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It is shown that the world volume field theory of a single D3-brane in a supergravity D3-brane background
admits finite energy, and non-singular, Abelian monopoles and dyons preserving 1/2 or 1/4 of theN54
supersymmetry and saturating a Bogomol’nyi-type bound. The 1/4 supersymmetric solitons provide a world
volume realization of string-junction dyons. We also discuss the dual M-theory realization of the 1/2 super-
symmetric dyons as finite tension self-dual strings on the M5-brane, and of the 1/4 supersymmetric dyons as
their intersections.@S0556-2821~99!04116-8#
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I. INTRODUCTION

The N54 supersymmetric Yang-Mills~SYM! theory
with gauge groupSU(k) spontaneously broken toU(1)k21

has a spectrum of 1/2 supersymmetric magnetic monop
and dyons which, together with the ‘‘elementary’’ particl
of the perturbative spectrum, fill out orbits of anSL(2;Z)
electromagnetic duality group. Each such particle has an
terpretation in type IIB superstring theory as an (m,n) string
stretched between a pair of parallel D3-branes, chosen f
among k parallel D3-branes. Fork52 there are no othe
particles in the spectrum but fork>3 there are additional
1/4 supersymmetric, dyons that are entirely non-perturba
in the sense that they belong toSL(2;Z) orbits that contain
no ‘‘elementary’’ particles. Although these can be found
classical solutions of the SYM field equations@1–3# they
were first found as type IIB superstring configurations
which three strings of different (m,n) charges, attached t
three D3-branes, meet at a string junction@4#. These are
points at which two type IIB strings of charges (m,n) and
(m8,n8) meet to form a string of charge (m1m8,n1n8) @5#.
The minimum energy state to which the configuration
laxes is one in which three strings leaving the three D
branes meet at a planar string junction@6,7#.

Actually, the effective action of the D3-branes is not
SYM theory but rather a supersymmetric non-Abelian Dira
Born-Infeld~DBI! theory. The precise nature of this theory
not known ~see @8# for a recent discussion! but it has an
expansion in powers ofa8F that simplifies in certain limits;
a8 is the inverse type IIB string tension andF is the ~back-
ground covariant! Born-Infeld field strength. IfL is the mini-
mal separation between the D3-branes then~as we shall later
see explicitly! a8F;L2/a8, so the expansion parameter
actuallyL2/a8. ForL!Aa8 we need keep only the quadrat
terms inF and the action reduces to theN54 SYM theory
~for a vacuum type IIB background!. For L@Aa8 we cannot
truncate the expansion but we may neglect the non-Abe
interactions; the action then reduces to a sum of Abelian D
actions governing the dynamics of independent parallel
branes. The D3-brane action depends on the supergra
0556-2821/99/60~4!/045004~12!/$15.00 60 0450
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background. For example,F5F2B where F is the usual
2-form U(1) field strength, satisfyingdF50, andB is the
pullback of the background Neveu-Schwarz–Neve
Schwarz~NS-NS! 2-form potential. The D3-brane couples
the background Ramond-Ramond~R-R! gauge fields through
a Wess-Zumino LagrangianLWZ . Let j i be the world vol-
ume coordinates, (i 50,1,2,3). Omitting fermions and settin
a851, the Lagrangian is then

L52e2fA2det~gi j 1Fi j !1LWZ ~1!

where gi j is the induced world volume metric andf the
background dilaton field. For the backgrounds we consid
f is a constant,B vanishes, andLWZ is just the minimal
coupling of the D3-brane to the 4-form gauge potential
type IIB supergravity.

For widely separated branes it makes sense to ask wh
dyon looks like locally on one of the D3-branes, i.e., as
solution of theAbelianN54 supersymmetric DBI theory
with the above Lagrangian. Because Abelian monopoles
dyons have infinite energy, this question would not ma
sense in the context of aU(1) SYM theory, but the infinite
energy has a natural interpretation in the DBI context as
energy associated with an infinite string of fixed tension.
fact, the Abelian DBI theory does have infinite energy 1
supersymmetric solutions that appear as ‘‘spikes’’ on
world volume with uniform energy per unit length@9,10#.
The ‘‘spike’’ solutions of the Abelian DBI theory were
called bions in@7#, following a slightly different use of this
term in @10#. In the case of the D3-brane there are dyon
(m,n)-bions corresponding to infinite (m,n) strings that end
on the D3-brane. Although the infinite energy of a bion ha
clear physical interpretation, it is nevertheless a cause
concern because, for example, solutions with infinite ene
make no contribution to the semi-classical evaluation of
path-integral. One should really think of these solutions
limiting cases of the more physical situation in which t
string eventually ends on another D3-brane, but it might th
appear that we are forced to return to the non-Abelian D
theory. One purpose of this paper is to show that this pr
lem can be circumvented by replacing the second D3-br
©1999 The American Physical Society04-1



or

he
t

d

te
su
3-
a
n

an

f
n
o

e
om
th

k
ns
l
a
n

e
is

en
d

on

et
ou
n

re
er

o

p

rge

the

Eu-
-

as
ain
nd
ase

f
the
o

he
-

he
tric

IIB
ual

om
es
ne
that
-
rm

the

ns
est
al

3-
ect-
5-

J. P. GAUNTLETTet al. PHYSICAL REVIEW D 60 045004
by a supergravity D3-brane background. Our work theref
has links to some studies of branes in the AdS53S5 back-
ground found by considering the near-horizon limit of t
D3-brane solution, e.g.@11#. We should also point out tha
the infinite energy problem is circumvented by certainnon-
supersymmetricsolutions of the DBI action@10#, although
these do not correspond to Bogomol’nyi-Prasa
Sommerfield~BPS! states ofN54 SYM theory.

The super D3-brane action can be consistently formula
in any background that solves the equations of type IIB
pergravity. One such solution is the ‘‘supergravity D
brane.’’ For this solution the dilaton is constant and we sh
set it to zero; this corresponds to unit string coupling co
stant. The remaining non-vanishing fields are the metric
the 4-form potentialC with self-dual 5-form field strength
R5dC. These are given by

ds25H21/2ds2~E(1,3)!1H1/2ds2~E6!

