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Oncogenic PIK3CA induces centrosome
amplification and tolerance to genome doubling
Inma M. Berenjeno1, Roberto Piñeiro1,2, Sandra D. Castillo1, Wayne Pearce1, Nicholas McGranahan3,

Sally M. Dewhurst3, Valerie Meniel4, Nicolai J. Birkbak3, Evelyn Lau1, Laurent Sansregret1,3, Daniele Morelli1,
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Charles Swanton1,3 & Bart Vanhaesebroeck1

Mutations in PIK3CA are very frequent in cancer and lead to sustained PI3K pathway acti-

vation. The impact of acute expression of mutant PIK3CA during early stages of malignancy is

unknown. Using a mouse model to activate the Pik3caH1047R hotspot mutation in the het-

erozygous state from its endogenous locus, we here report that mutant Pik3ca induces

centrosome amplification in cultured cells (through a pathway involving AKT, ROCK and

CDK2/Cyclin E-nucleophosmin) and in mouse tissues, and increased in vitro cellular toler-

ance to spontaneous genome doubling. We also present evidence that the majority of

PIK3CAH1047R mutations in the TCGA breast cancer cohort precede genome doubling. These

previously unappreciated roles of PIK3CA mutation show that PI3K signalling can contribute

to the generation of irreversible genomic changes in cancer. While this can limit the impact of

PI3K-targeted therapies, these findings also open the opportunity for therapeutic approaches

aimed at limiting tumour heterogeneity and evolution.
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Of the eight genes encoding catalytic PI3K subunits in
mammals, only PIK3CA, which encodes the ubiquitously
expressed p110α catalytic subunit, is frequently mutated

in solid tumours1. PIK3CA mutations cluster in so-called hot-
spots, and give rise to a more active p110α protein that stimulates
the PI3K pathway2,3. Thus far, the oncogenic potential of PI3K
has largely been attributed to its role in stimulating processes
such as cell survival and proliferation, spurring the development
of inhibitors of the PI3K pathway as anti-cancer agents3–7.

Several Cre recombinase-based mouse models have been cre-
ated to explore the role of mutated p110α in cancer. Interestingly,
whereas transgenic overexpression of mutant Pik3ca has been
found to be an effective inducer of cancer8, other models, in
which mutated Pik3ca is expressed from its endogenous locus,
demonstrate that mutant Pik3ca, on its own, is a weak oncogene
(see for example ref. 9), with cancer arising only after long latency
periods (>1 year; reviewed in ref. 10).

In the current study, we created an Flp recombinase-based
knock-in mouse model of inducible expression of mutant Pik3ca
from its endogenous locus. Using this model, we show that
mutated Pik3ca is a weak oncogene on its own, but that it can
cooperate with other oncogenic lesions, such as heterozygous loss
of the Apc tumour suppressor. We also show that systemic
induction of heterozygous mutant Pik3ca at embryonic or adult
stages can have dramatic organismal consequences and leads to
lethality.

We assessed signalling and cell biological changes induced
early upon heterozygous expression of mutant Pik3ca, which
allowed us to uncover two previously unappreciated roles of PI3K
signalling, namely the induction of centrosome amplification and

increased tolerance to tetraploidization, both of which have been
implicated in tumourigenesis and tumour evolution11–17.

Results
A mouse model of inducible endogenous p110αH1047R

expression. As a model of physiological expression of mutant
Pik3ca from its endogenous locus, we generated a mouse line in
which one of the two wild-type (WT) Pik3caWT alleles is con-
verted to Pik3caH1047R (Fig. 1a). Due to the presence of a neo-
mycin (Neo) selection cassette in the targeted Pik3ca locus, the
expression of the mutant p110αH1047R protein was dampened, as
shown in embryonic stem (ES) cells (Fig. 1b) and Pik3caH1047R

+neo mouse embryonic fibroblasts (MEFs; Fig. 1c), resulting in
minimal or no activation of the PI3K pathway, as assessed by Akt
phosphorylation in these cells (Fig. 1b, c) and in Pik3caH1047R+neo

mice (Supplementary Fig. 1a). A more detailed analysis of PI3K
pathway activation in the inducible Pik3caH1047R+neo MEF sys-
tem is reported in ref. 18.

In order to rescue the dampened expression of the
p110αH1047R protein, we removed the Neo cassette through
recombination via its flanking frt sites. This was achieved by
crossing Pik3caH1047R+neo mice with mice that express a germline
Flp recombinase which is either constitutively active (hACTB::
Flpe mice19) or inducible by tamoxifen (or its derivative 4-
hydroxytamoxifen (4-OHT)) (CAG::Flpe-ERT2 mice20). 4-OHT
treatment of primary MEFs, isolated from Pik3caH1047R+neo mice
crossed onto CAG::FlpeERT2 mice, resulted in the removal of the
Neo cassette (Supplementary Fig. 1b), restored p110αH1047R

expression levels similar to that of endogenous p110αWT (Fig. 1c)

Pik3caH1047R+neo

Pik3caH1047R

5′UTR+1

5′UTR+1

2 15 16

2 15 16

17 18

17

19

1819

pgk neo

Frt site

+ Flp recombinase

Primer 1

Primer 1

Primer 2

Primer 3 StopCGT

20 + 3′ UTR

20 + 3′ UTR

Reduced

= as p110αWT Activated

Absent/minimal

PI3K pathway
activation:

p110αH1047R

protein
expression:CGT Stop

H1047→R

H1047→R

a

WT DH1 CE4 CF3

β-actin

β-actin

Pik3caH1047R+neo

p110α

pAkt-T308

Akt

60

60

42

60

42

110

MEFs

+ – +

Vinculin

pAkt-S473

Akt

Pik3caWT Pik3caH1047R+neo

p110α110

60

60

124

ES cells

4-OHT:

pAkt-S473

b c

Fig. 1 Gene targeting to create a hypomorph Pik3caH1047R+neo allele. a Targeted Pik3ca allele showing the frt-flanked neo selection cassette, before and after
Flp-mediated recombination. Exon sequences are represented by filled black rectangles, intron sequences by a black line. The frt sites are represented as
yellow triangles with the pointed end indicating orientation. The positions of the primers used for PCR screening are designated by arrows. b p110α
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and Pik3caH1047R+neo;Flpe-ERT2 MEFs, 72 h after addition of 4-OHT or vehicle
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and led to PI3K pathway activation (Fig. 1c). Enhanced Akt
phosphorylation was also observed in primary fibroblasts from
human fibro-adipose overgrowth syndrome patients with mosaic,
heterozygous expression of the PIK3CAH1047L mutation21

(Supplementary Fig. 1c).

Organismal impact of heterozygous p110αH1047R expression.
Heterozygous expression of p110αH1047R induced by constitutive
Flp expression from day 0 post coitum19 resulted in mutant
embryos which developed normally until embryonic day (E) 8.5
(Supplementary Fig. 2a). At E9.5, however, p110αH1047R embryos
had not grown in size compared to E8.5 and showed increased
PI3K/Akt pathway activation, with a dramatic collapse in overall
tissue integrity, a lack of vascular remodelling and absence of
hierarchical organization of vessels, widespread apoptosis and
increased levels of p53 (Supplementary Fig. 2a–e). No live
embryos were recovered at E10.5. These observations are similar
to those of a previous report on embryonic p110αH1047R

expression using a Cre-inducible Pik3caH1047R mouse line22.

Tamoxifen-mediated Flp activation20 in adult mice at 8 weeks
of age, led to efficient recombination of the Pik3caH1047R locus
(Supplementary Fig. 3a) and PI3K pathway activation in all
tissues investigated (Supplementary Fig. 3b). These mice
appeared to be in good health, but over time died suddenly, for
reasons that are unclear, or had to be humanely terminated either
because of displaying sudden ataxia and seizures or becoming
acutely moribund without prior or accompanying disease
symptoms. Most mice died within one year of age (median
survival time 220 days post recombination of the mutated allele;
Supplementary Fig. 3c). At the time of death, there was evidence
for a weight increase in several organs, including the brain
(Supplementary Fig. 3d). Importantly, Pik3caH1047R mice did not
develop neoplastic lesions or cancer, as assessed by histopathol-
ogy of multiple organs (Supplementary Tables 1 and 2).

