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We propose a new method of operating laser interferometric gravitational-wave detectors when ob-
serving chirps of gravitational radiation from coalescing compact binary stars. This technique consists of
the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detec-
tor arranged to follow the frequency of a chirp. We consider the response of such an instrument to
chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are dis-
cussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be
significantly improved by the use of dynamic tuning. This should allow an accurate and reliable mea-

surement of Hubble’s constant.

PACS number(s): 04.80.+z, 07.60.Ly, 95.85.Sz, 98.80.Es

I. INTRODUCTION

The new generation of laser interferometric
gravitational-wave detectors may revolutionize the way
in which we observe the Universe [1]. A particularly use-
ful type of gravitational radiation may well be that emit-
ted as two neutron stars or black holes in a binary system
spiral in towards each other. With a few percent of the
rest mass of the binary being radiated as gravitational
waves, and with the predictable waveform allowing the
use of matched filtering, these events should be observ-
able out to great distances. The estimated coalescence
event rate is about three per year out to 100 Mpc [2], at
which distance typical signal-to-noise ratios might be
~10 for broadband detectors operating at their design
sensitivity [3,4]. A total of ~50 chirps per year might be
seen by a network of three or four such detectors. Schutz
[5] has proposed that the cosmological distance scale
(Hubble’s constant H) might be determined in a new and
potentially accurate way by observation of the chirp of
gravitational waves emitted in the final few seconds of the
life of these compact binaries. The distance of the source
may be found from a combination of the amplitude and
rate of change of frequency of the chirp:
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M, being the reduced and total masses in units of the
solar mass; f oo is the gravitational wave frequency in
units of 100 Hz and ry, is the source distance in units of
100 Mpc; (k) is the rms signal amplitude averaged over
detector orientation and polarization, measurable by
three detectors [5]. With a measurement of f giving the
chirp mass parameter, measurement of {4 ) gives the dis-
tance to the binary. If the source can be identified with a
particular cluster of galaxies, then its redshift may be
measured. The combination of a distance and a redshift,
measured at typical distances of =100 Mpc where the
random velocities are small compared to the Hubble flow,
will give in one step a value of Hubble’s constant.

While a statistical determination of H, is possible with
modest directional accuracy [5], it is desirable to be able
to identify the source of gravitational waves with either a
single galaxy or a single cluster of galaxies. This requires
positional accuracy of better than ~0.5/r;y, degrees [6].
The position of the source is determined by measuring
the differences in the times of arrival of a chirp at the
different detectors in a worldwide network. If the separa-
tion of two detectors is d and the angle of the source rela-
tive to the line between them is 6, then the time delay 7,
between the arrival of the signal at the two detectors is
just

T,=d cosO/c , (3)

¢ being the speed of both light and the gravitational
waves. So if we want to measure the position to an accu-
racy A6, the delay must be known to within

d
5% 103km

A6
0.5°

sin6

<0.
ATIZ 0.1 0.5

ms . (4)

2184



47 DYNAMICALLY TUNED INTERFEROMETERS FOR THE . . .

With such high accuracy required, prospects for a rapid
and clean measurement will be enhanced if the detectors
can be arranged to reduce as much as possible the errors
in estimating the properties of the signal. We will discuss
one way in which this may be achieved.

Laser interferometric gravitational wave detectors
work by letting the fluctuating spacetime curvature of a
gravitational wave induce a change in phase upon a beam
of light. The phase change is then converted into an ob-
servable change in power by interference with a different
light beam. The size of the signal is increased by allow-
ing the light and the gravitational wave to interact for the
maximum possible time. While the light power may be
recycled so that it has a long interaction time [7], best
performance of a broadband detector is obtained if the
signal (sidebands) are extracted after approximately half
the period of the gravitational waves. This limits the sig-
nal buildup at each frequency. However, the signal may
be further enhanced within a restricted bandwidth if it is
arranged that the phase change induced on the light at
one time always adds to that induced at other times.
Originally suggested by Drever [7], there is a flexible vari-
ant of this known as dual recycling, proposed by one of us
[8], that has been experimentally demonstrated [9] re-
cently. The optical arrangement of dual recycling is indi-
cated in Fig. 1. Note that the tuning frequency, being
determined by the position of the signal recycling mirror
M3, is quite easily adjustable and that the signal enhance-
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FIG. 1. The optical layout of an interferometer using dual re-
cycling. Differential phase shifts between the two arms of the
interferometer change the power of the output light, the phase
shifts being increased in practice by multiple traverses of each
arm. With the interferometer on a dark fringe, most of the light
is directed back towards the laser, is caught by the power recy-
cling mirror My, and added coherently to the incoming laser
light. The partially transmitting signal recycling mirror M; is
placed at the output to resonate signal sidebands induced by a
gravitational wave. It is always possible to find a position of M,
such that at least one signal sideband will, when reflected back
in, add coherently with the sideband that is then being generat-
ed by a gravitational wave. So the position of M; determines
the tuning frequency of the detector, while the transmission of
M determines the signal interaction time and hence, the band-
width.
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ment is almost independent of the tuning frequency.

This recycling of the signal improves the narrow-band
sensitivity as the square root of the factor by which the
bandwidth is reduced, limited by the losses of the system.
The improvement factor, compared with a previously op-
timized broadband interferometer, can be an order of
magnitude at gravitational wave frequencies of a few
hundred hertz [8]. Is there some way in which we can
take advantage of this for sources emitting over a wide
frequency range? It is already known that the signal-to-
noise ratio (S'/N) for the detection of pulses is about the
same with a narrow-band as with a broadband system [8],
and that for chirp detection may even be a factor of ~1.5
greater in narrow-band operation [4]. But information
about most of the frequency components contained in the
signal is being thrown away if we narrow band, which is
clearly not ideal if we wish to extract as much knowledge
as possible from the detection. For example, the best
possible timing accuracy, with an effective bandwidth A f
(determined by a combination of the signal spectrum and
the detector response), is

At=[Af(S/N)]7'. (5)

So both broad bandwidth and high signal-to-noise ratio
are important. It appears that there are two contradicto-
ry requirements: attainment of the highest signal level at
a given frequency seems to need narrow banding, but ob-
servation of all of the frequency components requires a
detector spanning a broad frequency range. However, a
chirp is rather special: it can be approximated as a sine
wave which continually increases in frequency as the two
stars spiral in towards each other. We can imagine
dynamically tuning the interferometer so that the fre-
quency at which the detector response is best coincides
with that of the gravitational waves. This would entail
adjusting the position of the signal recycling mirror M 3
to keep within the detector bandwidth.! If this is possi-
ble, the sensitivity of the detector would always be near
optimal and all of the signal frequency components
would be observed. We would therefore expect that both
the S/N and the accuracy of estimating the arrival time
and rate of change of frequency of the chirp, would be in-
creased by a factor corresponding to the gain in signal
going from a broadband to a narrow-band system.

