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The statistical theory of signal detection and the estimation of its parameters are reviewed and applied
to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferome-
ter. The correlation integral and the covariance matrix for all possible static configurations are investi-
gated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity

configuration of the detector.
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I. INTRODUCTION

In order to detect the gravitational waves by the pro-
posed laser interferometers [1,2] it is necessary to im-
prove and develop the data analysis techniques. The
gravity-wave signals from unknown astrophysical sources
are very weak as compared with the noise in the detector
and it may be crucial to employ as optimal techniques as
possible.

In this paper we review a classical method of signal
detection and estimation of signal parameters, the max-
imum likelihood estimation, and we apply it to one im-
portant source of gravitational waves: the coalescing
binary system. As the two bodies in a compact binary
system spiral together, they emit a periodic
gravitational-wave signal, called a chirp, whose ampli-
tude and frequency rise as coalescence approaches. For
the simple model of two point masses the wave form dur-
ing the nearly Newtonian phase is easily obtained from
the quadrupole formula [3]. The signal depends on four
parameters: amplitude, phase, time of arrival, and chirp
mass.

In a previous publication [4] we derived the spectral
density of noise for the possible configurations of the
laser interferometer and we calculated numerically the
signal-to-noise ratio. In another publication [5] the
Fourier transform of the chirp was derived and the corre-
lation integral and the covariance matrix were investigat-
ed for the standard recycling configuration of the detec-
tor.

In Sec. IT we review the theory of signal detection and
parameter estimation. In the case of the stationary
Gaussian noise, which we assume will be the case for the
gravitational wave detectors, the optimal procedure con-
sists of filtering the data with a linear filter. In the case of
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a chirp we show that to determine time of arrival and the
chirp mass we have to pass the data through two banks of
linear filters and maximize a certain functional formed
from the outputs of the two filters. Then the estimates of
the phase and the amplitude can be explicitly calculated.

In Secs. III and IV we investigate numerically the
correlation integral and the covariance matrix for all pos-
sible configurations of the detector.

In Sec. V we give the explicit analytic formulas for the
correlation integral and components of the covariance
matrix in the case of a resonant configuration of the
detector.

II. THE STATISTICAL THEORY OF DETECTION OF
SIGNALS AND ESTIMATION OF SIGNAL PARAMETERS

In the case of a gravitational wave from a coalescing
binary we know the form of the signal as a function of a
number of unknown parameters. Thus the problems of
detection of such a signal and estimation of its parame-
ters are closely connected. Let us first consider the prob-
lem of signal detection.

As a result of noise a datum from the detector is a
value of a certain random variable. For example, in a
gravitational wave detector based on a laser interferome-
ter one of the main sources of noise is the photon count-
ing noise [6]. Therefore the current measured at the pho-
todiode is a random variable. Since we take measure-
ments every certain interval of time the data from a
detector form a sample of a certain (discrete) stochastic
process. The presence of the signal will affect the proba-
bility distribution of the stochastic process.

Let X; be the random variable and let
X=(X,,X,,...,X,) be the stochastic process in ques-
tion and let x; and x=(xx,,...,x,) be a sample of the
random variable and the stochastic process respectively.
If there is no signal we have a joint probability density
Sfunction (PDF) p,(x) and if the signal is present we have
a PDF p,(x). To decide which is the PDF we have to
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devise a rule called the test which divides the range of
values of x into two sets R and its complement R’.

We say p;(x) if x€ER and py(x) if xER".

The detection probability P,(R) is given by

PD(R)=pr1(x)dx (1

and the false alarm probability Pr(R) (i.e., a probability
of deciding that signal is present even though it is really
absent) is given by

Pp(R)= pro(x)dx : b))

The most appropriate approach to the detection of
gravitational waves seems to be the Neyman-Pearson ap-
proach. In this approach we seek a test that maximizes
the detection probability subject to a preassigned false
alarm probability Pp(R)=a. The solution that can be
obtained using the method of Lagrange multipliers is the
region R defined by

R={x:A(x)2k}, (3)
where A(X) is the likelihood ratio given by

Atx)= ;‘):3 @
and k is defined by

Pr[Ax)Zk]=a . (5)

Thus if A(x) 2 k we say that the hypothesis denoted by
H, that the signal is present, is true whereas if A(x) <k
we say that the hypothesis H, that the signal is absent, is
true.