Tamoxifen-induced expression of Pik3caH1047R together with
intestine-specific heterozygous deletion of the Apc tumour
suppressor gene (Apcflox/+ mice) accelerated colon cancer
progression (median survival time of 290 and 134 days in
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Fig. 2 p110αH1047R expression leads to centrosome amplification in cells and tissues. a Frequency of cells with centrosome amplification (n> 2) in WT and
Pik3caH1047R primary E13.5 MEFs (72 h after addition of 4-OHT or vehicle; 200 cells were scored per genotype and per time point; values=mean± SD)
and mouse keratinocytes (isolated from 8-week-old Pik3caWT;Flpe-ERT2 or Pik3caH1047R+neo;Flpe-ERT2 mice, cultured for 7 days of which the last 48 h were
in the presence of 4-OHT or vehicle; 400 cells were scored per genotype and per condition). Statistically significant differences are indicated by *(P<
0.05), as determined by non-parametric Mann–Whitney t test (one-tailed). b Whole-mount of E8.5 embryos stained for pericentrin. Dashed lines contour
single-cell nuclei. White arrows point towards individual centrosomes in the WT cells. Mutant embryos show enlarged and amplified number of
centrosomes per cell. c Cryosections of skin and colon of 8-week-old Pik3caWT;Flpe-ERT2 and Pik3caH1047R+neo;Flpe-ERT2 mice treated for 5 consecutive
days with tamoxifen (80mg kg−1 by gavage), stained for γ-tubulin (red) and actin (green). White arrows point towards centrosomes. Dashed lines contour
single-cell nuclei. White boxes surround areas that are magnified underneath
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Apcflox/+ and Pik3caH1047R;Apcflox/+ mice, respectively; Supple-
mentary Fig. 4a–c).

In summary, these observations corroborate that heterozy-
gously expressed mutant Pik3ca can have a major impact on the
animal, both in adult life and during embryonic development.
Our results also reinforce the concept that mutant Pik3ca is not
efficient at initiating tumour formation on its own, but cooperates
with other tumour-promoting genetic lesions9,23–25.

p110αH1047R expression leads to centrosome amplification. We
next sought to understand the early cellular impact of endogen-
ous p110αH1047R expression, using primary MEFs as the main
model. Pik3caH1047R induction in these cells led to Akt activation
(Fig. 1c), an increase in cell number, loss of contact inhibition and
a low level of colony formation, without obvious changes in cell
death (Supplementary Fig. 5a–d).

Further characterization of p110αH1047R MEFs revealed that
these cells frequently displayed extra centrosomes (Fig. 2a).

Centrosomes are the main microtubule-organizing centre in
animal cells and critical for the formation of the mitotic spindle.
Immediately after cell division, each cell contains one centrosome
which is then duplicated, in a cell cycle-dependent manner and in
parallel with DNA replication26, in preparation for the next
round of cell division. Centrosomes are composed of two
centrioles surrounded by pericentriolar matrix which can be
detected by antibodies against pericentrin or γ-tubulin.
p110αH1047R expression in MEFs led to a significant increase in
the number of cells with supernumerary centrosomes, with >30%
of the cells showing more than two centrosomes 5 days after
treatment with 4-OHT (Fig. 2a and Supplementary Fig. 6a and
experimental controls shown in Supplementary Fig. 6b).

Supernumerary centrosomes were also more frequent in
fibroblasts from a PIK3CAH1047L-driven human overgrowth
syndrome patient21 (Supplementary Fig. 6c) and in MCF-10A
human mammary epithelial cells transiently transfected with
p110αH1047R (Supplementary Fig. 6d). In MCF-10A cells, other
cancer-associated modes of PI3K pathway activation, namely
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Fig. 3 p110αH1047R expression in MEFs leads to centrosome overduplication. a Representative immunofluorescence images showing extra centrosomes in
p110αH1047R MEF cells composed of two centrioles. b Representative immunofluorescence images showing extra centrosomes contributing to the mitotic
spindle in p110αH1047R MEF cells. c Centrosome number during the first cell cycle upon induction of p110αH1047R expression (top panel; 200 cells per
genotype and time point were scored for the centrosome analysis; values=mean± SD) and parallel analysis of DNA synthesis (assessed by BrdU
incorporation; bottom panel: 10,000 cells were acquired from two independent WT and two independent p110αH1047R MEF lines. Statistically significant
differences are indicated by *(P< 0.05), as determined by non-parametric Mann–Whitney t test (one-tailed). MEFs were plated and cultured overnight in
serum-containing medium. The next morning, cells were serum-starved in the presence of 4-OHT for 48 h, followed by re-addition of 10% fetal bovine
serum and sampling of cells at the indicated time points. d Percentage of binucleated MEFs in cultures treated 2 days with 4-OHT. Binucleation was
assessed by IF using DAPI to stain DNA. A total of 200 cells were scored per genotype in 3 Pik3caWT;Flpe-ERT2 and 3 Pik3caH1047R+neo;Flpe-ERT2

independent MEF lines (values=mean± SD)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02002-4

4 NATURE COMMUNICATIONS |8:  1773 |DOI: 10.1038/s41467-017-02002-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


expression of the helical E545K mutant of PIK3CA, the D560Y
mutant of PIK3R1 (the p85 regulatory subunit of PIK3CA) as well
as overexpression of PIK3CAWT (reflecting PIK3CA amplification
in cancer), all displayed more centrosomes than parental cells
(Supplementary Fig. 6d).

Interestingly, evidence for in situ centrosome amplification was
also observed in E8.5 p110αH1047R embryos (Fig. 2b) and in adult
skin and colon tissue, 2 weeks after the induction of p110αH1047R

(Fig. 2c). In line with this, keratinocytes explanted from adult
mice, following a 2-week in vivo induction of p110αH1047R, also
showed extra centrosomes (Fig. 2a and Supplementary Fig. 6e).

p110αH1047R expression leads to centrosome overduplication.
Compared to WT cells, p110αH1047R MEFs did not show any
obvious increase in the number of senescent cells (Supplementary
Fig. 7a), DNA damage (Supplementary Fig. 7b, c) or alterations in
cell cycle profiles (i.e. prolonged G1/S or G2/M; Supplementary
Fig. 7d), all of which are known causes of centrosome number
deregulation11,27.

Immunofluorescence analysis revealed that the extra centro-
somes seen in p110αH1047R MEFs were positive for exogenously
expressed Cent2-GFP and composed of two centrioles, demon-
strating that p110αH1047R induction did not lead to pericentriolar
matrix fragmentation or premature centriole splitting (represen-
tative images shown in Fig. 3a and Supplementary Fig. 6f). In
addition, the extra centrosomes were found to co-localize with
mitotic spindle microtubules (representative images shown in
Fig. 3b), and to always contribute to the establishment of the
mitotic spindle.

Alternative mechanisms for generating extra centrosomes
include cytokinesis failure or multiple cycles of centrosome
duplication prior to cell division11. After induction of
p110αH1047R in MEFs that were growth-arrested by serum-
deprivation, centrosome amplification emerged in parallel with
the initiation of DNA synthesis (as measured by BrdU
incorporation) in the G1/S transition, and before the cells had
gone through cytokinesis (Fig. 3c). These data suggest that early
after induction of p110αH1047R, centrosome amplification occurs
during the first round of cell division, before the cells have
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divided. Additionally, we observed that p110αH1047R expression
did not increase cytokinesis failure (as measured by % of
binucleated cells) in these cells 2 days after 4-OHT treatment
(Fig. 3d). These observations suggest that centriole overduplica-
tion, but not cytokinesis failure, is the underlying mechanism
leading to centrosome amplification during the early stages of
induction of p110αH1047R. This is further supported by the
observations from signalling studies, as described below.

Centrosome overduplication by p110αH1047R via Akt and
ROCK. We found that p110αH1047R MEFs displayed higher basal
levels of RhoA–GTP, a known activator of ROCK (Fig. 4a).
Expression of p110αH1047R was also found to lead to increased
levels of Cyclin E (Fig. 4b). CDK2-Cyclin E complexes are known
to phosphorylate the Nucleophosmin (Npm)/B23 protein in S-
phase, which then interacts with ROCKII allowing its activation
and initiation of centrosome duplication28,29. In line with our
conclusion that p110αH1047R expression leads to centrosome
overduplication in S-phase, the activation of ROCK (as measured
by the phosphorylation of MLC on Ser19) and the phosphor-
ylation of Npm on T199 (a phosphorylation site of CDK2)30 were
enhanced in p110α mutant cells (Fig. 4c). Both these signalling
events were inhibited either by a CDK2 inhibitor (Fig. 4d), and at
longer time points, by a p110α-selective inhibitor (Fig. 4c) or an
Akt inhibitor (Fig. 4d and Supplementary Fig. 8a). The precise
interplay and timing of these signalling events remains to be
determined. Our data are consistent with p110αH1047R signalling
to the centrosome at the time of initiation of duplication at the
G1/S transition, through a mechanism involving AKT, ROCKII
and CDK2/Cyclin E-Nucleophosmin, most likely leading to
enhanced activation of the centriole duplication machinery.

