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Exosomes are biomolecular nanostructures released from cells. They carry specific

biomolecular information and are mainly researched for their exquisite properties as

a biomarker source and delivery system. We introduce exosomes in the context of

other extracellular vesicles, describe their biophysical isolation and characterisation and

discuss their biochemical profiling. Motivated by our interest in early-life nutrition and

health, and corresponding studies enrolling lactating mothers and their infants, we zoom

into exosomes derived from human breast milk. We argue that these should be more

extensively studied at proteomic and micronutrient profiling level, because breast milk

exosomes provide a more specific window into breast milk quality from an immunological

(proteomics) and nutritional (micronutrient) perspective. Such enhanced breast milk

exosome profiling would thereby complement and enrich the more classical whole breast

milk analysis and is expected to deliver more functional insights than the rather descriptive

analysis of human milk, or larger fractions thereof, such as milk fat globule membrane.

We substantiate our arguments by a bioinformatic analysis of two published proteomic

data sets of human breast milk exosomes.

Keywords: exosome, breast milk, maternal health, proteomics, micronutrient

INTRODUCTION

What Are Exosomes?
Most living cells release an array of extracellular vesicles (EVs), i.e., membrane liposomes
which are 20–200 nm in size. The nomenclature of the different vesicle types depends
on their cell of origin, as well as their function and size, and has generated confusion
about the definition of exosomes. The EV terms used in this expanding area of research
encompass exosomes, ectosomes, microvesicles, microparticles, prostasomes, tolerosomes
(which induce immunological tolerance to dietary antigens), apoptotic bodies (released
by apoptotic cells), and nanovesicles. Cells deliver microRNA (miRNA), messenger RNA
(mRNA), proteins, and other biomolecules between intracellular organelles by membrane

vesicles, which contain receptors to ensure traffic specificity. These membrane vesicles are
actively secreted by most cells and exist in most body fluids, including blood, saliva, breast
milk and sperm. There are three main types of such membrane vesicles: microparticles,
microvesicles (100–1,000 nm), and exosomes (20–200 nm) (Sun et al., 2010; Lawson et al., 2016).
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Exosomes are bilayer membrane vesicles released by almost
every mammalian cell type for intercellular communication
and are unique to the cell of origin. For example, exosomal
release from cancer cells contributes to metastasis through such
intercellular communication. Exosomes are therefore used in
theranostic applications, because they exhibit biomarker profiles
specific to the diseased cell they are derived from.

Prior to exosome discovery, it was known that mammalian
cells transmit information between cells indirectly, yet
without this transmission being fully understood. In 1983,
two independent papers reported that, in blood, reticulocytes
were observed to mature into erythrocytes and that transferrin
receptors were released into the space via small vesicles of 50 nm
in size (Harding, 1983; Pan and Johnstone, 1983). Four years
later, Rose Johnstone coined the term “exosomes” (Johnstone
et al., 1987; Johnstone, 2005). The Nobel prize was awarded in
2013 to Ames E. Rothman, Randy W. Schekman and Thomas C.
Südhof “for their discoveries of a machinery regulating vesicle
traffic, a major transport system in our cells” (The Nobel Prize
in Physiology or Medicine, 2013). This ultimately revealed the
mechanism of exosome transport and triggered the potential use
of exosomes as promising biomarkers for disease diagnostics
and treatment. Immunology-related interest in exosomes did
not manifest until 1996, when Raposo et al. (Raposo, 1996)
found that B lymphocytes secrete exosomes carrying membrane-
bound molecules essential for the adaptive immune response.
Another report showed that also dendritic cells secrete exosomes
(Delcayre et al., 2005), which carry functional immune agents
promoting anti-tumor responses in mice (Zitvogel et al., 1998).
Together, these results formed the basis for the hypothesis of
intercellular communication via exosomes (Exosome Explosion
| The Scientist Magazine R©)1.

The growing interest in EVs, and particularly exosomes, is
not only reflected by the increasing numbers of related scientific
publications over recent years, but also by the creation of
scientific associations, portals and databases, such as:

• ISEV: the International Society for Extracellular Vesicles
(https://www.isev.org/);

• EU ME-HaD: the European Network on Microvesicles and
Exosomes in Health and Disease (http://www.mehad-cost.eu);

• Vesiclepedia (http://www.microvesicles.org/); and
• ExoCarta (http://www.exocarta.org), created in 2009 as an

open-access resource for compiling proteins and RNAs
identified in exosomes (referenced in ‘Biochemistry of
Exosomes’).