R5vol~E(1,3)!`dH211!6dH ~2!

where!6 is the Hodge dual onE6 andH is harmonic on this
space. Point singularities ofH are coordinate singularities o
the spacetime metric at connected components of a dege
ate event horizon. The proper distance to the horizon
spacelike hypersurfaces of constantE(1,3) coordinates is infi-
nite, so that there are ‘‘internal’’ asymptotic infinities. If w
wish the D3-brane horizon to have a single connected c
ponent then we must choose a ‘‘single-center’’ metric wi

H511
Q

uXW 2XW 0u4
, ~3!

whereXW are Cartesian coordinates onE6 andXW 0 is a constant
E6 6-vector. Let us now put a test D3-brane in this bac
ground, atXW 50. The DBI equations can now have solutio
representing infinite (m,n) strings that go into the interna
asymptotic region of the background geometry. We sh
show that there exist static bion solutions of this type, a
that they have afinite energy, saturating a Bogomol’nyi-typ
bound. In fact, ifuXW 0u5L then the energy of the static bion
preciselyL times the tension of an (m,n) string. Effectively,
we have replaced the ‘‘second’’ D3-brane of theSU(2)
theory by a D3-brane background, thereby finding finite
ergy, and non-singular, supersymmetric monopoles and
ons in theAbelian DBI theory. Actually, it would be more
accurate to consider this ‘‘brane in brane background’’ c
figuration as representing the largek limit of an SU(k)
theory broken toSU(k21)3U(1) with the SU(k21)
theory replaced by the supergravity background.

The same logic that leads us to expect 1/2 supersymm
bions on the D3-brane also leads us to expect that it sh
be possible to find the 1/4 supersymmetric string junctio
this way. Consider first the case in which one of the th
strings in a string junction configuration has shrunk to z
length. In this case we are left with a configuration of tw
‘‘overlapping’’ strings of different (m,n) charges each
stretched between a different pair of D3-branes. In the s
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cial case of an orthogonal overlap of an F-string, cha
~1,0!, with a D-string, charge~0,1!, this configuration can be
represented by the array

D3: 1 2 3 2 2 2 2 2 2

D1: 2 2 2 4 2 2 2 2 2

F1: 2 2 2 2 5 2 2 2 2 .

The corresponding 1/4 supersymmetric dyon solution on
D3-brane was recently found@12#; it depends on two inde-
pendent world space functions that are harmonic in the
clidean metric. Here we shall find the general ‘‘two
harmonic-function’’ solution and explain its interpretation
a string junction. In a flat background these solutions ag
have infinite energy. The strategy explained above to fi
finite energy solutions can be used here too, but in this c
we must use a background harmonic functionH with two
isolated singularities; i.e., we replace Eq.~3! by

H511
Q1

uXW 2XW 1u4
1

Q2

uXW 2XW 2u4
~4!

whereXW 1 and XW 2 are two 6-vectors giving the positions o
the background supergravity D3-branes. A string leaving
test D3-brane can now split, at a string junction, into tw
strings, each of which continues indefinitely into one of t
two ‘‘internal’’ asymptotic regions of the background geom
etry. As we shall see, such configurations correspond tofinite
energy Abelian DBI solitons saturating precisely t
Bogomol’nyi-type bound expected of a 1/4 supersymme
dyon.

The 1/2 supersymmetric dyons on a D3-brane of type
superstring theory have an M-theory counterpart as self-d
string solitons on an M5-brane@13,7#. In flat D511 space-
time these strings have infinite tension, as expected fr
their spacetime interpretation as semi-infinite M2-bran
with a boundary on an M5-brane. However the M5-bra
action can be consistently formulated in any background
solves the equations of D511 supergravity. One such solu
tion is the supergravity M5-brane. The 11-metric and 4-fo
field strength of this solution are

ds11
2 5U21/3ds2~E(5,1)!1U2/3dXW •dXW

F (4)5!5dU ~5!

whereXW are Cartesian coordinates onE5 andU is a harmonic
function on this space. Singularities ofU are just horizons of
the 11-metric which are at an infinite proper distance on
spacelike hypersurfaces of constantE(5,1) coordinates. In
other words, there are again ‘‘internal’’ asymptotic regio
into which we can take an M2-brane emanating from a t
M5-brane in this background. In this way we find self-du
string solitons on the M5-brane world volume withfinite
tension. The 1/4 supersymmetric dyons on the type IIB D
brane also have an M-theory analogue, this time as inters
ing self-dual string solitons on the M5-brane. For an M
brane in flat spacetime, these were found in@14# from the
4-2
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FINITE ENERGY DIRAC-BORN-INFELD MONOPOLES . . . PHYSICAL REVIEW D60 045004
requirement of 1/4 supersymmetry; here we show that t
saturate a Bogomol’nyi-type bound, although the total
ergy is, of course, infinite. By considering the M5-brane in
two-center M5-brane background we are able to find so
tions that represent intersecting finite-tension self-d
strings.

We begin with some details of the D3-brane Hamiltoni
in a supergravity D3-brane background that we need for
subsequent discussion of finite energy bions and string ju
tions. We then discuss the dual M-theory realization of th
solitons.

II. D3-BRANE HAMILTONIAN IN A D3-BRANE
BACKGROUND

The Hamiltonian form of the super D3-brane Lagrang
density in a general superspace background was give
@15#. Setting fermions to zero and specializing to a ba
ground of the form assumed above we have

L5PmẊm1EaV̇a1VtG2saPa2
1

2
vH ~6!

where Xm are the spacetime coordinates andPm the 10-
momentum (m50,1, . . . ,9), andVa is the BI 3-vector po-
tential (a51,2,3) andEa its conjugate electric field 3-vector
The constraint functions associated with the constraints
posed by the Lagrange multipliersVt , sa andv are

H5Gmn~P2C!m~P2C!n1EaEbgab1det~g1F !

G5]aEa ~7!