We next tested the impact of pharmacological intervention with
PI3K/Akt or RhoA/ROCK signalling on p110αH1047R-induced
centrosomal abnormalities, either before their genesis in primary
cells or once they had been established in a tumour context.

Exposing primary MEFs to inhibitors of p110α, Akt or ROCK
during the induction phase of p110αH1047R expression prevented
centrosome amplification (Fig. 4e), with no significant impact on
cell proliferation (Supplementary Fig. 8b). A similar experiment
to the one shown in Fig. 3c but in the presence of a ROCK
inhibitor, revealed that blocking ROCK activity prevented
centrosome amplification before cells had gone through cytokin-
esis (Supplementary Fig. 9a), suggesting that centrosome
amplification occurs during the first round of cell division upon
p110αH1047R induction, in a ROCK-dependent manner.

We next created tumour-derived cell lines, by immortalizing
primary p110αH1047R MEFs in vitro using p53 inactivation and
inoculating them in nude mice. Once the injected cells had given
rise to tumours, cell lines derived thereof were established in cell
culture (further referred to as Nutu cells). A high fraction of Nutu
cells had centrosome amplification (Fig. 4f). Similar to results in
primary MEFs, treatment of Nutu cells with inhibitors of Akt and
especially of ROCK reduced the fraction of cells with centrosome
amplification (Fig. 4f), underscoring the importance of Akt and
ROCK signalling in centrosome amplification. These data
indicate that Pik3caH1047R-induced centrosomal abnormalities,
once established, can still be partially reverted pharmacologically.
The overall importance of ROCK in the biology of oncogenic
PIK3CA is illustrated by the observation that treatment with two
different ROCK inhibitors (Y27632 and H1152) clearly decreases
Pik3caH1047R-induced cell transformation of primary MEFs
(Supplementary Fig. 9b).

Efficient centrosome clustering upon p110αH1047R expression.
Centrosome amplification can lead to the formation of multipolar

spindles during mitosis31–33 and therefore compromise cell fit-
ness, as the progeny derived from cells that do not cluster the
extra centrosomes can die or undergo cell cycle arrest after
undergoing a multipolar division33. Since an enhanced level of
cell death was not observed in p110αH1047R MEFs (Supplemen-
tary Fig. 5d), we speculated that these cells clustered their extra
centrosomes efficiently. Indeed, live imaging by time-lapse
microscopy of MEFs expressing centrin2 (a component of the
centriole) tagged with GFP revealed that, of the cells with multiple
centrosomes (30% in p110αH1047R MEFs vs. 10% in WT cells;
Fig. 2a), most of the p110αH1047R cells were able to exit mitosis
efficiently, with only 6% of mutant cells failing to do so, compared
to a 35% failure rate in WT cells (n = 152 and 161 mitoses
counted for WT and p110αH1047R MEFs, respectively; Fig. 5a and
Supplementary Fig. 10 and Supplementary Movies 1, 2 and 3).
These data show that, compared to WT cells, cells expressing
p110αH1047R are more proficient at completing mitosis with extra
centrosomes.

Lack of detectable p110αH1047R-induced chromosome segre-
gation errors. It has previously been shown that cells with extra
centrosomes acquire chromosome segregation errors after passing
through a transient ‘multipolar spindle intermediate’ in which
merotelic kinetochore microtubule attachment errors accumulate
before centrosome clustering and anaphase33. The assessment of
chromosome segregation errors during anaphase did not reveal
differences in the frequency of segregation errors (~15% in each
genotype; including acentric and centric chromosomes, and
anaphase bridges) in MEFs, 72 h after treatment with 4-OHT
(Fig. 5b). To better understand the observed lack of segregation
errors upon p110αH1047R induction, we performed a more
detailed analysis of the different spindle configurations observed
in mitotic cells. We focused on cells with centrosome amplifica-
tion going through mitosis (note that we observed ~10% cen-
trosome amplification in WT and ~30% in p110αH1047R

populations). Analysis of mitotic spindles in prometaphase and
metaphase in these cells revealed a lower incidence of multipolar
configurations in p110αH1047R than in WT cells (Fig. 5c). This
suggests that even at earlier stages of mitosis, when erroneous
kinetochore microtubule attachments are established (merotelic
attachments), there is already a difference in the clustering effi-
ciency of extra centrosomes between WT and p110αH1047R. The
total number of the multipolar spindles in early mitosis were
slightly higher in the mutant population (~8 WT cells with
multipolar spindles vs. ~14 p110αH1047R cells with multipolar
spindles in every 100 cells), yet we did not observe higher fre-
quencies of single chromosome segregation errors in the mutant
cells.

Altogether these findings point toward a higher clustering
efficiency of extra centrosomes in p110αH1047R-expressing cells
and a lower number of multipolar intermediates (see Discussion
for further details).

p110αH1047R expression allows tetraploid cell propagation.
Analysis of metaphase chromosome spreads revealed an increase
in aneuploid cells in p110αH1047R MEFs populations (Fig. 6a).
Indeed, a range of chromosome number alterations was observed
3 and 5 days after p110αH1047R induction, when cells had
undergone multiple cell divisions (average doubling time (DT)
26.2 h and 20.9 h for WT and p110αH1047R MEFs, respectively)
(Fig. 6b; Supplementary Fig. 11 shows the individual experiments
performed 3 and 5 days after 4-OHT treatment; experimental
controls are shown in Supplementary Fig. 12—an independent
experiment in which MEFs were subjected to parallel FACS and
metaphase spread analysis is shown in Supplementary Fig. 13).
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Aneuploidy in p110αH1047R MEFs was characterized by a
preponderance of cells with a near-tetraploid chromosome
number (around 80 chromosomes) (Supplementary Figs. 11
and 13). The observation that a large fraction of aneuploidy cells
have a near-tetraploid content with very few cells with 41–59
chromosomes suggests that these cells have become aneuploid
following a genome doubling event (tetraploidization). Keratino-
cytes explanted from Pik3caH1047R mice also showed this
tendency (Fig. 6c). Given the lack of cytokinesis failure early
upon induction of p110αH1047R in MEFs (Fig. 3d), these
observations indicate that p110αH1047R expression facilitates the
propagation of tetraploid cells that arise stochastically. This could
be explained by an increased tolerance to tetraploidization34,
reflected by the fact that cells did not arrest as G1 tetraploids (4
N) but reached 8 N DNA content. Alternatively or in addition,
the greater centrosome clustering efficiency observed earlier
(Fig. 5a) would enable newly formed tetraploid cells to avoid
catastrophic multipolar divisions.

In order to test whether p110αH1047R expression could provide
tolerance to tetraploidization, primary WT and p110αH1047R

MEFs were treated with dihydrocytochalasin B (DCB), an agent
that blocks cytokinesis, to experimentally increase the fraction of
tetraploid cells in the cultures. Cells were filmed for 30 h after
DCB washout to assess cell division of binucleated cells resulting
from cytokinesis failure. Strikingly, the number of p110αH1047R

cells dividing after DCB washout was much higher than in
WT cells (60% vs. 20%, respectively; Fig. 6d and Supplementary
Movie 4), indicating that p110αH1047R cells have a less strict G1
tetraploidy checkpoint than WT cells, and display a higher
tolerance to tetraploidy.

Inactivation of p53 is known to be an important mechanism
leading to tolerance to genome doubling35,36. Both WT and
p110αH1047R MEFs showed a proliferative arrest upon doxor-
ubicin treatment (Supplementary Fig. 14a), with concomitant
upregulation of p53 (Supplementary Fig. 14b), indicative of a
functional p53 response to DNA damage. This suggests
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alternative tolerance routes to genome doubling in the presence of
p110αH1047R.

