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It is shown that the world volume field theory of a single D3-brane in a supergravity D3-brane background
admits finite energy, and non-singular, Abelian monopoles and dyons preserving 1/2 or 1/4 /dtthe
supersymmetry and saturating a Bogomol’'nyi-type bound. The 1/4 supersymmetric solitons provide a world
volume realization of string-junction dyons. We also discuss the dual M-theory realization of the 1/2 super-
symmetric dyons as finite tension self-dual strings on the M5-brane, and of the 1/4 supersymmetric dyons as
their intersections.S0556-282(199)04116-9

PACS numbd(s): 14.80.Hv, 05.45.Yv, 11.25w

. INTRODUCTION background. For exampleéf=F—B whereF is the usual
2-form U(1) field strength, satisfyinglF=0, andB is the
The N=4 supersymmetric Yang-Mill{¥SYM) theory pullback of the background Neveu-Schwarz—Neveu-
with gauge grougSU(k) spontaneously broken td (1)1 Schwarz(NS-N9S 2-form potential. The D3-brane couples to
has a spectrum of 1/2 supersymmetric magnetic monopoldse background Ramond-Ramo(iR+R) gauge fields through
and dyons which, together with the “elementary” particles a Wess-Zumino Lagrangialby,,. Let ' be the world vol-
of the perturbative spectrum, fill out orbits of &1(2;7) ume coordinates| €0,1,2,3). Omitting fermions and setting
electromagnetic duality group. Each such particle has an ine’ =1, the Lagrangian is then
terpretation in type IIB superstring theory as an, Q) string
stretched between a pair of parallel D3-branes, chosen from L=—e"?y—delg; + Fj)+Lwz @
amongk parallel D3-branes. Fok=2 there are no other
particles in the spectrum but fde=3 there are additional,

1/4 supersymmetric, dyons that are entirely non—perturbativ¢ is a constantB vanishes, and.,y, Is just the minimal
in the sense that they belong 81(2;7) orbits that contain . ) ’ e )
no “elementary” particles. Although these can be found ascouplmg of the D3-brane o the 4-form gauge potential of

. ’ . : type IIB supergravity.
classical solutions of the SYM field equatiofis-3] they For widely separated branes it makes sense to ask what a

were first found as type IIB superstring configurations i”dyon looks like locally on one of the D3-branes, i.e., as a
which three strings of differentn@,n) F:harges, attached t0 gojution of theAbelian N'=4 supersymmetric DBI theory
three D3-branes, meet at a string junctiph]. These are  yith the above Lagrangian. Because Abelian monopoles and
points at which two type IIB strings of chargemn) and  dyons have infinite energy, this question would not make
(m’,n’) meet to form a string of chargen+m’,n+n’) [5].  sense in the context of @(1) SYM theory, but the infinite
The minimum energy state to which the configuration re-energy has a natural interpretation in the DBI context as the
laxes is one in which three strings leaving the three D3energy associated with an infinite string of fixed tension. In
branes meet at a planar string juncti@7]. fact, the Abelian DBI theory does have infinite energy 1/2
Actually, the effective action of the D3-branes is not asupersymmetric solutions that appear as “spikes” on the
SYM theory but rather a Supersymmetric non-Abelian Dil’aC-\Noﬂd volume with uniform energy per unit |engﬂg,lo]_
Born-Infeld (DBI) theory. The precise nature of this theory is The “spike” solutions of the Abelian DBI theory were
not known (see([8] for a recent discussigrbut it has an  called bions in7], following a slightly different use of this
expansion in powers af’ 7 that simplifies in certain limits;  term in[10]. In the case of the D3-brane there are dyonic
@' is the inverse type IIB string tension addis the (back-  (m,n)-bions corresponding to infiniter(,n) strings that end
ground covariantBorn-Infeld field strength. IL is the mini-  on the D3-brane. Although the infinite energy of a bion has a
mal separation between the D3-branes t@nwe shall later  clear physical interpretation, it is nevertheless a cause for
see explicitly a’ F~L?/a’, so the expansion parameter is concern because, for example, solutions with infinite energy
actuallyL?/a'. ForL</a’ we need keep only the quadratic make no contribution to the semi-classical evaluation of the
terms inF and the action reduces to té=4 SYM theory  path-integral. One should really think of these solutions as
(for a vacuum type [1B backgroundFor L> /o’ we cannot limiting cases of the more physical situation in which the
truncate the expansion but we may neglect the non-Abeliastring eventually ends on another D3-brane, but it might then
interactions; the action then reduces to a sum of Abelian DBhappear that we are forced to return to the non-Abelian DBI
actions governing the dynamics of independent parallel D3theory. One purpose of this paper is to show that this prob-
branes. The D3-brane action depends on the supergravitgm can be circumvented by replacing the second D3-brane

where gj; is the induced world volume metric and the
gackground dilaton field. For the backgrounds we consider,
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by a supergravity D3-brane background. Our work thereforecial case of an orthogonal overlap of an F-string, charge
has links to some studies of branes in the AdS°® back-  (1,0), with a D-string, charg€0,1), this configuration can be
ground found by considering the near-horizon limit of therepresented by the array

D3-brane solution, e.d.11]. We should also point out that

the infinite energy problem is circumvented by certaom- bs: 1 2 3 - - - - - =
supersymmetrisolutions of the DBI actiorj10], although DlI: - — — 4 — — — _— _
these do not correspond to Bogomol'nyi-Prasad- ]

Sommerfield BPS states ofA//=4 SYM theory. FL. = = = = 5 - - - -

The super D3-brane action can be consistently formulate
in any background that solves the equations of type IIB su

