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We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical con-
text. They are Petrov type-I solutions which describe solitonlike waves interacting with a line
source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the
axis which is typical of massive line sources, whereas others just have the conical singularity re-
vealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of
the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thorne’s C-
energy. The C-energy is found to be radiated along the null directions.

I. INTRODUCTION

In recent years considerable attention has been devot-
ed to the possible existence of cosmic strings. It is pre-
dicted by current grand unified theories (GUT’s) with
symmetry breaking that a network of cosmic strings may
have been formed as a consequence of phase transitions
in the early Universe.'

As the Universe expands the cosmic strings evolve
into essentially two types:> closed loops and open
infinite strings. Closed loops oscillate, emit their energy
into gravitational energy, and eventually disappear; they
are supposed to be relevant in the important, and as yet
unsolved, problem of the formation of galaxies® and clus-
ters of galaxies.* Open strings, on the other hand, ex-
pand and straighten out and a few of them survive to the
present day as straight-line cosmic strings; they also may
have cosmological consequences: they produce light
deflection and act as gravitational lenses;>° they produce
steplike discontinuities in the microwave background,*®
and may be responsible for the large-scale structures of
the order of 100 Mpc in the Universe.’

Straight strings have stimulated the interest in exact
solutions of Einstein’s equations with cylindrical symme-
try. The reason is that their gravitational effects are de-
scribed by solutions with a cylindrical source formed by
an anisotropic fluid. The equation of state of the fluid is
that the longitudinal pressure equals the negative of its
energy density. The radius of the cylinder is related to
the Compton wavelength of the Higgs scalar responsible
for the symmetry breaking!? of the corresponding GUT
and is therefore very small (A~107% cm). The assump-
tion of a line source is a good approximation for a mac-
roscopic description.

The gravitational effects produced by an isolated static
straight string are described outside the source by flat
space minus a wedge and this is true for line sources® 10
as well as for extended sources.”!! For a line source the
metric has a conical singularity in the symmetry axis:
the metric has no curvature singularities and the axis is
quasiregular.'? This is simply described by a deficit an-
gle that is directly related to the energy density per unit
length of the string.?

Of course an isolated cosmic string is an idealization.
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A string will normally interact with particles and radia-
tion surrounding it."!* In particular one might like to
consider the interaction with gravitational radiation.
The interaction of a string with gravitational radiation
may be considered by yet another idealization: namely,
that of considering radiation with cylindrical symmetry
too. This allows one to deal with exact solutions. In
fact, this approach has been followed by Xantho-
poulos!*!> who gives an exact solution describing a ro-
tating string surrounded by nonradiating cylindrical
gravitational waves.

In this paper we follow this approach and give a fami-
ly exact solutions of Einstein’s equations representing a
cosmic string surrounded by gravitational radiation in
the form of Einstein-Rosen solitonlike waves. The
metrics have no curvature singularities and approach flat
space far from the axis. The string itself is static and
does not radiate, it is described by a quasiregular axis
and a deficit angle. Besides the above solutions the fami-
ly also includes solutions with curvature singularities on
the symmetry axis which represent a massive line source
of ordinary matter surrounded by gravitational radia-
tion.

All the solutions are of Petrov type I and the soliton
waves become pure gravitational radiation at null
infinity. This makes our solutions qualitatively different
from those given by Xanthopoulos, which are Petrov
type D and nonradiative.

The plan of the paper is the following. In Sec. II we
consider cylindrically symmetric metrics of the
Einstein-Rosen form. For these metrics we review
Thorne’s C-energy, introduce an associated C-velocity,
and consider the deficit angle. These quantities together
with the Riemann tensor will then be useful for the
study and physical interpretation of our solutions.