Pa5~P2C!m]aXm1EbFba

whereG is the background metric,g is the induced world
space metric,F the magnetic field 2-form andCm is the co-
efficient of Ẋm in the Wess-Zumino~WZ! term, i.e.,LWZ

5ẊmCm .
In the static gauge

Xm5~j i ,XW !, ~8!

wherej i5(t,sa) are the world volume coordinates, we ha

Cm5~C,0,CW !, ~9!

where, for a background of the form assumed here,

C5H21. ~10!

In addition, the constraintPa50 implies, in static gauge, tha

Pm5„2E,2~PW 2CW !•]aXW 2EbFab ,PW … ~11!

whereE is the energy density. SincePW 2CW vanishes for static
configurations we have

~P2C!m5~2E2H21,2EbFab ,0W !. ~12!
04500
y
-

-
l

ur
c-
e

in
-

-

If this is now used in the constraintH50 we can solve forE
to get

~E1H21!25EcEdFacFbdd
ab1H21/2

3@EaEbgab1det~g1F !# ~13!

where

gab5H21/2dab1H1/2]aXW •]bXW . ~14!

WhenH51 this reduces to the result given in@7# except for
a shift of the vacuum energy. To obtain precisely the res
of @7# whenH51 one would have to takeC5H2121; the
difference is just a gauge transformation and hence with
physical significance. The choiceC5H21 is convenient be-
cause it ensures that the WZ term cancels the vacuum en
of the DBI term.

III. FINITE ENERGY BIONS

We shall begin by choosing the harmonic functionH to
have the form~3! with XW 05(L,0, . . . ,0). On theX-axis we
then have

H511
Q

~X2L !4 . ~15!

We shall be interested in bions that can be interpreted
strings stretched between the test D3-brane and the so
D3-brane. It is obvious that the minimum energy configu
tion must then be one for which the only non-zero wo
volume field isX(s) so we now set the others to zero. In th
case

gab5H212dab1H1/2]aX]bX ~16!

and

det~g1F !5H23/2@11Hu¹Xu21HuBu2#1H1/2~¹X•B!2

~17!

whereB is the magnetic field 3-vector defined by

Fab5«abcBc . ~18!

This leads to the formula

~E1H21!25H221H21@ u¹Xu21uEu21uBu2#1~¹X•E!2

1~¹X•B!21uE3Bu2 ~19!

which we can rewrite, for arbitrary angleq, as

~E1H21!25@H211cosq~E•¹X!1sinq~B•¹X!#2

1H21uE2cosq¹Xu21H21uB2sinq¹Xu2

1usinq~E•¹X!2cosq~B•¹X!u21uE3Bu2.

~20!

From this expression we deduce the bound
4-3
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J. P. GAUNTLETTet al. PHYSICAL REVIEW D 60 045004
~E1H21!2>@H211cosq~E•¹X!1sinq~B•¹X#2

~21!

and hence that

E>cosq~E•¹X!1sinq~B•¹X! ~22!

for any q. Integrating over the world space and then ma
mizing the right hand side with respect toq we arrive at the
bound

M[E d3sE>AQe
21Qm

2 ~23!

where

Qe5E d3sE•¹X5 R dS•EX,

Qm5E d3sB•¹X5 R dS•BX. ~24!

Here we have used the fact thatB is divergence-free by
definition and thatE is divergence-free as a result of th
Gauss law constraint. The final surface integrals must
taken over all components of the boundary surface of wo
space.

The bound~23! is saturated by solutions of

E5cosq¹X, B5sinq¹X, ~25!

where tanq5Qm /Qe . These are just the flat space Abelia
Bogomol’nyi equations. Since bothE andB are divergence-
free we deduce, as in the flat-space case, thatX is harmonic
on worldspace~in the Euclidean metric!. For a single bion of
chargeq with X vanishing at spatial infinity on the brane w
have

X5q/4pr ~r .r 0[q/4pL ! ~26!

wherer 5usu is the distance from the origin inE3.
The lower bound onr comes about because the wor

space metric is

ds3
25FH21/21S Lr 0

r 2 D 2

H1/2Gdr21H21/2dV2
2 , ~27!

where now

H511
Qr4

L4~r 2r 0!4 . ~28!

As r approachesr 0 from above we have

ds3
2;Q1/2S du

u D 2

1Q21/2L2u2dV2
2 ~29!

where u5r 2r 0. The proper distance tor 5r 0 is therefore
infinite. In fact, the sphere atr 5r 0 is mapped to a single
point XW 5XW 0 in the transverse space. The world space o
single bion along the x-axis therefore has two boundar
04500
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one at r 5`, whereX50, and another atr 5r 0, whereX
5L. The surface integrals of Eq.~24! vanish at ther 5`
boundary, and sinceX5L on the other boundary we have

Qe5L qe , Qm5L qm , ~30!

where

qe5 R dS•E5cosq q,

qm5 R dS•B5sinq q ~31!

are the electric and magnetic charges coupling to the BI fi
on the brane. The bion mass is therefore

M5uquL/~a8!2 ~32!

where we have now reinstateda8. This is the mass of a
string of tensionuqu/(a8)2 and lengthL. Taking into acount
the quantization condition on the type IIB string charges, a
the fact that we have set the string coupling constant to un
the tension of an (m,n) string isAm21n2/a8, so

q5a8Am21n2. ~33!

Reinstatinga8 in ~25! we see that the maximum value o
a8E or a8B is L2/q;L2/a8, so the expansion parameter
the DBI action isL2/a8, as claimed earlier. Actually, ifm or
n is very large then the effective expansion parameter is
ally smaller thanL2/a8 by a factor of 1/Am21n2. For given
L, the neglect of the DBI corrections to the SYM theory c
therefore be justified by considering a sufficiently lar
charge, so the SYM theory is adequate for a description
macroscopic objects. The DBI corrections are important o
for the description of microscopic objects.