PIK3CA mutations and genome doubling in human cancer.
Emerging evidence suggests that PIK3CA mutations can occur
late in the evolution of some cancers, being present in only a
subset of cancer cells within the tumour37,38. However, in breast
cancers (see Methods for breast cancer subtypes analyzed),
mutations in PIK3CA showed a significant tendency to be clonal,
i.e. to be present in all tumour cells (Fig. 7a; P< 0.001), indicative
of PIK3CA mutation being an early event in the evolution of this
tumour type. In genome-doubled breast cancers, the majority of
PIK3CA mutations were found to precede the genome duplica-
tion event (Fig. 7b), with a frequency significantly higher than
would be expected by chance (P< 0.0001).

PIK3CA mutations, which are particularly enriched in estrogen
receptor (ER)-positive and luminal subtype cancers (Supplemen-
tary Fig. 15a, b), showed a tendency to be mutually exclusive with

mutations in TP53 (Supplementary Fig. 15c; P< 0.0001, Fisher’s
exact test), which occur more frequently in basal-like tumours. In
contrast to mutations in TP53, a known tolerance mechanism
towards genome doubling35–37, we did not observe an enrich-
ment of PIK3CA mutations in genome-doubled breast tumours.
All together, these data are consistent with a role of PIK3CA
mutation as a potential tolerance mechanism for genome
doubling in breast cancer, conceivably independent of the p53
pathway, and also suggest that additional genomic events may be
required to facilitate such tolerance in TP53 WT tumours. It
remains to be demonstrated that PIK3CA mutation can provide
such activities in vivo.

The significant enrichment for clonal mutations and the
significant tendency for mutations in PIK3CA to precede
genome doubling remained significant when focusing on ER-
positive breast cancers or luminal breast cancers (Supplemen-
tary Fig. 16a, b). However, in other subtypes, there were
insufficient numbers of mutations in PIK3CA to reliably assess
clonality and timing.
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Impact of PI3K pathway blockade on tetraploidization.
Treatment with inhibitors of p110α, Akt or ROCK during the
induction phase of p110αH1047R expression in primary MEFs
prevented tetraploidization (shown for p110α and ROCK inhi-
bitors in Fig. 8a).

We next tested the impact of these inhibitors on spontaneously
in vitro transformed p110αH1047R MEFs that differ in the
percentage of diploid/tetraploid cells in the cell population
(Fig. 8b; showing 2 clones—top and bottom graphs) and on
Nutu cells, which are near-tetraploid (Fig. 8c (showing clone 1)
and Supplementary Fig. 17 (showing clone 2)). In none of these
chromosomal configurations, could these agents rescue the
normal ploidy (Fig. 8b, c; Supplementary Fig. 17). This is in
contrast to what was observed for centrosome amplification,
which could be normalized pharmacologically (Fig. 4e, f).

Moreover, stably transformed diploid and tetraploid
p110αH1047R MEFs established after long-term culture, were
found to be equally sensitive to inhibition of p110α with A66.
(Supplementary Fig. 18 a, b).

Taken together, these data indicate that Pik3caH1047R-induced
chromosomal abnormalities, once established, cannot be reverted
pharmacologically, with p110αH1047R expression providing tol-
erance, in a ROCK-dependent manner, to the early stages of
tetraploidization but, once this genomic state is stably established,
does not provide enhanced sensitivity to PI3K pathway
inhibition.

Discussion
In this study, we report on previously unappreciated biological
consequences of expression of mutated p110α, namely centro-
some amplification, tolerance to tetraploidization and induction
of aneuploidy (Fig. 9). At present, the functional connection
between these biological phenomena remains unclear but the
observation that each of these responses can be blocked by
inhibition of the ROCK kinase strongly suggests a functional
interrelationship downstream of signalling by oncogenic p110α
PI3K.

We show here that p110αH1047R expression leads to super-
numerary centrosomes in a variety of primary mouse and human
cells, as well as in embryonic and adult mouse tissues. Indirect

evidence for a role of PI3K in centrosome biology was previously
found in human HeLa and HCT116 cancer cells, in which stable
transfection of an oncogenic Met tyrosine kinase receptor was
documented to induce centrosome amplification in a PI3K-
dependent manner39. Our data in MEFs suggest that the under-
lying mechanism of p110αH1047R-induced centrosome amplifi-
cation early upon Pik3caH1047R expression is centrosome
overduplication, at least partially mediated through the activation
of RhoA/ROCK signalling, which has previously been linked to
centrosome duplication28. Importantly, it had been previously
unclear how signalling pathways affect these regulators of cen-
trosome biology. Our manuscript shows, for the first time, that
the RhoA/ROCK pathway is involved in centrosome amplifica-
tion downstream of PI3K/AKT. Additionally, our phosphopro-
teomic analysis of MEFs also identified a large fraction of
phosphopeptides, differentially regulated by p110αH1047R, as
proteins involved in the regulation of microtubule dynamics and
centrosome biology18.

Recent data indicate that centrosome amplification on its own
is not a clear driver of cancer development but can cooperate with
p53 loss to accelerate cancer development15,16. Similar observa-
tions were made with our mutant mice, where Pik3caH1047R

expression did not lead to spontaneous cancer within the time
frame analyzed, but accelerated the onset of cancer upon con-
comitant heterozygous loss of the Apc tumour suppressor gene; as
shown previously25, or in the presence of other oncogenic lesions,
such as loss of p53 or PTEN9,40,41. However, the specific con-
tribution of Pik3caH1047R-driven centrosome amplification in
interaction of mutant PIK3CA with other cancer-promoting
genetic lesions remains unknown.

Centrosome amplification can give rise to chromosome seg-
regation errors, as a result of multipolar spindle formation during
the clustering process, resulting in aneuploidy33,42. Despite the
presence of centrosome amplification and increased centrosome
clustering efficiency, the frequency of chromosome segregation
errors appeared to be unaltered early after p110αH1047R expres-
sion in MEFs and less multipolar spindles were observed. Given
the observation that all extra centrosomes contribute to the for-
mation of the mitotic spindle (Fig. 3b), we speculate that
p110αH1047R expression allows extra centrosome clustering
without the formation of multipolar spindles and/or enables cells
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to correct merotelic attachments more efficiently. It is also pos-
sible that the number of cells with centrosome amplification/
multipolar spindles that potentially missegregate chromosomes in
our MEF cell model is too low to observe differences in chro-
mosome missegregation between WT and Pik3caH1047R cells. In
this regard, it is informative to consider the study by Ganem
et al.33. Indeed, these authors found that in RPE-1 cells treated
with DCB, in which 70% of the cells in the population have extra
centrosomes and multipolar spindles, only 12% of those (i.e. the
equivalent of ~8.4 cells out of 70) missegregate a chromosome. In
our MEF study, we find 30% of centrosome amplification in
p110αH1047R MEFs. Assuming that all the MEF cells with cen-
trosome amplification go through mitosis, and assuming a similar
situation to the Ganem et al. study33, we would expect that only
3.6 cells out of 100 (i.e. 12% of the equivalent of 30 cells with
centrosome amplification out of 100) would missegregate a
chromosome.

It is important to stress that our study focused on assessing the
cellular impact of Pik3caH1047R activation in a non-transformed
context. It is possible that deregulation of centrosome biology by
oncogenic Pik3ca in a complex genetic background, as in cancer,
might increase the frequency of chromosome segregation errors
in cells. It is also possible that other cellular processes that are
known to be regulated by centrosomes, such as cell polarity

invasion and metastasis (reviewed in refs. 12,43), will be affected
by Pik3caH1047R-induced alterations in centrosome numbers, as
these processes are known to be controlled by PI3K44,45.

In addition to arising as a result of chromosome missegrega-
tion in diploid cells during mitosis, aneuploidy can also result
when tetraploid cells, generated by whole-genome doubling from
diploid cells, continue to proliferate. Tetraploid cells are geno-
mically unstable and accumulate both numerical and structural
chromosomal abnormalities, which can contribute to tumour
heterogeneity and evolution46,47. Metaphase chromosome spread
analysis of the mutant Pik3ca MEF population revealed a sig-
nificant increase in the fraction of near-tetraploid cells, suggesting
that the levels of aneuploidy observed in mutant cells most likely
arise from unstable tetraploids, instead of diploid cells gaining or
losing chromosomes. Tetraploidy can arise through various errors
in cell division, such as cytokinesis failure or defects in mitosis,
none of which were found to be affected by p110αH1047R early
upon induction. MEFs are known to spontaneously become
increasingly tetraploid at each passage in culture, through
unknown mechanisms48. Our results therefore suggest that,
rather than acting as an inducer of tetraploidization per se,
p110αH1047R helps the cell to tolerate the presence of a doubled
genome. Our data are consistent with the finding that hyper-
activation of growth factor signalling, in our case by sustained
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signalling by the downstream effector p110α, can overcome the
proliferative blockade of tetraploid cells34. More specifically, it is
most likely that the pro-survival signalling induced by con-
stitutive activation of Akt in mutant Pik3ca cells leads to
increased resistance to the stress induced by tetraploidization.
Our evidence suggests that mutant Pik3ca provides this protec-
tion through signalling pathways involving Akt and ROCK.