Exosome Biogenesis
The nomenclature of exosomes is critical (Bobrie et al., 2011).
Gould et al. define the term exosome in three different ways:
first, in terms of their biogenesis; second, with regard to their
physiological function within cells; and third, with an empirical
definition based on isolation by differential ultracentrifugation at

1Exosome Explosion | The Scientist Magazine R© The Scientist. Available online

at: http://www.the-scientist.com/?articles.view/articleNo/30793/title/Exosome-

Explosion/ [Accessed March 30, 2017].

70,000–100,000× g (Gould and Raposo, 2013). For clarity in this
review, we define exosomes by their biogenesis.

Cells are experts at producing and exporting molecular
products, for example, the transport of insulin into the
bloodstream (Zheng et al., 2014). These molecules are submitted
to a “cell packaging service,” i.e., the exosomes, which are
first released intracellularly. Initially, multivesicular endosomes

(MVEs) are formed, which encompass the exosomes (Figure 1).
These intracellular exosomes are incorporated into the MVEs
in the cytoplasm. Several mechanisms for exosome generation
and release are described by Abels and Breakefield (2016). In
essence, the MVEs fuse with the cell membrane releasing the
exosomes to the extracellular matrix (Vlassov et al., 2012).
Rab GTPases (peripheral membrane proteins) have been found
to facilitate this fusion of MVEs with the plasma membrane,
including RAB11 and RAB35 (Savina et al., 2003; Hsu et al.,
2010), which in turn release exosomes enriched with flotillin
and other cell-specific proteins. A second mechanism involves
RAB27A and RAB27B, which promote the release of exosomes
loaded with CD63 (a common target for specific capture of
exosomes), TSG101 and ALIX (Abels and Breakefield, 2016).
In contrast to exosomes, microvesicles are formed via direct
blebbing from the plasma membrane, undergo a different
mode of biogenesis, and include apoptic bodies. In summary,
several complex pathways account for exosome generation
from endosomes and the composition of the exosomes varies
depending on the type and physiological state of the cell of
origin.

Exosome Biophysics: Isolation and
Characterization
Exosomes can be found in most human biological fluids,
including blood, urine, saliva and breastmilk. Using
exosomes as a biomarker source requires careful isolation
and purification from surrounding biological fluids, which
would otherwise interfere with the exosome analysis (see
“Exosome Biochemistry”). A number of exosome purification

methods have been developed with adaptation to the biological
fluid from which the vesicles are derived. For example—and
important to our focus on human breast milk—the storage
conditions of milk have been shown to be an important factor for
the final exosome concentration and integrity (Zonneveld et al.,
2014). The most widely used isolation method is differential
centrifugation, which selectively removes extracellular debris
(Théry et al., 2006). However, this method typically generates
rather low yields of exosomes, excess protein is still present, and
the integrity of the exosomes is questionable. Another common
method is solution sedimentation and low-speed centrifugation,
inducing the precipitation of exosomes (van der Pol et al., 2014).
Sucrose gradients are commonly employed to take advantage
of the buoyant density in viscous fluids and to facilitate the
isolation process (Oosthuyzen et al., 2013). Notably, all these
aforementioned isolation methods are time-consuming and
often expensive. Specifically for breast milk-derived exosomes,
isolation and purification processes optimized for high yields at
minimal time and cost are still lacking.
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FIGURE 1 | (a) Schematic representation of exosome biogenesis: first, multivesicular endosomes are formed (MVEs), which encompass the exosomes. The MVEs

can either fuse with the plasma membrane, releasing the exosomes into the extracellular matrix (see zoomed schematic), or fuse with the lysosome for degradation.

Microvesicles are formed via direct blebbing from the plasma membrane. Exosomes contain protein, DNA, RNA and surface membrane proteins, which are specific to

the cell of origin and are not limited to cell surface proteins (Colombo et al., 2014).

The biophysical characterisation of exosomes is typically
limited to the determination of their size and concentration.
For a benchmark in exosome isolation and characterisation of
their size and concentration, the authors herewith refer to Lane
et al. (2015). Most publications report measurements by dynamic
light scattering (DLS). DLS determines the hydrodynamic
radius and may not separate different populations (e.g., 100
and 200 nm), which can compromise the final value for
mean size. The Nanosight technique is based on nanoparticle
tracking analysis (NTA) for both size and concentration
determination. This method measures the hydrodynamic radius,
too, and comes therefore with the same limitations as DLS.
A less recruited technology, especially for characterization
of breast milk exosomes, is qNano, which uses tunable
resistive pulse sensing (TRPS) and can measure single particles,
thereby providing accurate particle size and concentration
measurements.

Exosomes have a homogenous “cup-shaped” morphology,
as determined by negative-staining electron microscopy (Théry
et al., 2002; Simons and Raposo, 2009). For visualization of
exosomes, transmission electron microscopy (TEM) can be
deployed, but the low density of exosomes can limit the power of
this technique.Moreover, if the samples are not highly pure, it can
be difficult to distinguish between proteins, exosomes and other
vesicles. Van der Pol et al. compared particle size distribution of
urinary exosomes and microvesicles using TEM, flow cytometry,
NTA and TRPS (van der Pol et al., 2014). They found that
each method gives a different concentration and particle size
distribution.