For theoretical considerations it is convenient to con-
sider the continuous time stochastic processes. We as-
sume that we make observations over a certain interval of
time [0, T] and that the noise n(z) is additive. Thus we
have

x(t)=n(t), 0Z¢t=T, if H, is true, (6)
x(t)=s(t)+n(t), 0=t=T , if H, is true, @)

where s(¢) is the signal for which we are searching. In
the following we assume that s (¢) is a deterministic func-
tion of time.

We assume that the noise N (¢) in the detector is a
zero-mean Gaussian stochastic process with the correla-
tion function K y(¢,u).

A stochastic process X (¢) is said to be Gaussian if
every finite linear combination Z =3 0, X(¢;) is a
Gaussian random variable, i.e., Z has a Gaussian proba-
bility density function. It can be shown that in the above
case the logarithm of the likelihood ratio is given by

mALx (0]= [ "x(ig(hdt—L [Ts(t)g(t)de ,  (8)
0 27Y0

where g (2) is the solution of the integral equation
T
= Ky(t . 9
s(t) fo N(t,u)g (u)du 9

The likelihood ratio A[x(#)] depends on x(¢) only
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through the integral
T
G=[ x(ng(ndr . (10)

The integral G is called the detection statistics.

Thus the Neyman-Pearson test in the above case con-
sists of passing the data through a linear filter k (1) whose
impulse response is

k(r)=q(T—7), OZ7=T, (11)

k(r)=0, 7<0,7>T, (12)

where g (u) is the solution of the integral equation (9)
with the appropriate boundary conditions.
If the noise is stationary [i.e., K y(t,u)=K (¢t —u)] and
if the whole of the signal is included in the interval [0, T']
the integral equation can be solved by Fourier transform.
The Fourier transform K(w) of the impulse response
K (7) is given by

S*(w)
(w) ’
where S(w) is the Fourier transform of the signal and
®(w) is the two-sided spectral density of noise.

®(w) is the Fourier transform of the correlation func-
tion

@(w)zf_w Ky(r)explior)d T . (14)

R(w)=exp[ —iwT]

(13)

Depending on whether signal is absent or present, the
detection statistics G has the probability density func-
tions

Po(G)=(2md?) " exp 2 | (15)
_ — 2
P1(G)=(2md®) " exp ——‘% : (16)
where
a*= [ 's(q(t)dr . an

These are Gaussian probability density functions. This is
clear as G is a linear functional of a Gaussian stochastic
process. The above PDF’s are determined by a single pa-
rameter d.

We call this parameter the signal-to-noise ratio. If the
noise is white (i.e., ®(w)=const) d? is the ratio of the
powers of the filtered signal and the filtered noise.

With the filter given by formula (13) the signal-to-noise
ratio can be expressed as

w 2
d*= _w————if(“;))‘ ‘;—7“7’. (18)
The false alarm and detection probabilities are given by
O =cerfc(G,/d) , (19)
Op=1—erfc(d —G,/d) , (20)

where erfc is the error function and G, is the threshold
with which the statistics G is compared.
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The plot of detection probability as a function of false
alarm probability for a given value of d is called the re-
ceiver operating characteristic (ROC).

Thus the detection of a known signal buried in a
Gaussian noise is completely determined by signal-to-
noise ratio d.

A. Parameter estimation theory

In general we know the form of the signal as a function
of a number of parameters. For example, in the case of a
coalescing binary the unknown parameters are the time
of arrival of the signal, masses of the members of the
binary, the amplitude, and the phase of the wave.

In such a case in the process of detection of the signal
we must also determine its parameters. The classical es-
timation method proposed here is the maximum likeli-
hood estimation [7,8].

Let 6=(0,,0,,...,0,,) be the set of unknown parame-
ters of the signal s(#,0). As in the case of the completely
known signal we can consider two probability density
functions p;[x (¢);0] and py[x (#)] depending on whether
the signal is present or absent and we form the likelihood
ratio

Alx();0]=p,[x(2);0])/po[x(£)] .

The maximum likelihood estimators (MLE’s) 8 are those
values of the parameters 6 that maximize the likelihood
ratio L [x (¢);0]. Thus the MLE’s can be found by solu-
tion of the set of simultaneous equations:
90

—A[x(1);0]=0. 21

36, [x(2);0] 21)
In the case of Gaussian noise the MLE’s can be obtained
by passing the data through a bank of linear filters for
suitably spaced values of the parameters and each of the
filters being determined by solution of the integral equa-
tion

s(t,9)==foTKN(t,u)q(u;G)du . (22)

The values of the parameters that maximize the output
are the maximum likelihood estimators./\

The maximum likelihood estimator 6(x) is a random
variable since it is a functional of the random variable
x (t) determined by the set of equations (21).