Pik3caH1047R-induced tolerance to tetraploidization likely
impacts on both the observed supernumerary centrosomes and
increased aneuploidy in Pik3caH1047R MEFs ≥ 5 days after Pik3-
caH1047R induction. Indeed, at this stage, the observed centro-
some amplification might be the result of a combined phenotype:
(1) p110αH1047R signalling leading to centrosome duplication, as
observed early (48–72 h) upon Pik3caH1047R induction (Figs. 2a
and 3c), and (2) tolerance to tetraploidization, resulting in cells
with multiple centrosomes. Likewise, unstable tetraploids might
be prone to accumulate single chromosome segregation errors14.
Further investigation will be required to clarify the connection
between these phenomena.

Inactivation of p53 is considered to be an important
mechanism to tolerate the presence of a doubled genome35, with
mutations in TP53 being enriched in genome-doubled tumours37.
Whereas PIK3CA mutations appear to occur late in the devel-
opment of many cancers, we found PIK3CA mutation to be an
early, clonal event in breast cancer. Analysis of genome-doubled
breast cancer revealed an enrichment of mutations in TP53 (ref.
37), but not in PIK3CA. However, PIK3CA mutations in these
cancers were found to generally precede the genome doubling
event and to exhibit a significant tendency for mutual exclusivity
with TP53. These data are consistent with a PIK3CA tolerance
mechanism to genome doubling, acting independently of TP53
inactivation. The lack of enrichment of PIK3CA mutations in
genome-doubled tumours also suggests, not entirely surprisingly,
a requirement for additional genomic events to facilitate such
tolerance in TP53 WT tumours. Other studies have also provided
evidence for PIK3CA deregulation as an early event in tumour
evolution occurring before whole-genome doubling in colorectal
adenocarcinoma (PIK3CA mutation)49 and lung squamous cell
carcinoma (PIK3CA amplification)50.

The evidence for a role of tetraploidization in human tumour
evolution is becoming stronger. Indeed, a significant proportion
of human tumours have undergone a whole-genome duplication
event during their development49,50. Pharmacological

intervention with PI3K in cancer is currently aimed at targeting
cancer cell proliferation and survival. Our data show that phar-
macological inhibition of the PI3K/ROCK pathway can reduce
the fraction of cells that has centrosome amplification within a
population, but cannot revert the tetraploidy-derived aneuploidy
facilitated by the presence of Pik3caH1047R, once it has been
established. This could help to explain the currently limited
therapeutic impact of PI3K-targeted therapies in cancer and the
observation that PIK3CA mutation is not, on its own, always a
clear predictor of sensitivity to PI3K pathway inhibitors51. On the
other hand, our findings also suggest that pharmacological
intervention with PI3K signalling in cancer might reduce tumour
heterogeneity and evolution by limiting the perpetuation of
genomically unstable tetraploid cells. Genomic analyses of
PIK3CA-mutant positive tumour samples from patients treated
with PI3K pathway inhibitors might uncover evidence for such a
new role for PI3K in a clinical context. The timing of intervention
with PI3K pathway inhibitors in cancer might therefore be of
critical importance for maximizing their therapeutic impact.

Methods
Reagents. In case the concentration of antibody stocks was known, we used 1 µg of
antibody per immunoprecipitate, 1–2.5 µg ml−1for western blotting and 1–5 µg ml
−1 for immunohistochemistry. When the concentration of commercial antibody
stocks was unknown, we used 10 µl per immunoprecipitate, 1/1000–5000 for
western blotting and 1/50–500 for immunohistochemistry. Antibodies used for
Western blotting were from the following commercial providers (catalogue num-
bers are in brackets): Cell Signaling Technologies: Akt/PKB (9272), pAkt-T308
(9275), pAkt-S473 (9271), pNPM-T199 (3541), NPM (3542), pMLC-S19 (3675),
MLC (3672), Cyclin E (4129), vinculin (4650), p53 (9282); Sigma: β-actin (A1978),
α-tubulin (T6074) and α-actinin (A5044); BD Biosciences: p110α (P94520); Santa
Cruz Biotechnology: RhoA (sc-418). Antibodies used for immunofluorescence were
from the following providers: Abcam: γ-tubulin (ab11316), pericentrin (ab4448), β-
tubulin (ab6046) and GFP (ab1218); Sigma: α-tubulin (T6074); Cell Signaling
Technologies: cleaved-caspase-3 (9664); Merck Millipore: pHistone H2A.X-S139
(05–636); Santa Cruz Biotechnology: Endomucin (sc-65495); 53BP1 (sc-22760);
Fitzgerald: human Crest (90C-CS1058). Rhodamine Phalloidin (R415, Thermo-
Fisher Scientific) was used to detect F-actin. Secondary antibodies conjugated to
fluorescein isothiocyanate (FITC) or Cy3 were from Jackson ImmunoResearch
Labs, and secondary antibodies conjugated to AlexaFluor 594 (A11012) and
AlexaFluor 647 (A21445) were from ThermoFisher Scientific. Other reagents were
sourced as follows: from Selleck Chemicals: Y27632 (S1049) and MK-2206 (S1078);
Merck: Akti-X (124020); Symansis: A66 (sy-a66); Tocris: H1152 (2414) and
NU6140 (3301); Sigma: Tamoxifen (T5648), (Z)-4-hydroxytamoxifen (H7904) and
dihydrocytochalasin B (D1641).

Mice. Mice were kept in individually ventilated cages and cared for according to
UK Home Office regulations, with procedures approved by the Ethics Committees
of Queen Mary University London, UK and University College London, UK.
Unless otherwise mentioned, the mice used were backcrossed to the C57BL/6
background for 10 generations, and littermates were used as controls.

Generation of Pik3caH1047R+neo mice. Gene targeting was carried out by Taconic
Artemis (Cologne, Germany) and shown schematically in Fig. 1a. Genomic DNA
covering the last 6 exons of the coding region of Pik3ca was isolated and a point
mutation, resulting in conversion of CAT (H) to CGT (R) in the C-terminal p110α
kinase domain, was introduced by site-directed mutagenesis. In addition, a neo
selection cassette flanked by frt sites was inserted into exons 19 and 20 in the
targeting vector using standard restriction enzyme- and PCR-based cloning tech-
niques. The linearized targeting construct was electroporated into C57BL/6 J ES
cells. G418-resistant clones with targeted integration of the vector were identified
by Southern blot analysis of HindIII-digested, XmnI-digested or BsrGRI-digested
genomic DNA using different probes homologous to genomic sequences flanking
the selection cassette. The presence of the introduced CGT sequence was confirmed
by DNA sequencing. Chimeras were generated from clones with the CGT mutation
and founders identified by PCR analysis of tail DNA. Male chimeras carrying the
CGT mutation (germline transmitters) were bred with C57BL/6 females to generate
the Pik3caH1047R+neo hypomorph mice. The presence of the Pik3caH1047R+neo

mutant allele was monitored by PCR using the following primers (shown sche-
matically in Fig. 1a): primer 1 = onco-p110α-F: 5′-GGTTCCAGCCTGAATAAA
GCC-3′; primer 2 = onco-p110α + cass: 5′-AGATCAGCAGCCTCTGTTCC-3′,
giving rise to an expected PCR fragment of 307 bp (Supplementary Fig. 1b). In each
amplification cycle, denaturation was performed for 30 s at 95 °C, annealing for 30
s at 60 °C and extension for 1 min at 72 °C; the number of cycles was 35 followed
by a final extension of 10 min at 72 °C.

Pik3caH1047R 

Centrosome
amplification

Low level of
chromosome

missegregation ?

Tetraploidy

Aneuploidy

Tolerance to
spontaneous

genome doubling

CANCER

?

?

