first term represents an ingoing wave at the horizon x � 1
2 , while the second term represents an outgoing wave at the

horizon. The computation of the absorption cross section is a classical problem where outgoing waves at the horizon are
forbidden, so we set Aout

H � 0. Furthermore, we need the large r, x! 1 behavior of the ingoing near-region solution. We
use the z! 1� z transformation law for the hypergeometric function [32],

 

F
�
b; b� c� 1; a� b� c� 1;

x� 1
2

x� 1
2

�
�

��a� b� c� 1���a� b�
��a� c� 1���a�

F
�
b; b� c� 1;�a� b� 1;

1

x� 1
2

�

�

�
x�

1

2

�
a�b ��a� b� c� 1����a� b�

��b���b� c� 1�
F
�
a� c� 1; a; a� b� 1;

1

x� 1
2

�
;

(3.33)

the property F�a; b; c; 0� � 1, and x	 1
2� x. The large x behavior of the ingoing near-horizon solution is then

 h� Ain
H

�
�1� i����1� 2��

�1� �� i 1
2 ��� � �����1� �� i

1
2 ��� �����

x�� �
�1� i����1� 2��

��� i 1
2 ��� � ������� i

1
2 ��� �����

x��1

�
:

(3.34)

2. Far-region wave equation and solution

In the far region, the terms �x	 1
2�
�1 are suppressed, and

x	 1
2� x. The radial wave equation can be written as

 @2
x�xh� �

�
�!2 � p2��r2

� � r
2
��

4x
�

��U

4x2

�
�xh� � 0:

(3.35)

The most general solution of this equation is a linear
combination of Bessel functions [32],

 h � x�1=2A�1J2��1��x
1=2� � A�1J1�2���x

1=2��; (3.36)

where � was defined in (3.31) and

 � � �!2 � p2��r2
� � r

2
���

1=2: (3.37)

We want to study the scattering process so we require real
� i.e., !> jpj. Using the asymptotic properties of the
Bessel function [32], we find that for small �x1=2 the far-
region solution has the behavior

 h� A�1
��=2�2��1

��2��
x��1 � A�1

��=2�1�2�

��2� 2��
x��; (3.38)

while for large �x1=2 it reduces to
 

h�
1

2

��������
2

��

s
x�3=4fA�1e�i�����1=4� � A�1e�i����3=4��

� e�i�
��
x
p

� A�1ei�����1=4� � A�1ei����3=4��ei�
��
x
p

g:

(3.39)

The first term represents an incoming wave while the
second term describes an outgoing solution.

3. Matching the near-region and the far-region solutions

There is an intermediate region for x where the approx-
imations in both the near and far regions can be simulta-
neously satisfied. In this overlapping region we can match
the large x behavior of the near-region solution to the small
x behavior of the far-region solution. This allows to fix the
amplitude ratios. Matching (3.34) with (3.38) yields then
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Ain
H

A�1
�

�
�
2

�
2��1 ��� i 1

2 ��� � ������� i
1
2 ��� � ����

��2����2�� 1��1� i���
;

A�1
A�1
�

�
�
2

�
2�2��1� ��2� 2����1� 2��

��2����2�� 1�

��� i 1
2 ��� �������� i

1
2 ��� � ����

�1� �� i 1
2 ��� ������1� �� i

1
2 ��� � ����

:

(3.40)

The first relation will be needed to compute the absorption
cross section. In the second relation we note the presence
of the factor �2��1, where � is defined in (3.37). We want
� 2 R which implies 2�� 1> 0. Therefore, for �� 1,
i.e., for low frequency scattering or for near-
supersymmetric solutions (decoupling limit), one has
jA�1j � jA�1j. This regime allows to considerably simplify
(3.39).

4. Absorption cross section, Hawking and superradiant
emission rate

The radial flux associated with our radial wave equation
is

 F �
1

2i

�
h�
g�r�
r
@rh� h

g�r�
r
@rh

�

�
: (3.41)

The incoming flux from infinity F in is computed using
(3.39). Near the decoupling regime jA�1j � jA�1j, this
yields

 F in � �
r2
� � r

2
�

2�
jA�1j2; (3.42)

where the minus sign signals incoming flux. On the other
hand, use of the ingoing contribution of (3.32) yields for
the absorbed flux at the horizon,

 F abs � ����r2
� � r

2
��jAin

Hj
2: (3.43)

The absorption probability is the ratio of the above fluxes,

 1� jS‘j
2 �

F abs

F in
; (3.44)

and the absorption cross section of the ‘th partial wave is

 �‘;p;mR;L
�

4�

!3 �‘� 1�2�1� jS‘j2�: (3.45)