This improvement in performance can only be ob-
tained, of course, if it is possible to track the evolving
gravitational wave with the detector. Perhaps the sim-
plest way that we might imagine doing this would be to
operate a narrow-band interferometer at a tuning fre-
quency of, say, 100 Hz (below which other noise would be
prohibitive [1,3]), wait for a chirp to traverse the detector
passband, measure the rate of change of frequency and
arrival time, then adjust the tuning frequency to follow
the signal. This has to be done well enough that the sig-
nal lies within the detector bandwidth up to the max-
imum observing frequency f,.. A choice of f,,,, =500
Hz seems sensible since there is little signal power at

IRoland Schilling has told us that Peter Kafka has also sug-
gested this idea.
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higher frequencies, but the wave form may be distorted
by either tidal interactions or post-Newtonian effects
[10].

In order to be able to asses the feasibility of this, an un-
derstanding is required of how the signal buildup and the
final errors in estimating the chirp parameters are
affected by errors in tuning. We need to calculate not
only the response of a dynamically tuned detector but
also how well the future frequency evolution of a chirp
may be estimated from an initial narrow-band detection.
We will consider each of these two different aspects of the
problem in turn, then bring them together in Sec. V,
where we shall discuss the potential improvement in both
signal-to-noise ratio and parameter accuracy by the use
of dynamic tuning.

II. DETECTOR RESPONSE

We need to derive the response of a dynamically tuned
laser interferometer to a chirp of gravitational radiation.
A calculation of the output wave form will allow evalua-
tion of the signal-to-noise ratio and of the accuracy of es-
timating the parameters of the chirp. The derivation will
follow the approach taken in Ref. [11]. The difference is
that both the gravitational-wave and the detector tuning
frequencies can be functions of time ¢. The aim is to cal-
culate the observed power change produced by the gravi-
tational waves, proportional to the sideband amplitude
emerging from the detector.

The gravitational-wave chirp emitted by a coalescing
J

E, _ iT, . T\ ,Ryhyto; i8(
E,  4(1—RR,)

i8 (t—1)

[
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binary as a sine wave of continually increasing angular
frequency w, with amplitude

h=ho(tleos®(r), (== [ w(tds" . (6)

We will assume a round trip time 7 for the light in the
arms of the interferometer such that wr<<1 and
&7* << 1. This is a good approximation for currently con-
ceived detectors and chirps. The frequency of the gravi-
tational wave at time ¢ — 7 will then be

o(t—T)=w(t)—aolt)T, (7

and the corresponding phase ® of the gravitational wave
will be

Ot —1)= [ ‘ot —r)dr =o(t)r—La(t)r? | (8)

The differential phase change 8¢ induced on light of an-
gular frequency w; by the gravitational wave on a single
round trip of the interferometer will be [11, 17]

dp~1hyrw, (e’ +e ™) . 9)

Since a phase shift 8¢ effectively multiplies the field of the
laser light by e®~1+i8¢, it can be seen that two side-
bands are imposed on the light by the signal. We need to
add the signal sidebands generated throughout the histo-
ry of the light. If the recycling cavity is on resonance,
the amplitude E , of the plus sideband emerging from the
interferometer is

L . _ .y i8.(1)
e:w(r T)eld)(l ‘r)e s +]’ (10)

with E, the rms amplitude of the incident laser light. The phase offset §,(¢) in the signal recycling cavity determines
the tuning of the detector. Now e‘“’ ="' will contain an e'“"™ term. Fortunately, however, the fairly slow change in
frequency of the chirp means that we can neglect this term in practice. For realistic sweep times £ and signal storage
times 7,, it is true that

()T, <<w(t) . (11)
Equivalently, the detector bandwidth B must satisfy the condition that

B >>0.04 M3 Hz . (12)
We may also write

8,(t—1)=8,(t)—8,(t)r . (13)
With this simplification the emerging sideband field is

E, iT\ T\ Ryhotor s —intwr—b,+b,) ilor—b,nr/2

~ (14)
E, 4(1—R,.R,) w0
The sum over the number of bounces may be converted to an integral over time:
E, il T\ Ryhoor is. .. re =i /TN T8, +8,7) i (r—8, )t /1) /2
~ s R, R.) /T s s s dr' . 15
E, = 41—-R,.R, & ¢ fo (R1;Ry)""e ¢ (1s)

Using (¢'/7)InR (R, =t'/7, and normalizing the time variable to the signal storage time s =¢'/7, enables us to write
this as

E iT, . T, Rhqoo; T, 5 .
+ Hiel1sRaM0®, LI Bse’“"js ’ (16)
E, 4(1—R,.R,)
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where the integral J; is given by
I, = f0°° exp{ —s—i[sT(w—8, /7+8,)+sHo—8, /)72 /2]}ds . (17)

Note the form of the integral: the (w—3&,/7) term
represents a tuning offset between the gravitational wave
and the interferometer. If this is small the sidebands add
up in phase, the integral is real and equal to unity, and we
recover the result for the buildup of a static signal. There
is a further condition for efficient signal buildup, that the
frequency must not change too quickly:

5, /(mB)<<1 . (18)

If w=3§, /7 then this may be written as
B>>5x107* | ——— | Ml Hz , 19
2><10_5s] & /100" Hz 19

where the value of the round trip time in the detector
arms 7=2X 1077 s is appropriate to a 3 km cavity inter-
ferometer (a multipass delay line would behave similarly
if tuning was implemented via the mirrors in the inter-
ferometer arms rather than just the signal recycling mir-
ror). Since the bandwidth that gives maximum signal

1
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[

buildup is about 1.6 Hz for such an instrument, the
response of a perfectly tracked dynamically tuned inter-
ferometer is near optimal over a considerable range of
masses and frequencies. In situations in which the rate of
change of frequency or the tuning offset are significant,
the response integral may be done numerically.