In Sec. III we give the explicit solutions. They are
generalized soliton solutions which we divide in two
classes: class A and class B. Class A solutions are sim-
ple generalizations of solutions considered previously'®
and class B solutions are new; although they have par-
tially been considered in a cosmological context!”!8 they
were not completely integrated. In this respect our solu-
tions may be also relevant in the cosmological context.
We also define four asymptotic regions of the spacetime
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where the study of the solutions is particularly useful.

The main features of solutions belonging to class A (B)
may be inferred from the study of two types of simple
models, called Al (B1) and A2 (B2). To the first type,
Al and BI1, we devote Sec. IV, where the asymptotic
properties of such solutions are considered. Section V is
concerned with the second type, A2 and B2; for these
solutions, a perturbative analysis is also performed.

Finally in Sec. VI the physical interpretation of all the
solutions is given and the main conclusions summarized.
Class A2 and B2 solutions turn out to be the most
relevant to the subject of cosmic strings since they admit
an interpretation in terms of finite perturbations propa-
gating on the background field of a static cosmic string
or a massive line source. Although some of the class A1l
and B1 solutions may be seen to contain a cosmic string,
the surrounding gravitational field has asymptotic prop-
erties which depart from asymptotic flatness.

II. CYLINDRICAL SYMMETRY, C-ENERGY,
C-VELOCITY, AND DEFICIT ANGLE

A metric with whole-cylinder symmetry, i.e., cylindri-
cal symmetry with hypersurface orthogonal Killing
fields,!® can be written in the Einstein-Rosen form?° as

dsi=f(t,p)dp?—dt?)+ple? P dp?+e ~44P\dz?) |
2.1)

and Einstein’s field equations in vacuum can be written
as

¢,pp+p_1¢,p—¢,n =0, (2.2a)

(Inf) ,=pé ¢,
(Inf) ,=—(2p) "' +(p/2)[($ ,)*+ ()],

¢(t,p) represents the unique degree of freedom (one po-
larization) of the Einstein-Rosen radiation. A solution
of the linear equation (2.2a) determines the f(z,p)
coefficient by means of (2.2b).

(2.2b)

A. C-energy

For a cylindrical system Thorne?! was able to intro-

duce a total energy called the C-energy, and a contra-

variant C-energy flux vector P obeying a conservation

law P!, =0. The energy density is localizable and local-
ly measurable. An observer with four-velocity u# mea-
sures a C-energy density P¥u, and if X* is a spacelike
vector such that Xﬂu“=0, the C-energy flux is P"X#.

The four-vector P# is derived from a C-energy poten-
tial C(p,?),

2C(p,t)=Inf +Inp—¢ , (2.3)

which is proportional to the total C-energy contained in-
side a cylinder of radius p per unit coordinate length. It
is given by

(P, PP)=(8mpf)~'(C ,,—C ) (2.4)

and its components represent the local energy density
measured by a local observer with four-velocity

u*=(1,0,0,0) and the local flux measured by that ob-
server along the p direction. We take G =c =1.

B. C-velocity

Some of the metrics considered in this paper can be
interpreted as gravitational localized soliton waves prop-
agating on the background produced by a cosmic string
or a massive line source. One would like to define a ve-
locity associated to these waves since they presumably
carry gravitational energy. In Ref. 16 a coordinate ve-
locity of the maximum of the perturbations was con-
sidered, it was found that such velocity was greater than
one and one could not interpret the perturbations as the
propagation of a physical effect but rather as an interfer-
ence phenomenon. Here we shed light on such interpre-
tation by following a different approach based on the C-
energy flux.

Since for metric (2.1) the C-energy flux vector P* is a
timelike vector, we may define a four-velocity
ut=P*/(—P®P,). Then an observer with four-velocity
u* will measure no flux of the C-energy. We shall call
the C-velocity to the coordinate three-velocity of such an
observer: vi=u'/u® (i =1,2,3). It may be written, in
our coordinate system, in terms of Y= Inp—¢ as

vP=—2¢ 9, [P+ 2.5)

We note that a similar three-velocity may be defined in
Minkowski space with the electromagnetic field using
the Poynting flux “vector” T% which also verifies
T°“7#=0 (T* is the electromagnetic energy-momentum
tensor).