In general, the factor multiplying the absorption probabil-
ity depends on the spacetime dimension through the codi-
mension of the absorbing object (see, e.g., [11]). So for a
six-dimensional black string we use the same factor as for a
five-dimensional black hole. Collecting the results, the
absorption cross section is

 �‘;p;mR;L
�

4��‘� 1�2

!3 �H$
�

1

4
�!2 � p2��r2

� � r
2
��

�
2��1

�

�������� ���� i �L$L
2� ����� i

�R$R
2� �

��2����2�� 1���1� i �H$2� �

��������2
;

(3.46)

where we defined

 

$ � !� pVH �mL�L �mR�R;

$L;R �
1

2
�!� pVL;R� �mL;R�L;R

�H
�L;R

:
(3.47)

Observe in the latter equation the presence of �L;R
�H
�L;R

,

which correspond to the chemical potentials �L;R of the
microscopic two-sector system (2.9).

The matching (3.40) was performed in the low frequency
regime of waves with wavelength much larger than the
typical size of the black hole. This is actually the regime of
relevance when comparing to the microscopic dual, in
which the excitations near the horizon are (almost) de-
coupled from the asymptotic region, and we only allow a
little leakage of energy between the two regions. The latter
corresponds to coupling the dual CFT to a bulk scalar.
Using (3.21) and (3.25) this is the range of parameters
where

 U� � ’ ‘�‘� 2� ) � ’
‘� 2

2
: (3.48)

In particular, since � is integer or half-integer, the follow-
ing relations [32]

 

j��n� iz�j2 � ��n� iz���n� iz�;

��n	 iz� � ��1	 iz�
Yn�1

j�1

�j2 � z2�;

j��1� iz�j2 �
�z

sinh��z�
;���������

�
1

2
� iz

���������2
�

�
cosh��z�

;

(3.49)

are useful. Thus we can rewrite (3.46) as
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�‘;p;mR;L
�

8�

�‘!�4
1

!3

�
�!2�p2�

A�5�
H

4��H

�
‘�1

sinh
�
�H$

2

�

�

���������
�
‘� 2

2
� i

�L$L

2�

�
�
�
‘� 2

2
� i

�R$R

2�

���������2
;

(3.50)

where we have used r2
� � r

2
� �A�5�

H =�4G5�H� with A�5�
H

the area of the five-dimensional black hole, and in our units
G5 � �=4.

By detailed balance, the decay rate is the absorption
cross section divided by the thermal Bose-Einstein occu-
pation number,

 �‘;p;mR;L
�

�‘;p;mR;L

e�H$ � 1
: (3.51)

Use of (3.49) also allows to write the decay rate in terms
of thermal factors. We have to distinguish the cases of even
and odd angular quantum number ‘. For even ‘, (3.46),
(3.49), and (3.51) give the decay rate,

 

Even ‘: �‘;p;mR;L
�

4�

�‘!�4

�
�!2 � p2�

A�5�
H

4�

�
‘�1 $L$R

!3

�L�R
�H

�e�L$L � 1��1�e�R$R � 1��1

�
Y‘=2

j�1

�
j2 �

�
�L$L

2�

�
2
���

j
�H

�
2
�

�
�R$R

2��H

�
2
�
: (3.52)

For odd ‘, the decay rate is
 

Odd ‘: �‘;p;mR;L
�

2�2��3

�‘!�4

�
�!2 � p2�

A�5�
H

4�

�
‘�1 1

!3 �e
�L$L � 1��1�e�R$R � 1��1

�
Y�‘�1�=2

j�1

��
j�

1

2

�
2
�

�
�L$L

2�

�
2
���

2j� 1

2�H

�
2
�

�
�R$R

2��H

�
2
�
: (3.53)

As observed in [9], for even ‘ there appear left and right
bosonic thermal factors (3.52) while for odd ‘ they are
fermionic thermal factors. This is already a hint of the
microscopic degrees of freedom responsible for the radia-
tion—taking into account that the bosonic factors can
emerge as effective ones from even numbers of fermions
[10,33].

C. Superradiant emission rate from the ergo-cold
black hole

These emission rates contain effects of Hawking radia-
tion as well as superradiance. As explained in the intro-
duction, in order to eliminate the former we take an
extremal, zero-temperature limit, while at the same time
we want to preserve the superradiant ergoregion.