Important for our interest in biochemical characterisation of
exosomes, Taylor et al. reported on exosome isolation specifically
optimized for proteomic analyses and RNA profiling (Taylor
et al., 2011): the exosomes isolated by different methods were
analyzed in terms of quantity and quality of specific RNAs

and marker proteins. ExoQuickTM precipitation of circulating
exosomes produced RNA and protein with higher purity
and quantity than chromatography, ultracentrifugation, and
DynaBeads. While this precipitation method does not provide
specificity of the originating cell, the high quantity and quality
of exosomal proteins and RNA improve both sensitivity and
accuracy of subsequent biomolecular characterisation, such as
miRNA profiling and mass spectrometric proteomics.

In summary, exosomes are complex and delicate systems
requiring optimized isolation and characterisation adapted to
each fluid type of origin (e.g., breast milk, urine, blood).
Their biophysical characterisation should deploy complementary
instrumentation and methods rather than relying on a single
measurement.

Exosomes in Health and Disease
Since their discovery 30 years ago, exosomes have been found
to play a vital role in many biological processes, including:
intercellular communication; immune function; development
and differentiation of stem cells; neuronal function; cell signaling;
tissue regeneration; and viral replication (Rashed et al., 2017).
Exosomes have been isolated from a variety of cell types in vitro.
They have the ability to transfer molecular cargo and to be
selectively taken up by specific cells, thereby reprogramming the
target cell and, possibly, inducing disease. On the other hand,
they can also provide new avenues for treatment and diagnosis.

The urgent need for clinical biomarkers accessible by
minimally invasive means is fuelling further biomarker research.
Yet, in cancer and other malignancies, translation of candidate
markers into sensitive and robust assays is still limited. Exosomes
could offer a new route to biomarker discovery, validation and
application due to their cell origin-specific cargo and accessibility
by minimally invasive sampling (Worst et al., 2017). Zhang et al.
describe exosomes as “small particles, big players” as they are
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also good candidates for generating improved cancer therapies
(Zhang et al., 2015).

Exosomes are involved in the complete cancer life cycle,
including the initiation, growth, progression and drug resistance
of tumors (Kosaka et al., 2012; Zhang et al., 2015). Compared
to exosomes secreted from healthy cells, a larger amount
of exosomes is released from cancer cells, which promotes
transformation of local healthy epithelial cells into cancerous
cells, subsequently invading the extracellular matrix and
contributing to distal metastasis (Tickner et al., 2014). Hoshino
et al. reported how tumor-derived exosomes create a favorable
microenvironment at future metastatic sites and mediate non-
random patterns of metastasis, because the protein content of the
tumor determines to a large extent the organotropism (Hoshino
et al., 2015).

During the process of epithelial-to-mesenchymal transition
(EMT) a cells loses polarity (direction) and cell-cell contacts,
thus becoming more motile and gaining invasive properties.
These properties prompted researchers to identify a cancerous
cell based on stiffness measurements. TGFβ is known to induce
the EMT to promote both tumor cell invasion and cell apoptosis.
Qin et al. demonstrated how exosomes derived from human
breast milk promoted EMT through upregulation of TGFβ2 (Qin
et al., 2016). This was shown in both benign andmalignant breast
cancer cell lines.

Exosomes are also influential in other diseases, such as
neurodegeneration: Vella et al. demonstrated the propagation
of disease-derived exosomes to healthy cells, thereby infecting
both neighboring and distant cell types (Vella et al., 2016). More
recently, they described involvement of extracellular vesicles in
metal homeostasis and neurodenegeration (Bellingham et al.,
2015). Nature Biotechnology released a publication in March
2016 celebrating their 20th anniversary by looking at the “greatest
hits” (Azvolinsky et al., 2016). Exosomes were ranked twice in
the top eight: first, exosomes derived from diseased cells were
detected in liquid biopsies using a lab-on-a-chip (Im et al.,
2014); a second highlight described exosomes as nanomedicines
to deliver drugs across the blood-brain-barrier (Alvarez-Erviti
et al., 2011). Yet, there are downsides to creating nanomedicines
based on exosomes: they are collected after growing mammalian
cells to confluency and going through a process of removing cell
debris, proteins and microvesicles; although such isolation and
purification can be straightforward (see “Exosome Biophysics”),
the recovered quantities of exosomes are low and, therefore, the
exosomes remain expensive to isolate and culture. This limits
the application of exosomes to nanomedicines because of high
quantities required for the in vivo testing.