E?rgra},"g'rtoh?:sgﬁg nst%lgt'doig tcl>sn ig]ionzgﬁrirg;?jvl}vye Ehgailpendent world space functions that are harmonic in the Eu-
ane.” ro clidean metric. Here we shall find the general ‘“two-

zgr: t?htzeerrgr,n::lrzncogrsr?v(;nn?sshﬁ u;;glgstr:r% fﬁg';}“ggig(;r;@armonic—function” solution and explain its interpretation as
the 4.—form potentia%: with self—dugl 5-form field strength strin_g ju_n ction. In a flat background the_:se solutions aga in
R=dC. These are given by have infinite energy. The strategy explained abqve to find
: finite energy solutions can be used here too, but in this case
ds2=H~Y2d 2(EA3) + HY2d 2(T6) we must use a background harmonic functidrwith two
isolated singularities; i.e., we replace E@) by

cf’he corresponding 1/4 supersymmetric dyon solution on the
D3-brane was recently found2]; it depends on two inde-

R=vol(E)AdH 1+ *dH 2
Hogp -, @ (4)
wherexg is the Hodge dual ofi® andH is harmonic on this IX—=Xq*  [X=X,|*
space. Point singularities &f are coordinate singularities of
the spacetime metric at connected components of a degenemlnere)?1 and )?2 are two 6-vectors giving the positions of
ate event horizon. The proper distance to the horizon orthe background supergravity D3-branes. A string leaving the
spacelike hypersurfaces of consté@it® coordinates is infi- test D3-brane can now split, at a string junction, into two
nite, so that there are “internal” asymptotic infinities. If we strings, each of which continues indefinitely into one of the
wish the D3-brane horizon to have a single connected comiwo “internal” asymptotic regions of the background geom-
ponent then we must choose a “single-center” metric with etry. As we shall see, such configurations corresporiuhite
energy Abelian DBI solitons saturating precisely the

Het Q 3 Bogomol'nyi-type bound expected of a 1/4 supersymmetric
=1+ W, (3 dyon.
0 The 1/2 supersymmetric dyons on a D3-brane of type 11B

- ) , . superstring theory have an M-theory counterpart as self-dual
whereX are Cartesian coordinates BhandX, is a constant string solitons on an M5-brard3,7]. In flat D=11 space-

E 6-vector. Let us now put a test D3-brane in this back-time these strings have infinite tension, as expected from
ground, atX=0. The DBI equations can now have solutionstheir spacetime interpretation as semi-infinite M2-branes
representing infinite ro,n) strings that go into the internal with a boundary on an M5-brane. However the M5-brane
asymptotic region of the background geometry. We shalkction can be consistently formulated in any background that
show that there exist static bion solutions of this type, andolves the equations of ©11 supergravity. One such solu-
that they have &inite energy, saturating a Bogomol'nyi-type tion is the supergravity M5-brane. The 11-metric and 4-form
bound. In fact, iff Xo| = L then the energy of the static bion is field strength of this solution are

preciselyL times the tension of am{,n) string. Effectively,

we have replaced the “second” D3-brane of tdJ(2) dsf,=U " Rds2(ECY) + U2 X- dX
theory by a D3-brane background, thereby finding finite en-
ergy, and non-singular, supersymmetric monopoles and dy- Fa)=*sdU (5

ons in theAbelian DBI theory. Actually, it would be more
accurate to consider this “brane in brane background” conwhereX are Cartesian coordinates BhandU is a harmonic
figuration as representing the lardgelimit of an SU(k) function on this space. Singularities dfare just horizons of
theory broken toSU(k—1)XxU(1) with the SUk—1) the 11-metric which are at an infinite proper distance on the
theory replaced by the supergravity background. spacelike hypersurfaces of constaiif?) coordinates. In
The same logic that leads us to expect 1/2 supersymmetrigther words, there are again “internal” asymptotic regions
bions on the D3-brane also leads us to expect that it shoulthto which we can take an M2-brane emanating from a test
be possible to find the 1/4 supersymmetric string junctiondM5-brane in this background. In this way we find self-dual
this way. Consider first the case in which one of the threestring solitons on the M5-brane world volume wifimite
strings in a string junction configuration has shrunk to zeraension. The 1/4 supersymmetric dyons on the type 11B D3-
length. In this case we are left with a configuration of two brane also have an M-theory analogue, this time as intersect-
“overlapping” strings of different (n,n) charges each ing self-dual string solitons on the M5-brane. For an M5-
stretched between a different pair of D3-branes. In the spebrane in flat spacetime, these were found 14| from the
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requirement of 1/4 supersymmetry; here we show that theyf this is now used in the constraifit=0 we can solve fo€
saturate a Bogomol'nyi-type bound, although the total ento get
ergy is, of course, infinite. By considering the M5-brane in a

two-center M5-brane background we are able to find solu- (E+H 1)2=ECEYF Fpqo?P+H 12
tions that represent intersecting finite-tension self-dual
strings. P ? X[E®E gap+detg+F)] (13

We begin with some details of the D3-brane Hamiltonianwhere
in a supergravity D3-brane background that we need for our

subsequent discussion of finite energy bions and string junc- —H 125 1+ HY25 X.9.X
' . ant = 9, pX. 14
tions. We then discuss the dual M-theory realization of these Gab ab at 4
solitons. WhenH =1 this reduces to the result given[in] except for
a shift of the vacuum energy. To obtain precisely the result
II. D3-BRANE HAMILTONIAN IN A D3-BRANE of [7] whenH=1 one would have to také=H 1— 1; the
BACKGROUND difference is just a gauge transformation and hence without

I i .__physical significance. The choicg=H ! is convenient be-
The Hamlltonlan form of the super D3-brane Lagra_ngmncause it ensures that the WZ term cancels the vacuum energy
density in a general superspace background was given

i
[15]. Setting fermions to zero and specializing to a back—gf the DBI term.