The three-velocity v’ may be written in this case as
vi= tanh(a)n’, where

tanh(2a)n'=T%/T®=2(EXB)(E?>+B?)"!
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(the factor 2 in the tanh is due to the tensorial character
of T*%). An observer propagating at such velocity mea-
sures no flux of electromagnetic energy. For a null elec-
tromagnetic field (E2=B? E-B=0) such speed is the
speed of light. In analogy we shall see later that for the
gravitational case, in the regions where gravitational ra-
diation dominates, the C-velocity approaches unity.

C. Deficit angle

A straight-line cosmic string is being characterized by
a conical singularity along the axis. The condition for
regularity in the coordinate system (2.1) is that!®
lim, ,oX X" /4X—1, where X=|9,|>. When a
metric has no curvature singularity along the axis and it
fails to be regular, i.e., the above limit differs from unity,
the axis contains a cosmic string. Equivalently, a cosmic
string may also be identified by the deficit angle near the
axis which measures the deviation from local flatness
around the axis.> The deficit angle is defined by

Aglp)=27— fo” (g¢¢)1/2d¢/ f0”<gpp>1/2dp. (2.6)

In the limit p—0, A@(0) is directly related to the en-
ergy density per unit length of the string (string tension)
and it is often used in the literature because it has a
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direct observational manifestation in terms of a light-
deflection angle.>> Moreover using the field equations

(2.2) and (2.3) it is easily shown that
Ap(p=0)=27[1—exp(—C)]; 2.7)

that is, for Einstein-Rosen metrics the deficit angle on
the axis is related to the C-energy. It turns out that for
the metrics which approach Minkowski space far from
the axis, the relation (2.7) between the deficit angle and
the C-energy is still valid for large p.

D. Curvature tensor

In the following sections we shall often need the
Riemann tensor in different asymptotic regions. Using
the null tetrad adapted to the Einstein-Rosen metric,

n=(2f)""%3,+3,) ,
1=(2)""%3,-39,) ,
m :(Zgzz )fl/laz _i(zg(p(p)_l/zaq) ,

and its complex conjugate m *, the non-null components
of the Riemann tensor are

Yo=R opgntm’n amB
¢4=vaaﬂlum *Y1%m *h s

Py =1R , qpn*1"(n®1P—mm*F) .

III. GENERALIZED CYLINDRICAL SOLITON
SOLUTIONS

The solutions we consider are called generalized soli-
ton solutions because they can be obtained from the usu-
al soliton solutions®*~2° of Eq. (2.2a) by taking advan-
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tage of the linearity of such an equation. Generalized
soliton solutions for the “potential” ¢ have been given in
Refs. 17-19 in the cosmological context. The solutions
in the cylindrical case can be borrowed from the cosmo-
logical ones by simply applying the following transfor-
mation: t—p, z—t, x —i@, y—iz. These solutions
may be classified in two classes: class A and class B.
We shall denote solutions of class A as (¢, f ) referring
to the metric coefficients of (2.1). Following Ref. 18 we
define

F=L+(L -1,
Li=(t*+w?)p 2
+1+ w2 p =22 —w, 2 )p 212,

where
t=t0—t,

and ¢, w; are arbitrary real parameters. The solution of
class A is the generalization of the soliton solutions with
complex pole trajectories obtained by taking the integers
which give the degeneracies of the poles as real numbers.
We have

s
da=dInp+ 3 h;Ino,'?, (3.2a)

i=1

where d and h; are real parameters, s is integer, and o;
indicates one pole trajectory. The function f, can be
found by either directly integrating (2.2b) or, more easi-
ly, by taking the appropriate limits in the corresponding
soliton solution.!® The result is

2,2 S h(2h,+d—g)/2 —h22_ —h?
j‘A=a2p(d 1 g)/ZHa.il it -4 (1_0,1) i H,- i’
i=1
T | 102 8titj0:0, 64w, w20 20 2 "7 (3.2b)
X o;,+0; — - ’ :
RS P Mre)te,) |~ U—opii-o, 7

i>j

where

g= > h;, Hi=(1—0,+16w;%0;p " X(1—0;)"2,
i=1

and «a is an arbitrary parameter arising from the integration.