The chirp changes its frequency at a rate described by
Eq. (2). Alternatively, the time ¢, taken for the chirp
frequency to evolve from frequency f 100, t0 f 100, is

3
t2= ./Vl5®/3

1 1

- (20)
7%, 1,

So a measurement of the mass parameter /Mg by an ob-
servation of the chirp at a certain frequency and time can
give an estimation of the chirp frequency fo at later
times. If the detector is tuned to a frequency fr00 hav-
ing the same form as fy, so that 8, =20077f g, then
substituting into our integral for the signal gives

7S=f0wexp(—s—i 3

We need to calculate the observable output signal, a
change in light power 8I produced by beating the side-
bands with a local oscillator field [11] E :

8I=E,E% +E,E* +E}E,+E}E_, (22)

where an asterisk indicates complex conjugation. If we
maintain our concentration on a single sideband, write
F=T,./(1—R,.R,) and use

T\, _(2wrB—NA*»'"?
mB B ’

T\s7= (23)
where N A2 are the overall losses in the arms of the inter-
ferometer, then we obtain

EE; Fhow, (2mTB—NA*)'?
27B

So we now have an expression for the intensity change at

each frequency produced by the chirp. This signal wave

form can be related simply to the root spectral density
SI(f) of the signal [12]:

= S81(t)
[81(f)|=—=
d Vaj

for a slowly varying frequency. It is this signal spectral
density, together with that of noise, that is needed to cal-
culate the information extractable from an observation.

|81(2)| = Tl (24)

(25)

1D ]ds . (21)

For example, the optimum signal-to-noise ratio may be
calculated using the standard formula (e.g., [1])

[8T(f)|?
|81, (/)12

Throughout this paper we shall make the simplifying
assumption that the detector noise |8I,| is dominated,
above a seismic cutoff frequency that we take as 100 Hz,
by the photon shot noise of the coherent local oscillator
field. We shall consistently neglect extra noise resulting
from poor fringe contrast or any other source (see, e.g.,
Refs. [13,1,3] for a discussion of this). So the noise has a
root spectral density [14]

(S/NP=2f" df (26)

|8T,(f)| =(2E}#iw, )'/*, 27
giving
2.1X 107 *F 1 Mmy?
(S/NP= e
ALT 100
S 2
maX100 277TB—N A
X = T2 d 10 » (28)
fminw0 Bzfzég s

with A; the wavelength of the light in the interferometer.
The expression (1) for the averaged gravitational wave
amplitude has been used here, so that S /N is the average
value for a network. Favorable orientation of source and
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detector would give values of S/N higher by V'5. If the
power buildup within the recycling system is limited by
the mirror losses and the transmission of the power recy-
cling mirror is optimized, then the recycling factor ¥
takes its maximum value.

F=1/VNA?. (29)

In this optimum case we can write the typical S /N with
dynamic tuning as
—1/2

AL
5/6,—1
ME°r 00 ar »

=2
S/N=221 o5 pm

172
0
50 W
(30)

where the factor &, is given by

_ (27lB /c A} —1 R 12
d(dt: lffmom, —W ] 1‘75‘ df]oo ] ’

mn

s
100ax

(31)

with / the armlength of the interferometer. This result is
independent of whether cavities or delay lines are used as
multiple reflection systems within the arms of the inter-
ferometer, as long as the upper observing frequency is
well below the first zero in the detector frequency
response. This should be a good approximation in prac-
tice. The size of &, determines the signal-to-noise ratio
that may be obtained with a particular detector arrange-
ment. The maximum value of &, is

&4 (max)=0.51, (32)

assuming a perfectly tracked slowly changing chirp (for
which |7,|>=1) observed between 100 Hz and 500 Hz
with an interferometer having arms 3 km in length and
A*=5X10"° We will discuss further the possible mag-
nitude of &£, in Sec. V, but we can see already that dy-
namic tuning has the potential to increase the signal-to-
noise ratio of a chirp by a factor ~ 15 over that possible
with an optimized broadband detector.

For a “conventional” narrow-band detector, in which
only one sideband is resonant, it is a very good approxi-
mation to neglect one sideband. There are at least two
situations, however, in which the effect of both sidebands
needs to be included. One such case is simply if the band-
width during any part of the observation is sufficiently
broad for the contribution from the other sideband to be
significant. Both signal sidebands must also be included
if the optical arrangement used is designed so that two
sidebands are simultaneously resonant. Such a system,
doubly resonant signal recycling, has been proposed re-
cently [15]. This uses a long storage time cavity as a
frequency-dependent signal recycling mirror, splitting the
resonance of the signal recycling cavity. The action of
the frequency-dependent mirror is to produce a different
phase shift on reflection for the two sidebands. The
resultant difference in phase shift §; per round trip of the
signal recycling cavity allows two sidebands to be reso-
nant. The frequency response of a doubly resonant detec-
tor is modified in such a way that the peak signal of an in-
strument with the same bandwidth as a corresponding

singly resonant detector is increased by a factor of V2.
Alternatively, a doubly resonant detector with the same
peak response has twice the bandwidth. With this
modification, the rest of the analysis remains unchanged.
Thus, while we shall quote results for a singly resonant
interferometer, signal-to-noise ratios and parameter accu-
racies can be improved by a further factor of V'2 by the
use of doubly resonant signal recycling.