ground of the form assumed above we have
Ill. FINITE ENERGY BIONS

L=P X"+ Ea\'/aJthg_ P, — EV'H (6) We shall begin by cihoosing the harmonic functidnto
2 have the form(3) with Xy,=(L,0, ...,0). On theX-axis we
. . then h

where X™ are the spacetime coordinates aRg, the 10- eh have
momentum h=0,1,...,9), andV, is the Bl 3-vector po- Q
tential (@=1,2,3) andE? its conjugate electric field 3-vector. H=1+ X—0)* (19
The constraint functions associated with the constraints im-
posed by the Lagrange multiplie¥4, s* andv are We shall be interested in bions that can be interpreted as

strings stretched between the test D3-brane and the source
D3-brane. It is obvious that the minimum energy configura-
tion must then be one for which the only non-zero world
volume field isX( o) so we now set the others to zero. In this
case

H=G™(P—C)y(P—C)y+E*E g, + det(g+F)
G=0d,E* ()

Po=(P—C)nd X+ EPFp,

=H 25,5+ HY29,XdpX 16
where G is the background metriq is the induced world Gav ab anth (18

space metricF the magnetic field 2-form an@,, is the co- and
efficient of X™ in the Wess-ZumindWz) term, i.e., Ly
=X"C,,.

In the static gauge

detg+F)=H ¥1+H|VX|?+H|B|?]+HY(VX-B)?
(17)

- whereB is the magnetic field 3-vector defined by
XM=(¢',X), (€S)
i . Fab=¢€ancBec- (18
whereé' = (t,0?) are the world volume coordinates, we have
R This leads to the formula
Cn=(C,00), 9
(E+H™HZ=H 2+ HTH|VX|2+ [E[*+[B*]+(VX-E)?

where, for a background of the form assumed here, ) )
+(VX-B)*+|EXB| (19

C=H%. (10 , _ ,
which we can rewrite, for arbitrary angkg, as

In addition, the constrairf?,=0 implies, in static gauge, that 1 1 ) 5
(E+H H)=[H *+cosI(E-VX)+sind(B-VX)]

Pm=(—&—(P—C)-9,X—E"F,P) (11) +H LE—cosdVX|2+H YB—sin9VX|?2
where¢ is the energy density. Sind&— C vanishes for static +[sin9¥(E- VX) —cosd(B- VX)|?+ |EXB|?.
configurations we have (20)

(P=C)py=(—E&— Hfl,—EbFab,ﬁ). (12 From this expression we deduce the bound
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(E+H H2=[H 14+ cosd(E-VX)+sind(B-VX]?
(21
and hence that

E=cosV(E-VX)+sind(B-VX) (22

for any 9. Integrating over the world space and then maxi-

mizing the right hand side with respect fowe arrive at the
bound

M= j Foe= QLT O (23
where
Qezf d3cE-VX= fﬁds- EX,
Qm:f d30B-VX= %ds BX. (24)

Here we have used the fact thBtis divergence-free by
definition and thatE is divergence-free as a result of the

Gauss law constraint. The final surface integrals must b . L
dhe tension of anrf,n) string is

taken over all components of the boundary surface of worl
space.
The bound(23) is saturated by solutions of
E=cosiVX,

B=sindVX, (25

PHYSICAL REVIEW D 60 045004

one atr =, where X=0, and another at=r,, whereX
=L. The surface integrals of Eq24) vanish at ther =«
boundary, and sincE=L on the other boundary we have

Qe=Lde, Qm=Ldm, (30
where

Je= 3§ dS-E=cos?q,

am= é dS-B=sindq (31

are the electric and magnetic charges coupling to the Bl field
on the brane. The bion mass is therefore
M=|qg|L/(a")? (32)
where we have now reinstated’. This is the mass of a
string of tensiorjq|/(«')? and lengthL. Taking into acount

the quantization condition on the type IIB string charges, and
e fact that we have set the string coupling constant to unity,

JmZ+n?/a’, so
q:a’\/m7+nz.

Reinstatinga’ in (25 we see that the maximum value of
a'E or a'Bis L?%/g~L?%a’, so the expansion parameter of

(33

where tan=Qp,,/Q.. These are just the flat space Abelian the DB action isL?/«’, as claimed earlier. Actually, if or

Bogomol'nyi equations. Since both andB are divergence-
free we deduce, as in the flat-space case, Xhatharmonic
on worldspacéin the Euclidean metrjc For a single bion of
chargeq with X vanishing at spatial infinity on the brane we
have

X=ql4mr (r>ro=qldml) (26)
wherer =|o] is the distance from the origin iR
The lower bound orr comes about because the world

space metric is

Lro\2
dsf=|H Y2+ r—zo) HY2/dr2+H-Yd03,  (27)
where now
Qr?
H=1+ |_4(I'——I’0)4 (28
As r approaches, from above we have
1/2] du ? —=1/2y 2,,2 2
dsi~Q - +Q T VALAAOS (29

whereu=r —ry. The proper distance to=r is therefore

nis very large then the effective expansion parameter is re-
ally smaller tharL.?/a' by a factor of 14/m?+n?. For given

L, the neglect of the DBI corrections to the SYM theory can
therefore be justified by considering a sufficiently large
charge, so the SYM theory is adequate for a description of
macroscopic objects. The DBI corrections are important only
for the description of microscopic objects.