In terms of the electrostatic analogy, the above constr
tion can be viewed as a regularization of the infinite se
energy of a point particle in which a point charge is replac
by a perfectly conducting charged spherical shell. This
clearly unsatisfactory as a solution to the electrostatic s
energy problem of electrodynamics because any surfac
spherical topology carrying the same total charge wo
serve the same purpose. Here too we could replace
spherical shell by a shell of any other shape, but in our c
this has no effect on the physics. To see this we first note
the surface of the shell is, by hypothesis, an equipoten
with potential X5L. It follows that every point on it is
mapped to the pointXW 5XW 0 in transverse space. This point
at infinite proper distance in the transverse space metric
hence in the induced world space metric. The equipoten
surfaceX5L in E3 is therefore a point at infinity in the
induced world space metric. Neighboring equipotential s
faces of constantX,L can be used to define coordinates
the neighborhood ofX5L for which X is again given by Eq.
~26!. It then follows that the induced world volume metric
this neigborhood is Eq.~29!. But the minimum energy metric
4-4
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is determined by its behavior near points at infinity. T
initial shape of the shell is therefore irrelevant to the fin
solution.

The spherical symmetry of the one bion solution is the
fore in no way essential to the construction of finite ene
bions, and multi-bion solutions can be constructed ana
gously: we removen closed surfaces of spherical topolog
from E3 and choose their potentialX to correspond to the
center of the background D3-brane spacetime metric.
potential is set to zero at infinity. There is now a uniq
solution of Laplace’s equation forX; this is the sought multi-
bion solution. Using this solution we may compute the wo
space metric to which it corresponds. This metric will haven
points at infinity, near each of which it will take the form
~29!. Different shapes of the initial surfaces just correspo
to different choices of coordinates for the~unphysical! Eu-
clidean 3-space.

IV. DBI STRING JUNCTIONS

In this section we will first derive the general bound sa
rated by 1/4 supersymmetric dyons in a general two-ce
D3-brane background; then we will move on to discuss th
interpretation as string junctions in the simpler case of a
background, to return finally to their interpretation in th
general case.

A. The BPS bound

So far we have considered a test D3-brane in a sin
center parallel D3-brane background. We now want to c
sider a two-center background, e.g.

H511
1

uXW 2XW 1u
1

1

uXW 2XW 2u
~34!

whereXW 1 andXW 2 are two non-zero vectors. We may choo
them to lie in the plane for whichXW 5(X,Y,0, . . . ,0). A
static D3-brane configuration in such a background will g
erally have non-constantX(s) andY(s). The same reason
ing as before now leads to the following expression for
energy density:

~E1H21!25H221H21@ u¹Xu21u¹Yu21uEu21uBu2#

1~¹X•E!21~¹Y•E!21~¹X•B!21~¹Y•B!2

1uE3Bu21u¹X3¹Yu2. ~35!

We can rewrite the right hand side, for arbitrary anglea as

@H211cosa E•¹X2sina E•¹Y1sina B•¹X

1cosa B•¹Y#21H21@E2cosa ¹X1sina ¹Y#2

1H21@B2sina ¹X2cosa ¹Y#2n1@sina E•¹X

1cosa E•¹Y2cosa B•¹X1sina B•¹Y#2

1uE3B2¹X3¹Yu2. ~36!

We thereby deduce that
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E>cosa E•¹X2sina E•¹Y1sina B•¹X1cosa B•¹Y,
~37!

for anya. By integrating over the world space and maximi
ing the right hand side with respect toa, we deduce that the
total massM satisfies the bound

M>A~Qm
X2Qe

Y!21~Qm
Y1Qe

X!2 ~38!

where (Qe
X ,Qe

Y) and (Qm
X ,Qm

Y) are the non-vanishing com
ponents of the electric and magnetic charge 6-vectors

QW e5 R dS•EXW , QW m5 R dS•BXW . ~39!

The bound is saturated when

E5cosa“X2sina“Y,

B5sina“X1cosa“Y, ~40!

where

tana5
Qm

X2Qe
Y

Qe
X1Qm

Y . ~41!

The massM of configurations saturating the bound may
rewritten in the form

M>AuQW eu21uQW mu212uQW euuQW musinj ~42!

wherej is the angle between the two 6-vectorsQW e andQW m .
This is precisely the mass formula for 1/4 supersymme
dyons inN54 D54 SYM theories@16,4#. It is invariant
under SO(6) rotations of the 6-vectorsQW e and QW m , and
under anSO(2) rotation of these two 6-vectors into eac
other, as expected from theU(4) automorphism group of the
N54 D54 supersymmetry algebra. When sinj50 we re-
cover the formula for 1/2 supersymmetric configurations
which M2 is proportional to the unique quadraticU(4) in-
variant polynomial that can be constructed fromQW e andQW m
@17#.

These results actually follow directly from the supersy
metry algebra, as we now show. TheN54 supersymmetry
charges can be taken to be four two-component comp
spinors ofSL(2;C) in the fundamental4 representation of
U(4). Let Qa

i (a51,2, i 51,2,3,4) be these charges, wi

Qȧ i their complex conjugates in the4̄ representation of
U(4). Thematrix of anticommutators of these charges is

$Q,Q%5S «abZi j dk
i Paȧ

d j
l Pbḃ «ȧḃZ̄kl

D ~43!

whereP is the 4-momentum andZ a complex central charge
in the 6 representation ofSU(4). From the fact that the
left-hand side of Eq.~43! is positive semi-definite we deduc
~by considering its determinant! the bound

M422aM21a224b>0 ~44!
4-5
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whereM252P2, and

a5
1

4
Zi j Z̄i j , a224b5uPfZi j u2 ~45!

are U(4)-invariant polynomials@Pf denotes the Pfaffian o
the antisymmetric matrixZ; because this is complex on
must take its modulus squared to get a polynomialU(4)
invariant#. The bound~44! is saturated when

M25a12Ab ~46!

where we take the positive square root because this yields
strongest bound. Comparison with Eq.~42! shows that

a5uQW eu21uQW mu2,

b5uQW eu2uQW mu22~QW e•QW m!2. ~47!

When b50 this reduces to the formulaM25uQW eu21uQW mu2

applicable to 1/2 supersymmetric dyons. Otherwise only
supersymmetry is preserved.