Exosomes in Maternal Health: Breast Milk
Perinatal nutrition has both immediate and long-term health
effects on newborns, babies, infants, children—and likely also—
adolescents and adults. This context of prevention, nutrition,
and early-life exposures suggests that we should be able to
inform women on how to optimize nutrition during pregnancy,
in order to: (i) exert positive effects on fetal development and
birth outcomes at the level of immune and metabolic health,
with possible longer-term effects in infancy, childhood, and

adolescence; and (ii) favorably influence breast milk composition
and lactation. Maternal nutrition throughout pregnancy and
lactation and its impact on maternal health, breast milk quality,
and infant health, via health-promoting breastfeeding, is a prime
case for establishing healthy trajectories early in life.

Exosomes have mainly been researched for their potential
as a biomarker source and a delivery system for bioactives.
The main application areas are disease diagnostics and drug
delivery (see “Exosomes in Health and Disease”). In this section,
we bring the nutrition-and-health dimension to the exosome
context: maternal milk has co-evolved with human and is the
gold standard for baby and infant nutrition up to 6–12 months.
Proteomic studies of human milk and sub-fractions thereof, such
as casein, whey, or the milk fat globule membrane (MFGM) have
revealed a plethora of bioactive proteins and peptides beneficial
for the developing immune and metabolic system (Casado et al.,
2009; Kussmann et al., 2010). By contrast, human milk exosomes
are still a largely uncharted proteomic terrain, although we
know that exosomes carry cell origin-specific cargo and transport
both bioactivity and information between cells. We therefore
argue that applying proteomics to (i) human breast milk and its
relevance for maternal and infant health, and (ii) the exosome-
specific bioactive and cell information content, can synergistically
help understand how exosome proteins contribute to maternal
and infant immune and metabolic health.

The roles of exosomes in breast milk include the regulation
of immune response and inflammation. More recently, it was
found that they promote epithelial growth in the intestine (Hock
et al., 2017). Breast milk significantly decreases the incidence
of necrotising enterocolitis in infants. Yet, Hock et al. found
rat milk exosomes to enhance epithelial cell proliferation and
viability. Liao et al. describe how exosomes can survive harsh
conditions, such as digestion, subsequent to which they are
taken up by human intestinal cells (Liao et al., 2017). Exosomes
provide a stable transportation mechanism for the transfer of
miRNA under severe conditions. One study explored exosomes
in fermented milk, but, unfortunately, the role of extracellular
vesicles released from bacteria was not considered. It remained
unclear how this may have influenced the results, because the
isolation of bacteria-derived vesicles replicated exosome isolation
(Zhang et al., 2015).

The female and male reproductive tracts produce extracellular
vesicles that are possibly associated with fertility or infertility
and released into urogenital body fluids and mucosae. During
pregnancy, placenta-derived EVs can be detected in peripheral
blood with changing profiles depending upon the either healthy
or pathological progress of the pregnancy. Therefore, these
EVs offer a non-invasive diagnostic window into placental and

fetal health. With this context in mind, Foster et al. reported
on extracellular vesicles in blood, milk, and in body fluids
of the female and male urogenital tract with an interest in
reproductive function (Foster et al., 2016). They summarized
the current knowledge about EVs in blood and cord blood,
compartments of the male and female reproductive tract, in
trophoblast cells from normal and pre-eclamptic pregnancies, in
placental ex vivo perfusate, in the amniotic fluid, and in breast
milk. The syncytiotrophoblast is a major source distributing EVs
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of fetal origin through the maternal organism and the exosomal
composition changes during pregnancy. Exosomes contribute to
the maternal body’s adaptation to pregnancy. In non-pregnant
women, as well as in men, exosomes may improve infertility
diagnosis and open novel therapeutic options.

Exosomes have also been investigated with regard to
their relevance for immunological conditions. For example,
differences in human breast milk exosome populations were
characterized in relation to allergic sensitization and lifestyle
(Torregrosa Paredes et al., 2014). Breast milk was collected from
mothers at day 3–8 and at 2 months postpartum. A higher
content of exosomes was found in early milk compared to mature
milk. Differences in exosome populations were associated with
the mother’s lifestyle: mothers with an anthroposophic lifestyle
produce exosomes that were linked to a lower prevalence of
allergic sensitisation. The phenotype of exosomes in breast milk
varies with maternal sensitization and lifestyle, which might
influence allergy development in the child.

