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Penrose limits, worldvolume fluxes, and supersymmetry
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It is noted that a finite Penrose limit for brane probes with nonzero worldvolume fluxes doesnot generically
exist; this is closely related to the observation by Blau and co-workers that for a brane probe the Penrose limit
is equivalent to an infinite-tension limit. It is shown that when the limit exists, however, the number of
supersymmetries preservedby the probedoes not decrease.
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I. INTRODUCTION

Three crucial features of the Penrose limit@1# of a super-
gravity solution@2# along a null geodesic are~i! that a finite
limit always exists,~ii ! that the resulting configuration is als
a solution of the supergravity field equations, and~iii ! that
the number of supersymmetries of the initial solution do
not decrease in the limit@3#. In fact, the precise rescalings o
the supergravity fields involved in taking the limit are di
tated by demanding that conditions~i! and ~ii ! be satisfied.

Brane probes in supergravity spacetimes@4# are an essen
tial tool for understanding both spacetime geometry a
gauge theory physics@5#. One purpose of this paper is t
observe that property~i! doesnot extend to solutions of the
equations of motion of a brane probe withgenericnon-zero
worldvolume gauge fields; this will be illustrated with
simple example. This result is closely related to the fact t
the Penrose limit for the supergravity background can
reinterpreted as an infinite-tension limit for the probe@3,6#;
we will return to this in Sec. V.

In the context of the AdS/CFT~conformal field theory!
correspondence, two examples of brane probes in A5
3S5 with non-zero worldvolume gauge fields are provid
by the ‘‘defect’’ D5-brane@7# and the ‘‘baryonic’’ D5-brane
@8#. These are especially relevant to the present discus
because, as we will explain, they share a non-generic fea
that allows the general arguments presented here to be
cumvented and thus a finite limit to be defined.

Property~ii ! does extend to brane probe solutions@3,6#
provided of course a well-defined Penrose limit exists. T
introduction of the probe generically preserves only a fr
tion ~possibly none! of the supersymmetries of the supe
gravity background. It has been tacitly assumed in the lite
ture that the number of supersymmetries preservedby the
probe does not decrease in the Penrose limit, that is,
property ~iii ! also extends to brane probes. Since to o
knowledge no proof of this has been presented, we provid
simple one here.

II. WORLDVOLUME FLUXES

In the neighborhood of a segment of a null geodesic w
no conjugate points the metric may be written as@1–3#
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g5dV~dU1a dV1b idYi !1Ci j dYidYj , ~1!

wherea, b i andCi j are functions of all the coordinates. Th
geodesic lies atV5Yi50 and is affinely parametrized byU.
Let us introduce new rescaled coordinates

U5u, V5V2 v, Yi5Vyi , ~2!

whereV is a positive real constant, and setgV5V22g. The
Penrose limit ofg is obtained by computing the limit

ḡ[ lim
V→0

gV ~3!

while keepingu, v and yi fixed. Similarly, if Bk21 is a su-
pergravity gauge potential subject to the gauge transfor
tion

dBk215dLk22 ~4!

and Hk5dBk21 is its gauge-invariantk-form field strength
@9#, then we set

HV5V2k11H ~5!

and define the Penrose limit ofH as H̄[ limV→0HV , again
keepingu, v and yi fixed. It is easy to see that these limi
are finite@1–3#.

In the presence of branes there are in general additio
gauge potentialsAk21 ~for certain values ofk) that describe
degrees of freedom localized on the worldvolumes of
branes. Examples of these include a one-form gauge po
tial in the case of D-branes and a two-form gauge potentia
the case of the M5-brane. Their gauge-invariant fie
strengths Fk involve the supergravity gauge potentia
through combinations of the form

Fk5Fk1Bk
! , ~6!

where Fk5dAk21 and ‘‘! ’’ denotes the pull-back to the
worldvolume. The reason is that in the presence of branes
theory is not invariant under the gauge transformations~4!
alone but in combination with@10# dAk2252Lk22

! . In the
case of D-branesB2 is the Neveu-Schwarz two-form
whereas for the M5-braneB3 is the three-form potential o
11-dimensional supergravity.

Equation~6! has crucial implications for the existence
finite Penrose limits for brane probes because it means
©2002 The American Physical Society03-1
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in order to extend the definition of the limit to the worldvo
ume gauge fields in agauge-invariantmanner, we must de
fine FV5V2kF and F̄[ limV→0FV . It then follows that
FV5V2kF and

F̄[ lim
V→0

FV . ~7!