Let I';; be the matrix whose components are given by

2

r,=—E

9
i 36,00, InA[x(¢);0], (23)

where E means the expectation value. I'j is called the
Fisher information matrix.

We say that the estimate 8 of the set of parameters 0 is
unbiased if the expectation value of 8 is equal to the true
values of parameters, i.e.,

E®)=0. 24)

There is a general result called the Cramer-Rao inequali-
ty which provides bounds on the variances of unbiased
maximum likelihood estimators:
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E(éi“ei)(é\j—Gj)Z(F)Jl . 25)

An estimator that is unbiased and which attains the
lower bound given by the right-hand side of inequality
(25) is called an efficient estimate. The condition for an
unbiased estimate to be efficient is that it must be a
sufficient statistics; i.e., A(x ;60) can be written in the form

Alx;0)=0[8(x);0]r(x) (26)

with the factor r(x) independent of the parameter 6 and
that the following equation must hold:

A

0 .0)= —
ag NAGx;0)=k(0)[8(x)—6], 27

where k(0) is independent of x.

It can be proven [9] that the maximum likelihood esti-
mator is asymptotically unbiased, efficient, and has a
Gaussian distribution with the mean equal to the true
value of the parameter and the variance given by the
right-hand side of the Cramer-Rao inequality. Asymp-
totically means that the number of estimates of the pa-
rameter tends to infinity.

In the Gaussian case the Fisher information matrix is
given by

. PH0,0)) 08
ij_ 801892 91=62=9 ’
where
le,ez):fqu(t;o,>s(t;02)dt 29)

and g (¢;0) is the solution of Eq. (22).

The integral H is called the correlation integral or the
ambiguity function.

With the filter given by Eq. (13) the correlation integral
is given by

S(0;6,)S*(@0,0,) de
D(w) 27

H(0,0=2[ " Re (30)

It can be shown that the right-hand side of the Cramer-
Rao inequality is the better approximation of the covari-
ance matrix of the estimators of parameters of the signal
the higher the signal-to-noise ratio [10]. Following Hel-
strom we shall call the inverse of the Fisher matrix the
covariance matrix. However one should remember that
the inverse of the Fisher matrix provides the lower
bounds on the accuracy of the estimation of the parame-
ters and in practice the errors will always be greater. The
question arises how big should the signal-to-noise ratio be
in order that the inverse of the Fisher matrix approxi-
mates well the covariance matrix. In a paper by one of
the authors [11], where the simulations of the detection
of the gravitational wave signal from a coalescing binary
and estimation of its parameters were performed, it was
found that for a signal-to-noise ratio of 25 the agreement
between the variances of the estimators obtained from
numerical simulations and the theoretical covariance ma-
trix is very good whereas at signal-to-noise ratio of 8 the
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variances of the estimators from the simulations are dis-
tinctly greater than that given by the inverse of the Fish-
er matrix.

Standard textbooks on the theory of signal detection
are monographs by Helstrom [8], Van Trees [12], Whalen
[13], and Weinstein and Zubakhov [14]. These texts are
oriented towards applications to radar.

The first treatment of the subject with application to
the detection of gravitational waves was a review article
by Davis [15]. This article has an additional advantage of
being written in the contemporary language of stochastic
processes.
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III. ESTIMATION OF THE PARAMETERS OF THE
GRAVITATIONAL WAVE SIGNAL FROM A
COALESCING BINARY

We assume that we detect the gravitational wave by
means of a laser interferometer. We also assume that
arms of the detector are at right angles each of length L.

Then the dimensionless response 8L /L of the laser in-
terferometer to the coalescing binary gravitational wave
signal where 8L is the difference in the changes of L in
each arm is given by [16] (in units with ¢ =1 and G =1)

|
a_inm_S/i(ﬂf)m F, 1tcos’a [21rf’f(t')dt'+¢' +F, cosa sin [2wf‘f(t')dt'+¢' } ] ) 31)
L R 2 4 4
where
F, =cos2¢ cosf sin2¢+ L sin2¢(1+cos’6) cos2y (32)
F,, =cos2¢ cosO cos2y— 1 sin2¢( 1 +cos®0) sin2¢ (33)

and ¢, 0,y are the three Eulerian angles where ¢ and 6 describe the incoming direction of the wave and 1 is the angle
between one semiaxis of the ellipse of polarization and the node direction. The angle a is the angle between the line of
sight and the vector normal to the orbit of the binary, ¢’ is an arbitrary phase of the wave form. ! is the “chirp” mass
defined by M>/*=um?’? where m =m +m, is the total mass of the components of the binary, u=m ;m,/m is the re-
duced mass and f(¢) is the frequency of the gravitational wave (twice the orbital frequency) given by

_1 5 1 1
fo=—-cc NIRRT (34)

where ¢ is the time at which coalescence occurs, R is the distance from the binary, and ¢; is an arbitrarily chosen initial
time.