In the cosmological context this has been given in Ref. 27. It reduces to the solutions given previously in Refs. 24
and 16 for one pole (i =1) and in Ref. 28 for two poles with A, =h,=2.

Solutions of class B (¢, f5) are obtained!® from the imaginary part of the complex pole trajectories making use
again of the linearity of Eq. (2.2a). This method is equivalent to the complexification method of Feinstein and

Charach.!” The potential ¢ is given by

¢p=d Inp+ 2 hivi

i=1

y;=arccos[2t;p o,V (1+0;)7 ] .

(3.3a)

The corresponding function fy has not been given previously. It may be obtained by direct integration of (2.2b) or
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more easily by making appropriate use of the soliton solution with complex poles. The computation here is more
complex than in the previous case, however. The final result is

20, il _ hih; /2 S
fB=a2p(d +2g-1)72 H (Aij /Aij_) " exp |d 2 hi?’i
ij =1 i =1
’i/>j 1
s (b, — h.(h, —1 —h2/2__h(2—h)/4 —h?
XTI or V2 — w2 —p2 4w, 22T T o TP TR (3.3b)

i=1

where

Aiji:(o-i+aj)(l_o'

We shall now introduce four asymptotic spacetime re-
gions which will prove useful in the analysis of the solu-
tions to be done in the following sections. Besides the
metric components we shall consider in each region
different quantities which we shall now specify.

Near the symmetry axis (p—0). The behavior of the
gravitational field near the symmetry axis is essential to
determine the source of this field. The main features to
look for in the region are the deficit angle and the curva-
ture tensor. For a cosmic string no curvature singulari-
ties are allowed and the string is identified by means of
the deficit angle. For the metrics having curvature
singularities we may identify, following Israel,” a mas-
sive line source.

Null infinity (p~ |t | — ). In this region we shall
look for gravitational radiation. The radiation will be
characterized in two independent ways. One, simply
algebraic, is based on the Petrov classification of the
dominant terms of the Riemann tensor (according to the
peeling-off property). The other is based on the C-
energy; we shall evaluate the rate of C-energy radiation'’
C ., (u=t+p, v=t —p) and also the C-velocity. From
these indicators we shall conclude that our solutions are
radiative.

Spacelike infinity (|t | <<p— ). We do not need to
evaluate the curvature tensor in this region because from
the metric components one can easily see that the pole
trajectories contribution to the metric becomes small.
This is the region where an observer far from the string
will be located. The deficit angle Ag(p>>) and the C
energy, will give information about the gravitational en-
ergy which lies between the observer and the string or
the massive line source.

Timelike infinity (p<< |t | — ). This region gives
information about the final state (and initial state since
there is t — —t symmetry) of the system. Some solutions
develop singularities and will be disregarded as candi-
dates for a reasonable physical interpretation. For the
cosmic-string solutions the deficit angle will prove useful
to characterize the final state.

IV. SOLUTIONS OF CLASS A1 AND CLASS B1

In this and the next section we analyze the solutions
of class A and class B. As usual for soliton solutions®*
we need only to consider solutions with one pole trajec-

H1—02)p?—80,0,[t;t;(1—0;)(1—0 ;) Fxww;(1+0,)(1+0;)] .

f

tory, which we denote Al and B1, and solutions with
two pole trajectories, A2 and B2, to be studied in the
next section. The large-scale structure and the main
features of all the solutions are characterized by these
simpler solutions.?*

A. Class Al

Solutions of class Al (¢,;,fa;) are obtained from
(2.2) by taking h;=h, s =1, and w; =w. We shall con-
sider this solution in the asymptotic regions defined in
Sec. III.