Breast milk exosomes provide a safe passage of miRNA from
mother to baby and enhance intestinal epithelial growth in
the infant. Both the mammary gland and epithelial cells are
controlled by lactogenic hormones, such as prolactin. Major
components of the milk fat globule membrane (MFGM) are
under the control of these lactogenic hormones, too. Milk fat
globule EGF factor 8 (MFG-E8), a major component of MFGM,
is upregulated during lactation. MFG-E8 is further upregulated
in the involuting mammary gland. MFG-E8 on exosome-like
membrane vesicles in milk recovered from post-weaning—so
no longer lactating—mammary glands exhibits higher binding
activity to phosphatidylserine and apoptotic mammary epithelial
cells, and serves as a link between apoptotic mammary epithelial
cells and phagocytes (Nakatani et al., 2006). Tolerising exosomes,
e.g., tolerosomes, derived from breast milk, were suggested
to block an allergic response or prevent allergy development
(Admyre et al., 2008).

Melnik et al. wondered whether milk transfers exosomal
microRNA promoting thymic regulatory T cell maturation,
thereby preventing the development of atopy (Melnik et al.,
2014). They suggested milk-derived microRNAs to promote
long-term lineage commitment of Tregs downregulating IL-
4/Th2-mediated atopic sensitization and effector immune
responses. Among exosomal microRNAs, milk also transfers
miRNA-155, which is important for the development of the
immune system. Infant formulae are deficient in bioactive
exosomal miRNAs, in comparison to human breast or cow’s
milk. The addition of physiological amounts of miRNA-155-
enriched exosomes to infant formula for mothers incapable of
breastfeeding may offer a new option for preventing atopic
disease in infants.

Exosome Biochemistry: Biomolecular
Profiling
Characterization of exosomal cargo is of interest because this
molecular content can inform on biogenesis, targeting, and
cellular effects of exosomes and may be a source of biomarkers
for disease diagnosis, prognosis and response to treatment (Schey

et al., 2015). The cargo of exosomes is not a result of a random
process, rather it involves a complex sorting mechanism that
favors specific biomolecules over others (Abels and Breakefield,
2016; Stevanato et al., 2016). The contents of exosomes have
been shown to change when transitioning from health to disease,
including conditions like viral infections, neurodegeneration
(Alzheimer’s, Huntington’s), and cancer. The majority of the
literature on biomolecular profiling of exosomes reports on
RNA and proteins. According to Exocarta (Version 4; http://
www.exocarta.org), the largest exosome content database, 4,563
proteins, 194 lipids, 1,639 mRNAs and 764 miRNAs have been
identified in exosomes from multiple organisms (Bruschi et al.,
2015).

Nucleic acids were first described in exosomes released
by mast cells (Valadi et al., 2007). While the mRNAs or
miRNAs secreted within exosomes are not random, the exact
export mechanism has not yet been experimentally confirmed
(Batagov et al., 2011; Colombo et al., 2014). There is growing
interest in using miRNAs as biomarkers for disease diagnosis.
Encapsulation of miRNAs in exosomes and exosome-like
particles confers protection and provides a pathway for intestinal
and vascular endothelial transport by endocytosis, as well as
delivery to peripheral tissues (Cui et al., 2017). Both the
physiological and pathogenic functions of miRNAs, and the fact
that they are secreted extracellularly into biological fluids, present
miRNAs as promising biomarkers (Cheng et al., 2014).

Proteomics of Exosomes
Exosome proteomics technology
Direct comparative analysis of LC-MS/MS runs minimizes
sample handling, avoids any chemical protein or peptide
modification, and thereby minimizes sample loss due to
processing. Therefore, such “label-free” techniques appear to be
a suitable strategy for exosome proteomics because: (i) exosomes
are precious biophysical preparations with limited total protein
amount available; and (ii) the exosome proteome is expected to be
vesicle-specific and of lower complexity than e.g., an entire body
fluid proteome; this justifies direct peptide/protein quantification
entirely based on high LC and MS peptide separation power.

Recent proteomic studies of exosomes have therefore applied
quantitative, non-labeled, tag-free workflows (Duijvesz et al.,
2013; Hoshino et al., 2015; Wojtuszkiewicz et al., 2016). Spectral
counting is a commonly used approach for measuring protein
abundance in label-free proteomic analyses (Greening et al.,
2017). It accumulates the number of spectra identified for a
given peptide in different biological samples and then integrates
the results for all measured peptides of the “parent” protein(s)
that are to be quantified across those samples (Asara et al.,
2008). Specific protocols can be used to focus on spectral
counting quantification (Arike and Peil, 2014), with relevance
to extracellular vesicles (Tauro et al., 2012, 2013; Amorim et al.,
2014). Further details on quantitative mass spectrometry related
to comparative analyses can be found in (Griffin et al., 2010).

Proteomic surveys of exosomes
Mass spectrometry-based proteomics combined with improved
purification schemes for exosomes can immensely contribute
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to our understanding of the molecular composition and
biochemical functions of these extracellular vesicles (Raimondo
et al., 2011; Aebersold and Mann, 2016). Exosomes are
particularly attractive for proteomic research for the following
reasons (Greening et al., 2017).