In terms of the electrostatic analogy, the above construc-
tion can be viewed as a regularization of the infinite self-
energy of a point particle in which a point charge is replaced
by a perfectly conducting charged spherical shell. This is
clearly unsatisfactory as a solution to the electrostatic self-
energy problem of electrodynamics because any surface of
spherical topology carrying the same total charge would
serve the same purpose. Here too we could replace the
spherical shell by a shell of any other shape, but in our case
this has no effect on the physics. To see this we first note that
the surface of the shell is, by hypothesis, an equipotential
with potential X=L. It follows that every point on it is

mapped to the poink= X, in transverse space. This point is
at infinite proper distance in the transverse space metric and
hence in the induced world space metric. The equipotential
surfaceX=L in E2 is therefore a point at infinity in the
induced world space metric. Neighboring equipotential sur-
faces of constanK<L can be used to define coordinates in

infinite. In fact, the sphere at=r, is mapped to a single the neighborhood ak=L for which X is again given by Eq.
point X=X in the transverse space. The world space of g26). It then follows that the induced world volume metric in
single bion along the x-axis therefore has two boundariesthis neigborhood is Eq29). But the minimum energy metric
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is determined by its behavior near points at infinity. The £=cosa E-VX—sinaE-VY+sinaB-VX+cosaB-VY,
initial shape of the shell is therefore irrelevant to the final (37)
solution.

The spherical symmetry of the one bion solution is therefor any a. By integrating over the world space and maximiz-
fore in no way essential to the construction of finite energying the right hand side with respect &g we deduce that the
bions, and multi-bion solutions can be constructed analototal massM satisfies the bound
gously: we removen closed surfaces of spherical topology
from 2 and choose their potentiad to correspond to the M=(Q%— Q¥+ (QY+ Q)2 (39
center of the background D3-brane spacetime metric. The
potential is set to zero at infinity. There is now a uniqueWhere QZ,QF) and Q,Qy,) are the non-vanishing com-
solution of Laplace’s equation fot; this is the sought multi- ponents of the electric and magnetic charge 6-vectors
bion solution. Using this solution we may compute the world
space metric to which it corresponds. This metric will have Qe: é; dS-EX, Q*m: i; ds.-BX. (39)
points at infinity, near each of which it will take the form
(29). Different shapes of the initial surfaces just correspon
to different choices of coordinates for tlienphysical Eu-

clidean 3-space. E=cosaVX—sinaVY,

OlThe bound is saturated when

IV. DBI STRING JUNCTIONS B=sinaVX+cosaVY, (40

In this section we will first derive the general bound satu-

. . here
rated by 1/4 supersymmetric dyons in a general two-center

D3-brane background; then we will move on to discuss their QX —qQJ
. . . . . . . m e
interpretation as string junctions in the simpler case of a flat tana= —x———. 41
background, to return finally to their interpretation in the Qe Qm

general case. The masaM of configurations saturating the bound may be

rewritten in the form
A. The BPS bound

So far we have considered a test D3-brane in a single- M= V| Qe 2+ Qpl?+2|Qel| Qe sin g (42)
center parallel D3-brane background. We now want to con-
sider a two-center background, e.g. where¢ is the angle between the two 6-vect@s andQ,,.
This is precisely the mass formula for 1/4 supersymmetric

He1s 1 N 1 34 dyons inN=4 D=4 SYM theories[16,4]. It is invariant
T X=X X=Xy (34) under SO(6) rotations of the 6-vector®, and Q,,, and

under anSQ(2) rotation of these two 6-vectors into each
whereX; andX, are two non-zero vectors. We may chooseomer- as expected from thé(4) automorphism group of the
them to lie in the plane for whichK = (X,Y,0, . ..,0). N=4 D=4 supersymmetry algebra. When §n0 we re-
static D3-brane configuration in such a background WI|| gen- cover the formula for 1/2 supersymmetric configurations for

2
erally have non-constai(o) andY(o). The same reason- which M is proportional to the unique quadram:(4) in-
ing as before now leads to the following expression for thevariant polynomial that can be constructed fr@p andQy,
energy density: [17].

These results actually follow directly from the supersym-
(E+H H2=H 2+ H Y |VX|2+|VY|?+|E|?+|B|?] metry algebra, as we now show. TAé=4 supersymmetry
5 5 5 ,  Charges can be taken to be four two-component complex
+H(VX-B)*+(VY-E)"+(VX-B)*+(VY-B) spinors of SL(2;C) in the fundamenta## representation of
+|EXB|2+|VXXVY|2 (35 U(4). LetQ, (@=1,2,i=1,23,4) be these charges, with
_ _ _ _ Q. their complex conjugates in thé representation of
We can rewrite the right hand side, for arbitrary angl@s U (4). Thematrix of anticommutators of these charges is

[H 14+ cosa E-VX—sinaE-VY+sinaB-VX
+cosa B-VY]?+H Y E-cosa VX+sina VY]?

eapZ  SP
(43

{Q,Q}=<

o _
0iPpp  &.5Zx

71 . 2 .
+H Y [B—sina VX—cosa VY]"n+[sina E-VX  \yherep is the 4-momentum and a complex central charge

+cosa E-VY—cosa B-VX+sina B-VY]? in the 6 representation oS5U(4). From the fact that the
left-hand side of Eq(43) is positive semi-definite we deduce
+|EXB=—VXXVY|2. (36) (by considering its determinanthe bound
We thereby deduce that M*—2aM?+a?—4b=0 (44)
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whereM?=— P2, and v
1 y (g’ 0+y)
a=;72'7;, a’—4b=|Pfz1|? (45) X

are U(4)-invariant polynomialdPf denotes the Pfaffian of
the antisymmetric matrixZ; because this is complex one
must take its modulus squared to get a polynonu&#)
invariani. The bound(44) is saturated when

M2=a+2.b (46)

where we take the positive square root because this yields the
strongest bound. Comparison with E42) shows that

a:|6e|2+|ém|21

FIG. 1. The string junction described in the text.

b=|Qel?|Qml?~ (Qe- Q)% (47)

o tang=q;/qy;, (51)
Whenb=0 this reduces to the formulll?=|Q¢|?+|Qu|?
applicable to 1/2 supersymmetric dyons. Otherwise only 1/4V€ have
supersymmetry is preserved. q
X Nm‘f‘xo, Y'~Yy, (52