In the case of the supersymmetric BMPV black hole,
neither thermal nor superradiant emissions are present. In
the limit to this solution

 lim
�R!1

$R �
!
2
> 0; (3.54)

and the positivity of $R implies that, in (3.52) and (3.53),
the right thermal factor �e�R$R 	 1��1 ! 0, so �‘;p;mR;L

�

0. This is as it should be, since this is a BPS state. The
absorption cross section is positive for any quantum num-
bers of the wave, so stimulated emission cannot occur
either.

The ergo-cold black hole is obtained in the limit in
which �R ! 1 while �R remains finite. In this case

 

lim
�R!1

$L �
1

2
�!� pVL� �mL

��a2 � a1�
����������
a1a2
p

�L
;

lim
�R!1

$R �
1

2
�!� pVH �mR�R�: (3.55)

Now$R can take negative values, so the decay rates do not
vanish for all modes but contain a factor of a step function

 lim
�R!1

�e�R$R 	 1��1 � ����$R�; (3.56)

so the emission decay rate is
 

Even‘: �‘;p;mR;L
����$R�

8�2

�‘!�4

�
�!2�p2�

A�5�
H

4�2

�
‘�1

�
�L$Lj$Rj

‘�1

!3�e�L$L � 1�

Y‘=2

j�1

�
j2�

�
�L$L

2�

�
2
�
;

Odd‘: �‘;p;mR;L
����$R�

2�2��3

�‘!�4

�
�!2�p2�

A�5�
H

4�2

�
‘�1

�
j$Rj

‘�1

!3�e�L$L � 1�
�

Y�‘�1�=2

j�1

��
j�

1

2

�
2

�

�
�L$L

2�

�
2
�
: (3.57)

Thus we have derived the superradiant bound (2.21). The
ergo-cold black hole can only emit modes that satisfy
$R < 0. The absorption cross section is positive or nega-
tive depending on whether $R is positive or negative, so
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when $R < 0, and only then, superradiant amplification
occurs.

We can also see that there cannot be any spinless, pure
momentum superradiance. An oscillating wave near infin-
ity must have !> jpj. Technically, this follows from the
reality requirement of quantities like (3.37) or (3.57).
Physically, !2 � p2 > 0 for a wave propagating in the
asymptotically flat region. According to (3.55), spinless
superradiant modes require !< pVH. But (3.12) gives at
extremality VH �

c1c5sp�s1s5cp
c1c5cp�s1s5sp

so jVHj 
 1 and jpVHj 


jpj. Then, none of these superradiant momentum modes
can exist as propagating waves at infinity: if emitted by the
black hole, they will be reflected back to it before getting to
the asymptotic region. This is a general feature present in
black string backgrounds [34,35].

IV. MICROSCOPIC DESCRIPTION

A. The dual CFT state

The CFT state dual to the ergo-cold black hole is most
easily identified by analyzing the solution in the decou-
pling limit. This is a low-energy limit, keeping the energies
finite in string units, which is obtained taking �0 ! 0 and
�1;5 ! 1 while keeping r��0��1, M��0��2, a1;2��0��1, and
Q1;5��

0��1 fixed. For the general black hole geometry, this
has been shown to result in a twisted fibration of S3 over
the Bañados-Teitelboim-Zanelli (BTZ) black hole [21].
The CFT states dual to the extremal black holes we have
been studying can be identified using the map introduced in
[36]. This yields the R-charges �j; �j� and conformal dimen-
sions �h; �h� of the CFT state in terms of parameters of the
supergravity solution. Introducing the AdS3 curvature ra-
dius ‘3, BTZ black hole mass M3,
 

‘2
3 �

������������
Q1Q5

p
;

M3 �
R2

‘4 �M� a
2
1 � a

2
2��c

2
p � s2

p� � 4a1a2spcp�;

(4.1)

and central charge c � 3‘3=2, the following values are
obtained for the two extremal rotating black holes:

(i) BMPV black hole:
 

j �
c
6

R

‘4
3

JL; h �
c

24

�
1� 2M3 �

4R2

‘8
3

J2
L

�
;

�j � 0; �h �
c

24
: (4.2)

(ii) Ergo-cold black hole:
 

j �
c
6

R

‘4
3

JL; h �
c

24

�
1� 2M3 �

4R2

‘8
3

J2
L

�
;

�j �
c
6

R

‘4
3

JR; �h �
c

24

�
1�

4R2

‘8
3

J2
R

�
: (4.3)

To interpret these results we note that the conformal
dimensions receive contributions of three kinds,

 h � h0 � l0 �
6j2

c
; �h � �h0 � �l0 �

6 �j2

c
: (4.4)

Here �h0; �h0� � �c=24; c=24� correspond to the energy of
the Ramond ground state. On top of this, the left sector has
in both cases an excitation energy given by the Virasoro
level l0 � ‘3M3=8: this is the energy of its thermal exci-
tations, which give the system a Cardy entropy

 SL � 2�
������������
cl0=6

q
: (4.5)

Additionally, the left sector contains some polarized fer-
mions, which yield a charge j. The Kac-Moody level of the
superconformal current algebra is k � 2c=3. The
Sugawara stress-energy tensor of the SU�2� current then
yields an energy �2j�2=k � 6j2=c, where 2j appears since
we are normalizing j to be half-integer quantized.