It is convenient to choose the time ¢#; as the time when the gravitational wave has a certain frequency f;. Thus by the
above formula ¢, and ¢; are not independent and ¢, can be expressed in terms of #; and the arbitrarily chosen frequency
fi-
The above formulas were obtained using the quadruple approximation and assuming that the orbit of the binary is
circular.

The angles 0, ¢, ¥, and a can only be estimated if we have a network of three or more detectors [17]. Here we re-
strict ourselves to estimation by only one detector, therefore we introduce a root mean square response {4 ) defined as

(h)2= —lé— fo”foz”foz”fo”(aL /LY sin0d6dé dysinada (35)
T

and consider a characteristic response of the detector A. Estimation of 4, ¢, t; and M

(8L /L,)={h ) sin [2wftff(t'>dt'+¢] . (36) Let us write the signal s(¢) as s(¢; 4)= Ak (¢). Then
! qg(t; A)= Ar(t), where r(t) is the solution of the integral
It can be shown that (k) =8M>3(7f)*/3/5R. equation
Thus in this case the gravitational wave signal s () can T
be written in the form h(t)= fo Ky(tu)r(u)du . (38)

The logarithmic likelihood ratio [Eq. (8)] can now be ex-
pressed as

s(t)= Ag(t;M,t;)sin[F(t;M,¢t;)+d] . (37

We shall show that for the above signal maximum likeli-
hood estimates of amplitude 4 and phase ¢ can be calcu-
lated explicitly and we only need a two-parameter bank
of filters to estimate the chirp mass and the initial time. (39)

AL (1 A1= 4 [ Tr(00x (0t — 5 42 [ Tr 0k (0t .
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It is maximized by the linear estimate

. Jir(ox (e
A=—r—— . (40)
Jor(nh()at

Since E [x (t)]= Ah (1) we have that E[ 4]= A4 and thus
the above estimate of A4 is unbiased.
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imizing the above functional. We shall next show that an
explicit formula can be found for the phase ¢.
Let us write A (¢) as

h(t)=g(t)sin[F(t)]cosp+g(t)cos[F(t)]sing (42)

and let A, and k be solutions of integral equations

Let us substitute the estimate A for A4 in the likelihood g(t)cos[F(t)]= f 'k Ntuh (u)du , (43)
ratio. We get o
T 2 g(t)sin[F(t)]=f Ky(t,u)h,(u)du . (44)
LS o 0
InA[x (2); A]=— Of 41) Consequently 7 (¢) can be written as
2 [ rh(nar
0 r(t)=h.(t)sing+h(t) cosd . (45)
The estimates of the remaining parameters of the chirp  Let us first consider the denominator of Eq. (41). It can
(phase, time of arrival, and chirp mass) are found by max-  be written as
J
T .2 T . 2 T T . .
[fo gcosF h, dt] sin“g+ [fo g sinu h dt ] cos“¢+ lfo g cosu hs+f0 gsinu h, ] sing cos¢ . (46)
[
The Fourier transforms of C:= Ag cosF and S:= Ag sinF B o)= exp[ —ioT] C*(w) (51)
are given to a very good accuracy by [5] ¢ A d(w) ’
Ao _explioT] S $*(w) 52
C=K'f"%exp —2i7rft,.—im—15/;a(f)+z . @n : A D(w) 52
Hence by a formula similar to Eq. (30) it follows that
T T .
S=K'f"Sexp _2iﬂfti—z—5/—30(t)—i% ] , (48) fo gcothcdt—-fogsthsdt s (53)
ng cosF h dt= f Tg sinF h,dt =0 . (54)
0 0
where . .
: P Consequently the solution of the equation
K'= 172 (273 (49)
(30)'/% (m) R alnA[x t);6]=0 (55)
and that maximizes the likelihood ratio is given by
Th(t)x (t)dt
3 Smf 8 d=arctan | 2" | . (56)
¢ (f)"— (wf ¥R M (afi) } - o0 ohs(x (1)dt

Fourier transforms of k., and A, are given by formulas
analogous to Eq. (13):

1

InA[x (2); t,,./l'l]—

The above analysis determines the optimal analysis of the
data to find the maximum likelihood estimates of the pa-
rameters of the chirp.