B. The flat background case

We shall begin our discussion of the 1/4 supersymme
dyons, and of their interpretation as string junctions, by c
sidering first the simpler case of a flat supergravity ba
ground, i.e., we setH51. Since both E and B are
divergence-free, it follows from Eq.~40! that bothX and Y
are harmonic functions, vanishing at world space infinity.
we will see, the most general string junction can be reali
by choosingX andY to have two centers. Hence, we choo
two pointss1 ands2 in E3 and solve the Laplace equation
for X andY everywhere else inE3 by setting

X5
q1

X

4pus2s1u
1

q2
X

4pus2s2u

Y5
q1

Y

4pus2s1u
1

q2
Y

4pus2s2u
~48!

whereq1
X , q2

X , q1
Y andq2

Y are constants. The three strings
the string junction now arise from the behavior of the so
tion ~48! in each of the three regions of world space wher
simplifies, namely near one of the singularities or far aw
from both of them.

Nears5s1 we have

X;
q1

X

4pus2s1u
1X0 , Y;

q1
Y

4pus2s1u
1Y0 , ~49!

whereX0 and Y0 are constants. In new coordinates rotat
by an angleb

S X8

Y8
D 5S cosb sinb

2sinb cosb D S X

YD , ~50!

with
04500
he

4

ic
-
-

s
d

-
it
y

d

tanb5q1
Y/q1

X , ~51!

we have

X8;
q

4pus2s1u
1X08 , Y8;Y08 , ~52!

where

q5A~q1
X!21~q1

Y!2. ~53!

The electric and magnetic fields are

E;cos~a1b!¹X8, B;sin~a1b!¹X8. ~54!

This looks like a 1/2 supersymmetric bion with a spike alo
the X8-axis ~see Fig. 1!, total chargeq andq5a1b.

In other words, it corresponds to an (m,n) string with

m5q cos~a1b!, n5q sin~a1b!. ~55!

Similarly, nears5s2 we have

X;
q2

X

4pus2s2u
1X09 , Y;

q2
Y

4pus2s2u
1Y09 . ~56!

for constantsX09 andY09 . This again looks like a 1/2 super
symmetric bion, now with its spike at an angleg to the
x-axis, with total chargeq8 andq5a1g ~see Fig. 1!, where

q85A~q2
X!21~q2

Y!2, tang5q2
Y/q2

X . ~57!

In other words, the two approximate bion spikes near eit
singularity are rotated relative to each other by the sa
angleg2b in both space and charge space.

Finally, consider a region far from both singularitie
where

X;
q1

X1q2
X

4pr
, Y;

q1
X1q2

Y

4pr
, ~58!

where r is the distance from either singularity. We aga
have what looks like a 1/2 supersymmetric bion, with

FIG. 1. The string junction described in the text.
4-6
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spike at an angled to thex-axis, with total chargeq̃ andq
5a1d ~see Fig. 1!, where now

q̃5A~q1
X1q2

X!21~q1
Y1q2

Y!2 ~59!

and

tand5
q1

Y1q2
Y

q1
X1q2

X
. ~60!

Note thatd is defined by this formula only modulop. In this
case we take the angle defining the orientation in cha
space to bea1d even though the angle defining the dire
tion in theX2Y plane isa1d1p. This is because we con
sider the string orientations to be such that this string ‘‘e
ters’’ the junction whereas the other two ‘‘leave’’ it.

One important fact that supports the string junction int
pretation of the configuration we have described is that, a
easily checked, it satisfies both charge conservation~required
for existence of a string junction@5#! and tension balance
~required for it to be static and supersymmetric@6#!.

C. The two-center background

The energy of the configuration described in the previo
section is infinite, as expected for a flat background. To fi
finite energy solutions we return to the D3-brane backgro
with H given by Eq.~34!. We set

XW 15~L1 ,L18,0, . . . ,0!

XW 25~L2 ,L28,0, . . . ,0!, ~61!

and we proceed according to the general prescription g
earlier. We remove two 3-balls fromE3 to create two bound-
aries, S1 and S2, that are shells with the topology o
2-spheres. We take these to be equipotentials with (X,Y)
5(L1 ,L18) on S1 and (X,Y)5(L2 ,L28) on S2. The potential
at infinity vanishes. There is a unique solution to the Lapla
equations forX andY subject to these boundary condition
Note that now the charges

qi
X5 R

Si

dS•¹X,

qi
Y5 R

Si

dS•¹Y, ~ i 51,2! ~62!

are fixed once the positions of the internal asymptotic
gions of the background are specified. This was to be
pected for the following reason. Because two of the strin
are forced to go down each of these regions, the backgro
determines completely the relative orientation among
three strings in the junction. The conditions of charge c
servation and tension balance then fix the values of
charges.

The three strings arise again from the behavior of
solution near each of the shells and far away from both
them. Although the final result is the same as in the flat ca
04500
e
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-
is

s
d
d

n

e
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x-
s
nd
e
-
e

e
f
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the analysis is not so straightforward owing to the fact t
the explicit expressions forX andY are no longer available
However, we will see that we have sufficient information
verify that the charge conservation and tension balance c
ditions are still satisfied.

The main subtlety comes about when trying to assig
direction to each of the strings. For definiteness, let us lo
at the region nearS1. We haveX;L1 and Y;L18 , so this
region is mapped into one of the internal asymptotic regio
of the background. We would like to determine the directi
in the X2Y plane along whichX and Y approach their
asymptotic values as we approach the surfaceS1; this will be
the direction along which we will take the string to point. W
can proceed in the following way. We consider approach
S1 along a normal to the surface, parametrized by some
ordinater ~see Fig. 2!. This normal is mapped to a curve i
theX2Y plane ending onXW 1 ~see Fig. 2!. The tangent vector
to this curve istW5(X8,Y8), where the prime denotes differ
entiation with respect tor. We still cannot taketW to define
the direction of the string, because it depends on the ch
of normal to the surface along which we approach it. T
most natural way to define the string direction is therefore
take the average valueTW of tW over S1. In other words, we
define

T1[ R
S1

dS X85 R
S1

dS•¹X5q1
X ,

T2[ R
S1

dS Y85 R
S1

dS•¹Y5q1
Y , ~63!

where we made use of the fact that¹X and¹Y are normal to
S1 ~in the electrostatic analogy, this corresponds to the e
tric field being normal to a perfectly conducting shell!. We
take the string to lie at an angleb to thex-axis, where

tanb5
T2

T1
5

q1
Y

q1
X

, ~64!