The right sector in both black holes is at zero level, �l0 �
0, so they are at vanishing temperature. But there is a
crucial difference between the two states: whereas in the
BMPV black hole this sector is in a Ramond ground state,
in the ergo-cold black hole it is filled with polarized
fermions, giving charge �j and additional energy 6 �j2=c
that lifts the system above the BPS state. This is the micro-
scopic picture that we are advocating for this black hole.

B. Emission rate and absorption cross section

A coupling of the schematic form

 Sint /
Z
dtdx@‘��t; x; ~x � 0�O�t; x� (4.6)

(t, x are world-sheet coordinates and ~x are directions
transverse to the string) describes the interaction of the
‘th partial wave of the bulk scalar � with an operator
O�t; x� of the CFT of conformal dimension �1� ‘=2; 1�
‘=2�. We build the latter out of a pair of bosons @	X, and ‘
pairs of left and right fermions  L � R. This coupling gives a
decay rate of the CFT into a scalar mode with quantum
numbers !, ‘, p, mR;L, of the form

 �‘;p;mR;L
�!� � V

Z
dx�dx�e�i$Rx��i$Lx�G�t� i"; x�;

(4.7)

where x	 � t	 x, the Green’s function is

 G �t; x� � hOy�t; x�O�0�i; (4.8)

with the i" prescription in (4.7) corresponding to emission,
V is a factor from the interaction vertex to be discussed
below, and

 $L;R �
1
2�!	 p� �mL;R�L;R (4.9)

account for the presence of left and right sectors with chiral
momenta �!	 p�=2 and chemical potentials �L;R for the
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R-charges mR;L, given by (2.9). These $L;R coincide with
those defined for supergravity in (3.47) if we take the
decoupling limit in which VL;R ! 	1.

1. Superradiant bound

We can easily derive from these formulas the bound on
decay frequencies for the CFT state dual to the black hole
(4.3). For this state, the left sector is at temperature TL so
the left-chirality operator OL�x

�� gives in (4.8) a thermal
two-point function periodic in imaginary time,

 hOyL�x
��OL�0�iTL �

�
�TL

sinh��TLx
��

�
2�‘

: (4.10)

The right sector is at zero temperature, and so the boson
gives the two-point function @�X�x

��@�X�0� � 1=�x��2

and each fermion gives  �x�� �0� � 1=x�, so

 hOyR�x
��OR�0�i0 �

�
1

x�

�
2�‘

; (4.11)

and the integration over the right sector in the decay rate
(4.7) gives a factor

 

Z
dx�e�i$Rx�

�
1

x� � i"

�
2�‘

: (4.12)

This contour integral vanishes for $R > 0, so

 �‘;p;mR;L
�!� / ���$R�: (4.13)

This bound on frequencies coincides with the one we
obtained from the supergravity side (3.55) and (3.57) in
the extremal limit where �R ! �R=2 (2.10), and in the
decoupling limit in which VH ! 1. We feel, nevertheless,
that the microscopic derivation we gave in Sec. II is
physically more transparent.

2. Absorption cross section: general case

It is actually possible to compute the absorption cross
section for the more general case where both sectors are at
temperatures TL and TR so we can compare it with the
general results we obtained from the supergravity side. We
follow [9,22,23] but discuss the general case with non-
vanishing �L;R and p. The Green’s function (4.8) now has
thermal correlation functions from both sectors,

 G �t; x� � ��1�‘CO

�
�TL

sinh��TLx��

�
2�‘

�

�
�TR

sinh��TRx
��

�
2�‘

; (4.14)

where we include a factor CO � CO�CO� that accounts for
the normalization factors of the operators, and which we
will discuss below jointly with the vertex factor V . The
CFT absorption cross section is the difference between
absorption and emission rates divided by the flux F . Then,

 

�CFT
‘;p;mR;L

�
V

F

Z
dx�dx�e�i�$Rx

��$Lx
��G�t� i�; x� � G�t� i�; x��

�
COV

F

�2�TL�
1�‘�2�TR�

1�‘

��2� ‘�2
� sinh

�
$

2TH

����������
�
‘� 2

2
� i

$L

2�TL

�
�
�
‘� 2

2
� i

$R

2�TR

���������2
: (4.15)

Here $ is exactly the same quantity that we introduced in
the supergravity analysis in (3.47), with VH given in terms
of TL;R as in (2.24).