1. Near the axis

The metric coefficients behave like

dar=(d +h)Inp—(h /2)In[4(w?+1,2)][140 (p?)] ')
Far =a2p[<d+h)2_:1/2[4(w2+tlz)]—h(d +h>/2[1+0(p2)]'_

The curvature tensor (2.8) becomes singular on the axis,
unless

(d +h)=1, 4.2)

in which case the axis is quasiregular. The deficit angle
in such case is

Ap(0)=2m(1—a™ ). (4.3)

2. Null infinity

The metric coefficients approach the static solution,
which corresponds to the first term in (3.2a), in the form

dar=dInp+0(p~'"%),
fAl:a2(32w2)—h2/4p(d2—1)/2[1+O(p—l/2)] .

However the Riemann tensor (2.8) differs from that of
the static solution:

PYo=—(4w3"2f A, )_’h(1+h2/2)p'1/2[1+0(p_’/2)](a "

r=(fa1)10(p73), Yu=(fa)" 007",

for ¢t >0. Thus the leading Riemann components in this
region give an algebraic classification of Petrov type N
(Ref. 19). This may be taken as an indication that the
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metric is radiative here.?® Such an indication is rein-
forced by the fact that the rate of C-energy radiation is
finite in this region (¢ > 0):

C,=—Bw) " [1+0(p H]. (4.5)

The C-velocity approaches unity.

3. Spacelike infinity

The metric coefficients approach the static solution
differing from it at O (p—'). The deficit angle when (4.2)
is verified (the case relevant for a cosmic string) is
A@(p >>)=2m—an indication that the spacetime does
not become Minkowskian in this region; in fact, it corre-
sponds to the static spacetime of a massive line source.
When d =1 the metric approaches the Minkowski
metric and it gives

Aplp>>)=27[1—(4w)/4a=1], 4.6)
but now the axis is not regular (if 20) and such a solu-
tion is not relevant for cosmic strings.

4. Timelike infinity
Here,

dar=(d +h)Inp—(h /2)In{4t*[14+0(t )]}, @)

far :azpud +h)?— 1]/2(4t12)—h(h +d)/2

x[1+0(t~2)],

and the Riemann tensor gives curvature singularities un-
less one of the two following conditions is verified:

(a) h/|h|=d/|d| and |d|>|h|, (4.8a)

(b) (d+h)?=1 and h(h+d)<2. (4.8Db)
The deficit angle for case (b) is

Aplp)=2m(1—a '), 4.9)

which agrees with A@(0) of (4.3). The rate of C-energy
radiation and the C-velocity vanish in this region.

The physical interpretation of these solutions will be
discussed in Sec. VI. We now consider solutions of class
B1, because in many respects they are similar to class
Al.

B. Class B1
Class Bl solutions (¢g,fp;) are obtained from (3.3)
by taking A, =h, s =1, and w; =w. The asymptotic be-
havior is as follows.
1. Near the axis
Here
dp1=dInp+hy,,
Fp=a2—hh _”p(dz_”/zedhy‘[l+O(p2)]

and the curvature tensor becomes singular, unless
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d*=1. (4.10)

In such a case the axis is quasiregular with a deficit an-
gle

Ap(0)=27(1 -2 =12 1) @.11)
which may be compared with (4.3) for the A1 solutions.
2. Null infinity

It approaches the static solution in a way similar to
class A1, and the Riemann components (2.8) become

1Jjoz_(4w3/2-}(‘B1)—1}1(1_}12/2)(1)71/2)
X[1+0(p~ )],
¥ =(fpi )AIO(P_a/Z)y Pa=(fp1 )_lo(p_l) ,

which implies a Petrov type-N behavior for the leading
Riemann components as for class Al. Similarly the rate
of C-energy radiation is finite,

C,=—Bw ™ A [1+0(p~ "],

(4.12)

(4.13)

and the C-velocity approaches unity.