If we wish to explicitly include both sidebands, then we
can keep the expressions for the two amplitudes in for-
mula (22) for the power change. The maximum power
change occurs when all three phasors (E;,E ., and E _)
are parallel at one point of the cycle. This is when the
phase W for the local oscillator field and the time ¢,
(modulo 1/f) are given by

V=—ot,=1{arg[E e '“]+arg[E_e'®]} . (33)

The control system for the local oscillator phase will al-
most certainly not sense the gravitational wave itself but
an artificial signal that should behave in a similar way.
For example, the length of the interferometer atoms
might be differently modulated at a frequency equal to
the gravitational-wave frequency plus a free-spectral
range of the signal recycling cavity. The local oscillator
phase ¥ would then be adjusted to maximize the size of
this perfectly resonant artificial signal. This would be a
slightly different phase from that required to maximize a
signal that is not quite on resonance. So the values of E |
and E_ used to calculate ¥ should assume perfect tun-
ing. We can then calculate the waveform seen by the
photodetector.

We did not worry about the local oscillator phase in
the single sideband case. The magnitude of the beat sig-
nal is then independent of the local oscillator phase; only
the best demodulation phase would change. It would be
possible to demodulate the signal twice, with quadrature
phase. A linear combination, defined by the tuning,
would allow reconstruction of the signal and attainment
of the best S/N.

We now have the ability to calculate the output
waveform of a dynamically tuned interferometer. This
enables us to determine the final signal-to-noise ratio and
the errors in the measurement of the chirp parameters if
we know how accurately the chirp can be tracked.

III. ESTIMATION OF CHIRP PARAMETERS

In a companion paper [16] (henceforth referred to as
paper I) we discuss the general problem of estimating the
time of arrival and mass parameter of a chirp of gravita-
tional radiation. Here we will quickly summarize the re-
sults that we will need in order both to assess how accu-
rately a chirp may be tracked by a dynamically tuned in-

terferometer, and also to calculate the uncertainty in the

final estimation of the chirp amplitude and mass (hence
distance), and arrival time (hence position).
In general, the final errors in the chirp parameters are
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given by components of the covariance matrix, the in-
verse of the information matrix [16]. This complication
is necessary because uncertainty in the mass, for example,
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simplification is that it is possible to explicitly eliminate
consideration of the phase of the signal [16], reducing the
information matrix to a symmetric two-dimensional

produces uncertainty in the arrival time. One form, with components
J
fman s1()2 |7
o vre]
fmax 2 2 min n
r, =2 Q2nf) ISI({)I df — > . (34)
Fwin  |8I,(f)] Imax JBINI
fmin |Sln(f)’2
S max (Zﬂf)!SI(f)lzdf fmaxa(f)]SI(f)lzdf
Fmax 5I(1)|2 Smin 8L, ()] Tmin 8L, (f)]?
T =2f (277'f)a(f)| (f)‘ df — (35)
im Fomin 181,12 Wk ar ’
fmin 'Sln(f)|2
and
S a(NISIAL o ?
Smax g2 S 2 fmin |87n(f)‘2
T =2 [ @ OBIDIE o B : (36)
Twin 8T, (/)] Smax [BIOI®
fmin ‘87,,(f)|2
with
a(f100)=530 Mx""%3f 10> +5f100—8) . (37)

Since the inverse of this two-dimensionral matrix is the co-
variance matrix, the error AMg in estimating the mass
parameter is given by

r,
rmm Ftt - I“%m

1/2

AMEY3= , (38)

while the uncertainty A¢; in the time of arrival of the
chirp at an individual detector is

172
L om

e - (39)
ComTu—Tim

At =

1]

The minimum uncertainty in the amplitude of the gravi-
tational wave is simply determined by the signal-to-noise
ratio, given by Egs. (26) and (30):

Ak _ 1 (40)

h S/N °

The uncertainty Ar,y, in the distance to the coalescing
binary (in 100 Mpc) may then be found by combining the
expression (1) for the gravitational wave amplitude with
those for the uncertainty in mass (38) and amplitude (40).
This gives

Arloo B 1 2 Amga/3 271172 @
rio | |S/N ME?

It should be stressed that the errors given by these ex-
pressions are the best possible ones, with optimum data
analysis. Since the analysis does not have to take place in

real time, plenty of computing power should be available
and these minimum errors should be attainable. A possi-
ble exception is the error for the distance to the source,
the measurement of which requires amplitudes from
different detectors in a network to be combined. Inevit-
able differences in detector calibration will probably limit
distance measurements to accuracies of a few percent.

The estimate of the time of arrival of a chirp at an indi-
vidual detector is degraded by the uncertainty in the
mass and phase of the chirp. But if the same chirp is seen
by a network of detectors it is known that the mass pa-
rameter is common to them all and there is a well-defined
phase difference between each of the instruments. For
example, if the detectors have the same orientation, the
signal must have identical mass parameter and phase in
all of the instruments. So, while the problem with arbi-
trary detector orientations is currently being studied [18],
it seems likely that the result for the errors in the time de-
lay between different detectors is particularly simple, re-
ducing to the case in which only one parameter is un-
known (cf. paper I). The variance C,, in the relative tim-
ing is then given by

fmax 218 2
Lyl QufIBINE 42)
Ctt fmin ISI,,(f)l
So the final relative timing error Az, is
—1/2 172
A
0 L
=0.01 e
Aty =0.018 | 55y 0.5 um
XMG3 7100 H 5" ms , (43)
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where the factor %, is given by

100 2 1/2
_ max | (27IB /cA?)—1 )
Ha= (ffloomin B*fig ]Ijsl 4 oo ! -

(44)

H 4 is similar to the equivalent integral &, for the
signal-to-noise ratio (31), but it has a weaker frequency
dependence and so a higher value. For example,
F;,'~0.94 for a perfectly tracked chirp observed be-
tween 100 and 500 Hz with /=3 km, B =1.6 Hz, and
A?=5X107>. So a very good timing accuracy of ~0.02
ms seems possible. This may be converted into an ap-
proximate positional accuracy by reference to Eq. (4).

IV. TRACKING A CHIRP

If the final signal-to-noise ratio and the estimates of the
source position and distance are to approach their op-
timal values, then the tuning frequency of the detector
must follow that of the gravitational waves quite accu-
rately. At least one sideband induced by the gravitational
wave must be resonant up to the maximum observing fre-
quency f ... We shall illustrate further the effect of im-
perfect tuning in Sec. V, but it is instructive to try and es-
timate the required accuracy for both the chirp timing
and mass parameter.