In order to find the factor COV , we first determine it for
s-wave (‘ � 0) absorption by the six-dimensional string
(see [23] for more details). The minimally coupled scalar
� comes from an internally polarized graviton, say h67, so
for ‘ � 0 the operator O is @�X6

A@�X
7
A, where the index

A � 1; . . .N1N5 � Q1Q5=R refers to the twist sector of the
orbifold CFT. Canonical normalization of the scalar field
yields a factor 16�G6 � 8�3R in our units where G5 �
�=4, times a factor of 22 for the doubling due to h67 � h76.
On the other hand, we find a conventional factor 1=16�2

from the two-point function of @�X@�X, and since we are
in the maximally twisted sector we must sum over all
values of A. This determines

 �COV �‘�0 � 4� 8�3R
Q1Q5

16�2R
� 2�Q1Q5: (4.16)

When ‘ > 0 the precise form of the vertex factor requires
an explicit derivation of the interaction vertex from string
theory. We shall not pursue this, but instead follow [10] to
find heuristically its dependence on all black hole parame-
ters and all wave quantum numbers except for ‘. TheQ1Q5

flavors of open string fermions in the long string, combined
along the boundary of the disk diagram, yield a factor
�Q1Q5�

‘ for the ‘ fermion pairs entering the interaction.
We must also divide it by �‘!�2 to account for the fact that
we are overcounting possibilities since the ‘ fermions in
each sector are indistinguishable. Additionally, the vertex
must at least contain the ‘ factors of momentum from the
derivatives in it. Each of the left and right fermions con-
tribute, respectively, with �!� p�=2 to this factor, yielding
a total

 COV � 2�Q1Q5

�
1

4
�!2 � p2�

�
‘ �Q1Q5�

‘

�‘!�2
V̂ ‘; (4.17)
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where there remains an undetermined ‘-dependent factor

V̂ ‘, such that V̂ ‘�0 � 1.
The flux F measures the frequency or energy flow per

unit cross section. For a scalar of frequency ! and vanish-
ing momentum p � 0 the canonically normalized flux of
the incident field is F � !. However, if it has momentum
p, then in the frame of the string the frequency is increased

by a Lorentz factor �1� p2=!2��1=2, while the cross sec-
tion is Lorentz contracted by �1� p2=!2�1=2. Therefore, in
(4.15) the flux is

 F �
!

1� p2=!2 : (4.18)

The final result is then

 

�CFT
‘;p;mR;L

�
8�V̂ ‘

�‘!�‘� 1�!�2
1

!3

�
!2�p2

4

�
‘�1
�4�2TLTRQ1Q5�

‘�1 sinh
�
$

2TH

�
�

���������
�
‘� 2

2
� i

$L

2�TL

�
�
�
‘� 2

2
� i

$R

2�TR

���������2
:

(4.19)

In order to compare this with the result (3.50) from
supergravity, we must restrict the latter to the decoupling
limit. In this regime

 A �5�
H ! 4�3 TLTR

TH
Q1Q5; (4.20)

while all the velocities become lightlike (3.14), so$L;R and
$ are identical quantities in both sides of the correspon-
dence. Then we find

 �CFT
‘;p;mR;L

�
V̂ ‘

�‘� 1�2
�sugra
‘;p;mR;L

: (4.21)

So the decay rates agree remarkably well, and it would
only remain to check that a computation from first prin-
ciples of V̂ ‘, which is beyond the scope of this paper,
yields a perfect match. Taking the limit TR ! 0 we find the
decay via superradiant emission of the ergo-cold black
hole (3.57).

