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Particle and string fluid interpretation for the scalar sector of Kaluza-Klein theories
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The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to
represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Eu-
clidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Ein-
stein field equations with such fluids can be explicitly integrated when the four-dimensional space-

time has two commuting Killing vectors.

I. INTRODUCTION

In modern Kaluza-Klein theories!? the extra space is
considered a compact space of the size of the Planck
length whose isometries are the gauge symmetries of
some gauge theory.’ Fourier expanding the N-
dimensional metric tensor in terms of the extra coordi-
nates one finds, at the zero mode or low-energy limit, an
effective four-dimensional theory for the coupling of
gravity with the vector fields (Yang-Mills gauge bosons)
associated with the mixed components of the N-
dimensional metric and the scalar fields (Higgs bosons)
associated with the components of the extra space
metric.>*

The scalar fields are an essential ingredient to obtain
any realistic effective low-energy theory consistent with
the higher-dimensional field equations.® Thus, for in-
stance, in five dimensions if we neglect the scalar field by
setting gs5 =const the five-dimensional equations lead to
the four-dimensional Einstein-Maxwell equations with an
unacceptable restriction on the electromagnetic field:
F, F*=0. The scalar field gss or dilaton is related to
the size of the extra space and may lead to dynamical
compactification as a result of classical cosmologic evolu-
tion,® or by the effect of quantum fluctuations about the
classical configuration of the dilaton which give the dila-
ton a mass and the size of the extra space.’

When the scalar field is included in five dimensions,
the low-energy theory is the Jordan and Thiry four-
dimensional theory® of coupled gravity and elec-
tromagnetism with a massless scalar field like in the
Brans-Dicke theory. But unlike the Brans-Dicke theory,
which contains an arbitrary constant,”!® here the con-
stant is fixed, as it should be in a truly unified theory, by
the general five-dimensional covariance.*!! However,
the theory may be transformed into the source-free
Brans-Dicke theory by means of a conformal transfor-
mation which involves an arbitrary parameter of the
four-dimensional metric or, also, it may be transformed
to the Einstein equations with a stiff fluid.'>!? In this
respect one may as well consider the use of extra dimen-
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sions as a useful auxiliary tool to obtain meaningful
four-dimensional theories.

Here we investigate the low-energy limit of the six-
dimensional theory and its four-dimensional interpreta-
tion. For simplicity in the interpretation we consider
the scalar sector only. We allow the possibility that the
extra space has an indefinite metric. The existence of a
closed timelike curve with a radius the size of the Planck
time causes no problem at the zero-mode approximation
but implies tachyons for the massive fields associated to
the higher modes. We find that when the metric of the
extra space has the Euclidean signature the four-
dimensional theory describes the coupling of the Brans-
Dicke field with an anisotropic fluid composed of two
perfect-fluid components.14 On the other hand, when
the extra space has an indefinite metric the four-
dimensional theory describes the coupling of the Brans-
Dicke field with a perfect fluid of geometric strings.!”
There is a clear correspondence between the description
of an anisotropic distribution of pointlike objects and the
description of an anisotropic distribution of stringlike
objects.

Besides the interest this unified picture may have for
the description of the interaction of gravity with the
Brans-Dicke field and such fluids, it has also an impor-
tant practical application: the integration of four-
dimensional field equations.

In fact if we assume that the N-dimensional metric
coefficients depend on two coordinates only, the higher-
dimensional Einstein equations can be integrated by
means of a generalization of the solution-generating
technique of Belinsky and Zakharov.'~!° As a conse-
quence the four-dimensional Einstein equations with the
Brans-Dicke field and the fluids described are automati-
cally integrated.

In Sec. II we describe the four-dimensional effective
low-energy theory of the scalar sector of the Kaluza-
Klein theory and by means of conformal transformations
it is related to other scalar theories. The fluid interpre-
tation is given in Sec. III and it may be generalized to
more dimensions. In Sec. IV the integration of the field
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equations when the four-dimensional metric has two
commuting Killing vectors is considered.

II. EFFECTIVE FOUR-DIMENSIONAL THEORY

An N-dimensional Kaluza-Klein theory is based on a
N-dimensional metric y 4p

ds*=y qpdx ‘dxP=y ,dx"dx"+2y ,dx"dx"®
+Yawpdx®dx?, (1)

which we split in the usual four coordinates and N —4
extra coordinates with 4,B=1,...,N, u,v=0,1,2,3,
and a,b=5,...,N—4. The general N-dimensional co-
variance leads to the N-dimensional Einstein field equa-
tions in a vacuum; in the simplest Kaluza-Klein theories
no extra fields are assumed; that is,

R 43=0. (2)

If we assume that the extra space is a compact space
of small size, usually the size of the Planck length, the
metric components ¥ 45 can be Fourier expanded in
terms of the extra coordinates. The zero mode or low-
energy limit is obtained by making the restrictions (a)
that the extra space-time has the topology of a torus and
(b) that y 45 has no dependence on the extra coordi-
nates, i.e.,

Y 4B,a =0 . (3)

The theory can be written in terms of an effective four-
dimensional metric

guv:y‘uv_’yabAa‘uAbv ’ (4a)
where
A=y, 7% (P Py p=8%) . (4b)

It is verified that
v__ v _ a b_rab b
gr=yt, Yy =— A%, yP=7C+A4%A4°, .