Any error At in the time at which tracking starts must
be less than the time it takes for the chirp to traverse the
detector bandwidth, At <B/f_ ... Since the rate of
change of the chirp frequency is given by (2), the timing
constraint is

B(f)

RSO
B f —11/3
~5%x1073 M s . (45
10 Hz | | 400 Hz © s, @)

Remember that the bandwidth can be a function of fre-
quency: if a cavity is used as the signal recycling mirror
its transmission and hence the bandwidth may be varied
by adjusting the cavity tuning [8,14].

The gravitational-wave frequency is given by Eq. (20).
If this frequency is to be within an optical bandwidth of
the detector tuning frequency, then the mass parameter
must be estimated to an accuracy

M5®/3 1 1 —1
——— <2.7X1072Bf 13 —— . (46)
M G

Note how the frequency error builds up after the initial
estimation at f 100,- If we take this initial frequency as

100 Hz then at significantly higher frequencies
f E)Sf > f 1'082/ ? and we can write
AMS3 —~11/3
s <2x107% | b d (47)
M 10 Hz 400 Hz

So the required accuracy of both the timing and the fre-
quency sweep rate gets much tougher at high signal fre-
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quencies.
If dynamic tuning is to work, the presence of a possible
chirp must first be detected by a narrow-band interferom-
eter tuned to as low a frequency as possible. We shall
take this initial frequency to be 100 Hz. Because the sig-
nal power is greater at low frequencies, the signal-to-
noise ratio in such a narrow-band instrument may actual-
ly be larger than that obtainable in a broadband detector,
the improvement factor being ~ 1.5 with a bandwidth B
of 6 Hz [S]. The output signal from the narrow-band
detector must be analyzed promptly, in real time, to
detect the candidate chirp and to initiate the dynamically
tuned phase. There are then a range of strategies, de-
pending on the sophistication of the data analysis, that
can be employed to ensure that the tuning is accurate.
By far the crudest is to make no attempt at all to estimate
the mass parameter of the chirp other than guess that the
binary consists of two 1.4 My neutron stars. While this
will probably be quite close to being correct most of the
time, it will occasionally be drastically wrong. It will be
better to use the detector output to estimate the mass pa-
rameter and arrival time. The best possible accuracy of
measuring the mass parameter with a static narrow-band
system is [17]
2

AME? 10 Hz 4 S
~0. /3
0 0.1 = S/ [ 48)

while the arrival time of chirp at the reference frequency
100 Hz may be estimated to

10 Hz
B

4
(S/N),

At =2.5%X1072 s, (49)

with the approximations good for initial signal-to-noise
(S/N);>3. It can be seen that estimation of the chirp
parameters only from an initial narrow-band detection
would be adequate for dynamic tuning up to about 200
Hz with a fixed bandwidth of 15 Hz and an initial signal-
to-noise ratio as low as 4. Accurate tuning to even higher
frequencies is then possible either if the bandwidth is in-
creased at high frequencies or if the parameter estimation
is continually refined during the dynamic phase.

The optimal strategy is hard to judge at this point in
time, but we shall describe one possibility. This starts by
making the initial detection with quite a narrow-band
system, perhaps B ~6 Hz. While such a system has fairly
poor mass and timing discrimination, the small frequency
range over which the chirp evolves during its passage
through the bandwidth of the detector means that this
accuracy may be adequate to ensure that the detector
tuning can follow the chirp for the next few Hz, at least.
The relatively small amount of data associated with the
low bandwidth, together with the rather crude estimation
required, also eases the computing power needed for the
prompt data analysis. Once the chirp frequency has
evolved somewhat further, with the detector tracking it,
the output of the detector may be reanalyzed and a new
estimation of the chirp parameters made. The tuning
may then be readjusted so that the detector may continue
to follow the gravitational wave frequency with sufficient
accuracy. This process may be repeated throughout the
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evolution of the chirp. The data analysis is made easier
at each stage by the previous knowledge of the chirp pa-
rameters; it is a zooming in on the correct values. In
principle, this scheme could give very small tuning er-
rors, essentially given at each stage by Eqgs. (38) and (39).
We shall give examples for the possible signal-to-noise ra-
tio and parameter accuracies in Sec. V.

That there is enough information in an initial narrow-
band detection to successfully start dynamic tuning with
later updating may be seen by combining the expressions
(45) and (46) for the required parameter accuracy with
(49) and (48) for the possible accuracy from the initial
detection. If we demand, say, that after the chirp has
evolved by about a bandwidth B its frequency must be
still within B of the tuning frequency, the bandwidth is
constrained by
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(S/N);

So, even with low initial signal-to-noise ratios (S /N),, it is
possible to use quite narrow bandwidths and take advan-
tage of the associated high signal buildup.

There is an additional constraint on the lowest thresh-
old that can be used to start the dynamically tuned phase.
This is simply that the detector should not spend a
significant fraction of its time triggering on noise. If de-
cisions whether to trigger or not are made at time inter-
vals t; and the threshold for triggering is T times the rms
noise (which we assume to be Gaussian), then the typical
time interval ¢, between triggering on noise is

L

") 6D
where erfc(7) is the complementary error function. If ¢,
was 100 ms, reasonable for a narrow-band system, a
threshold for initial detection of 3 would lead to the
detector triggering on noise every eight minutes or so,
while T =4 would give 7, ~80 days. Each false trigger
would put the detector out of action for the time scale of
a chirp, a few seconds. So it may be possible to operate
dynamic tuning with initial signal-to-noise ratios in a
narrow-band instrument as low as 3. This would corre-
spond to S /N ~2 in a broadband detector [5]. These low
S /N candidate events would then be confirmed or denied
as chirps by the enhancement of S /N during the dynami-
cally tuned phase. With typical thresholds for a broad-
band system being T, ~4.5, the number of events ob-
servable by a dynamically tuned interferometer might be
higher by a factor (4.5/2)° = 10.