V. CONCLUSIONS

The recent progress in the microphysics of black holes is
making it clear that the gravitational description of a
microscopic system with a coarse-grain statistical degen-
eracy must exhibit a horizon—this may require higher-
derivative corrections if the degeneracy scales too slowly
with the mass. In this paper our aim has been to find the
microscopic origin of the ergoregion in rotating black
holes. Cold ergoregions provide a particularly clean test
bed, since they can only emit superradiant modes. What we
have found is that, in order for a superradiant ergoregion to
be present, the microscopic state must allow the annihila-
tion of spin carriers to emit a bulk mode. If the system is at
zero temperature, then these spin carriers must necessarily
enter any interaction leading to bulk emission. The super-
radiant frequency bound follows then from the bound that
the chemical potential sets on the energies of excitation
charged under its canonically conjugated spin. All these
features are transparent in the 1� 1 CFTs we have con-
sidered, in which the angular momentum is carried by

fermions in (at least) one sector, while the other sector
must also contain some excitations. This specific system
has provided us with a simple, elementary derivation of the
superradiant bound (1.1) without a detailed evaluation of
absorption rates, which makes manifest the fundamental
role played by the Fermi-Dirac statistics of the spin-
carrying degrees of freedom.

It seems likely that the basic features of our microscopic
picture are also valid for any other gravitating object with a
cold ergoregion. The most familiar of these is the extremal
Kerr black hole. Reference [9] exhibited in a striking way
how the absorption rates from a Kerr black hole contained
hints of a CFT description. That this CFT must contain
fermions as the carriers of angular momentum seems diffi-
cult to dispense with, if one wants to account for super-
radiant emission. Indeed, microscopic models for the
extremal Kerr and five-dimensional Myers-Perry black
holes have been proposed [4–6]. These black holes are
mapped, through symmetries and dualities, to four-
dimensional black holes of the kind we have discussed in
Sec. II C. So the presence of superradiant emission in these
neutral black holes is understood, at least qualitatively, in
the same terms we have discussed: a filled Fermi sea in one
sector of the dual CFT. The quantitative recovery of the
superradiant bound is nevertheless not expected, since
these neutral black holes suffer nontrivial renormalizations
of their masses and energy levels (though not of their
entropies) as a function of the coupling.

Systems with cold ergoregions which are not U-dual to
these black holes are perhaps of more interest to test the
applicability of our ideas about the microphysics of super-
radiance. An instance of this are the extremal rotating
black rings with a dipole, in particular, those in which
the dipole charge corresponds to a fundamental string
and the extremal limit is singular. The microscopic de-
scription of this dipole ring has been described recently in
[37], and argued to possess the right properties to fit our
picture for a superradiating system: a zero-temperature
sector with angular momentum carriers, which can interact
with excitations from another sector and emit a spinning
closed string into the bulk. Note, though, that in the system
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in [37] the angular momentum is not carried by a Fermi sea
but by a bosonic coherent state.

All these ergo-cold black holes provide, in a sense,
cleaner laboratories for the study of quantum emission
from a black hole than do nonextremal black holes. Since
one of their sectors is in a ground state, they are in a purer,
less mixed state than nonextremal systems. But still, their
other sector is in a mixed, thermal ensemble. Therefore it
would be very interesting to consider states of the CFT
such that both sectors are in pure states but nevertheless
they can interact and decay by bulk emission. One such
example is provided by the nonsupersymmetric smooth
supergravity solitons with D1-D5-P charges in [29]. On
the microscopic side, they correspond to nonchiral spectral
flows of the Neveu-Schwarz ground state to non-BPS states
in the Ramond sector. The states have both sectors con-
taining only spin-carrying fermions. So we see that an
interaction between the two sectors will result into the
emission of a spinning bulk scalar. Following the overall
picture proposed in this paper, superradiance is naturally
expected. Indeed, these supergravity solitons have ergore-
gions (but not horizons) that have been shown to exhibit a
superradiant instability [38]. A correspondence between
the two pictures of the decay of precisely this type has been
worked out in detail very recently in [39], and conforms to
the overall ideas we have proposed.
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APPENDIX A: THE NEAR-HORIZON SIGNATURE
OF SUPERRADIANCE

It is natural to expect that the near-horizon geometry of
the black hole, which encodes in a dual manner the CFT
description, contains information about the possibility or
not of superradiance. In the dual CFT, superradiance refers
to an interaction between the CFT and a bulk scalar. The
latter appears when the near-horizon geometry is not fully
decoupled from asymptotic infinity and therefore disap-
pears in the strict decoupling limit. Nevertheless, it would
seem natural that the near-horizon geometry could still
encode a signature that anticipates the existence of super-
radiant phenomena in the full geometry. An effect of this
kind was identified in [18] for the extremal Kerr black hole,

which is the simplest example of an ergo-cold black hole.
From the study of scalar propagation in the near-horizon
geometry, they could indeed identify an effect that signals
superradiance in the Kerr solution. In this appendix we
show how this same effect is present in our ergo-cold black
hole, but not in the BMPV solution.