AKT-ROCK

?

Fig. 9 Summary of key observations on the impact of PIK3CA mutation on
centrosome amplification and possible tolerance to genome doubling
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Pik3caH1047R+neo hypomorph mice were bred with mice that express a germline
FLP recombinase, which was either constitutively active (hACTB::Flpe mice19) or
inducible by 4-hydroxytamoxifen (4-OHT) treatment (CAG::Flpe-ERT2 mice20), in
order to induce Flpe-mediated deletion of the neo selection cassette. Flpe-mediated
or Flpe-ERT2-mediated recombination of the neo selection cassette was monitored
by PCR using the following primers (Supplementary Fig. 1b): primer 1 = onco-
p110α-F: 5′-GGTTCCAGCCTGAATAAAGCC-3′; primer 3 = onco-p110α-R: 5′-
CACAGCTGTCCTGGGTAAGG-3′. The same PCR conditions as described above
where used. The size of the expected PCR fragments was 425 bp (recombined
mutant allele) or 340 bp (non-recombined locus).

Isolation of primary MEFs. Embryos were obtained from timed pregnant females.
The day of the presence of a copulation plug was considered as day E0.5. E13.5
embryos were minced, dissociated using trypsin and cells allowed to adhere on
tissue culture dishes in DMEM, 10% FBS, penicillin and streptomycin, as described
in ref. 52 Unless otherwise indicated, early passage (P2 to P3) MEFs were used in
experiments.

Cell culture. MEFs and human dermal fibroblasts were cultured in DMEM with
10% FBS, penicillin and streptomycin. Mouse primary keratinocytes were cultured
in Keratinocyte-SFM 1× (Invitrogen, 37010–022), 20 μM CaCl2 and 20 mM
HEPES. MCF-10A cells (ATCC CRL 10317) were cultured in DMEM/F12 with 5%
horse serum, 20 ng ml−1 EGF, 0.5 μg ml−1 hydrocortisone, 100 ng ml−1 cholera
toxin, 10 μg ml−1 insulin, penicillin and streptomycin. MCF-10A cells were used as
an epithelial cell model to confirm the findings made with primary cell lines
derived from the inducible Pik3caH1047R+neo mouse model.

In vivo induction of Pik3caH1047R in mice. For postnatal removal of the neo
cassette by tamoxifen-inducible Flp-mediated recombination, Pik3caWT;Flpe-ERT2

and Pik3caH1047R+neo;Flpe-ERT2 mice at the age of 8 weeks were dosed with
tamoxifen in corn oil (80 mg kg−1) by gavage for 5 consecutive days. Animals were
followed over time and culled when they became apparently ill. A healthy control
animal was culled in parallel.

In vitro induction of Pik3caH1047R in MEFs. Pik3caWT;Flpe-ERT2 and Pik3-
caH1047R+neo;Flpe-ERT2 MEFs cultured in standard growth medium were treated
for 72 h (unless stated otherwise) with 1 µM 4-OHT solubilized in ethanol (vehi-
cle). Culture medium was replenished every 48 h with fresh 4-OHT. Flpe-ERT2-
mediated recombination of the Neo selection cassette was monitored by PCR.

Isolation and induction of Pik3caH1047R in mouse skin keratinocytes. Adult
mouse dorsal epidermal keratinocytes were isolated as described in ref. 53. For use
in experiments to determine aneuploidy, 8-week-old Pik3caWT;Flpe-ERT2 or
Pik3caH1047R+neo;Flpe-ERT2 mice were treated with tamoxifen (80 mg kg−1) per
gavage for 5 consecutive days. Two weeks after the last day of treatment, the dorsal
skin was shaved and isolated, cut into small pieces, washed once with PBS and
twice with 70% ethanol, submerged in trypsin (T4424, Sigma) and incubated
overnight at 4 °C. The epidermis was detached and minced and cells were plated on
10 cm dishes. After 24 h, cells were washed once with Hank’s solution, incubated
with culture medium which was replenished every other day until the cultures
reached confluence (6–7 days after seeding). Coating of culture dishes for kerati-
nocyte isolation was as follows: dishes were coated with collagen and fibronectin
prepared by incubation of 10 μl of collagen (354236, BD Biosciences) and 10 μl
fibronectin (354008, BD Biosciences) in 980 μl of EMEM (06–174 g, Lonza) +5 mM
HEPES (15630–056, Gibco) to obtain a final concentration of 30 μg ml−1 collagen
and 10 μg ml−1 fibronectin, incubated with coating solution at 4 °C overnight on a
rocker platform followed by three washes with Hank’s solution (14175–129,
Gibco). For centrosome experiments, keratinocytes were explanted from non-
treated 8-week-old mice, cultured for 5 days, and then seeded on coated coverslips
and, once adhered, treated with 4-OHT (1 μM) or vehicle for 2 consecutive days.

Human subjects. This study was approved by the UK National Research Ethics
Committee in accordance with the Declaration of Helsinki. Written informed
consent was obtained from all participants. Human dermal fibroblasts were
obtained from skin biopsies taken from the right arm and right leg of a human
subject (C1)21. Sanger sequencing and target-enriched next generation sequencing
(mean coverage × 1000) were used to confirm the presence of a 50% heterozygous
PIK3CAH1047L mutation burden in leg cells. Arm cells were confirmed to be WT
for PIK3CA.

Mouse colon cancer model. All mice used were on an outbred background and
were from the same breeding colony. Mice bearing heterozygous Apc-targeted
alleles (Apcflox/+)54 were crossed with mice bearing the VillinCreERT transgene55

(expressed in the small and large intestine) to generate VillinCreERT:Apcflox/+ mice.
VillinCreERT;Apcflox/+ mice were then crossed with Pik3caH1047R+neo;Flpe-ERT2

mice, and kept on an outbred background to generate Pik3caH1047R+neo;Flpe-ERT2:
VillinCreERT:Apcflox/+ mice. Mice were genotyped for the Apcflox/+-targeted allele
and the VillinCreERT recombinase transgene as described previously54,55.

VillinCreERT and Flpe-ERT2 recombinase activity from all experimental groups was
induced at 6–12 weeks of age via gavage of an 80 mg kg−1 dose of tamoxifen in corn
oil for 5 consecutive days. Mice were killed by cervical dislocation when they
became symptomatic of disease of an intestinal tumour burden, indicated by pale
feet caused by intestinal tumour burden-induced anaemia, a hunched appearance
and/or a distended abdomen. Intestines were fixed in Methacarn (methanol:
chloroform:glacial acetic acid (4:2:1)), and the number of lesions was scored
macroscopically.

Immortalization of MEFs by p53 shRNA. Phoenix ecotropic HEK293T cells were
transfected using FuGENE with a shRNAmir retroviral vector targeting p53 (ref.
56) and supernatants harvested 48 h later. Early passage primary MEFs were
incubated with retroviral supernatants, selected with 1 mgml−1 puromycin and
p53-null immortalized MEFs expanded and frozen for further experiments.

Generation of Nutu cell lines. A total of 106 Pik3caWT;Flpe-ERT2 or Pik3caH1047R

+neo;Flpe-ERT2 primary and p53 shRNA-immortalized MEFs were treated with 4-
OHT in vitro and injected subcutaneously into the upper and lower parts of each
flank of female HsdHli:CD1-Foxn1nu nude mice (n = 8, Harlan UK). Only p53
shRNA-immortalized Pik3caH1047R MEFs gave rise to tumours and with low
penetrance (three out of eight tumours injected) after a latency period of
2–3 months. Tumours were excised, minced, trypsinized and propagated as cell
lines in culture, further referred as Nutu1, Nutu2 and Nutu3.

Generation of in vitro Pik3caH1047R-transformed MEFs. Pik3caWT;Flpe-ERT2 or
Pik3caH1047R+neo;Flpe-ERT2 primary MEFs were seeded in 15 cm dishes in stan-
dard culture medium and treated with 4-OHT. Cells were allowed to reach con-
fluency and kept in culture for 4 weeks until foci were established. Only
Pik3caH1047R+neo;Flpe-ERT2 MEFs yielded colonies. Individual well-isolated colo-
nies were harvested by cloning cylinders (Millipore, TR-1004) and transferred to
12-well plates. Cells were then expanded and frozen for further experiments.

