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Penrose limits, worldvolume fluxes, and supersymmetry

David Mateo¥
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, United Kingdom
(Received 22 July 2002; published 29 October 2002

It is noted that a finite Penrose limit for brane probes with nonzero worldvolume fluxesidogsnerically
exist; this is closely related to the observation by Blau and co-workers that for a brane probe the Penrose limit
is equivalent to an infinite-tension limit. It is shown that when the limit exists, however, the number of
supersymmetries preserveg the probedoes not decrease.
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I. INTRODUCTION g=dV(dU+adV+B;dY)+C;;dYdY, ()

Three crucial features of the Penrose lifiiit of a super- wherea, 8; andC;; are functions of all the coordinates. The
gravity solution[2] along a null geodesic ar) that a finite  geodesic lies a¢=Y'=0 and is affinely parametrized ky.
limit always exists({ii) that the resulting configuration is also Let us introduce new rescaled coordinates
a solution of the supergravity field equations, dnd) that _ o P
the number of supersymmetries of the initial solution does U=u, V=0Q%, Y'=0Qy, 2
not decrease in the limjB]. In fact, the precise rescalings of
the supergravity fields involved in taking the limit are dic-
tated by demanding that conditiofi$ and (i) be satisfied.

Brane probes in supergravity spacetiniékare an essen- 55 lim g @)
tial tool for understanding both spacetime geometry and Q-0 @
gauge theory physicgs]. One purpose of this paper is to _
observe that propertfi) doesnot extend to solutions of the while keepingu, v andy' fixed. Similarly, if B,_; is a su-
equations of motion of a brane probe wibknericnon-zero  pergravity gauge potential subject to the gauge transforma-
worldvolume gauge fields; this will be illustrated with a tion
simple example. This result is closely related to the fact that
the Penrose limit for the supergravity background can be OBy-1=dAy_» (4)
reinterpreted as an infinite-tension limit for the prdi3e6];
we will return to this in Sec. V.

In the context of the AdS/CFTconformal field theory
correspondence, two examples of brane probes in;AdS Ho=0 k14 (5)

x S° with non-zero worldvolume gauge fields are provided

by the “defect” D5-brane{7] and the “baryonic” D5-brane  and define the Penrose limit &f asH=limq ,oH,, again

[8]. These are especially relevant to the present discussiqgepingu, v andy' fixed. It is easy to see that these limits
because, as we will explain, they share a non-generic featutge finite[1—3].

that allows the general arguments presented here to be Cir- | the presence of branes there are in general additional
cumvented and thus a finite limit to be defined. gauge potentialé, _; (for certain values ok) that describe

Property ii) does extend to brane probe solutid®6]  degrees of freedom localized on the worldvolumes of the
provided of course a well-defined Penrose limit exists. Theyranes. Examples of these include a one-form gauge poten-
introduction of the probe generically preserves only a fracyjg) in the case of D-branes and a two-form gauge potential in
tion (possibly nong of the supersymmetries of the super- the case of the M5-brane. Their gauge-invariant field

gravity background. It has been tacitly assumed in the "teraétrengths F. involve the supergravity gauge potentials
ture that the number of supersymmetries preseiwedhe through combinations of the form

probe does not decrease in the Penrose limit, that is, that

where() is a positive real constant, and sgi= 2g. The
Penrose limit ofg is obtained by computing the limit

andH,=dB,_; is its gauge-invariank-form field strength
[9], then we set

property (iii) also extends to brane probes. Since to our F=F+Bg, (6)
knowledge no proof of this has been presented, we provide a
simple one here. where F,=dA,_; and “x” denotes the pull-back to the

worldvolume. The reason is that in the presence of branes the
theory is not invariant under the gauge transformati@hs
alone but in combination with10] 5A,_»,=—Ay_,. In the
In the neighborhood of a segment of a null geodesic withcase of D-branesB, is the Neveu-Schwarz two-form,
no conjugate points the metric may be written[as 3] whereas for the M5-branB; is the three-form potential of
11-dimensional supergravity.
Equation(6) has crucial implications for the existence of
*Email address: D.Mateos@damtp.cam.ac.uk finite Penrose limits for brane probes because it means that,
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in order to extend the definition of the limit to the worldvol- arbitrary power ofQ) that, in particular, can be appropriately
ume gauge fields in gauge-invariantmanner, we must de- chosen in order to make the limi%) finite; in effect, this
fine Fo=0Q"%F and F=lim, .,Fq. It then follows that Means that one does not take the Penrose limit of a fixed

Fo=Q KFand solution, but instead focuses on &rrdependent member of
the family as() is scaled to zero. It is this additional freedom
F=lim 7. (7)  thatallowed a finite limiting result to be obtained|it¥,15.
0—-0
IIl. AN EXAMPLE