FIG. 2. The procedure described in the text to assign directi
to the strings.
4-7
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which is the same as Eq.~51!. The electric and magneti
charges carried by this string are

R
S1

dS•E5cosa q1
X2sina q1

Y5q cos~a1b!,

R
S1

dS•B5sina q1
X1cosa q1

Y5q sin~a1b!, ~65!

whereq is given in Eq.~53!. The string is therefore an (m,n)
string with m andn as given in Eq.~55!. We conclude that
the solution nearS1 looks like a 1/2 supersymmetric dyon o
total chargeq andq5a1b.

Completely analogous arguments lead to the conclus
that the solution nearS2 looks like another 1/2 supersymme
ric dyon, this time with its spike at an angleg to thex-axis,
of total chargeq8 and with q5a1g, whereq8 and g are
given by Eq.~57!. As in the flat background case, we see th
the two approximate 1/2 supersymmetric bions are rotated
the same angle in space and charge space. Finally, far a
from both shells the solution behaves as in Eq.~58!, so it
again looks like a third 1/2 supersymmetric bion with spi
at an angled to thex-axis, total chargeq̃ andq5a1d, with
q̃ andd as in Eqs.~59! and ~60!.

In summary, the situation is again as depicted in Fig.
Charge conservation and tension balance are satisfied.
difference is, of course, that now the energy is finite.

V. FINITE ENERGY M5-BRANE STRING SOLITONS

Infinite tension self-dual string solitons of the M5-bra
world volume field theory preserving 1/2 supersymme
were found in@13#, and shown to saturate a Bogomol’ny
type bound in@7#. Such solutions reduce to bions on a ty
IIA D4-brane, and these are T-dual to the electric D3-bra
bions discussed above. Here we shall findfinite tensionself-
dual strings on the M5-brane by considering an M5-brane
the M5-brane supergravity background~5!. We shall follow
the approach of@7# for which the starting point is the M5
brane Hamiltonian, which we now need in an M5-bra
background. This can be extracted from the Hamilton
form of the super M5-brane in a general superspace b
ground given in@18#, by proceeding along the lines of Se
II. In order to do this, one needs the expression for the
pergravity 6-form potentialC(6) ~dual to C(3)), which
couples minimally to the M5-brane through the WZ ter
For the M5-brane solution~5! one choice is C(6)
5U21 vol(E(5,1)); other allowed choices differ by a gaug
transformation and are therefore physically equivalent.
this choice, and in the static gauge

Xm5~ t,sa,XW !, ~66!

wheresa(a51, . . . ,5) are theworld space coordinates, th
energy density for static configurations is
04500
n

t
y
ay

.
he

e

n

n
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r

~E1U21!25U21/3Fdetg1
1

2
gabgcdH̃acH̃bd

1U1/3dabVaVbG . ~67!

This is essentially the formula given in@7# except for the
shift U21 in the energy due to the WZ term and th
U-dependence of the right hand side, which is part expl
and part implicit in theU-dependence of the induced wor
space metric,

gab5U21/3dab1U2/3]aXW •]bXW . ~68!

Here, as in@7#,

H̃ab5
1

6
«abcdeHcde

Vf5
1

24
«abcdeHabcHde f ~69!

whereH is a closed world volume 3-form.
Our aim is now to findfinite tensionworld volume self-

dual string solitons representing an M2-brane stretched
tween the parallel test M5-brane and the background M
brane. We therefore choose a single-center harmo
function U, with a singularity on thex-axis at a distanceL
from the origin inE5. Thus, on thex-axis we have

U511
Q

~L2X!3
. ~70!

By arguments analogous to those of previous sections,
energy will be minimized when all scalars butX are zero.
Setting these scalars to zero, the expression for the en
then simplifies to

~E1U21!25U221U21S u]Xu21
1

2
uH̃u2D1uH̃•¹Xu21uVu2

~71!

where

uH̃u25H̃abH̃cddacdbd ,

uH̃•]Xu25H̃abH̃cd]bX]dXdac ,

~72!

uVu25VaVbdab,

u]Xu25]aX]bXdab.

This can be rewritten as
4-8
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~E1U21!25uU21 za6H̃ab]bXu2

12U21U] [aXzb]6
1

2
dacdbdH̃cdU2

1U21~za]aX!21uVu2, ~73!

wherez is a unit length world space 5-vector, i.e.

zazbdab51. ~74!

It follows that

E>u i z* 5~dX`H !u ~75!

where *5 is the Hodge dual on world space, in the Euclide
metric, andi z denotes contraction with the~constant! vector
field z. This inequality is saturated when

H56 i z~* 5dX!, LzX50 ~76!

whereLz is the Lie derivative with respect toz. These con-
ditions, which are the same as those of the flat backgro
case, implyLzH50. The minimum energy solution is there
fore invariant under translations in thez direction, which we
may take to be compact with lengthl. The total energy is
then

E> l 3uZu, ~77!

whereZ is the topological charge found by integrating t
4-form dX`H over the 4-dimensional hypersurfacewz with
normalz, i.e.

Z5E
wz

dX`H5E
]wz

X H, ~78!

where the last equality follows from the fact thatdH50.
The absolute value ofZ can be interpreted as the tension
the string soliton.

BecauseH is closed, it also follows thatX is harmonic on
wz . For a single string withX vanishing at transverse infinit
on the M5-brane we have

X5
q

2p2r 2
~r .r 0[Aq/2p2L !, ~79!

where r[As1
21•••1s4

2 is the distance from the origin in
wz . The lower bound onr arises for reasons analogous
those of Sec. III: asr approachesr 0 from above,X ap-
proachesL and

U;
Q

@L2X~r !#3 ;
Qr0

3

8L3u3 , ~80!

whereu5r 2r 0. The asymptotic world space metric is

ds2;Cu~z•dx!21Q2/3S du

u D 2

1Cr0
2udV3

2 ~81!
04500
n

d

whereC52L/Q1/3r 0. The proper distance tou50 is infinite
so we should restrict the world space coordinateu to be
positive. Note that not only does the 3-sphere at constau
contract to a point atu50, but so also does the circle o
length l along the z direction. Thus, it is not only the
3-sphere of radiusr 0 that is mapped to the single pointXW
5(L,0, . . . ,0) in thetarget space; all points on the strin
core atr 5r 0 are also mapped to this point.