1. Compared to whole body fluids, like blood plasma or breast
milk (Casado et al., 2009; Kussmann et al., 2010), exosome
structures are enriched in membrane proteins and low-
abundance proteins, which are typically underrepresented in
proteomic studies due to their biophysical properties and/or
low concentrations.

2. There is a subset of proteins common to all exosomes that
is essential for vesicular biogenesis, structure and traffic; this
protein set can reveal insights into exosome origin.

3. The presence of specific proteins, related to the study and
samples, allows to recognize specific cell types in the greater
sample population and, therefore, to identify biomarkers and
bioactives. In addition, the analysis of abundance variation
of such cell-specific exosomal proteins can shed light onto
changes in cellular behavior.

Proteomic cataloging of exosomes from diverse cell types has
revealed a common array of membrane and cytosolic proteins,
suggesting the evolutionary importance of these membrane
particles (Simpson et al., 2009). In addition to this shared
group of membrane and cytosolic proteins, exosomes contain
distinct subsets of proteins that may be linked to cell-type
associated functions (Simpson et al., 2008). Exosomes are
rich in endosomal proteins but lack mitochondrial, nuclear,
endoplasmic reticulum or Golgi-derived proteins. They have
been shown to be enriched with membrane transport and fusion
proteins as well as cytoskeletal proteins, such as actin and tubulin.
This is expected because exosomes are formed in the cytoplasm.
Other exosome proteins include heat-shock proteins, integrins
(adhesion proteins) and tetraspanins, such as CD63 (a common
exosome marker) (Théry et al., 2002; Vlassov et al., 2012). Eighty
% of proteins were found conserved betweenmouse- and human-
derived exosomes (Théry et al., 2002).

Proteomics of human body fluid exosomes
There is a considerable body of literature on human body fluid-
derived exosomes. Despite our focus on human breast milk as
a key such body fluid, but driven by our interest in minimally
invasive sampling of exosomes for human (nutritional) studies,
we hereunder cite a few seminal papers on exosome proteomics
sampling of human blood, urine, and cerebrospinal fluid:

Schey et al. have recently reviewed exosome proteomics
with protocols for global qualitative, global quantitative, and
targeted quantitative analysis of exosomal proteins. The authors
provide a comprehensive tabular summary of proteomic studies
of (human) body fluid-derived exosomes, including exosome
isolation procedures, exosome marker validations, proteomic
techniques, and proteomic results. The cited studies encompass
sampling of blood, breast milk, urine, saliva and semen. The
article also reports on global quantitative analysis followed by
targeted validation of urinary exosome samples taken from
human patients, as a clinical example (Schey et al., 2015).

Kalra and coworkers compared different plasma exosome
isolation techniques in terms of their suitability for proteomics
and assessed the stability of exosomes in human blood
plasma (Kalra et al., 2013). They evaluated three exosome
isolation techniques: (i) differential centrifugation coupled
with ultracentrifugation; (ii) immuno-affinity pull-down with
an epithelial cell adhesion molecule; and (iii) OptiPrepTM

density gradient separation; with all techniques applied to
normal human plasma. Based on quality assessment with mass
spectrometry, Western blotting and microscopy, the OptiPrepTM

density gradient method isolated exosomal populations in the
highest purity, without any detectable contamination of highly
abundant plasma proteins. Time-course Western blotting with
the exosomal marker TSG101 revealed exosomes to be stable for
90 days in human blood.

Human urinary exosomes have recently been investigated
with regard to their protein content exerting metabolic effects
(Bruschi et al., 2015). Urinary exosomes can be prepared in
large quantities from big volumes of urine, even from a single
individual. The whole-urine proteome, the urinary exosome
proteome, and the compiled non-urinary exosome proteome
(from ExoCharta) were compared. All three proteomes show an
enrichment in metabolic pathways related to oxygen utilization
and aerobic glucose metabolism. Cytoscape analysis revealed
processes involved in aerobic ATP production to be enriched,
and therefore likely functional, in exosomes. The authors
foresee kidney disease research to benefit from urinary exosome
proteomics rather than from global urine proteomics, and expect
urinary exosome preparations to mature into a non-invasive
clinical sampling alternative to kidney biopsies.

Responding to the suggested relevance of exosome cargo for
Alzheimer’s disease, Street and collaborators asked first whether
human CSF contains exosomes, and, second, whether exosomal
protein content varies across individuals (Street et al., 2012).
CSF was collected from five donors. The two exosomal marker
proteins flotillin 1 and tumor susceptibility gene 101 (TSG101)
were identified in the ultracentrifugation pellet using western
blot. Mass spectrometric proteomics of these five pellets was
performed and revealed large inter-individual variability in terms
of both protein amount and composition.