We thus see that gauge invariance forces kiferm field

strengthF, to be rescaled with one extra power @f ! as A simple example in which the freedom discussed above

compared to a supergravity field strength of the same rankto rescale the worldvolume flux at will does not occur is
To see the consequences of this, consider a null geodesjgovided by the supersymmetric system. This consists

that intersects, or is contained withiihl], the worldvolume  of a stack ofN infinite flat D3-branes separated by some

of the brane. Fogenericnon-zero values oF andBy the  istance from a parallel stack &f anti—D3-branes. On the
componentsy;, . i, of the worldvolume fluxF, will be \yoridvolumes of both groups of branes there are constant
non-zero in a neighborhood of the geodesic. Since thes@belian electric fields€ and £’ (aligned with each othgr
components lead to terms that scale(¥s*, the limit (7)  and constant magnetic fields and B’ (also aligned with
diverges. Needless to say, one may choose to gauge away tbech other but orthogonal to the electric figldSor generic
analogous components d, or of F,, but the gauge- values of these worldvolume fluxes this system is unstable:
invariant field strength#, will remain unchanged. there is a long-distance force between the two groups of
Since Fy has support solely on the worldvolume of the branes[18], and for sufficiently small separation an open-
brane, it is clear that the presence of the probe does not affestring tachyonic mode develops. However, &&& =+ 1
the Penrose limit along a null geodesic that lies entirely ouand3 andB’ are non-zer$19] and have opposite signs, then
side the worldvolume. In fact, since only a region infinitesi-the whole system preserves 1/4 supersymméisnce the
mally close to the geodesiwhich is magnified by an infinite  force vanishe$20,21 and no tachyonic instability appears
amounj survives the limit, the brane just disappears from the[22,23). This follows from the fact that this configuration is
resulting spacetime. T-dual to the supersymmetric system[24,22), whose
The obstruction to the existence of a finite Penrose limit iSsupersymmetry can in turn be understood from its origin as a
not visible in an effective description in which the brane is particular limit of the D2-brane supertul25s).
replaced by its backreaction on spacetime, that is, by some
supergravity solution, because in this description the world
volume flux F is ignored[13]. Moreover, most of these su-

If N=1 andgsN>1, whereg is the string coupling con-
stant, then the appropriate description of this system is in

. . . . . terms of a D3-brane probe in the supergravity background
pergravity solutions are typically singular at the location of

the putative brane, so their Penrose limits along geodesic(‘sre""te_d by theN D3-brar_1es. In this case the POHd't'M .
that intersect the brane are not usually considered. = 1. arises from the r.equwer-nent that the equations of mqtlon
The brane probe action is homogeneous under the rescal€Mved from the actiori8) with p=3 are solved by a static

; . : ; D3-brane probe with worldvolume electric and magnetic
ings abovd 3,6]; for example, the action for ajpbrane ina ) o
sugpergraveigy backgroundp fields [20]. (Note that although this condition happens to

imply preservation of 1/4 supersymmetry, this need not be
imposeda priori.) Since the value of the worldvolume elec-

S,= —f e ? —de(g+7—)+f e’/\C (8) tric field on the probe is novixed it follows from the argu-
ments in the previous section that the Penrose limit along

is homoaeneoukl2] of dearee— (p+1). This property en- genericgeodesics that intersegir are contained withinthe
g 2] g (p+1) property 3-brane leads to a divergent result for the worldvolume

sures that solutions of the brane equations of motion in &

supergravity spacetime are mapped by the Penrose limit theld strength.

new solutions in the resulting spacetime, provided of course

that the limit for the probe exists. IV. SUPERSYMMETRY
Brane probes play an important role in the context of the

AdS/CFT correspondence. Two examples in an £dS°

background are the defect D5-brafigl and the baryonic X .

D5-brane[8]. These are especially relevant to the present N€ €ssence of the argument is as follows. For each Killing

discussion because the worldvolume fléiis non-zero in  SPinOre of the initial solution there exists a real constght

both cases, yet finite Penrose limits for the defect brane anguch that the limite=limq_oQ e is finite. The linearity of

for the baryonic brane were found [i4] and[15], respec- the Killing spinor equations then implies thatis a Killing

tively [16]. The non-generic feature common to these twospinor of the resulting supergravity solution. The argument is

cases that allows the arguments above to be circumvented ¢g@mpleted by showing that it is possible to choose the initial

that the overall scale of is arbitrary; more precisely, there basis of Killing spinors in such a way that the limiting ones

is an entire family of solutions parametrized by the magni-are linearly independent.

tude of F [17]. This implies thatF can be rescaled with an The supersymmetries of a supergravity solution that are

The Penrose limit of a supergravity solution possesses at
least as many supersymmetries as the original solidn
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left unbroken by the introduction of a brane probe are thosand the definition of the Penrose limit that we have adopted.