When the restrictions (a) and (b) are imposed the
coefficients A“, represent N —4 vector fields on the
space of metric g,, associated with the Yang-Mills vec-
tor  bosons and the coefficients Y ab are
(N —4)X(N —3)/2 scalar fields associated with the
Higgs bosons.> Note that, in general, there is no match-
ing between the number of massless vector fields and the
number of extra dimensions and that the zero modes are
not independent of the extra coordinates.

We shall single out the scalar field ¢ defined in terms
of the Higgs fields by

det(y,,)=€d?, e==+1, (5)

which is obviously related to the size of the extra space
(dilaton field).*

Here we admit the possibility of having extra timelike
coordinates (e= —1). Note that if we have, for instance,
a five-dimensional theory with a closed timelike curve,
say 7, in a circle of radius T of the order of the Planck
time, this causes no problem for the effective low-energy
theory; however, this theory contains an infinite tower of
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massive particles with imaginary masses (tachyons). In
fact, Fourier expanding the metric tensor

Y ap(xts)= 3 YAB(X”)ei"T/T,

u=—o

and substituting into the five-dimensional field equations,
the extra modes admit a four-dimensional interpretation
as massive particles with masses m?*=—n?/T? (ta-
chyons). For the n =0 modes we have massless particles
and no tachyon problem. For this reason and in order
to allow a greater generality we shall assume that € is ar-
bitrary. On the other hand, if one wishes to take the
viewpoint of considering the extra dimensions simply as
a useful device to obtain meaningful four-dimensional
theories, then this possibility must be considered.

We wish to consider the scalar sector of the theory
only; i.e., we now assume that

A%, =0 (y,,=0), (6)

which is compatible with the field equations. Now the
field equations (2) in terms of the four-dimensional
metric g, can be written as

Ry=—06""0,u+8 70,0+ 37wV abv » ™
(DY ap, ¥ “VH=0, (8a)
¢,"=0, (8b)
where IT;W denotes the Ricci tensor for the metric g,

and all derivatives are taken in terms of such four-
dimensional metrics. Equation (7) is a consequence of
R,,=0, Eq. (8a) follows from R,, =0 and (8b) is just the
trace of (8a), the equations R,,=0 are identically
verified in view of the assumption y,, =0.

We now restrict the field equations to N=6 and intro-
duce the £ and v fields:

1 14
v Y +ed’
Equation (7) now reads
Euvz m¢_l¢y;v+%¢_2¢,y¢,v
"% _2(§,#§,V+E¢’#1fl,v) ’ (10

which together with (8) are the field equations coupling
gravity with a Brans-Dicke massless scalar field ¢ or di-
laton with the coupling constant'® w=—1 and an
energy-momentum tensor 7, which we can extract
from the £ and ¢ parts of (10); assuming 877G =c =1, it
is

Y ab E¢§_1

Tuv =§_2[§,u§,v+6¢,u¢',v_ %g#v(g,aé‘)a*'e(ﬁ,ad"a)] .
(11)

The fluid interpretation of (11) will be discussed in the
next section.

We shall now discuss related scalar theories. First we
should remark that the Brans-Dicke coupling constant @
has been determined as a consequence of the six-
dimensional general covariance; moreover, the coupling
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of the fluid tensor T, with the Brans-Dicke field is also
determined by this general covariance and is a conse-
quence of the Bianchi identities for the Ricci tensor R,

(R —1g"R).,=0. (12)

Looking at (11) as an effective four-dimensional
theory, it may be related to other scalar theories by
means of conformal transformations.'>?° In fact, deﬁne
a new four-dimensional metric tensor g, :

2=0""", , (13)

where () is an arbitrary
metric the Ricci tensor

arameter. In terms of this new
uv May be written

1+(Q-1)(Q+3) ,_
S

ﬁyvz _Q¢_l¢,p;v+

—LETHELE ey Y, (14)

an equation similar to (8) but with all derivatives taken
in terms of the metric g,,,.
Now for 1 =0 we may define a new field

®=In¢ (15)
and (14) becomes

Ruy=—@,®,— 167 HE £ teb b, , (16a)
with

P #=0. (16b)
When @ , is timelike the massless scalar field ® can be

interpreted as the potential field for a Tabensky-Taub
fluid'® (stiff fluid) with energy and pressure densities

p=p=—3P 0", (17a)
and an irrotational four-velocity
- ,ay—1/2
U,=®,/(—® 2% . (17b)

Therefore, Egs. (16) together with (8a) describe the cou-
pling of a stiff fluid with the fluid described by (11).
Similarly, for 040 we may define a new scalar field

=9

and (14) becomes

- 2
R,=—07'0 ., —0d 20
_z(é_,yé‘,v+e¢,u¢,v) » (18a)
with
¢, *=0, (18b)
where

0w=0"41-0-30%/2).