3. Spacelike infinity
Now the metric coefficients become

¢B1:d 1np+h‘;/1 N (4 14)
_ 2n—hth—1) (d2+h?-1)72,4hY, ) ’
fai=a?2 P e "[1+0(p79)],

where
yi=m/2—t1p ' [1+0(p~ )]

and the Riemann behave like

U~(fp1) 10 (p7).

As in the case of class Al solutions, it is not possible
to impose that the axis be quasiregular together with the
requirement that the metric becomes flat in this region.
For a quasiregular axis, i.e., (4.10), we find a deficit angle
A@(p>>)=2m (if h=£0). On the other hand, if we take
d*+h?=1, which from (4.14) implies an asymptotically
constant fg;, we have

components

_2h(h—l)/2eh(l—d)1r/2a—] (d—l)/2) ,

Ap(p>>)=2m(1 p

(4.15)

comparable to (4.6) when d =1 (thus A =0, i.e., the stat-
ic solution). A peculiar feature of this solution is that
the C-velocity (2.5) does not vanish:

vP=2h(d —1D)[h*+(d —1?1"'+0(p ") . (4.16)

This is not very significant in terms of energy radia-
tion, however, because the C-energy goes like

—(@?+h?+3)72 (it goes like p'("z‘”’/2 at null infinity) and
the rate of C-energy radiation vanishes.

4. Timelike infinity
In this region the metric approaches the static solu-

tion differing from it at O (¢ ~!). The deficit angle corre-
sponding to a quasiregular axis, i.e., with (4.10), is
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Ap(p)=2m(1—2kh-D72g—1) 4.17)

The C-velocity and the rate of C-energy radiation vanish
as expected. We shall now go on to consider solutions
with two pole trajectories.

V. SOLUTIONS OF CLASS A2 AND CLASS B2

The solutions considered in this section generally
represent gravitational finite perturbations propagating
on the background field of a static string or a massive
line source. Besides the asymptotic analysis similar to
that of the last section, a perturbative analysis will be
done.

A. Class A2

They are denoted by (das,fa>) and defined by (3.2)
with &, =h,=h (s=2) chosing o{*’, oy~ according to
(3.1); this guarantees that the poles give localized contri-
butions only.?*

Perturbative analysis. We may now perform a pertur-
bative analysis similar to that of Ref. 16. For this we
take t9=t?, define dw=w,—w,, and call w=uw,,
o=0%"). Since the nonstatic term in (3.2) is now
Ino,0, we may expand this to first order in dw. The
function 0,0, differs from unity only on a small local-
ized region. The spacetime trajectory p(t¢) of the max-
imum of this perturbation with respect to p was evalu-
ated analytically in Ref. 16 and it was found to ‘“‘propa-
gate” at a speed greater than light. Here we analytically
compute the C-velocity and shed light on the meaning of
that perturbation.

Following Ref. 16 we introduce new R, T coordinates

p=w cosh(2T)sinh(2R), 0<R < w0 , 5.1)

t=w sinh(27T)cosh(2R), —w <T < ,

in terms of which o = tanh*(R). The C-velocity (2.5) is

now easily found to be
vP=—2X(1+X)"" (X=£+7),

£=1sinh4R coth2T (cosh®2R —3sinh®2T)F , (5.2)

n= %(d —1)(cosh2R + sinh2T)*(sinh2R sinh47)~!
X

[(w/8w)(cosh?2R + sinh?2T)—2 cosh2R]F ,

where
F=[sinh?2R (3 cosh®2T — cosh®2R —1)+2cosh®2T]~! .