generated by spacetime Killing spinarshat satisfy] 26] For concreteness, we focus again onldane. If we rein-
statea’ then the gauge-invariant field strend®) becomes

le=¢€, ©)

where I' is the matrix appearing in the kappa-symmetry F=a'F+B (12)

transformations of the brane worldvolume fermions; by con- . ) ]

struction it satisfied"2=1. Equation(9) may be regarded as In addition the action(8) acquires an overall factor of

the worldvolume analogue of the background Killing spinor(@')~***"% and therefore it satisfid$, 6]

equations. The relevant observation for our purpose is that

Eq. (9) is linear and that both sides are homogeneous of the Sl %o ,F;a']zsp[xp,p;a'], (13

samedegree under the rescalings involved in the Penrose

limit; we show this explicitly below for D-branes. It follows : .
that if a subset of the background Killing spindie} verify !vhere\If collectively denotes all the background fields and

. o a’'=02%a". We thus see that the Penrose liflit-0 for the
Eq. (9.) then so do_the|r Penrose limifs;}, and therefore the background spacetime translates into an infinite-tension limit
resulting probe will preserve at least as many supersymme-, . .
tries as the original one. Of course, just like in certain case —>O-f0r the brane in the original background. On the other
[27] the number of supersymmetries of the background may and, if we now rewrite E(13) as
actually increase in the limit, so may the number of super-
symmetries preseved by the brdid,15. S Vq . F;Q %a']=S[V,F;a’] (14
The kappa-symmetry matrix for dbranes in a general
supergravity background can be found[8,29; since the then we may reinterpret it as saying that the-Brane action
formulas differ slightly in the type IIA and type |IB cases, we is homogeneougf degree zerpif the background fields are
focus here on type 1IB p-branes for concreteness. In this rescaled as abové, is kept fixed ande’ is rescaled as(,
casel is defined by the equation =0"2a’. Note that this definition of the limit is consistent
L with gauge invariance because both terms on the right-hand
. side of Eq.(12) are rescaled in the same way. In fact, as far
I'deA .. ./\dcrp=—\/m En: 1“(Zn)Knl/\ejc' as the Penrose limit aflassicalsolutions of the actioi8) is
(10) ~ concerned, this definition and that of Sec. Il always yield
physically equivalentesults(in particular, they both fail to
where{d?, ... 0P} are worldvolume coordinates in which exist in the same casesThe reason is that, except for the
the determinant on the right-hand side of E@) is calcu- overall factor in the actioit8), «’ andF do not occur sepa-
lated.T"f,,, is the pull-back to the worldvolume of the space- rately but only in the combination’F, which in both cases
time matrix-valuech-form is rescaled in the same way. The different overall scalings
(degrees of homogenejtyof the action in the two cases
B a a could make a difference when this is inserted in some path
F(n)_mral---ane ZARRRYAL (1) integral, but they do not make a difference at the classical
level.
where {T',} are ten tangent-space constant Dirac matrices In this paper we have focused on the obstructions to the
and{e?} is a basis of orthonormal one-forms for the space-existence of the Penrose limit associated with the presence of
time metric, that isg= 7.,e?e”. K and| are linear operators Worldvolume fluxes. In some cases, however, the existence
that act on chiral complex spinors of type 1B supergravity asof a well-defined limit for the branembeddingtself is not a
Ky=y¢* andly=—iy. Finally, it must be understood that trivial issue[15]. This is consistent with the fact that the
only the form of degree+1 is selected on the right-hand embedding is specified by worldvolume scalar fields and that
side of Eq.(10). these may be dual to worldvolume gauge fields in certain
The conformal rescaling of the background metric in-cases. One example of this is provided by the type IIA D2-
volved in the Penrose limit implies that the orthonormal one-brane: its worldvolume one-form potential is equivalent to a
forms are rescaled asf, =0 ~1e?. This, together with the Periodically identified scalar field which, after the reinterpre-
rescaling ofF, implies thatl o =T". It then follows that both  tation of the D2-brane as an M-theory membrane, specifies

sides of Eq(9) are homogeneous of the same degBee the position of the latter along the M-theory cirdl29]. It
follows that any obstacles to the existence of the Penrose

limit due to the D2-brane gauge field must be reinterpretable
in terms of the M2-brane embedding.

In the preceding discussion the tension of the brane probe
was set to unity, and therefore implicitly keftedin all the
rescalings involved in the Penrose limit. It was shown in
[3,6], however, that the Penrose limit of the supergravity It is a pleasure to thank Jogeigueroa-O’Farrill, Chris
background can be reinterpreted as an infinite-tension limiHull, and Selena Ng for helpful discussions and comments
for the probe. Let us see the connection between this resulin the manuscript. This work was supported by PPARC.
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