1. Near-horizon geometry

Take the black hole solutions of the D1-D5-P system
described in (3.1). To obtain their near-horizon geometry
we introduce

 r2 � r2
� � "�; � � �

t
"
; (A1)

where � is a constant to be defined later, and we take the
"! 0 limit. To avoid divergencies of the type 1=" and
1="2, this coordinate transformation must be accompanied
by a shift in the circle and angular directions,

 y � ~y� VH
t
"
; � � ~����

t
"
;

 � ~ �� 
t
"
;

(A2)

where ��, � , VH represent the horizon angular velocities
defined in (3.8) and (3.13). With the shift (A2), the Killing
vector @=@t becomes tangent to the horizon, i.e., the new
coordinates corotate with the horizon. Next, we just write
the near-horizon limit of the extreme black hole metrics (in
the end of this appendix we comment on the nonextreme
cases), since the near-horizon dilaton and RR fields are not
important for our discussion.

(i) Near-horizon geometry of the BPS black hole.
In this case one has ��; � 0 and � � ‘2

3

�������
Qp

p
=2

and one gets (dropping the ~ in the angular coordi-
nates),

 

ds2
NH �

‘2
3

4

�
��2d�2 �

d�2

�2

�
� ‘2

3�d�
2 � sin2�d�2

� cos2�d 2� �
Qp

‘2
3

�
dy�

‘2
3�

2
�������
Qp

p d�
�

2

�
2J�
‘2

3

dy�sin2�d�� cos2�d �; (A3)

where ‘2
3 �

������������
Q1Q5

p
.

(ii) Near-horizon geometry of the ergo-cold black hole.
One has �� � � . We restrict our attention to the
simplest case with a1 � a2. This case contains all
the features that are crucial for our study and does
not loose any important information, while avoiding
noninsightful factors.
One gets, with � � �2a3�c1c5cp � s1s5sp��

�1

(and dropping the~in the angular coordinates),
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ds2
NH �

K0

4

�
��2d�2 �

d�2

�2

�
� K0d�

2 � K�sin2�d�� cos2�d � P�d��2 � K0sin2��d�� P�d��2

� K0cos2��d � P�d��2 � Kydy� Kty�d�� P�y�sin2�d�� cos2�d ��2; (A4)

where K0, K, P, Ky, Kty, K�y are constants given in terms of the black hole parameters a, �1;5;p by

 

K0 � 2a2
������������������������������������������
cosh�2�1� cosh�2�5�

q
; K �

2a21� 2sech�2�p��s1s5cp � c1c5sp�2�������������������������������������������
cosh�2�1� cosh�2�5�

p ;

P � �
1� cosh�2�1� cosh�2�5� � cosh�2�1� cosh�2�p� � cosh�2�5� cosh�2�p�

8�s1s5sp � c1c5cp�
2 ; Ky �

cosh�2�p�������������������������������������������
cosh�2�1� cosh�2�5�

p ;

P�y � �2a�s1s5cp � c1c5sp�sech�2�p�; Pty � �a�s1s5cp � c1c5sp�sech�2�p�: (A5)

When a1 � a2, there are overall �-dependent multi-
plicative factors both on the AdS2 and fibred S3 parts
of the metric. They play no fundamental role in the
analysis that we do next.

The key observation in (A4) is that the cross terms
between the time coordinate � and the angular coordinates
�,  , are linear in the radial coordinate � in the case of the
black hole with ergoregion. On the other hand, when the
ergoregion is absent, the radial dependence in the cross
terms is also not present. This feature plays an important
role in the near-horizon superradiant analysis that we do
next.

2. The Bardeen-Horowitz signature of superradiance

In this section we identify and justify the superradiant
signature in a near-horizon geometry. We refer to this as
the Bardeen-Horowitz signature, since the feature that we
will describe was first identified by these authors in the
extremal Kerr solution [18]. We will initially focus our
analysis on the near-horizon geometry (A4) of the ergo-
cold black hole. We will single out the factor responsible
for superradiance in this case. Then we will observe that
this factor is absent when the ergoregion is not present,
and, in particular, in the BPS case.