Another important practical question is the feasibility
of adjusting the position of the signal recycling mirror
with sufficient accuracy and speed to ensure good signal
buildup at all frequencies. The actual motion of the sig-
nal recyclying mirror is only a small fraction (~1072) of
a wavelength, so this is no problem. The tuning of the
signal recycling cavity will be controlled by a feedback
system which will maintain efficient resonance at the es-
timated signal frequency. It is straightforward to convert
an estimate of the correct tuning into a position of the
signal recycling mirror, by shifting the frequency of a
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control beam, for example [9]. The control system must
have enough bandwidth to be able to follow the evolution
of the chirp. This is easy at low frequencies, at which the
chirp frequency changes with a timescale of seconds, but
gets rapidly more difficult at high frequencies. The
characteristic frequency (inverse timescale) at which the
chirp evolves is

8/3

S (52)

f_~ 5/3
~5 MS™ | 200 Hz

f

The feedback gain at this frequency must be high enough
to keep the tuning to within an optical bandwidth of the
desired frequency. It will be sensible to use the signal
representing the estimate of the correct tuning frequency
to directly move the signal recycling mirror as well as to
alter the frequency of the oscillator determining the reso-
nant frequency of the signal recycling cavity. This will
reduce the frequency error seen by the control system by
a factor 7 that depends on how well the calibration of the
transducer that moves the signal recycling mirror is
known. If we consider only a simple, unconditionally
stable servo system with unity gain frequency f.,, then
the requirement is that

if;1>o.01 M3

=1 11/3

B

4 Hz

"/

10 400 Hz

(53)

The servo frequency probably will have to be significantly
lower than the observing frequency, for any tuned detec-
tor. This is so that phase noise in the controlling oscilla-
tor does not impose excess noise on the position of the
signal recycling mirror. Use of a notch in the filtering of
the feedback signal should avoid any such problem, al-
though this will have to be of variable frequency with dy-
namic tuning.

As long as we do not want to observe above ~500 Hz,
the control of the signal recycling mirror should not be
an insurmountable problem.

V. NUMERICAL RESULTS

We devote this section to present systematically the re-
sults of a variety of numerical computations based on the
above theory. This will illustrate the powerful perfor-
mance of dynamic tuning under more realistic conditions
than described so far.

In paper I we outlined the statistical theory of signal
detection and estimation of signal parameters. It turns
out that if we know the shape of the signal and the noise
is Gaussian the optimal procedure consists of passing the
data through a bank of linear filters. The Fourier trans-
form of the other filter is the Fourier transform of the ex-
pected signal divided by spectral density of noise. We
proved that in the case of a chirp signal we need to pass
the data through two banks of filters depending on two
parameters: time of arrival ¢; and chirp mass //{. Then
maximize a certain functional formed out of the two
filters against the two parameters. The phase and ampli-
tude parameters can then be calculated explicitly. We
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have given formulas for the signal-to-noise ratio and the
covariance matrix giving the accuracy in the determina-
tion of the parameters. Those formulas apply to the case
of dynamic tuning within the quasistationary approxima-
tion presented in Sec. II.

A. Detector’s sensitivity wifh dynamic tuning

It is very interesting to make a plot of the sensitivity of
the antenna to a chirp of gravitational radiation. In or-
der to maintain the same criteria we used in previous
publications (see, e.g., [5,17]), where we defined sensitivi-
ty as 1/S,(f), S, (f) being the spectral density of noise in
the interferometer which appears in the general formula

© [h(f)|?
S/NyP=2| ~—2—df , (54
( S s )
with |AZ(f)]2< f77/3 in the present case, we shall here
take

2
Sensitivity (dynamic tuning) « M—B#Ws 2 (55)
according to formula (28). Such plot is displayed in Fig.
2, where several cases are differentiated. They corre-
spond to a perfectly tuned antenna over the whole fre-
quency range, and to several mismatched chirp trackings.
The latter are exemplified by {Af;=10 ms, AM =0},
{At;=0, AM=0.01 M40}, and {A;=10 ms,
AM=0.01 M, 40}, respectively. The latter values are
somewhat arbitrary, but still roughly typical of a realistic
situation. The figure also shows the sensitivity function
for a static configuration of 6 Hz bandwidth, the op-
timum for this case, cf. Ref. [5]: it is the sharply peaked
curve on the far left of the graph. Bandwidth of 6 Hz is
also the constant value we have adopted throughout the
dynamic tuning. Note how, in all cases, sensitivity im-
proves over a large frequency range thanks to dynamic
tuning, even if errors in initial parameter estimation are

At; = 10ms
) am=0

0.8
\ \\ At;=0
,/"(/ AM =0.01 My 40
2.6
At; = 10ms
AM =0.01 M40
8.4
]
i
v 8.2 |
0 "
)
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TABLE 1. Values of signal-to-noise ratio (S /N), error in tim-
ing (At;), and in mass parameter (A/), and 1D-timing error,
i.e., the error in this parameter when all the rest are known, for
static broadband standard recycling and for dynamic tuning.
Values for the latter correspond to ideal dynamic tuning (per-
fectly tracked chirp) and are given in milliseconds for times and
as millimultiples of the mass parameter /M, ;o of a binary con-
sisting of two equal stars having each 1.4 solar masses. The en-
try “GAIN factors” gives an idea of how do both antenna
configurations compare.

S/N At; Atz; (1D) AM
Broadband 8 2.23 0.122 1.28
Dynamic 112 0.15 0.017 0.08
GAIN factors 14 15 7 15

allowed for. It tends to drop at high frequencies due to
the failure of the system to catch up with the large fre-
quency sweep rate occurring at those frequencies.

We thus see that the net effect of dynamic tuning is to
make the detector broadband—for chirps, of course—
while keeping narrow-band sensitivities.

Table I summarizes the figures reported on earlier in
Secs. IT and III. They refer to ideal dynamic tuning with
a constant bandwidth of 1.6 Hz over a frequency integra-
tion range from 100 to 500 Hz. A¢; is given in mil-
liseconds, and AM in 1073 M, 4, where M, 4 is the
mass parameter of a binary system consisting of two
equal stars of 1.4 solar masses each. The table also in-
cludes At;(1D), which is the accuracy in the determina-
tion of ¢; when the other parameters are known. As ar-
gued at the end of Sec. III, such accuracy could be
achieved with a network of detectors (also [6]).