Recalling the meaning of the C-velocity of Sec. II we
see that, according to the sign of v”, there are two com-
peting fluxes of C-energy: one of them ingoing (towards
the axis) the other outgoing (from the axis). If we take
now d =1, which is the case relevant for a cosmic string,
then =0 and the two fluxes cancel on the world line

J

Aplp>>)=2m{1— (4w w, " A[(w; +wy )+ (9 —12)1"Ha=1} O (p~ "),

cosh?(2R)—3sinh*(2T)=0 which is just the maximum
of the perturbation 0,0, (see Ref. 16). Thus the local-
ized perturbation may be understood as a superposition
effect produced by the interference of the incoming and
outgoing fluxes of C-energy. We now go back to the
analysis of the solution in the asymptotic regions.

1. Near the axis

In this region

bar=d lnp+%1n[(w12+t12)(w22+122)_1]

+0(p?),
2 (5.3)
Far=ap D2 (1,2 41,2 (w24 1,2) 114472

x[1+0(pH],

and the Riemann components show that there is a cur-
vature singularity unless

d2=1, (5.4)

in which case the axis is quasiregular and the deficit an-
gle is

Ap(0)=27(1—a" ). (5.5)

2. Null infinity

The metric components differ from the static solution
by terms of O(p~!/?), but the Riemann components
(2.8) become

Yo=(4f ay) " 'h (W w,) 3"

32y, b2
w,372) 4 172

X |w,32— (w,'72 w1723

Xp—l/2[1+0(p—l/2)] ,

(5.6)
¢2=(fA2)_]O(P_3/2), 1//4=(fA2)_lo (P-l) .

Thus, as typical of these generalized soliton solutions,
the dominant components indicate a Petrov type-N be-
havior for the metric. The rate of C-energy radiation

C, =_h2(3wlw2)—l(w21/2_wl1/2)2
X[140(p~1"%)] (5.7

reaches a finite value and the C-velocity approaches uni-
ty.
3. Spacelike infinity

In this region the metric coefficients approach the
static values, differing at O(p‘l), and so do the
Riemann components. The deficit angle for d =1 is now

(5.8)
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and the spacetime becomes asymptotically Minkowskian
in this region. The rate of C-energy radiation and the
C-velocity both vanish as expected.

4. Timelike infinity

The metric components and the Riemann components
approach the static solution components with differences
of O(t~"). The deficit angle for d =1 is

Ap(p)=2m(1—a™ "), (5.9)

which may be compared to the deficit angle near the axis
(5.5). The rate of C-energy radiation and the C-velocity
both vanish in this region. Leaving the physical discus-
sion of these solutions for the next section we shall now
consider the class B2 solutions.

B. Class B2

Such solutions, (dég,,fp;), are obtained from (3.3)
when hy=h,=h (s =2) and taking y{*’ and y${’ ac-
cording to (3.1); as in the previous case this electron
guarantees that the poles give localized contributions
only.

Perturbative analysis. We may now perform an
analysis similar to that of class A2 solutions. The
relevant term for the analysis is now y{*’+y5~). This
term differs from zero in a small-(p,?) region, and
proceeding as for class A1 we may expand it in terms of
Sw. Introducing new coordinates (R,T) as in (5.1) we
have that (y =v,)

y'~)=arccos[tanh(27)] . (5.10)

The maximum of the perturbation y|™'+y}{~) with
respect to p is found to be located on the world line
sinh?(2T)=3 cosh’(2R). In terms of the coordinates
(p,t) such trajectory is the same as in class A1l solutions
but for a shift, 2w /V'3, along the ¢ axis.

The C-velocity is now given by (5.2) with

£=1sinh4T tanh2R (sinh*2T — 3 cosh?2R)G .

(5.11)
n=2w?*(1—d)(ph cosh2R sw )"

X (cosh®2T + sinh?2R )’G ,
where
G =[cosh®2T(cosh?2R — sinh?27)
+2sinh?2R sinh?27] ! .