Centrosome analysis. For centrosome analysis in cultured cells, cells grown on
coverslips treated with poly-L-lysine (P8920, Sigma) or on collagen I coated glass
culture slides in the case of MCF-10A cells (Corning, 354630), were fixed with ice-
cold methanol for 10 min, blocked with PBS containing 3% BSA for 40 min and
incubated overnight at 4 °C with primary antibodies. All primary antibodies were
detected using species-specific fluorescently labelled secondary antibodies (Mole-
cular Probes) and DNA was detected with 0.2 μg ml−1 DAPI (D9542, Sigma).
Specimens were mounted in mowiol mounting medium (475904, Calbiochem).
Confocal laser scanning microscopy was performed with an LSM 710 (Zeiss)
confocal microscope.

For centrosome analysis in adult tissues, 8-week-old Pik3caWT;Flpe-ERT2 or
Pik3caH1047R+neo; Flpe-ERT2 mice were treated with tamoxifen (80 mg kg−1) per
gavage for 5 consecutive days. Two weeks after this treatment, tissues were snap-
frozen in OCT freezing medium (TFM5, Electron Microscopy Sciences) and 10 μm
cryosections affixed to poly-L-lysine coated slides. Sections were thawed at room
temperature for 30 min before staining, fixed for 15 min in 4% PFA in PBS at room
temperature, washed 3 times for 5 min with PBS, blocked with mouse IgG blocking
reagent (MKB-2213, Vector labs) for 1 h, washed times for 5 min with PBS and
blocked for 1 h in 5% donkey serum in PBS-0.3% Tween (PBS-T). Slides were then
incubated overnight at 4 °C with antibodies to pericentrin (1:500 in PBS-T),
washed 3 times in PBS, incubated with anti-rabbit-Cy3 antibody (1:500 in PBS-T)
and AlexaFluor 488-phalloidin (1:500 in PBS-T) for 1–2 h in the dark at room
temperature, washed three times with PBS and mounted with Vectashield
mounting media containing DAPI (H-1200, Vector Labs).

For centrosome analysis in embryos, whole-mount embryo
immunofluorescence was performed. E8.5 embryos were isolated, transferred to
1.5 ml Eppendorf tubes and fixed in 4% PFA in PBS at 4°C overnight on a rocker
platform, followed by three washes with 0.1% Triton X-100 in PBS (PBT). Embryos
were incubated in 0.25% Triton X-100 in PBS for 15 min and washed three times
with PBT before blocking with 2.5% normal donkey serum (D9663, Sigma), 2.5%
normal goat serum (G9023, Sigma) and 3% bovine serum albumin (A7906, Sigma)
in PBT for 3 h. Following removal of the blocking solution, anti-pericentrin
antibody in 200 μl PBT was added to the Eppendorf tube containing the embryos
and incubated overnight at 4°C. The following day, 1 ml PBT was added to the
solution containing the embryos, embryos washed 5 times in PBT and incubated in
PBT for an extra 20 min. Then, 200 μl PBT solution containing the secondary Cy3-
anti-rabbit antibody was added and incubated overnight at room temperature.
Embryos were then washed 5 times for 5 min in PBT and once for 15 min. Finally,
embryos were mounted on depression slides (S175201, Fisher scientific) in
Vectashield mounting media containing DAPI (H-1200, Vector Labs) for 2 days.

Analysis of chromosome segregation errors. Cells cultured on poly-L-lysine-
treated coverslips were fixed in 10% Triton X-100, 1 M PIPES, 0.5 M EGTA, 1M
MgCl2 and 4% formaldehyde, blocked with PBS containing 3% BSA for 40 min and
incubated for 1.5 h at room temperature with primary antibodies: human Crest
(1:300) and β-tubulin (1:600). Secondary antibodies (1:500) goat anti-rabbit con-
jugated to AlexaFluor 594 and goat anti-human AlexaFluor 647 were added for 1.5
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h at room temperature. DNA was stained with 1 μg ml−1 DAPI (10236276001,
Roche) and coverslips mounted in Vectashield (Vector H-1000). Images were
acquired using an Olympus DeltaVision RT microscope (Applied Precision, LLC)
equipped with a Coolsnap HQ camera.

Transient transfection. MCF-10A cells were transfected using Lipofectamine 3000
Transfection Reagent (ThermoFisher Scientific; L3000008) according to the man-
ufacturer’s instructions. The plasmids used were pBabe-HA-PIK3CAWT, pBabe-
HA-PIK3CAH1047R, pBabe-HA-PIK3CAE545K, pBabe-HA-PIKR1ED560Y or empty
pBabe vector, all obtained from Addgene (deposited by Jean Zhao, Dana-Farber
Cancer Institute, Boston, USA). Cells were fixed 72 h after transfection for analysis
of centrosome numbers.

Chromosome spread analysis. MEFs and Nutu cells were treated with
0.1 µg ml−1 colcemid (KayoMax, GIBCO) and mouse keratinocytes with 50 ng ml−1

of nocodazole (M1404, Sigma) for 4 h, trypsinized, and resuspended in 0.56% KCl
for 30 min at 37 °C. Cells were then fixed with 3:1 ice-cold methanol:acetic acid,
pelleted and washed three times with methanol:acetic acid before being dropped on
a pre-cleaned glass slide from a height of ~6 inches. Slides were allowed to dry and
stained with Vectashield mounting medium containing DAPI (Vector labs). Images
of metaphase spreads were taken with a 63x objective on a Zeiss 510 microscope
and chromosomes were counted using Image J. The cell population with <40
chromosomes is defined as those with 36–39 chromosomes.

Time-lapse microscopy. To study cell fate during and after mitosis of cells with
more than two centrosomes, Pik3caH1047R+neo;Flpe-ERT2 mice were crossed to
GFP-Cent2 transgenic mice57 to generate Pik3caH1047R+neo;Flpe-ERT2;GFP-Cent2
MEFs. Cells were seeded in µ-Plate 96 wells (Ibidi; IB-8962) in DMEM medium 48
h after treatment with 4-OHT, followed by filming of the cells for 30 h at 37 °C. To
study the efficiency of the G1 checkpoint, an assay of DCB-induced tetraploidy was
used. Briefly, MEFs cells were seeded on ibidi µ-Plate 96 wells in DMEM medium
with 4-OHT for 24 h, followed by overnight incubation in the presence of 10 µM
DCB followed by washing out of this agent in fresh culture and by filming of the
cells for 30 h at 37 °C. Images were collected with a high-content analysis micro-
scope (ImageXpress Micro XLS Widefield High-Content Analysis System/Mole-
cular Devices) every 15 min using MetaXpress High-Content Image Acquisition
and Analysis Software (Molecular Devices). Time-lapse images from the whole
duration of the experiment were then converted into a movie using Image J, and
cells with more than two centrosomes or binucleated cells entering mitosis were
tracked.

Measurement of RhoA activity. The capacity of RhoA–GTP to bind to
GST–rhotekin–RBD was used to determine the cellular levels of active GTPase.
Cells were lysed in extraction buffer (50 mM Tris.HCl pH 7.4, 100 mM NaCl, 5
mM MgCl2, 1% NP-40, 10% glycerol, 1 mM DTT, protease and phosphatase
inhibitor cocktail) and the RhoA pull-down assay was performed by incubation of
cleared lysates with GST–rhotekin–RBD (Cytoskeleton Inc) for 45 min at 4 °C,
followed by four washes of the beads in wash buffer (50 mM Tris.HCl, pH 7.6, 150
mM NaCl, 10 mM MgCl2, 1 mM DTT, protease and phosphatase inhibitor cock-
tail). Bound proteins were solubilized by the addition of 25 μl of
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) Laemmli loading buffer,
followed by separation on 12.5% SDS–PAGE gels and western blotting for RhoA.

MEF focus formation assay. Primary Pik3caH1047R+neo;Flpe-ERT2 MEFs
(passage 2) were seeded at 106 cells per 6 cm dish in standard culture medium in
the presence of 4-OHT with or without Y27632 (10 μM) or H1152 (0.5 μM) until
they reached a confluent monolayer. Medium was replaced every 2 days,
containing fresh inhibitors, and confluent monolayer cultures stained with crystal
violet after 10 days of total culture to reveal the presence of transformed foci.