We are now in a position to evaluate the integral of E
~78! for the tension of the M5-brane string soliton. There a
two components of]wz . One is atr 5`, whereX50, and
the other is atr 5r 0, whereX5L. The only contribution to
the integral comes from the latter boundary, so the str
tension is

Z5Lq ~82!

where

q[E
S3

H, ~83!

is the string charge~as the string threads the 3-sphere!. The
total energy is thereforelLq, as one would expect for a
membrane of arealL and chargeq.

VI. INTERSECTING STRINGS ON THE M5-BRANE

We now turn to the study of two intersecting self-du
strings on the M5-brane, corresponding to the spacetime c
figuration

M5: 1 2 3 4 5 2 2 2 2 2

M2: 2 2 2 4 2 6 2 2 2 2

M2: 2 2 2 2 5 2 7 2 2 2.

Therefore we allow for two scalars to be excited, in whi
case

~E1U21!25U221U21F u]Xu21u]Yu21
1

2
uH̃u2G

1
1

2
u]X`]Yu21uH̃•]Xu21uH̃•]Yu2

1~]X•H̃•]Y!21uVu2 ~84!

where

1

2
u]X`]Yu2[u]Xu2u]Yu22~]X•]Y!2,

]X•H̃•]Y[]aXH̃ab]bY. ~85!

We are interested in minimum energy configurations
sociated with two membranes that intersect the M5-bran
two non-parallel directions, specified by two consta
5-vectors. Let these vectors span the 4-5 plane and
sa (a51,2,3) be the coordinates for the orthogon
complement of world space. In this case, we have
4-9
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Va5eabgH̃b5H̃g41
1

2
eabgH̃bgH̃45

V45
1

2
eabgH̃abH̃5g ~86!

V552
1

2
eabgH̃abH̃4g.

For notational convenience we define

Ea5H̃a5, Ba5H̃a4, ~87!
04500
and

Ka5
1

2
«abgH̃bg, P5H̃45, ~88!

so that

V5E3B1PK

V452E•K ~89!

V55B•K .

The right hand side of Eq.~84! may now be rewritten as
obtained
ype IIB
for an
3-form

only
momen-

nish for
he

ne.
U221U21@ u¹Xu21u¹Yu21uEu21uBu2#1u¹X3¹Yu21U21@P21~]4X!21~]5X!21~]4Y!21~]5Y!21uK u2#

1u]4X¹Y2]4Y¹Xu21u]5X¹Y2]5Y¹Xu21~]4X]5Y2]4Y]5X!21~B•¹X2P]5X!21~E•¹X1P]4X!2

1~B•¹Y2P]5Y!21~E•¹Y1P]4Y!21uK3¹X1B]4X1E]5Xu21uK3¹Y1B]4Y1E]5Yu21uE3B1PK u2

1~K•E!21~K•B!21@K•¹X3¹Y1P~]4X]5Y2]4Y]5X!1B•¹X]4Y2B•¹Y]4X1E•¹X]5Y2E•¹Y]5X#2.

~90!

We start to see the beginning of what looks like an expression for the energy of static configurations on the 3-brane
by compactifying the M5-brane on a 2-torus, as expected from the standard duality between M-theory and the t
superstring theory. The comparison is, however, complicated by several factors. One is that the notion of ‘‘static’’
M5-brane configuration does not coincide with what we meant by this term in the D3-brane case. The point is that the
H on the M5-brane world space includes configuration space variablesand their conjugate momenta~via a constraint relating
H̃ to the momentum conjugate to the 2-form potential@18#!. A related point is that the space transverse to the M5-brane is
5-dimensional whereas the space transverse to the D3-brane is 6-dimensional. The ‘‘sixth’’ scalar, and its conjugate
tum are encoded in the 3-formH. In fact, one can roughly viewK as the field strength of the sixth scalar andP as its conjugate
momentum, althoughK is only a closed 1-form whenE andB are independent ofs4 ands5. Clearly, a direct comparison with
the D3-brane energy would require that we include in the latter some ‘‘3-scalar’’ terms as well as some terms that va
static configurations~in the D3-brane sense!. Instead, we shall setK andP to zero and compare with the expression for t
energy of static ‘‘2-scalar’’ D3-brane configurations. Note that, under these conditions, the closure of the 3-formH implies that
E andB are divergence-free, in which case they may be identified as the electric and magnetic fields on the D3-bra

With this simplification, the expression~90! can be written, for arbitrary anglew, as

@U211coswE•¹X2sinwE•¹Y1sinwB•¹X1coswB•¹Y#21uE3B2¹X3¹Yu21~]4X]5Y2]4Y]5X!21U21@~]4X!2

1~]5X!21~]4Y!21~]5Y!2#1u]4X¹Y2]4Y¹Xu21u]5X¹Y2]5Y¹Xu21~]4X]5Y2]4Y]5X!2

1U21uE2cosw¹X1sinw¹Yu21U21uB2sinw¹X2cosw¹Yu21@sinwE•¹X1coswE•¹Y2coswB•¹X

1sinwB•¹Y#21uB]4X1E]5Xu21uB]4Y1E]5Yu21@B•¹X]4Y2B•¹Y]4X1E•¹X]5Y2E•¹Y]5X#2. ~91!
ed,

e
x-

on

hus
5-
We thereby deduce the bound

E>coswE•¹X2sinwE•¹Y1sinwB•¹X1coswB•¹Y,
~92!

for any w, with equality when both

]4X5]5X5]4Y5]5Y50, ~93!

and

E5cosw¹X2sinw¹Y
B5sinw¹X1cosw¹Y. ~94!

These conditions are precisely those found in@14# to be as-
sociated with 1/4 supersymmetry. When they are satisfi
the 3-vectorsE and B are independent ofs4 and s5. The
energy of the minimal energy configuration on th
T2-wrapped M5-brane is therefore proportional to the e
pression~42! for the energy of a 1/4 supersymmetric dyon
the D3-brane.