Take (A4). The following analysis gets simplified if we
carry dimensional reduction along y (again we will take
waves with no momentum along the T4, so this plays no
role in the discussion). This yields6

 

ds2
NH�5� �

K0

4

�
��2d�2 �

d�2

�2

�
� K0d�2

� K�sin2�d�� cos2�d � P�d��2

� K0sin2��d�� P�d��2

� K0cos2��d � P�d��2: (A6)

This five-dimensional metric is of the form AdS2 � S
3. We

can introduce global AdS2 coordinates to cover the entire
spacetime [18],

 � �
��������������
1� x2

p
cosT � x; � �

��������������
1� x2
p

sinT
�

; (A7)

whose ranges are �1< T <1, �1< x<1. To avoid
new crossed terms between S3 and AdS2 coordinates, we
have to shift � and  [18],

 �; � ~�; ~ � P log
�

cosT � x sinT

1�
��������������
1� x2
p

sinT

�
: (A8)

In these global coordinates the metric (A6) reads
 

ds2
NH�5� �

K0

4

�
��1� x2�dT2 �

dx2

1� x2

�
� K0d�2

� K�sin2�d ~�� cos2�d ~ � PxdT�2

� K0sin2��d ~�� PxdT�2

� K0cos2��d ~ � PxdT�2: (A9)

We now study the Klein-Gordon equation in this near-
horizon background (A9). Introducing the ansatz

 � � e�i�wT�m ~��n ~ �����X�x�; (A10)

the wave equation separates and yields

6We absorb a factor of K�1
y in the left-hand side that comes

from the KK dilaton (which being constant plays no role):
ds2

NH�5� � K�1
y ds2

NH�5�. There is also a gauge field which is
irrelevant for our purposes, and whose components are A� �
Kty�, A� � K�ysin2�, A � K�ycos2�.

MICROSCOPIC THEORY OF BLACK HOLE SUPERRADIANCE PHYSICAL REVIEW D 77, 064018 (2008)

064018-17



 

1

sin2�
d
d�

�
sin2�

d�

d�

�
�

�
��

m2

sin2�
�

n2

cos2�

�
� � 0;

d
dx

�
�1� x2�

dX
dx

�
�

1

4

�
4w� �m� n�Px�2

1� x2

�
K

K � K0
�m� n�2 ��

�
X � 0;

(A11)

where K0, K, and P are defined in (A5).7

The radial equation presents an important feature.
Indeed, apart from the contribution coming from the piece
�m� n�Px, this radial equation is very similar to the
equation describing perturbations in a pure AdS2 back-
ground [18]. That is, in (A11) we have w� �m�
n�Px�2 instead of w2 that is present in the pure AdS2

case. The origin of this factor can be easily traced back
and found to be due to the presence of the terms P�d� in
(A4); see the discussion at the end of Sec. A 1. We next
discuss the implications of this property for the near-
horizon signature of superradiance.

In a WKB approximation the effective wave number for
traveling waves obeying (A11), k � � i

X
dX
dx , is

 

k � 	
1

4
��������������
1� x2
p

�
4w� �m� n�Px�2

1� x2

�
K

K � K0
�m� n�2 ��

�
1=2
; (A12)

from which follows the associated group velocity,
 

dw
dk
� 	

4�1� x2�3=2

w� �m� n�Px

�
w� �m� n�Px�2

1� x2

�
K

K � K0
�m� n�2 ��

�
1=2
: (A13)

On the other hand, the phase velocity of the waves is w=k.
As first observed in [18], in the context of the Kerr geome-
try, here the group and phase velocities can have opposite
signs. For positive �m� n�P this occurs when x < w

�m�n�P ,
while for negative �m� n�P this is true when x > w

�m�n�P .
An original argument from Press and Teukolsky [16] con-
cludes that this defines the near-horizon superradiant re-
gime. Indeed, the opposite sign between group and phase
velocities of a wave in the vicinity of a horizon is respon-
sible for the fundamental origin of superradiance.
Classically, only ingoing waves are allowed to cross the
horizon. The quantity that defines the physical direction of
a wave is its group velocity rather than its phase velocity.
So the classical absorption of incident waves is described
by imposing a negative group velocity as a boundary
condition. Note however that in the near-horizon super-
radiant regime above mentioned, the associated phase
velocity is positive and so waves appear as outgoing to
an inertial observer at spatial infinity. Thus, energy is in
fact being extracted, i.e., superradiance is active [16].

At this point, we make a contact with the other extreme
case and with the discussion in the end of Sec. A 1. For the
BPS black hole, there is no radial dependence in the cross
terms between the time and angular coordinates in its near-
horizon geometry (A3). As a consequence, there is no
linear term in the frequency in the wave equation associ-
ated with this background. But this implies that group and
phase velocities always have the same sign in this back-
ground. Thus there is no available room for a superradiant
regime in the near-horizon geometries of extreme black
holes without ergoregion. Finally note that in a general
nonextreme black hole the situation is quite similar to the
ergo-cold black hole in what concerns the issue discussed
in this appendix.
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