The meaning of parameter errors here needs some
clarification, for ideal dynamic tuning implicitly assumes
there are no errors at all in the parameters. The clue to
the question lies in the fact that, even if he manages to
track the chirp exactly, the experimenter will have no

FIG. 2. Sensitivity functions for dynamic
tuning. The solid thin line corresponds to per-
fect tuning, the broken lines to differently
mismatched parameters as indicated. On the
far left, a plot of static narrow-band dual recy-
cling is also given for comparison. Bandwidth
is equal to 6 Hz both for dynamic and static
cases. Ordinate units are arbitrary, and fre-
quencies are in 100 Hz.

Frequency (100 Hz/)
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means of knowing he is doing so with absolute
certainty—he will only notice his signal-to-noise ratios
are very high. So he will still attribute a certain tolerance
to the values of ¢t; and M he decides on, and it is these
tolerances which we give in Table I. They are obtained
by use of the two-dimensional ambiguity function (cf. pa-
per I), a plot of which is given in Figs. 3 and 4 in the form
of a perspective plot and a contour map, respectively.

B. Actual performance of dynamic tuning

As a next step we attempt to calculate what we can
achieve by dynamic tuning in practice. We do not know
the parameters of the chirp initially; therefore, we pro-
pose to keep the detector in the static dual recycling

—20
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FIG. 3. Perspective plot of
the two-dimensional ambiguity
function for dynamic tuning.
Ordinate units are normalized,
so that the highest point on the
surface has height 1. In abscis-
sas, At is represented in mil-
lisecond and AM in 1073 M, 4@,
i.e., thousandths of the mass pa-

- rameter of a binary system made
~ up to two equal 1.4 solar mass
T - stars.
<=

configuration and wait for the chirp. When the chirp ar-
rives we detect it and estimate its parameters on line with
linear filtering; then we tune the detector with tuning fre-
quency f determined by the estimates of the parameters.
Of course because of noise there are inevitable errors in
our estimates, which are measured by the components of
the covariance matrix.

Consequently we have written the following computer
program. We calculate the signal-to-noise ratio and co-
variance matrix for static dual recycling starting from the
seismic cutoff frequency of 100 Hz up to a certain fre-
quency f,. Then in the tuning frequency we insert for
the time of arrival ¢; the true ¢; plus or minus the square
root of the C, component of the covariant matrix
(whichever gives the highest tuning offset) and the same

20 L
\ T T \ T
Q \o Q
h\\\o s g
2>

Delta m

20

FIG. 4. Contour map for the above surface.

—-20 -10
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for the chirp mass. This determines the dynamic transfer
function. We then calculate the signal-to-noise ratio and
covariance matrix for a dynamically tuned detector with
the initial frequency f, and the final frequency f, of, say,
500 Hz. The final signal-to-noise ratio is the square root
of sum of the squares of the signal-to-noise ratios in the
static and dynamic phases. The final covariance matrix T
is also calculated as the inverse of the I' matrix formed
from the sum of the I" matrices in the static and dynamic
cases. As the frequency f, approaches f, the initial
signal-to-noise ratio is smaller and smaller and conse-
quently the initial accuracy in the determination of pa-
rameters is poorer and poorer and the performance of the
system is worse and worse. As f| approaches f,, perfor-
mance tends to that of the static configuration. There-
fore we expect that there is an optimum frequency f opt

that gives highest signal-to-noise ratio and smallest errors
in the estimation of parameters.

In Fig. 5 we give a plot of the final S/N and At for a
range of values of the intermediate frequency f,; corre-
sponding to dynamic tuning with a fixed bandwidth of 6
Hz. The curves confirm the above predictions, but we see
that optimum S /N and optimum timing accuracy (i.e.,
lowest At;) are obtained for slightly different values of f.
If we take, for example, f,=115 Hz then we find
S/N =39, At;=0.82 ms, and At;(1D)=0.12 ms, always
better than corresponding values for static broadband
detection (Table I).

We have also considered another sophistication that
may have practical implementation. This is to introduce
several parameter updates during the course of dynamic
detection of the chirp. This means making parameter es-
timations several times during the chirp’s life and read-
justing tuning parameters at each stage correspondingly
(recall the discussion of Sec. IV). We have tested our up-
dating strategies; namely, we update every certain equal
interval of time, frequency, spectral density and chirp ra-
diated power.

Tables II-V give the results for the above updating

strategies with four updates, always for constant band-
width of 6 Hz, and f, =115 Hz. Inspection of the tables
shows that an “evenly spaced spectral density of chirp
updating strategy produces the best performance of the
four cases considered. This is not a very surprising re-
sult, since such spacing in the frequency interval matches
the energy distribution (in frequency) of the chirp. The
poorest corresponds to equal frequency spacings, not an
expected result, either, since giving the same weight to
high and low frequencies is clearly a waste.

Note also that the best results (Table IV) differ little
from those obtained when parameters are updated at
equal intervals of time (Table II). This is good news since
it will probably be easiest in practice to part the data for
analysis into equal stretches as they happen.

Now, which is the optimum number of updates? A too
large number will no doubt be inconvenient because it
will benefit poorly from the small amount of information
gathered during a short duration sample, due to the con-
siderable computing power required by on-line analysis.
A too small number, on the other hand, will miss the op-
portunity of getting improved accuracies. Take, for ex-
ample, one single update: S /N is about 39 for this case;
our updates yield S/N~65-a significant
improvement—but 15 updates only give S /N ~67. So the
number of 4 here proposed seems to be a balanced tra-
deoff between the “too many” and the “too few.” It is,
however, a bit premature to make too detailed assess-
ments of these matters as of now.

Another point to investigate is the bandwidth. So far
we have only reported on the results of keeping it fixed
during the entire process of dynamic tuning, but advan-
tage could be taken from letting it vary as tracking
proceeds. We can think for example of a bandwidth in-
creasing with frequency in order to allow for smaller er-
rors in parameter estimation at high frequencies, where
the signal-to-noise ratio has already built up to large
enough values. One must be very careful, though, not to
let the bandwidth grow too much since inequality (12),

FIG. 5. S/N (convex curve) and At; (con-
cave curve) vs intermediate frequency f, (in
100 Hz). Units for the former are normalized
so that maximum S /N corresponds to an ordi-
nate unity. Units for A¢; are in milliseconds.
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TABLE II. This table contains the same magnitudes as Table I as entries. They correspond, howev-
er, to different antenna settings. Static tuning is assumed during the first stage (from 100 to 115 Hz),
then dynamic tuning is switched on with mismatched chirp parameters. These are updated four times
at equal intervals of time as the chirp happens, and the partial results are reported in the table. The last
update is completed in the highest frequency, here taken as 500 Hz.