This describes the Brans-Dicke theory®!? for a massless
scalar field with arbitrary parameter o coupled to a fluid
described by (11).

These field equations represent the natural generaliza-
tion of the Jordan and Thiry theory® when the Yang-

Mills fields 4, are absent; of course the introduction of
the fields A" is straightforward using (2)-(5) but we
have mcluded the scalar sector only (yab) because it
leads to a simple fluid interpretation.

III. PARTICLE AND STRING FLUID
INTERPRETATION FOR T,

We turn now to the fluid interpretation for the
energy-momentum tensor 7, defined in (11). To this
aim we introduce two new vector fields 4, and B,

A, =cos(Ved)E ,+Vesin(Ved)y , ,

u=
(19a)

B,=— —‘/lz—sin( VEeOE , +cos(Ved),,

and impose the orthonormality of the vectors A*B,=0
to fix 6:

tan(2V'€0) Y P

Ve L

If we assume that A, is timelike then B, is spacelike
and we may define unitary timelike and spacelike vectors

— —-1/2 — ay—1/2
U,=A,/(—A, 497" X,=B,/(B,B))""*, (19)

(19b)

as a fluid four-velocity and anisotropy direction which
verify
U,Uf=—-XX'=~—1, X,U'=0. (20)

Now making use of the relations from (19),

A AP =1 E+ep )+ 1D,
(21a)

B,B'= %(g,aé’“+6¢,a¢'°‘)

sin(2V'e0)=2Ve€ /D ,

cos(2V €)= (£ &% —e W®) /D 210
where

D =[(§ &% —ep W) +4e(y 6], (22)
we may substitute into (11) to find

T,,=(p+IHU, U, +(eo —TDX X, +1g,, , (23a)
where

M=1(§ o8+ o) (23b)

p=€o=(2£%)"'D . (23¢c)

For e=1, this is the energy-momentum tensor for an
anisotropic fluid!'* with four-velocity U* and anisotropic
direction X¥. It has a rest energy density p, o pressure
along the anisotropic direction, and Il pressure on the
direction perpendicular to X*. This anisotropic fluid
may be formed by two irrotational perfect fluids with
fluid potentials £ ! and ¥, respectively.?!

Note that the anisotropic fluid verifies a stiff equation
of state along the anisotropic direction (p=0).
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For e=—1 the energy-momentum tensor has a quite
different interpretation. In fact, we define the bivector

K,
sHv=2U k!, (24a)

as the surface-forming bivector of the average string
world sheet!” for a fluid element of strings; much as the
field U* represents the average velocity for a fluid ele-
ment of pointlike particles. Then we have

Ipey Y =UrUY—X*X" (24b)
and

MR =2 . (25)
This last relation is the usual gauge for strings which
corresponds to the usual normalization (20) for U, when
dealing with pointlike particles.

Thus the energy-momentum tensor (23) for e= —1 can
be written as
TH=(p+I1)3r*2, " +1lg,,, , (26)

which is the energy-momentum tensor for a perfect fluid
of ordered strings!® with pressure IT and energy (string
tension) density p. When II=0 it reduces to a cloud of
ordered strings which is the generalization for strings of
dust for point particles. A cloud of ordered strings is
formed by a set of parallel strings which are ramdomly
distributed on a plane perpendicular to them. This
cloud is similar to a dust of directed radiation.?> The in-
clusion of II in (26) introduces an interaction among the
strings which form the cloud. The fluid of ordered
strings should not be mistaken with a cloud of complete-
ly ramdonized strings which is equivalent to a usual per-
fect fluid of point particles with p=—1p equation of
state.?? Fluids of strings and generalizations in multidi-
mensional spaces are under active consideration by the
authors.

If we take the particular solution ¢ =1 of (8b), that is,
we assume no Brans-Dicke field equations (10) are just
Einstein field equations for either an anisotropic fluid of
particles or a perfect fluid of strings and for both fluids
the energy-momentum tensor obeys, as a consequence of
the Bianchi identities (12), the conservation law

T".,=0, (27)

then the fluid fields £ and ¢ are determined by Eq. (8a).