We thus see that gauge invariance forces thek-form field
strengthFk to be rescaled with one extra power ofV21 as
compared to a supergravity field strength of the same ra

To see the consequences of this, consider a null geod
that intersects, or is contained within@11#, the worldvolume
of the brane. Forgenericnon-zero values ofFk andBk the
componentsFUi 1 . . . i k21

of the worldvolume fluxFk will be
non-zero in a neighborhood of the geodesic. Since th
components lead to terms that scale asVk21, the limit ~7!
diverges. Needless to say, one may choose to gauge awa
analogous components ofBk or of Fk , but the gauge-
invariant field strengthFk will remain unchanged.

SinceFk has support solely on the worldvolume of th
brane, it is clear that the presence of the probe does not a
the Penrose limit along a null geodesic that lies entirely
side the worldvolume. In fact, since only a region infinite
mally close to the geodesic~which is magnified by an infinite
amount! survives the limit, the brane just disappears from
resulting spacetime.

The obstruction to the existence of a finite Penrose limi
not visible in an effective description in which the brane
replaced by its backreaction on spacetime, that is, by s
supergravity solution, because in this description the wo
volume fluxF is ignored@13#. Moreover, most of these su
pergravity solutions are typically singular at the location
the putative brane, so their Penrose limits along geode
that intersect the brane are not usually considered.

The brane probe action is homogeneous under the re
ings above@3,6#; for example, the action for a Dp-brane in a
supergravity background

Sp52E e2fA2det~g1F!1E eF`C ~8!

is homogeneous@12# of degree2(p11). This property en-
sures that solutions of the brane equations of motion i
supergravity spacetime are mapped by the Penrose lim
new solutions in the resulting spacetime, provided of cou
that the limit for the probe exists.

Brane probes play an important role in the context of
AdS/CFT correspondence. Two examples in an AdS53S5

background are the defect D5-brane@7# and the baryonic
D5-brane@8#. These are especially relevant to the pres
discussion because the worldvolume fluxF is non-zero in
both cases, yet finite Penrose limits for the defect brane
for the baryonic brane were found in@14# and @15#, respec-
tively @16#. The non-generic feature common to these t
cases that allows the arguments above to be circumvent
that the overall scale ofF is arbitrary; more precisely, there
is an entire family of solutions parametrized by the mag
tude ofF @17#. This implies thatF can be rescaled with a
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arbitrary power ofV that, in particular, can be appropriate
chosen in order to make the limit~7! finite; in effect, this
means that one does not take the Penrose limit of a fi
solution, but instead focuses on anV-dependent member o
the family asV is scaled to zero. It is this additional freedo
that allowed a finite limiting result to be obtained in@14,15#.

III. AN EXAMPLE

A simple example in which the freedom discussed abo
to rescale the worldvolume flux at will does not occur
provided by the supersymmetric D3/D3 system. This consists
of a stack ofN infinite flat D3-branes separated by som
distance from a parallel stack ofN̄ anti–D3-branes. On the
worldvolumes of both groups of branes there are cons
~Abelian! electric fieldsE and E8 ~aligned with each other!
and constant magnetic fieldsB and B8 ~also aligned with
each other but orthogonal to the electric fields!. For generic
values of these worldvolume fluxes this system is unsta
there is a long-distance force between the two groups
branes@18#, and for sufficiently small separation an ope
string tachyonic mode develops. However, ifE5E8561
andB andB8 are non-zero@19# and have opposite signs, the
the whole system preserves 1/4 supersymmetry~hence the
force vanishes@20,21# and no tachyonic instability appear
@22,23#!. This follows from the fact that this configuration i
T-dual to the supersymmetric D2/D2 system@24,22#, whose
supersymmetry can in turn be understood from its origin a
particular limit of the D2-brane supertube@25#.

If N51 andgsN̄@1, wheregs is the string coupling con-
stant, then the appropriate description of this system is
terms of a D3-brane probe in the supergravity backgrou
created by theN̄ D3-branes. In this case the conditionuEu
51 arises from the requirement that the equations of mo
derived from the action~8! with p53 are solved by a static
D3-brane probe with worldvolume electric and magne
fields @20#. ~Note that although this condition happens
imply preservation of 1/4 supersymmetry, this need not
imposeda priori.! Since the value of the worldvolume elec
tric field on the probe is nowfixed, it follows from the argu-
ments in the previous section that the Penrose limit alo
genericgeodesics that intersect~or are contained within! the
D3-brane leads to a divergent result for the worldvolum
field strength.

IV. SUPERSYMMETRY

The Penrose limit of a supergravity solution possesse
least as many supersymmetries as the original solution@3#.
The essence of the argument is as follows. For each Kill
spinore of the initial solution there exists a real constantb

such that the limitē[ limV→0Vbe is finite. The linearity of
the Killing spinor equations then implies thatē is a Killing
spinor of the resulting supergravity solution. The argumen
completed by showing that it is possible to choose the ini
basis of Killing spinors in such a way that the limiting on
are linearly independent.