First one passes the data through two banks of linear
filters: h.(t;t;,/M) and h(t;t;,/M) for suitably spaced
values of parameters ¢; and M. The maximum likelihood
estimates of time of arr1va1 7; and chirp mass J are those
values of ¢; and /M that maximize the functional

This is the maximum likelihood estimate of the phase.
Substituting the estimate of phase into the likelihood
ratio we get

st | o ioa P [ [haowoa |

[ineoxwar |+ [ oo ae |

Ft;,M)= 7
fohc(t)g(t)cos[F(t)]dt

(58)

Once maximum likelihood estimates of #; and M are
found by linear filtering we calculate the maximum likeli-
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hood estimates of the phase and the amplitude from for-
mulas (40), (45), and (56) with ¢; =7, and M= M.

In practice one can perform the correlations in the
above functional using the fast Fourier transforms. Then
one shall need two banks of only one-parameter filters
parametrized by chirp mass /. The position of the max-
imum of the functional ¥ will determine the time of ar-
rival.

Next we shall derive convenient formulas for the calcu-
lation of the covariance matrix.

B. The covariance matrix

Let us choose the amplitude parameter of the chirp in
the following way:
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1 1 m¥s
C(30)'2 (m** R

(59)

Instead of the chirp mass itself it is convenient to choose
the parameter

1
MS/G .

k= (60)

Then from Eq. (30) and the formulas for Fourier trans-
form of the chirp and the optimal filter, the ambiguity
function (correlation integral) is given by

H(AI,AZ,At,Ak,A¢)=2A1A2f f 7/3005[27TfAt;‘?f{ Ak_A¢] df , 61)
h
where Igiven by the integrals
3 S5uf 8 a1 df
= — =2 —_—, (68)
a(f)= ( f)5/3 (7f, )8/3 (7f, 5573 | (62) A4 o f7/3 S, (f)
At=t,—t;, (63) I'y=T 4=T44=0, (69)
- © (27f)* df
Ak=k,—k, , 64 a4 [~ 20f) _df 70
2~k (64) r,=24°[ VAT (70)
Ap=¢,—¢, (65)
o 2
and S, (f) is the spectral density of noise in the inter- T, =247 f ”ff,gf Sd(ff) ) 71)
ferometer referred to as the dimensionless response ° f h
8L /L. w2wf d
The signal-to-noise ratio d is given by Ly=24 2 o f7/f.; S, (J}) (72)
w 1 df
d*=H, _4 Ar=0,ak =0,Ap=0=2 4> . * a f)2 _daf
=4y, \ ,A¢=0 173 S, ( =242 (73)
o f ) =24 o FIA S
(66)
With our choice of parameters the components of the T'p=24 2 f ” % —S% , (74)
Fisher information matrix can be computed from the re- °o f # ()
duced ambiguity function H' defined by 1 df
= 2
H/(A4,4,) Fgp=24" | FIAS) (75)

H'(At,Ak,A¢)
w 1

[2mfAt +a(f)Ak —8¢]
s cos[ 2 a ¢ dr .

S, (f)

(67)

The components of the Fisher information matrix are
J

The covariance matrix C is the inverse of the I" matrix.

We shall show that the time of arrival and the chirp
mass components of the covariance matrix can be ob-
tained from a suitable two-dimensional matrix. Let
H?:=1/H2+H? where

H.=E [fOThc(t)x(t)dt]=A2sin(¢2)fThc(t;t,-,,k1)C(t;tiz,kz)dt

cos[27f At +a (f)Ak] (76)

=2 A,sin(¢,) fwf7/3

H,=E [fOThsmx(t)dz]

:Azcos(¢2)f0Ths(t;t,.1,k1)S(t;z,z, 2)dt=24; cos(éy) [ 7

S, (f) ’

sin[27f At +a (f)Ak]

(77
Sp(f)

f7/3
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is called the two-dimensional ambiguity function.
One easily finds that H(2)111=t2,k1=k2=d2’ where d is

the signal-to-noise ratio.
Let the two-dimensional I matrix be defined by

82
2= @
Y ae}an.H o}=6} 78)
where 6,=¢; and 8,=k. Then one finds that
2 0H, 0H,
r@= |9 . Wi B (79)
g 96063 d? 36] 06’
Hence we get
Lyy
rip= |r,— 44|, 50)
T4

of the inverse of
N

and one can verify that components C}jz)

InA[x(2); 4., 4,]

where h, and h; are solutions of the integral equations
(43) and (44), respectively.