B. The flat background case

We shall begin our discussion of the 1/4 supersymmetri®vhere
dyons, and of their interpretation as string junctions, by con- % =
sidering first the simpler case of a flat supergravity back- q=(a1)"+(q)"
ground, i.e., we setH=1. Since bothE and B are
divergence-free, it follows from Eq40) that bothX andY
are harmonic functions, vanishing at world space infinity. As E~coga+B)VX', B~sina+pB)VX'. (54)
we will see, the most general string junction can be realized
by choosingX andY to have two centers. Hence, we chooseThis looks like a 1/2 supersymmetric bion with a spike along
two pointse; and o, in 2 and solve the Laplace equations the X’-axis (see Fig. 1, total chargeq and 9= a+ 8.
for X andY everywhere else ifi® by setting In other words, it corresponds to am(n) string with

g5 a3 m=qcoga+p), n=gsina+p). (55)

- dm|lo—o4|  4m|o— oy

(53

The electric and magnetic fields are

X
Similarly, nearo= o, we have

Y Y
a1 4z ax ay

Y= drlo—o,| Am|lo— oy (“48) X~ +Xg, Y

—— = + " .
4| o— o)) Yo (56

47| o— oy
X X Y Y i H

whereqy , 0z, g andg; are constants. The three strings in for constantsxj and Y. This again looks like a 1/2 super-

the string junction now arise from the behavior of the SO'“'symmetric bion, now with its spike at an angjeto the

tion (48) in each of the three regions of world space where it,"5yis with total charge’ and9=a+ v (see Fig. 1, where
simplifies, namely near one of the singularities or far away '

from both of them. = @92+ (a2 tanv=aY/gX 5
Near o= o, we have q (a2)°+(az)%, Y=02/43- (57
g q! In other words, the two approximate bion spikes near either
X~ 1 +Xg, Y 1 +Y,, (49 singularity are rotated relative to each other by the same
4rlo— o 47l o— oy angley— B in both space and charge space.

Finally, consider a region far from both singularities,
where X, and Y, are constants. In new coordinates rotatedyhere

b
y an angles . « Ly
. g1 +0> q:1+a;
X' cosB sinB\ (X Xy Y~ : (58)
= . , (50 wr 4ar
Y’ —sinB cosB/\Y
wherer is the distance from either singularity. We again
with have what looks like a 1/2 supersymmetric bion, with its
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spike at an anglé to the x-axis, with total charge] and 9 y
=a+ 6 (see Fig. 1, where now S, tT X,

q=1(a1+dz)°+ (a7 +a3)? (59
and L

Y Y
+
tans= 2 (60) A
g1 +a; X7

Note thatd is defined by this formula only module. In this
case we take the angle defining the orientation in charge

space to bex+ § even though the angle defining the direc- § X
tion in theX—Y plane isa+ 6+ 7. This is because we con- '
sider the string orientations to be such that this string “en- FIG. 2. The procedure described in the text to assign directions
ters” the junction whereas the other two “leave” it. to the strings.
One important fact that supports the string junction inter-

pretation of the configuration we have described is that, as ifhe analysis is not so straightforward owing to the fact that
easily checked, it satisfies both charge conservatieauired  the explicit expressions fok andY are no longer available.
for existence of a string junctiofb]) and tension balance However, we will see that we have sufficient information to

(required for it to be static and supersymmef6g). verify that the charge conservation and tension balance con-
ditions are still satisfied.
C. The two-center background The main subtlety comes about when trying to assign a

The energy of the configuration described in the previousdirecuon to each of the strings. For definitenes;s, let us look
section is infinite, as expected for a flat background. To findt the region neas,. We haveX~L, andY~L;, so this
finite energy solutions we return to the D3-brane background€9ion is mapped into one of the internal asymptotic regions

with H given by Eq.(34). We set of the background. We would like to determine the direction
in the X—Y plane along whichX and Y approach their
X1= (L,L3,0,....,0 asymptotic values as we approach the surtgcehis will be
the direction along which we will take the string to point. We
>?2=(L2,L§,O, ...0, (61) can proceed in the following way. We consider approaching

S, along a normal to the surface, parametrized by some co-
and we proceed according to the general prescription givefrdinater (see Fig. 2 This normal is mapped to a curve in
earlier. We remove two 3-balls frofif to create two bound- theX—Y plane ending oiX, (see Fig. 2 The tangent vector
aries, S; and S,, that are shells with the topology of to this curve ist=(X’,Y’), where the prime denotes differ-
2-spheres. We take these to be equipotentials \AMW_I entiation with respect to. We still cannot takd to define
=(Ly,L1) onS; and (X,Y)=(L,,Ly) on'S,. The potential e direction of the string, because it depends on the choice

at infinity vanishes. There is a unique solution to the Laplacgf normal to the surface along which we approach it. The
equations forX and'Y subject to these boundary conditions. most natural way to define the string direction is therefore to

Note that now the charges take the average valug of t over S;. In other words, we

define
o= 3£ ds VX,
Si
T,= 3@ dSX= ¢ dS VX=qJ,
Y . S; Sy
q, = das-vy, (i=1,2 (62)
Si
are fixed once the positions of the internal asymptotic re- Tr= i dSY= s ds-vy=qy, (63
1 1

gions of the background are specified. This was to be ex-
pected for the following reason. Because two of the strings
are forced to go down each of these regions, the backgrouriihere we made use of the fact taX andV'Y are normal to
determines completely the relative orientation among théS: (in the electrostatic analogy, this corresponds to the elec-
three strings in the junction. The conditions of charge condric field being normal to a perfectly conducting shellve
servation and tension balance then fix the values of théake the string to lie at an angfe to thex-axis, where
charges.