Proteomics of human breast milk exosomes
The analysis of human breast milk-derived exosomes by
proteomics is still in its infancy. Hereafter, we review a few
pioneering studies. Yang et al. deployed iTRAQ proteomics to
analyse milk-derived exosomes in human and bovine colostrum

and mature milk samples (Yang et al., 2017). More than 900
milk exosome proteins were identified and quantified. 575 were
differentially expressed between species. The major biological
processes covered by these proteins were: response to stimulus,
localisation, and cellular component organization. The most
prevalent molecular function was “binding.” The identified milk
exosome proteins were involved in pathways such as: ribosome;
actin cytoskeleton; glycolysis/gluconeogenesis; leukocyte
transendothelial migration; aminoacyl-tRNA biosynthesis;
pentose phosphate pathway; galactose metabolism; and fatty acid
biosynthesis.
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Extending beyond proteomic surveys, other authors focused
on more specific functions of human milk exosomes: Admyre
et al. investigated, whether human breast milk contains exosomes
that contribute to immune regulation in the infant (Admyre
et al., 2007). Based on a label-free LC-MS/MS approach, the
authors identified more than 70 proteins present in either
colostrum, or mature milk, or both. Larssen et al. published
a list of more than 100 proteins detected by means of a
proximity extension assay (PEA). The authors used three
different protein panels with specificity for cancer, inflammation

and cardiovascular conditions (Larssen et al., 2017).
In the following, we are leveraging these two different, but

complementary, approaches (label-free LC-MS/MS vs. PEA) to
analyse and understand in more detail the protein composition
of human breast milk-derived exosomes. First, we combined
two protein lists into one table (Supplementary Table 1),
encompassing 188 unique proteins. These proteins were
submitted to a KEGG pathway enrichment analysis by means
of the David Bioinformatics Tools Suite (Huang et al., 2008). The
results are summarized in Supplementary Table 2 and show an
enrichment of pathways related to themodulation of the immune
system, such as “proteoglycans in cancer.” Proteoglycans seem
to be involved in the fine-tuning of the innate immune system
against pulmonary infections (Wight et al., 2017). In addition,
other “response to infection”-related pathways are enriched
in human breast milk exosomes, such as “Chagas disease,”
“Toxoplasmosis,” or “Influenza A.” These pathway enrichments
evidence that human breast milk, and in particular breast

milk exosomes, provide valuable biological molecules to fight
against infections in the early stages of life when the immune

system is still maturing. This finding is also supported by
GO analysis: Supplementary Table 3 summarizes 13 out of 143
functionally annotated clusters enriched in human breast milk,
which are related to themodulation and activation of the immune
system.

As an additional dimension to this in silico analysis, we
show the proteins identified in this combined dataset as tightly
interrelated, as depicted in the protein network of Figure 2. This
network was generated with the online tool STRING-DB (www.
string-db.org) considering only the highly confident interactions
found in databases that are experimentally confirmed (Szklarczyk
et al., 2017). Interestingly, there is a cluster of chemokines
showing strong functional links between the protein members
(red square in Figure 2) suggesting that these proteins work in
a highly coordinated fashion. Globally, the network shows that
28 of the total of 188 proteins show more than 10 interactions
(Supplementary Table 4). This cluster of proteins may be the
main orchestrator of the protective effect in infants against
external insults.

The protein composition of milk exosomes provides new
information on the potential physiological significance of
exosomes to mammary physiology. Reinhardt et al. isolated
exosomes from the milk of mid-lactation cows and performed
LC-MS/MS-based proteomics (Reinhardt et al., 2012). They
identified more than 2,000 proteins including all major
exosome protein markers. The predominant MFGM proteins
(butyrophilin, xanthine oxidase, adipophilin and lactadherin)

were found most abundant also in milk exosomes. This said,
these proteins accounted for only ca. 1% of the total MS spectra
collected from milk exosomes, compared to 15–28% of the total
spectra recorded in the MFGM proteome. These data show that
the milk exosome secretion pathway differs significantly from
that of the MFGM, partly because of the under-representation of
MFGM proteins.

Micronutrient Profling

Whole human breast milk has been extensively studied in terms
of micronutrient content and maternal/child health depending
on lactation stage, delivery mode, ethnicity, maternal phenotype,
baby gender, and social contexts.

- Lactation stage: colostrum is high in short-chain human milk
oligosaccharides, and low in fat and casein; early milk is high
in casein, fat and lactose; and mature milk is again low in fat
and also contains less whey protein (Casado et al., 2009).

- Delivery mode: vaginal delivery mode was found to be
associated with higher protein content in colostrum (Dizdar
et al., 2014).