The 1/4 supersymmetric dyons discussed earlier t
aquire an M-theory interpretation as intersections on the M
4-10
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brane of two string boundaries of two M2-branes. When
two M2-branes intersect orthogonally, so do the strings. T
maps to a type IIB configuration composed of two orthog
nal bion spikes that are also othogonal in charge space
rotation of the M2-branes away from orthogonality prese
ing 1/4 supersymmetry corresponds to a simultaneous r
tion ~of one membrane relative to the other! by the same
angle in the M5-brane and in the space transverse to it. T
corresponds in the type IIB theory to a simultaneous rota
by the same angle in transverse space and charge spac

We can now find finite energy 1/4 supersymmetric so
tons on the M5-brane by the procedure described earlier,
we should mention that the relation between the 1/4 su
symmetric M5-brane solitons and the string-junction dyo
on the D3-brane is straightforward only in the case of
infinite energy solutions, in a flat background, because
general the harmonic functionU of the M5-brane back-
ground is not the same as the harmonic functionH of the
D3-brane background. The M5-brane transverse spac
only five-dimensional whereas it is six-dimensional for t
D3-brane.

We should also mention that there is more than one p
sible interpretation of D3-brane dyons as M5-brane solito
Recall that the 6-space transverse to the D3-brane is red
to a 5-space transverse to the M5-brane. This leads on
wonder what the M-theory interpretation is of a D3-bra
bion with its spike in this sixth dimension. If the D3-bran
bion is purely magnetic then the answer is that it correspo
to a marginal bound state of the M5-brane with an M-wa
travelling along it. If we compactify along the direction o
the wave then we get a D0-brane on a D4-brane of type
superstring theory. This has a T-dual in type IIB superstr
theory as a D-string ending on a D3-brane, which is a m
netic bion from the perspective of the D3-brane world v
ume. One gets an electric D3-brane bion from the sa
M-theory configuration by reducing along another directi
in the M5-brane orthogonal to the M-wave. This leads to
wave on a D4-brane. T-dualizing along the wave direct
then yields the desired configuration.

VII. DISCUSSION

We have seen that finite energy configurations of type
superstring theory in which (m,n) strings are suspended b
tween D3-branes can be found as 1/2 or 1/4 supersymm
solitons on a test D3-brane in a supergravity D3-brane ba
ground, the 1/4 supersymmetric solitons having a natura
terpretation in terms of string junctions. These solitons
Abelian analogues of the finite energy supersymmetric s
tons ofD54 N54 SYM theory. There are similar 1/2 an
1/4 supersymmetric solitons on a test M5-brane in a su
gravity M5-brane background, related by dualities to tho
on the D3-brane. In our exposition of these results
glossed over a few points, and we shall conclude with a b
discussion of them.

The first point has to do with whether the bion solutio
we have have found are really non-singular. Consider
one bion solution in which the sphere inE3 of radiusr 0 is
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mapped byX(r ) to the ‘‘center’’ X5L of the background
metric. The induced world space metric nearr 5r 0 was
given asds3

2 in Eq. ~29!, with u5r 2r 0. The corresponding
world volume metric is, forQ51 and after a constant re
scaling of the time coordinate,

ds4
252u2dt21S du

u D 2

1L2u2dV2
2 . ~95!

The submanifold withdV2
250 is just AdS2, with u50 a

Killing horizon of ] t . This is at infinite proper distance o
spacelike geodesics of constantt but atfinite affine parameter
on timelike or null geodesics. This is not unexpected beca
the singularity of the spacetime metric at its center is als
Killing horizon at a finite affine parameter on timelike or nu
geodesics. However, although the singularity atu50 is just
a coordinate singularity of AdS2, it is a curvature singularity
of the full 4-metric~95! because the 2-spheres at constanu
shrink to points atu50.

It is not clear to us whether this is really a problem b
cause there are no test particles on the D3-brane movin
timelike geodesics in this world volume metric. If we were
consider the time dependent problem in which a wave on
D3-brane scatters from a bion then we would have to fi
solve the DBI equations for this problem and then recomp
the world volume metric. In general, one would expect t
result to differ from the static bion metric of Eq.~95!, which
would be of direct relevance to the time-dependent prob
only if all scalar fluctuations were to vanish. It seems u
likely that the DBI equations will have such solutions wh
linearized about the static bion configuration~rather than
about the Minkowski vacuum! but we have not investigate
this in detail. The whole area of time-dependent scatter
solutions involving bions deserves a separate study.

A second point concerns the string junction interpretat
of the 1/4 supersymmetric DBI dyons on the D3-brane. R
call that this involves, in the case of a flat background, s
gularities of two harmonic functionsX andY at points with
E3 coordinatess1 and s2. Near either singularity, and fa
from both, the solution is approximately that of a single 1
supersymmetric bion. The term ‘‘far from’’ here refers to
region in which the distance from either singularity~in theE3

metric! is much larger thanus12s2u. The largerus12s2u
is, the further out is this region and the smaller is the dev
ton of the worldspace metric from the Euclidean metr
Thus, for largeus12s2u it is more natural to interpret the
world space configuration as one for which two strings m
the D3-brane at widely separated points. Only as the sep
tion of these points decreases does the string junction in
pretation become the natural one. Even in this case one c
interpret the deviation of the world space from the Euclide
metric as that required to support two strings meeting
D3-brane at the pointss5s1 ands5s2, just as the single
bion solution has the alternative interpretation as the de
tion required to support an attached string@10,19#, rather
than as the string itself.

Finally, we should mention that string junction dyon
constitute a special case of string web dyons@20# in which
three or more parallel D3-branes are connected by a netw
4-11
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of strings meeting at string junctions@21#. The logic of our
approach would suggest that these should also have a w
volume interpretation but we have not been able to ve
this. In the first instance one could seek new infinite ene
solutions in which strings arriving from other branes at
finity are realized as point charges. The topological featu
of the network might then be encoded in branch cuts, but
unclear to us whether this makes sense, and if so ho
works in detail.
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