The three strings arise again from the behavior of the T, q7
solution near each of the shells and far away from both of tanB=—= —)l( (64)
them. Although the final result is the same as in the flat case, T1 of
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which is the same as E@51). The electric and magnetic - y 1 b
charges carried by this string are (E+UTH7=U"" detg+ 5 ganGed*H
1/3 cab
fﬁ dS-E=cosa g} —sina q]=qcod a+B), UGVl (67)
S1

This is essentially the formula given iY] except for the
e X vy shift U™ in the energy due to the WZ term and the
SldS- B=sina q;+cosaq; =qsin(a+p), (65 y.dependence of the right hand side, which is part explicit
and part implicit in theU-dependence of the induced world

. . L space metric,
whereqis given in Eq.(53). The string is therefore am,n)

string withm andn as given in Eq(55). We conclude that

the solution nea, looks like a 1/2 supersymmetric dyon of

total chargeq and 9= a+ . ]
Completely analogous arguments lead to the conclusiohtere. as in7j,

that the solution ne&, looks like another 1/2 supersymmet-

ric dyon, this time with its spike at an angleto the x-axis,

of total chargeq’ and with 9=a+ vy, whereq' and y are

given by Eq.(57). As in the flat background case, we see that

the two approximate 1/2 supersymmetric bions are rotated by 1

the same angle in space and charge space. Finally, far away Vi= ZsadeEHabcHdef (69

from both shells the solution behaves as in EzB), so it

again looks like a third 1/2 supersymmetric bion with spike

at an angle’ to thex-axis, total chargg and 9= a+ 8, with

g andé as in Eqs(59) and(60). dual string solitons representing an M2-brane stretched be-

In summary, th? situation is again as depicted N FI9. 1yyeen the parallel test M5-brane and the background M5-
Charge conservation and tension balance are satisfied. The -~ \ve therefore choose a single-center harmonic
difference is, of course, that now the energy is finite. i

function U, with a singularity on thex-axis at a distancé&
from the origin inE®. Thus, on thec-axis we have

Jab=U 135, + U39, X- 9, X. (68)

~ 1
r)_[abzgsabcde]_|cde

whereH is a closed world volume 3-form.
Our aim is now to findfinite tensionworld volume self-

V. FINITE ENERGY M5-BRANE STRING SOLITONS
Q

Infinite tension self-dual string solitons of the M5-brane U=1+ i (70)
world volume field theory preserving 1/2 supersymmetry (L—X)?
were found in[13], and shown to saturate a Bogomol'nyi-
type bound in[7]. Such solutions reduce to bions on a typeBy arguments analogous to those of previous sections, the
lIA D4-brane, and these are T-dual to the electric D3-branesnergy will be minimized when all scalars bXtare zero.
bions discussed above. Here we shall fiimite tensiorself-  Setting these scalars to zero, the expression for the energy
dual strings on the M5-brane by considering an M5-brane irthen simplifies to
the M5-brane supergravity backgrouf®). We shall follow
the approach of7] for which the starting point is the M5- 1 _ _
brane Hamiltonian, which we now need in an M5-brane(€+U_1)2=U_2+U_1(IaX|2+ §|7-l|2)+|H-VX|2+|V|2
background. This can be extracted from the Hamiltonian (71)
form of the super M5-brane in a general superspace back-
ground given in[18], by proceeding along the lines of Sec. where
II. In order to do this, one needs the expression for the su-
pergravity 6-form potentialCg (dual to Cz), which - I
couples minimally to the M5-brane through the WZ term. | H|?=H*"H6ac004,
For the Mb5-brane solution(5) one choice is Cg)
=U 1vol(}l_{‘,_(s'l)); other allowed choices differ by a gauge |7 9X|2= HAPTL9, X 04X 5
transformation and are therefore physically equivalent. For
this choice, and in the static gauge (72)

- |V|2:VaVb5aba
XM= (t,0?,X), (66)

|9X|2= 9,X3,X 52,
whereo?(a=1,...,5) are thavorld space coordinates, the
energy density for static configurations is This can be rewritten as
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(E+U~1)2=|U1 2= Fabg, X2 whereC:2L/Q1’3ro..The proper distance to=0 is infinite
so we should restrict the world space coordinatéo be
. 1 ~ cd 2 positive. Note that not only does the 3-sphere at constant
+2u a[axfblii‘sa@de contract to a point au=0, but so also does the circle of
a ) ) length | along the ¢ direction. Thus, it is not only the
+HUTH9X) VI, (73) 3-sphere of radius, that is mapped to the single poiﬂt
=(L,0,...,0) in thetarget space; all points on the string
core atr =rg are also mapped to this point.
We are now in a position to evaluate the integral of Eq.

where{ is a unit length world space 5-vector, i.e.

asb —
£ 0ap=1. (74) (78) for the tension of the M5-brane string soliton. There are
It follows that two components obw,. One is atr ==, whereX=0, and
the other is at =ry, whereX=L. The only contribution to
£=[i¥5(dX/\H)| (75)  the integral comes from the latter boundary, so the string
tension is
where *; is the Hodge dual on world space, in the Euclidean 7L 82
metric, andi, denotes contraction with thigonstank vector —La
field £. This inequality is saturated when where
H=*i,/(*sdX), LX=0 (76)
q= S,;',H, (83

where L, is the Lie derivative with respect . These con-
ditions, which are the same as those of the flat backgroung the string chargéas the string threads the 3-spherhe
case, implyL,H=0. The minimum energy solution is there- total energy is thereforéLq, as one would expect for a
fore invariant under translations in tigedirection, which we  membrane of arel. and charge.

may take to be compact with length The total energy is

then VI. INTERSECTING STRINGS ON THE M5-BRANE

E=1x]Z|, (77) We now turn to the study of two intersecting self-dual
strings on the M5-brane, corresponding to the spacetime con-
where Z is the topological charge found by integrating the figuration
4-form dX/\H over the 4-dimensional hypersurfaeg with

normalZ, i.e. M5: 1 2 3 4 5 — — — — —
M2: — — — 4 — 6 — - - -
Z= dx/\H:J XH, (78 M2: — — — — 5 — 7 — — _.