The maximum likelihood estimates of 4, and A, are
easily found:

. [in(ox(t)dr -
" [Tn(n)S (1)de
. Th (t)x (¢)dt

_ Johetnxnar (88)

* [Th(0C ()t

One immediately finds that E [ Ac ]=A,and E| A\s]= A,
and therefore the above estimates are unbiased. Using
Eqgs. (87) and (88) the logarithmic likelihood ratio can be
written as

InA=

PN 1
AcAc_E-Acz

S s war

+ |4, 4,

s

_%ASZ

fOThc(t)C(t)dt . (89)

Thus the likelihood ratio has the form
Alx(t);4,,A4,1=g(4,, s,AC,A Yh [x(1)] (90)

and hence [18] the above estimates 4, and 4 s are jointly
sufficient estimates of 4, and 4.

From Egs. (87) and 88) one ﬁnds that standard devia-
tions and correlation coefficient of estimates A and A
are given by

o, =Vard,= [foThs(t)S(t)dt]_l , o1

o, =Vard,= [fThc(t)C(t)dt}_l : (92)
0

p=Covd,4,=0. (93)

=4 f h()x(t)dt + A, f h,( t)x(t)dt——AZf hy(
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the two-dimensional I' matrix are equal to the respective
components of the four-dimensional I" matrix, i.e.,

Cr=C, , (81)
Cm:Ckk , (82)
cP=cC, . (83)

C. A new set of parameters

Let us introduce a set of new parameters 4, and 4,
given by

A,= A cosd , (84)
A,= A sing . (85)

We shall show that this set of parameters possesses nice
statistical properties.
The logarithmic likelihood ratio is given by

1)S (t)dt — —AZf h(1)C ()t (86)

[
From Eq. (89) we have

lnA[x(t);Ac,As]=fOThs(t)S(t)[A\c—Ac] ,
. 94)
lnA[x(t);Ac,AS]=f0 h()C([ A, —A4,] .

d
94,

A,

Using the above equations one can verify that the
Cramer-Rao inequality [19] in our case becomes an
equality and consequently A and A are jointly efficient
estimates of 4, and A4;.

The Fisher information matrix I' with the new vari-
ables 4, and 4, instead of A4 and ¢ is no longer diagonal.
One easily finds the relations

—A—csrqﬁt.rA m=

i s

s
Caa=TanT 4= 2zl >

(95)

AS (4
FASASZFAA’FAsti: - AS F¢’i’r‘4x‘/"‘= A2 FM -
The remaining components of I' matrix are the same in
both coordinates.

IV. NUMERICAL INVESTIGATION OF THE
TWO-DIMENSIONAL AMBIGUITY FUNCTION

In the previous section we have shown that to deter-
mine the maximum likelihood estimates of the chirp we
have to pass the data through two banks of the two-
parameter linear filters and for each set of the parameters
form the statistics defined by Eq. (58). The accuracy of
the determination of the time of arrival and the chirp
mass is determined by the curvature at the maximum of
the two-dimensional ambiguity function H®. In Figs.
1-12 we give both the perspective and the contour plots
of this function for all possible static configurations of the
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FIG. 1. Delay lines in the arms of the interferometer and no
recycling configuration. The two-dimensional ambiguity func-
tion H'?: the contour plot.

FIG. 2. Delay lines in the arms of the interferometer and no
recycling configuration. The two-dimensional ambiguity func-
tion H'?: the perspective plot.
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FIG. 3. Fabry-Perot cavities in the arms of the interferome-
ter and no recycling configuration. The two-dimensional ambi-
guity function H'?: the contour plot.
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FIG. 4. Fabry-Perot cavities in the arms of the interferome-
ter and no recycling configuration. The two-dimensional ambi-
guity function H'?: the perspective plot.
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FIG. 5. Delay lines in the arms of the interferometer and the
standard recycling configuration. The two-dimensional ambigui-
ty function H?: the contour plot.
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FIG. 6. Delay lines in the arms of the interferometer and the
standard recycling configuration. The two-dimensional ambi-
guity function H®: the perspective plot.
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FIG. 7. Fabry-Perot cavities in the arms of the interferome-
ter and the standard recycling configuration. The two-
dimensional ambiguity function H®: the contour plot.
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ter and the standard recycling configuration. The two-
dimensional ambiguity function H'?: the perspective plot.
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FIG. 10. Delay lines in the arms of the interferometer and
the dual recycling configuration. The two-dimensional ambigui-

ty function H®): the perspective plot.
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FIG. 11. Fabry-Perot cavities in the arms of the interferome-
ter and the dual recycling configuration. The two-dimensional

ambiguity function H'?: the contour plot.
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FIG. 9. Delay lines in the arms of the interferometer and the

dual recycling configuration. The two-dimensional ambiguity

function H'?: the contour plot.