MEF proliferation assay. Early passage (P2–P4) MEFs were incubated at 2 × 103

cells per well in 96-well plates in 100 µl medium (DMEM, 10% FBS, penicillin and
streptomycin) in the presence of the indicated drugs for 72 h. MTS reagent (G5421,
Promega) was added and absorbance at 492 nm was read 3 h later and analyzed
using Magellan software. For cell counting experiments, 2.25 × 105 cells were
seeded in six-well plates in the presence of 4-OHT. Cells were collected every 24 h
and counted by Casy Cell Counter (Roche). The population doubling time was
calculated using the following formula: DT = T ln2/ln(Xe/Xb). T is the incubation
time in hours, Xb is the cell number at the beginning of the incubation time and Xe
is the cell number at the end of the incubation time (ATCC animal cell culture
guide).

BrdU incorporation assay. MEFs were serum-starved for 48 h in the presence of
4-OHT followed by incubation in FBS-containing medium for the indicated times.
One hour before collection, cells were incubated in labelling medium containing 10
µM 5-bromo-2’-deoxyuridine (B5002, Sigma) followed by trypsinization, washing
with PBS and fixation in 70% ethanol. Following two further washes in PBS, cells
were incubated with 2M HCl for 20 min and probed with anti-BrdU monoclonal
antibody (5292, Cell Signaling Technologies) and detected with fluorescein
isothiocyanate-conjugated goat anti-mouse IgG2a (Jackson ImmunoResearch
Labs). Cells were resuspended in 500 μl propidium Iodide solution (50 mgml−1;

P4864, Sigma) and RNase A (100 µg ml−1; R5503, Sigma) and analyzed using a BD
Accuri C6 flow cytometer (BD Bioscience) and FlowJo software.

Cell cycle analysis. Experiments were carried out in synchronized or non-
synchronized MEF cell populations. For experiments with synchronized cells,
MEFs were induced with 4-OHT for 72 h. For the last 24 h of this culture, cells
were incubated in the presence of 12 µM Aphidicolin (178273, Merck) followed by
washing out of this agent (‘release’) in culture medium for the times indicated.
After washing with PBS, cells were detached by trypsinization, collected and fixed
in ice-cold 70% ethanol. For experiments with asynchronous cells, MEFs incubated
in culture medium were induced with 4-OHT on day 0, and further incubated for 3
and 5 days. After washing with PBS, cells were detached, collected and fixed in ice-
cold 70% ethanol. To determine the mitotic index, cells were probed with pH3-S10
polyclonal antibody (Ab5176, Abcam) and detected with FITC-labelled goat anti-
rabbit IgG2a (Jackson ImmunoResearch Labs). Cells were resuspended in 500 μl
propidium iodide solution (50 mgml−1; P4864, Sigma) and RNase A (100 µg ml−1;
R5503, Sigma) and analyzed using a FACSCalibur (BD Bioscience) and FlowJo
software.

Apoptosis assay. The assay was performed using a FITC-Annexin V Apoptosis
Detection Kit II (BD Pharmingen) according to manufacturer’s instructions.
Briefly, 5 days after incubation in the presence of 4-OHT, MEFs were detached by
trypsinization, washed with cold PBS and resuspended in 1× binding buffer at a
final concentration of 1 × 106 cells ml−1. A total of 100 µl of this suspension was
incubated with FITC-Annexin V and PI solution for 15 min at room temperature
in the dark. After incubation, 400 µl of binding buffer was added and the cells were
analyzed using a FACSCalibur (BD Bioscience) and FlowJo software.

Senescence assay. The assay was performed using a Senescence Cells Histo-
chemical Staining Kit (CS0030, Sigma) according to manufacturer’s instructions.
Briefly, 72 h after incubation in the presence of 4-OHT, MEFs were fixed for 7 min
in fixation buffer, washed in PBS and stained with staining mixture overnight at 37
°C without CO2. The cells were observed under a bright field microscope (DM IL
LED, Leyca). The percentage of β-galactosidase-positive cells was calculated by
counting blue-stained cells and the total number of cells.

DNA damage checkpoint experiments. For cell counting, MEFs were seeded in
12-well plates in the presence of 4-OHT. The day after, cells were treated with 0.2
µg ml−1 doxorubicin (D1515, Sigma) for 20 h. After the incubation time, the drug
was washed out and cells allowed to proliferate. Cells were collected and manually
counted for the indicated times. For p53 Western blotting, MEFs were seeded in 6
cm plates in the presence of 4-OHT. 48 h after induction, cells were treated with
0.2 µg ml−1 doxorubicin for 18 h, after which cells were lysed and total protein
isolated.

Endomucin staining. Freshly isolated E9.5 mouse embryos were fixed in 4%
paraformaldehyde overnight at 4 °C. After washing in PBT, embryos were dehy-
drated in increasing concentrations of methanol (50%, 80% methanol/PBT, 100%
methanol), rehydrated in decreasing concentrations of methanol, followed by a 30
min wash in Pblec buffer (0.2 mM CaCl2, 0.2 mM MgCl2, 0.2 mM MnCl2 and 2%
Triton X-100 in PBS) and overnight incubation at 4 °C with antibody to endo-
mucin, diluted 1:20 in Pblec. After five washes in PBT, embryos were incubated
with Cy5-labelled secondary antibody diluted 1:100 in PBS, 0.5% BSA, 0.25%
Tween-20. Finally, embryos were washed three times in PBS, post-fixed for 1 min
in 4% paraformaldehyde and mounted.

Immunoblotting. Cells were lysed in lysis buffer (10 mM Tris.HCl pH 7.5, 1%
Triton X-100, 0.5% NP-40, 150 mM NaCl, 2 mM CaCl2, 0.1 mM Na3VO4, protease
inhibitors (Calbiochem), 1 mM PMSF). The lysates were incubated for 20 min and
cleared by centrifugation at 4 °C. The samples were denatured in sample buffer
(10% SDS, 20% glycerol, 200 mM Tris.HCl pH 6.8, 10 mM DTT, 0.05% bromo-
phenol blue), resolved by SDS-PAGE, and transferred onto an Immobilon-P PVDF
membrane (Millipore). The blots were incubated in blocking buffer (5% (w/v)
nonfat dry milk in Tris-buffered saline plus Tween 20) for 1 h and incubated with
primary antibodies for 16 h at 4 °C. The blots were incubated with anti-mouse or
anti-rabbit IgG horseradish peroxidase-conjugated secondary antibodies (GE
Healthcare) for 1 h at room temperature. The antibody–antigen complex was
visualized by Pierce ECL Western Blotting Substrate (Thermo Scientific).
Uncropped immunoblots and larger blot areas are presented in Supplementary
Fig. 19.

Mutation and copy number analysis. TCGA breast cancer mutation and copy
number analysis was performed as described in ref. 37, with genome doubling
assessed as outlined in ref. 14. In brief, mutations were classified as clonal or
subclonal based on the 95% confidence interval of the posterior distribution of the
cancer cell fraction. Mutations where the 95% confidence interval overlapped with
1 were grouped as clonal, with all other mutations classified as subclonal. To assess
whether H1047R mutations in PIK3CA were significantly more often clonal than
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expected by chance in breast cancer, a permutation test was used, as outlined in ref.
37. In brief, the same number of mutations as observed at H1047R sites in PIK3CA
were randomly sampled from the entire cohort of mutations in TCGA breast
cancer 10,000 times, obtaining a background distribution, representing the
expected proportion of clonal/subclonal mutations. A P-value was then obtained by
comparing the observed proportion of clonal/subclonal mutations to this back-
ground distribution. The same technique was used to assess whether PIK3CA
mutations occurred more often before or after genome doubling. In this case only
genome-doubled breast tumours were used and mutations were timed relative to
copy number events. Timed mutations were restricted to those occurring in regions
with at least two copies of the major allele. Given that a genome doubling event will
double mutations preceding the event, all mutations present at multiple copies
were classified as preceding doubling, while those only present at one copy were
classified as occurring after the duplication.

Breast cancer subtype classification was performed using the genefu package in
R, grouping breast tumours into five subtypes: luminal B-like; Her2-like; basal-like;
luminal A-like; and normal. ER status was assessed by immunohistochemistry and
obtained from clinical data from TCGA portal.

Tendency towards mutual exclusivity between mutations in PIK3CA and TP53
was assessed using a Fisher’s exact test, using all breast cancer tumours and using
either all non-silent mutations or the ten most frequent hot spots mutations. This
mutual exclusivity remained significant when focusing on only genome-doubled
tumours (P = 0.04). A two-tailed Fisher’s exact test was used to assess significance.

Data availability. All relevant data are available from the authors.
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