S/N At; At;)(1D) AM
Broadband 7.88 2.23 0.122 1.28 fs=100 Hz
Static 7.9 19.0 3.806 29.08 Up to 115 Hz
Update 26.3 11.9 1.575 14.12 Up to 128 Hz
Update 37.8 4.55 0.456 4.15 Up to 148 Hz
Update 49.6 1.54 0.155 1.11 Up to 189 Hz
Final 64.6 0.39 0.033 0.21 f»=500 Hz
GAIN factors 8.2 5.7 3.7 6.1

TABLE III. Same as II, except that updates are taken at equal intervals of frequency over the in-
tegration range.

S/N At At; (1D) AMn
Broadband 7.88 2.23 0.122 1.28 fs=100 Hz
Static 7.9 19.0 3.806 29.08 Up to 115 Hz
Update 38.1 1.86 0.248 1.38 Up to 211 Hz
Update 48.5 0.78 0.055 0.45 Up to 307 Hz
Update 52.1 0.53 0.038 0.29 Up to 404 Hz
Final 53.3 0.44 0.032 0.24 f»=500 Hz
GAIN factors 6.8 5.0 3.8 5.4

TABLE IV. Same as Table II, this time for intervals of equal spectral density of the chirp.

S/N At; At;,(1D) AMm
Broadband 7.88 2.23 0.122 1.28 f;=100 Hz
Static 7.9 19.0 3.806 29.08 Up to 115 Hz
Update 27.5 10.9 1.361 12.53 Up to 129 Hz
Update 39.5 3.82 0.383 3.36 Up to 153 Hz
Update 51.4 1.30 0.131 0.90 Up to 200 Hz
Final 64.7 0.40 0.032 0.21 f»=500 Hz
GAIN factors 8.2 5.5 3.8 6.1

TABLE V. Finally, updates are here taken by intervals where the chirp radiated power (i.e., the in-
tegral of its spectral density) is equal.

S/N At At,(1D) AM
Broadband 7.88 2.23 0.122 1.28 £,=100 Hz
Static 7.9 19.0 3.806 29.08 Up to 115 Hz
Update 31.8 7.34 0.787 7.48 Up to 138 Hz
Update 45.3 2.05 0.209 1.58 Up to 175 Hz
Update 56.6 0.80 0.076 0.49 Up to 249 Hz
Final 64.4 0.39 0.031 0.21 f»=>500 Hz

GAIN factors 8.2 5.7 3.9 6.1
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FIG. 6. Signal-to-noise ratios B, (in Hz).
Solid curves correspond to dynamic tuning
with constant bandwidth equal to 2B, dashed
curves to variable bandwidth [cf. Eq. (56) in
the text]. Upper curves derive from a fivefold
updating of parameters during dynamic tun-
ing, and lower ones from a single updating (the
final). The binary is supposed to be a two 1.4
M system 100 Mpc away from the detector.
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which lies at the root of our quasistationary approach,
must hold all the time.
Next is a sensible choice:

f

BO=80 |17 | %00 B

1+

8/3
] » (56)

where B, is a constant. The formula is sensible in the
sense that it ensures that (12) holds for a considerable
range of frequencies and mass parameters.

In Fig. 6 we give plots of signal-to-noise ratios versus
B, for a two 1.4 M binary. The upper curves corre-
spond to five parameter updates during dynamic tuning,
and the lower to just one. Solid curves correspond to a
fixed bandwidth (equal to 2B), dashed to variable band-
width according to (56). The graph shows that parameter
updating is a more powerful method to increase sensitivi-
ty than to change bandwidth: only for rather short initial
bandwidths, causing very poor initial parameter estima-
tion, does the latter result in some improvement over the
former.

This should be considered good news, because im-
plementation of a variable bandwidth in the interferome-
ter will require the replacement of the signal recycling
mirror by an optical cavity of variable transmission
coefficient, a further technical sophistication. A more
flexible method than the rather stiff one given by (56),
however, should not be excluded a priori: any means of
improving parameter determination in real time will al-
ways be welcome.

VI. CONCLUSIONS

In this paper we propose a new method to operate a
laser interferometric gravitational-wave (GW) detector in
order to enhance its sensitivity to chirps from coalescing
compact binary systems of stars. The method is a varia-
tion of narrow-band dual recycling, and consists of ad-

justing the position of the signal recycling mirror M, (see
Fig. 1) dynamically, that is, so that the system is kept in
resonance with the instantaneous chirp frequency. We
have given a formula for the frequency response of the in-
terferometer in such configuration which is the basis for
the subsequent analysis, both analytical and numerical.

Although ideally it is seen that enhancement factors in
S /N over broadband (static) standard recycling an be as
high as 15, it is not sensible to expect them in actual
practice: inevitable errors in parameter estimation
(necessary for correct tracking) will considerably lower
the above limit. So we have assessed in the paper how
the initial errors in the estimation of the chirp’s parame-
ters affect the detector’s performance, i.e., what the final
S /N will be and how do initial errors propagate (and
eventually improve) during dynamic tuning. The results
are that one can realistically expect to reach enhance-
ment factors of about 8 (rather than 15), still a very en-
couraging prospect.

Dynamic tuning strongly relies on on-line data
analysis—chirp parameters must obviously be deter-
mined as they happen—so enough computing power will
be required to quickly pass the data through a bank of
filters and make decisions about parameters in real time.
This needs more powerful computers than are now avail-
able, but we still must wait a number of years before GW
detector technology is ripe to start implementing dynam-
ic tuning. Progress in computer design over the last two
decades, however, has been so important that hopes that
requisite machines will be operative in due time do not
seem unrealistic.
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