The supersymmetries of a supergravity solution that
3-2
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left unbroken by the introduction of a brane probe are th
generated by spacetime Killing spinorse that satisfy@26#

Ge5e, ~9!

where G is the matrix appearing in the kappa-symme
transformations of the brane worldvolume fermions; by co
struction it satisfiesG251. Equation~9! may be regarded a
the worldvolume analogue of the background Killing spin
equations. The relevant observation for our purpose is
Eq. ~9! is linear and that both sides are homogeneous of
samedegree under the rescalings involved in the Penr
limit; we show this explicitly below for D-branes. It follows
that if a subset of the background Killing spinors$e i% verify
Eq. ~9! then so do their Penrose limits$e ī%, and therefore the
resulting probe will preserve at least as many supersym
tries as the original one. Of course, just like in certain ca
@27# the number of supersymmetries of the background m
actually increase in the limit, so may the number of sup
symmetries preseved by the brane@14,15#.

The kappa-symmetry matrix for Dp-branes in a genera
supergravity background can be found in@28,29#; since the
formulas differ slightly in the type IIA and type IIB cases, w
focus here on type IIB Dp-branes for concreteness. In th
caseG is defined by the equation

Gds0` . . . `dsp5
1

A2det~g1F!
(

n
G (2n)

! KnI `eF,

~10!

where$s0, . . . ,sp% are worldvolume coordinates in whic
the determinant on the right-hand side of Eq.~9! is calcu-
lated.G (n)

! is the pull-back to the worldvolume of the spac
time matrix-valuedn-form

G (n)5
1

n!
Ga1 . . . an

ea1` . . . `ean, ~11!

where $Ga% are ten tangent-space constant Dirac matri
and $ea% is a basis of orthonormal one-forms for the spa
time metric, that is,g5habe

aeb. K andI are linear operators
that act on chiral complex spinors of type IIB supergravity
Kc5c* and Ic52 ic. Finally, it must be understood tha
only the form of degreep11 is selected on the right-han
side of Eq.~10!.

The conformal rescaling of the background metric
volved in the Penrose limit implies that the orthonormal on
forms are rescaled aseV

a 5V21ea. This, together with the
rescaling ofF, implies thatGV5G. It then follows that both
sides of Eq.~9! are homogeneous of the same degreeb.

V. DISCUSSION

In the preceding discussion the tension of the brane pr
was set to unity, and therefore implicitly keptfixed in all the
rescalings involved in the Penrose limit. It was shown
@3,6#, however, that the Penrose limit of the supergrav
background can be reinterpreted as an infinite-tension l
for the probe. Let us see the connection between this re
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and the definition of the Penrose limit that we have adopt
For concreteness, we focus again on a Dp-brane. If we rein-
statea8 then the gauge-invariant field strength~6! becomes

F5a8F1B!. ~12!

In addition, the action~8! acquires an overall factor o
(a8)2(p11)/2, and therefore it satisfies@3,6#

Sp@CV ,F;a8#5Sp@C,F;ã8#, ~13!

whereC collectively denotes all the background fields a
ã85V2a8. We thus see that the Penrose limitV→0 for the
background spacetime translates into an infinite-tension l
ã8→0 for the brane in the original background. On the oth
hand, if we now rewrite Eq.~13! as

Sp@CV ,F;V22a8#5Sp@C,F;a8# ~14!

then we may reinterpret it as saying that the Dp-brane action
is homogeneous~of degree zero! if the background fields are
rescaled as above,F is kept fixed anda8 is rescaled asaV8
5V22a8. Note that this definition of the limit is consisten
with gauge invariance because both terms on the right-h
side of Eq.~12! are rescaled in the same way. In fact, as
as the Penrose limit ofclassicalsolutions of the action~8! is
concerned, this definition and that of Sec. II always yie
physically equivalentresults~in particular, they both fail to
exist in the same cases!. The reason is that, except for th
overall factor in the action~8!, a8 andF do not occur sepa-
rately but only in the combinationa8F, which in both cases
is rescaled in the same way. The different overall scalin
~degrees of homogeneity! of the action in the two case
could make a difference when this is inserted in some p
integral, but they do not make a difference at the class
level.

In this paper we have focused on the obstructions to
existence of the Penrose limit associated with the presenc
worldvolume fluxes. In some cases, however, the existe
of a well-defined limit for the braneembeddingitself is not a
trivial issue @15#. This is consistent with the fact that th
embedding is specified by worldvolume scalar fields and t
these may be dual to worldvolume gauge fields in cert
cases. One example of this is provided by the type IIA D
brane: its worldvolume one-form potential is equivalent to
periodically identified scalar field which, after the reinterpr
tation of the D2-brane as an M-theory membrane, speci
the position of the latter along the M-theory circle@29#. It
follows that any obstacles to the existence of the Penr
limit due to the D2-brane gauge field must be reinterpreta
in terms of the M2-brane embedding.
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