W{ 8W{

i Therefore we allow for two scalars to be excited, in which
where the last equality follows from the fact thdH=0. 55e

The absolute value df can be interpreted as the tension of

the string soliton. 1 -
BecauseH is closed, it also follows thaX is harmonic on (E+UTHZ=U"2+U" Y [oX|?+ |07Y|2+§|H|2

w, . For a single string witiX vanishing at transverse infinity

on the M5-brane we have 1 - -
+ §|¢9X/\aY|2+|H-ax|2+|H.aY|2

q ~
X= ﬁ (r>ro= \/C]/27T2L), (79) +(§X'H'0"Y)2+|V|2 (84)

mr

. . ... where
wherer=\/g2+ - - - + 2 is the distance from the origin in

w,. The lower bound om arises for reasons analogous to 1 ) ) ) 5
those of Sec. lll: ag approaches, from above,X ap- §|C7X/\3Y| =[aX[*|aY[*—(aX-dY)?,
proached. and

o Qrd OX-H- Y=, XH apY. (85)
U~ ~ , 80 _ . . ) .
[L-X(r)]* 8L%?® (€0 We are interested in minimum energy configurations as-
_ o sociated with two membranes that intersect the M5-brane in
whereu=r—r,. The asymptotic world space metric is two non-parallel directions, specified by two constant

5-vectors. Let these vectors span the 4-5 plane and let
% (a=1,2,3) be the coordinates for the orthogonal
complement of world space. In this case, we have

2

du ) 5
—| +CrgudQj (81

d52~Cu(§-dx)2+Q2’3< T
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57y, L 5 BYT45 and
Vo= €0 HPHY +§Ea/37H YH 1
Ko=5eas, P77, T=H, (88)
1 ~
\V,=— aBy Sy
477 Capy I (86) so that
1 V=EXxB+IIK
V5: - EfaﬁyHaBH‘ly.
V,=—E-K (89)
For notational convenience we define Vs=B-K.
Ev=H5, BY=H*, (87)  The right hand side of Eq84) may now be rewritten as

U 24U | VX4 |VY)2+|E|?+|B|2]+ VXX VY[2+ U " TI24 (9,X) %+ (95X) 2+ (9,Y) 2+ (35Y) 2+ | K |?]
+|94XVY = 9, YVX|2+|9sXVY = 95 YVX|2+ (94X 5Y — 34Y 95X) 2+ (B- VX —I195X) %+ (E- VX +119,X)?
+(B-VY—=I195Y)2+(E-VY+119,Y)%+ |K X VX+ B3, X+ EdsX|2+|KXVY+Bd,Y +EdsY|?+ |EXB+1IK|?
+(K-E)2+ (K-B)2+[K-VXXVY+II(9,X35Y — 9,Y3sX) + B-VX3,Y—B-VYIX+E-VXdsY — E-VYgX]?.
(90)

We start to see the beginning of what looks like an expression for the energy of static configurations on the 3-brane obtained
by compactifying the M5-brane on a 2-torus, as expected from the standard duality between M-theory and the type IIB
superstring theory. The comparison is, however, complicated by several factors. One is that the notion of “static” for an
M5-brane configuration does not coincide with what we meant by this term in the D3-brane case. The point is that the 3-form
H on the M5-brane world space includes configuration space variabtbheir conjugate momentaia a constraint relating
H to the momentum conjugate to the 2-form poterjtla]). A related point is that the space transverse to the M5-brane is only
5-dimensional whereas the space transverse to the D3-brane is 6-dimensional. The “sixth” scalar, and its conjugate momen-
tum are encoded in the 3-forhh. In fact, one can roughly vieW as the field strength of the sixth scalar dds its conjugate
momentum, althougK is only a closed 1-form whel andB are independent af* anda®. Clearly, a direct comparison with
the D3-brane energy would require that we include in the latter some “3-scalar” terms as well as some terms that vanish for
static configurationgin the D3-brane sengelnstead, we shall sé&¢ andlIl to zero and compare with the expression for the
energy of static “2-scalar” D3-brane configurations. Note that, under these conditions, the closure of tha-Bifgpties that
E andB are divergence-free, in which case they may be identified as the electric and magnetic fields on the D3-brane.

With this simplification, the expressia®0) can be written, for arbitrary angle, as

[U 1+ cosgE-VX—SingE-VY+singB-VX+coseB- VY ]2+ |EXB—VXXVY|2+ (9,Xd5Y — d4Y d5X)2+ U~ (9,X)?
+(95X) 2+ (94Y) 2+ (95Y) 2]+ |04aXVY = 9,YVX|%+ | 9sXVY — 95 YV X|?+ (9, XI5Y — 94Y 95 X)?
+U YE—coseVX+singVY|?+U Y B—sinpVX—coseVY|?+[singE-VX+coseE-VY—coseB- VX