FIG. 12. Fabry-Perot cavities in the arms of the interferome-
ter and the dual recycling configuration. The two-dimensional

ambiguity function H®: the perspective plot.
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laser interferometer: the no-recycling configuration, stan-
dard recycling configuration, and dual-recycling
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TABLE II. Fabry-Perot, standard recycling.

configuration for both delay lines and Fabry-Perot cavi-  oouarance matrix _31520 1.1620 1.2;(6)1
ties in the arms of the interferometers.
. 2.61 1.40 1.95

Some plots are e:gtre;nely_ bumpy and ragged looking. Signal-to-noise 8.0
This is due to hmltatlop in the computer procedures Timing error 1.9 ms
which have been used to implement the numerics, and so Mass error 1.0 mu
they do not reflect any odd behavior of the plotted func-  phase error 14 r
tions, which can be shown to be perfectly smooth in the
domains shown.

The spectral density of noise and signal-to-noise ratios
for all the configurations were investigated by these au- .
thors in a previous publication [4]. The contour plots are TABLE III. Fabry-Perot, dual recycling.
given for those parameters of the interferometer that 11.6 —7.64 —7.81
were found to maximize the signal-to-noise ratio. Covariance matrix —7.64 569 5.11

All the plots exhibit a ridge that runs diagonally across —7.81 5.11 5.24
the t-M plane. This is characteristic of the signal with a  Signal-to-noise 12.6
frequency modulation [20] like the signal from a coalesc-  Timing error 3.4 ms
ing binary considered here. The sharper the ridge the  Mass error 2.4 mu
better the accuracy of the estimation of the parameters  Phase error 23r
that can be achieved. In the narrow band cases (Figs. 5,

6, 11, and 12) the ambiguity function is flatter than in the
broad band cases, consequently the accuracy of the deter-
mination of the parameters gets worse. The actual accu-
racy in the real data analysis will be worse (see discussion
at the end of Sec. II). TABLE IV. Delay lines, no recycling.
232 —130 —167
V. NUMERICAL INVESTIGATION OF THE Covariance matrix —130 764 93.1
COVARIANCE MATRIX _ , —76.4 93.1 121
Signal-to-noise 1.1
Timing error 15.2 ms
In the following six tables we give the numerical values g;ass error ?17 oo
g . ase error Or
of the components of the covariance matrix for all the
configurations of the laser interferometer.

We take into account only the photon-counting noise
and assume a seismic cutoff at 100 Hz. The parameters
of the laser interferometer like the reflectivities of the
mirrors are those that maximize the signal-to-noise ratios
[4]. TABLE V. Delay line, standard recycling.

We assume that the gravitational signal comes from a 781 —3.95 —6.03
binary at a distance of 100 Mpc. The members of the Covariance matrix —~3.95 2.01 3.03
binary have the same mass equal to 1.4 solar masses, this —201 303 473
corresponds to the chirp mass of 1.22 solar masses. The Signal-to-noise 4.6
amplitude of the signal is given by Eq. (59). Timing error 2.8 ms

In the tables we give the corresponding signal-to-noise Mass error 1.4 mu
ratios, the timing error (in milliseconds), the mass param- Phase error 22 r
eter error (in milliunits), and the error in phase (in radi-
ans). The “milliunit” (mu) is 1073 of solar mass. The
rows of the covariance matrix are consecutively the time,
mass, and phase components.

TABLE I. Fabry-Perot, no recycling. TABLE VI. Delay lines, dual recycling.
178 —99.3 —129 143 —95.6 —95.7
Covariance matrix —99.3 57.0 71.4 Covariance matrix —95.6 73.9 63.7
—-129  71.5 94.3 —95.7 63.7 63.9
Signal-to-noise 1.2 Signal-to-noise 7.4
Timing error 13.4 ms Timing error 12.0 ms
Mass error 7.6 mu Mass error 8.6 mu
Phase error 9.7 r Phase error 80r
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VI. APPROXIMATE ANALYTICAL FORMULAS FOR for all the configurations of the laser interferometer.