When ¢ is different from a constant, then Eq. (27) is
not verified by the fluids described. The conservation
equation derived from (12) does include the Brans-Dicke
field, thus representing the coupling of the Brans-Dicke
field with these fluids. Of course the same applies if we
consider the conformal transformed equations (16) or
(18) for the coupling of stiff fluid or a Brans-Dicke field
with an arbitrary coupling parameter.

We may generalize this description to any even num-
ber of extra dimensions. By decomposing the extra
metric in 2X2 boxes we obtain a description of a
multifluid when the extra metric has signature
+ + + 4+ - -+, a superposition of perfect fluids of
strings when we consider + —+ — - - -, or a superposi-
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tion of the two systems if we consider + + 4 — - - -
The individual fluids do not verify the conservation law
(27) but their superposition does, representing the in-
teraction among them. The anisotropic fluid interpreta-
tion for the superposition of an arbitrary number of sca-
lar fields with two Killing vectors can be found in Ref.
24,

IV. INTEGRATION OF THE FIELD EQUATIONS

An interesting feature of the unified model presented
here is that it is exactly solvable when the metric has
certain symmetries. In fact, we may find exact solutions
when the four-dimensional metric has two commuting
Killing vectors.

The reason is that N-dimensional Einstein equations
with a massless scalar field P,

R p=—® 45, q),A;A:O, (28)

can be solved by means of the Belinsky and Zakharov!'®

(BZ) generating technique (BZ transformation) when the
metric ¥ 45 depends on two coordinates only, say (z,z).
This means that given a seed solution y%g, which may
be flat space in appropriate coordinates, new solutions
can be generated following a precise algorithm. The new
solutions are usually called soliton solutions. Explicit
solutions generalizing the original BZ four-dimensional
solutions are known in five!” and N dimensions.'®

Now we can find solutions of the system (7) and (8) in
the following way. Given a particular seed solution ggv,
#°, v2,, which depends at most on two coordinates (t,z),
use (4) to obtain the N-dimensional metric y%,(¢,z) and
apply the BZ transformation to obtain a new solition
solution y 4p(t,z). By using Egs. (4) again soliton solu-
tions for g,,(2,z), ¢(2,2z), and y,(t,z) are obtained. Of
course this system also applies when A4 are non-null.

Explicit solutions involving the anisotropic fluid and
the string fluid in a cosmological context are being con-
sidered by the authors.?>26

Note that if we assume the Brans-Dicke scalar field is
constant, ¢ =1, then Eq. (8) becomes the usual BZ equa-
tions to which the BZ transformation applies. In matrix
form they are

(ty, .y N, —Gy, vy~ "H,=0, 29)

where we have used the usual canonical coordinates'®
(t,z) with t =1/detg,,, and

P ; 1 T uv, c
('yab,;ﬂ/ bc>,y= ‘/___—g (‘/_gg# ’Vab,v?lb ),/,t .

Equation (29) in cylindrical space-times with y(¢,z) a
(N —4) X (N —4) matrix is the BZ equation, and may be
solved by the BZ transformation independently of the
metric tensor g,,. Thus one may find soliton solutions
for the scalar fields y,, independently of the metric ten-
sor g,,,. As shown in the preceding section, when N =6
and e=1 the systems (7) and (29) may be used to
represent an anisotropic fluid in a gravitational field; sol-
iton solutions of (29) were found in Ref. 21 to represent
solitons of matter.
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In general, when the Brans-Dicke field is considered,
the system (8) may be written as

(tdy v "), —(dy vy~ "), =0,

i (30)
d’,n +7¢,t —¢,zz =0,
which are not equations in the BZ form. This is essen-
tially because of the cylindrical wave equation verified by
¢=1"dety,, as opposed to the plane-wave equation
verified by 1/ detg,,.

The BZ transformation is not directly applicable to
the system. However, soliton solutions for this system
may be found as shown in the beginning of this section
as part of the larger N-dimensional system, which im-
plies a coupling of the fields g, ¥, and ¢. That is, we
solve (7) and (30) simultaneously. We can see this more
explicitly by noting that with the use of the canonical
coordinate (a,B) part of the Einstein equations in vacu-
um (2), or with the massless scalar field (28), may be
written in the BZ form as
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(@¥,o¥ ™ Va—(ay gy 71 p=0, 31)

where y is the N XN matrix ¥ 4(a,f) and «
=\/det'yAB.

The remaining Einstein equations are not relevant for
the BZ transformation and can be solved once y 4p(a,3)
are known. The field equations (30) can be regarded as a
subsystem of the field equations (31); soliton solutions for
the scalar sector y,, cannot be solved independently of
the metric tensor g,, when there is a Brans-Dicke field
or dilaton.
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