+5sin@B-VY]2+|Bd,X+EdsX|?+|Bd,Y+EdsY|?+[B-VXd,Y—B-VY3,X+E-VXdsY—E-VYdsX]?. (91
|
We thereby deduce the bound B=sinpVX+coseVY. (94)
£=CospE- VX—singE- VY’LSin‘DB'VXJFCOS‘PB'V(\;'Z) These conditions are precisely those found 4] to be as-
sociated with 1/4 supersymmetry. When they are satisfied,
H 4 5
for any o, with equality when both the 3-vectorsE and B are independent cxfr am_j o”. The
energy of the minimal energy configuration on the
94X = dsX=0,Y=35Y =0, (93 T2-wrapped M5-brane is therefore proportional to the ex-
pression4?2) for the energy of a 1/4 supersymmetric dyon on
and the D3-brane.
The 1/4 supersymmetric dyons discussed earlier thus
E=coseVX—sineVY aquire an M-theory interpretation as intersections on the M5-
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brane of two string boundaries of two M2-branes. When thenapped byX(r) to the “center” X=L of the background
two M2-branes intersect orthogonally, so do the strings. Thisnetric. The induced world space metric nearr, was
maps to a type IIB configuration composed of two orthogo-given asd% in Eq. (29), with u=r —r,. The corresponding
nal bion spikes that are also othogonal in charge space. fvorld volume metric is, forQ=1 and after a constant re-
rotation of the M2-branes away from orthogonality preserv-scaling of the time coordinate,
ing 1/4 supersymmetry corresponds to a simultaneous rota-
tion (of one membrane relative to the othdry the same
angle in the M5-brane and in the space transverse to it. This
corresponds in the type IIB theory to a simultaneous rotation
by the same angle in transverse space and charge space. The submanifold Withdggzo is just AdS, with u=0 a

We can now find finite energy 1/4 supersymmetric soli-Killing horizon of 4,. This is at infinite proper distance on
tons on the M5-brane by the procedure described earlier, bujpacelike geodesics of constabut atfinite affine parameter
we should mention that the relation between the 1/4 supefgn timelike or null geodesics. This is not unexpected because
symmetric M5-brane solitons and the string-junction dyonshe singularity of the spacetime metric at its center is also a
on the D3-brane is straightforward only in the case of theKilling horizon at a finite affine parameter on timelike or null
infinite energy solutions, in a flat background, because iyeodesics. However, although the singularityiat0 is just
general the harmonic functiot) of the M5-brane back- 3 coordinate singularity of AdSit is a curvature singularity

ground is not the same as the harmonic functibof the  of the full 4-metric(95) because the 2-spheres at constant
D3-brane background. The M5-brane transverse space ihyink to points ati=0.

only five-dimensional whereas it is six-dimensional for the |t is not clear to us whether this is really a problem be-
D3-brane. ) ) cause there are no test particles on the D3-brane moving on
_We should also mention that there is more than one posimelike geodesics in this world volume metric. If we were to

sible interpretation of D3-brane dyons as M5-brane solitonsggnsider the time dependent problem in which a wave on the
Recall that the 6-space transverse to the D3-brane is reducgss_prane scatters from a bion then we would have to first
to a 5-space transverse to the M5-brane. This leads one tg|ve the DBI equations for this problem and then recompute
wonder what the M-theory interpretation is of a D3-branethe world volume metric. In general, one would expect the
bion with its spike in this sixth dimension. If the D3-brane yegyit to differ from the static bion metric of E€p5), which
bion is purely magnetic then the answer is that it correspondgou|d be of direct relevance to the time-dependent problem
to a marginal bound state of the M5-brane with an M-wavepn|y if all scalar fluctuations were to vanish. It seems un-
travelling along it. If we compactify along the direction of jikely that the DBI equations will have such solutions when
the wave then we get a DO-brane on a D4-brane of type IlAjnearized about the static bion configuratidrather than
superstring theory. This has a T-dual in type IIB superstringaphout the Minkowski vacuujrbut we have not investigated
theory as a D-string ending on a D3-brane, which is a magthjs in detail. The whole area of time-dependent scattering
netic bion from the perspgctive of the D3—brane world vol-gg|ytions involving bions deserves a separate study.
ume. One gets an electric D3-brane bion from the same A second point concerns the string junction interpretation
M-theory configuration by reducing along another directionof the 1/4 supersymmetric DBI dyons on the D3-brane. Re-
in the M5-brane orthogonal to the M-wave. This leads to || that this involves, in the case of a flat background, sin-
wave on a D4-brane. T-dualizing along the wave directiongy|arities of two harmonic functionX andY at points with
then yields the desired configuration. i3 coordinateso; and o,. Near either singularity, and far
from both, the solution is approximately that of a single 1/2
supersymmetric bion. The term “far from” here refers to a
region in which the distance from either singulafiity the 2
metric) is much larger thano,— o,|. The larger| o, — o

We have seen that finite energy configurations of type 1IBis, the further out is this region and the smaller is the devia-
superstring theory in whichnf,n) strings are suspended be- ton of the worldspace metric from the Euclidean metric.
tween D3-branes can be found as 1/2 or 1/4 supersymmetrithus, for large|o,— o] it is more natural to interpret the
solitons on a test D3-brane in a supergravity D3-brane backworld space configuration as one for which two strings meet
ground, the 1/4 supersymmetric solitons having a natural inthe D3-brane at widely separated points. Only as the separa-
terpretation in terms of string junctions. These solitons ardion of these points decreases does the string junction inter-
Abelian analogues of the finite energy supersymmetric solipretation become the natural one. Even in this case one could
tons of D=4 N=4 SYM theory. There are similar 1/2 and interpret the deviation of the world space from the Euclidean
1/4 supersymmetric solitons on a test M5-brane in a supemetric as that required to support two strings meeting the
gravity M5-brane background, related by dualities to thoseéD3-brane at the pointe= o, and o= o, just as the single
on the D3-brane. In our exposition of these results webion solution has the alternative interpretation as the devia-
glossed over a few points, and we shall conclude with a briefion required to support an attached strifi,19, rather
discussion of them. than as the string itself.

The first point has to do with whether the bion solutions  Finally, we should mention that string junction dyons
we have have found are really non-singular. Consider theonstitute a special case of string web dy§28] in which
one bion solution in which the sphere ¥ of radiusr, is  three or more parallel D3-branes are connected by a network

2442 du ? 2,,2 2
ds;=—u?dt’+ -] +LAu?dos. (95)

VII. DISCUSSION
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