THE NARROW BAND CASE In this section we shall show that for the case of nar-
row band noise one can derive the approximate analytical
formulas for the correlation integral and the components

In the previous section the Fisher information matrix of the covariance matrix.
and the covariance matrix were calculated numerically The correlation integral H has the form [see Eq. (30)].

J

3 cos[2mf At +a (f)Ak +Ad]
Syp(f) )

For the narrow band noise, i.e., for the case of sensitivity 1/S,(f) peaked at a frequency f, with bandwidth B (see [4],
Eq. (3.7), for the case of dual recycling), we have

H (AL Ak Ap)=H, [ “dff ™" (96)

1 1 _ Af —fo)
=~ =85! —_— . 97
Se() T So(1+4[(f —fo) /BT -0 P B? 6D
We also introduce the approximations
(f —fo)?
f T =exp(—LInf)=exp[—LInfo(1+(f —f)/fo)]~exp(—1Inf,) exp —%—’f—ffL] , (98)
0
(f —fo)?
a(f)=a(fy)+a'(f)f —f0)+a”(f0)-f—2fo— R (99)
, _ 1 5 1 1
a (fo)_—27 73 [fis/s - ITE ’ (100)
" 1 40 1
a (f(,)—-£7——-—3ﬂ_5/3 ————f(l)m . (101)
We define a new variable
_ 2(f _fo)
x = 3 . (102)

The lower bound of the integral is then x; =2(f; — f,)/B and it is typically around —1. However to a good approxima-
tion we can set the lower bound to be — . Consequently our integral can be written in the form

HzI=H6f°° exp[ —(x2+bx)] cos(px?+2gx +r)dx , (103)
where
Hyexp(—IInf,)
Hy=—2 0 (104)
So
—7 B
b=——12>2 (105)
6 fo
a"(fy)B*Ak
_2Uo)BTAk (106)
8
_ 11, B
9= a(fo)ZAk—HrBAt , (107)
r=a(fo)Ak+2mf At +Ad . (108)
The above integration can be performed analytically:
VT b2 (g —2bp) 1 pg*—b%p +2bg
I_HOWCXP T—itp_z exp —-q_‘f:__;iﬁ— cos E—arctan(p-#—r)— 142 . (109)
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When At =Ak =A¢=0 then H is equal to the signal-to-

noise ratio d raised to the power 2. Thus we have
d?~V'mrH} exp(b?) . (110)

One easily finds that the two-dimensional ambiguity func-
tion H? is given by

2 _ 2
H(2’=(—1:c12)1—/46xp _%'_IQ;L) (111)
p p

One can then calculate the components of the two-
dimensional I" matrix in a straightforward manner:

2
r,={rBdr (112)
2
w(Bd)*a’ a"B
= — 113
4 1 b2a' , (113)
1 B4 |’ 2
al! a'
=—|— — . 114
T ) 3 1+4 |b Ba” ] (114)
The covariance matrix components are given by
1 2a’
=— |1+ — , 115
Cn d2(1TB)2 4 b Bau ( )
1 32 2a’
— , 116
Cu md? a'B? b Ba” (116)
2 [ 8 |
Coup=—|—— (117)
kk d2 anBZ

The above formulas are rather complicated. One useful
approximation for the accuracy dt of the determination
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of the time of arrival can be obtained when resonance fre-
quency f, is much larger than the bandwidth. Then to
first-order approximation dt =1/ C,, is given by

dt:L.

4B (118)

The above formula agrees with what intuitively one
would expect for narrow band systems.

VII. CONCLUSIONS

The fact that we only need two filters to estimate the
phase was already obtained by other methods by Dhuran-
dhar [21].

An important problem to be solved next is to deter-
mine how to space optimally the filters to determine the
time of arrival and the chirp mass. It seems that it does
not make sense to space them more finely than the accu-
racy of the determination of the parameters given by di-
agonal components of the covariance matrix. This prob-
lem is actively pursued by Dhurandhar and collaborators
[21].

Recently it was found by the Caltech group [22] that
the post-Newtonian parameters are detectable with the
matched filtering technique. This does not change the
theory presented above, however the numerical values of
the components of the covariance matrix will change
since the post-Newtonian parameters are correlated with
the Newtonian ones. Numerical investigation of the
post-Newtonian signal is left for a future investigation.
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