- Infant gender: findings are inconsistent as to whether or not
infant gender predicts breast milk macronutrient and energy
content (Powe et al., 2010; Quinn, 2013).

- Social environment: Quian et al. compared macro- and
micronutrient composition of breast milk from lactating
mothers resident in urban and suburban Shanghai (Qian et al.,
2010); Thakkar et al. investigated the dynamics of breast milk
composition of Singaporean women with a special focus on
lipids (Thakkar et al., 2013).

By contrast, micronutrient profiling of human breast-milk
derived exosomes remains a bioanalytically and clinically
uncharted terrain (Solomons and Vossenaar, 2013; Koreti and
Prasad, 2014). Notably, a PubMed search with the combined
set of keywords exosome, breast milk, and (micro)nutrient
in both title/abstract and whole text does not yield any
entries. The reason for this lack of studies and data is
probably two-fold: first, exosomes, including those derived
from human breast milk, have to date predominantly been
studied at biomolecular level in order to discover protein and
RNA biomarkers and to better understand molecular inter-
cellular and inter-organism communication. Exosome cargo in
terms of nutrients has apparently escaped most of the interest
to date. Second, most nutritional research studies have to
date focused on single or a few nutrients that may elicit a
metabolic effect. These reductionist approaches have resulted
in inadequate claims for nutrition as a cure or prevention of
disease and disappointment about the real nutritional impact on
medicine and health (Monteiro et al., 2015). Rather, multiple
factors including environment, host and microbiome, and—
most importantly in our context—interactions among nutrients
result in nutrient requirements, nutrient bioavailability, and
health outcomes. Advanced separation and analytical techniques,
such as multi-nutrient profiling (Meisser Redeuil et al., 2015)
and metabolomics (da Silva et al., 2016; Guiraud et al.,
2017), have only recently enabled the comprehensive and high-
throughput analysis of food components and their availability
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FIGURE 2 | Protein Network generated with the 188 proteins identified in the combined human breast milk exosome proteomics dataset (Admyre et al.,; Larssen

et al.). The red square shows a cluster of chemokines.

in physiological tissues. The high analytical sensitivity and
broad analyte coverage of latest mass spectrometric nutrient
and metabolite profiling, combined with a more holistic view of
micronutrient status, only now renders exosome micronutrient
profiling possible.

In view of exosomes containing biomolecular content specific
to cell origin, function and communication, we expect human
breast milk exosomes to also contain specific micronutrient
compositions, depending on maternal diet and phenotype, as
well as physiological interactions between the lactating mother
and her breast-fed infant. In fact, numerous studies on maternal
micronutrient intake and status/bioavailability (in blood),
have been conducted with regard to impact on breast milk
micronutrient composition. Yet, they have yielded inconsistent
findings, mainly due to incomparability of study design, subject
sampling and biomolecular analysis (de Vries, Pundir, de

Seymour, McKenzie, Kussmann; submitted). By contrast, studies
comparing maternal nutrition with micronutrient content
of breast milk exosomes are entirely lacking. We therefore
strongly argue to integrate comprehensive biomolecular
exosome profiling into today’s systems nutrition studies,
which are now enabled by comprehensive micronutrient
analysis and metabolomics. In doing so, we can enhance and
complement insights into maternal nutrient status and breast
milk quality, depending on maternal, infant and environmental
factors.

CONCLUSIONS

Exosomes are biological, vesicular nanostructures that transport
information and bioactivity within and between cells. Their
biophysical isolation in purity and integrity is delicate and their

Frontiers in Genetics | www.frontiersin.org 8 March 2018 | Volume 9 | Article 92

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


de la Torre Gomez et al. Exosomics

biophysical characterisation requires complementary methods,
depending on the biofluid and cell type of origin. Exosomes
have to date mainly been researched for their potential and
value in drug delivery and biomarker discovery. We have placed
exosomes into the context of other vesicles and reviewed their
biophysical features, which guide their isolation procedures. We
have summarized the roles and functions of exosomes in disease
conditions, with a focus on cancer and immunology. The main
objective of our article is to open the nutritional dimension
of exosome research with a particular focus on human breast
milk-derived exosomes and their relevance and function for
maternal and infant health. Extending from citations and a pure
review article, we have combined two proteomic datasets from

pioneering human breast milk exosome studies. We thereby
showcase the enrichment of pathways involved in early-life

immunity as evidenced by the high number and connectivity
of immune function-related proteins found in human breast

milk exosomes. In view of these promising first proteomic
insights, and with micronutrient profiling virtually non-existing,

we argue that both proteomics and micronutrient analysis

of human breast milk exosomes will add great value to the
understanding of exosomes as deliverers of bioactives, highly
relevant to breast milk quality, and the health of the mother and
infant.
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