Again for d =1, the C-velocity vanishes along the tra-
jectory of the maximum of the perturbation. The same
conclusions as for class Al solutions apply in this case.
We can now go back to the asymptotic analysis of the
exact solutions.

A@(p >>)=27{1—=2""=D(4w 1w, " (w, 4w, P+ (19 —
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1. Near the axis
In this region we have

dpa=d Inp+h(y{t +95))

(5.12)
_ 2_
fB2:a24(1 h)hp(d l)exp[hd(y(l+)+7’(27))]
X[14+0(pH],
where
vi ' =—vi

=arcsin[w (w; 244,27 12140 (p?) .

From the Riemann tensor one sees that the metric be-

comes singular unless
d*=1, (5.13)

in which case the axis is quasiregular and has a deficit
angle

A@(0)=2m(1—-2F*=Dg=1) 4 O (p?) . (5.14)

2. Null infinity

We may note that in this region the metric com-
ponents are determined by
Y =m—(w ) V140 (p )] . (5.15)

The metric coefficients approach the static values, but
the curvature tensor (2.8) becomes

Yo=(4fp) " 'h (wyw,) 3"

372 372 hz
><[ w2 — W, / )—_

172 1/2)3
2 1

(wZ —w
Xp—l/Z[l_{_O(le/Z)] ,

(5.16)
Ur=(fp) 10 ("), Yy=(fg) '0(p7 "),

thus the leading terms behave as those of a Petrov type-
N metric. The rate of C-energy radiation approaches a
constant value,

C,=—h28ww,) Nw,"?—w,?)?
X[1+0(p~ )], (5.17)

and the C-velocity approaches unity.

3. Spacelike infinity

The metric coefficients and the Riemann components

approach the static values, differing at O(p~!). The
deficit angle for d =1 is
12217 a1 Lo () . (5.18)
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One may compare this with the deficit angle for class
A2, (5.8), in both cases the deficit angle is larger than
near the axis. The metric is asymptotically flat in this
region. The rate of C-energy radiation and the C-
velocity both vanish.

4. Timelike infinity

The metric coefficients and the Riemann components
approach the static solution, differing at O(z~!). The
deficit angle for d =1 is

Ap(p)=2m(1—-28r—g=1) (5.19)

as near the axis (5.14). The rate of C-energy radiation
and the C-velocity both vanish.

VI. PHYSICAL INTERPRETATION
AND CONCLUSIONS

First, we may note that the generalized soliton solu-
tions of class A, (3.2), and class B, (3.3), reduce to a stat-
ic metric when the parameters A; are taken null (4; =0).
It is worth reviewing some of the properties of the static
metric. We shall consider d >0 only because for nega-
tive values of d the metric has the same interpretation,
as for positive ones, if we exchange the roles of the coor-
dinates @ and z. This metric, also known as the Kasner
metric, was first studied by Levi-Civita*® who found that
in the Newtonian limit it describes the gravitational field
due to an infinite cylinder of relativistic mass per unit
length, M given by?!

d~(14+2M)(1—-2M)"" . (6.1)

For d <1, Newtonian test particles far from the
cylinder suffer a repulsive force® and therefore this can-
not be a cylinder with ordinary matter but rather with
negative mass. For d+1 the metric has a naked curva-
ture singularity at the axis: p=0. Following Israel®® the
structure of the inferred energy-momentum tensor on
the axis is compatible with the above interpretation.

For d =1 the metric has no curvature singularities but
a conical singularity with a quasiregular axis. The
singularity is characterized by a deficit angle

Ap(0)=2m(1—a" "), (6.2)

where a is the arbitrary parameter in the f coefficient of
(2.1). For the value a=1 the metric is just that of a re-
gion of flat space. For a1 the metric is that of flat
space minus a wedge and this is the spacetime created by
an isolated static cosmic string®® with a string tension p
related to the deficit angle by

Ap(0)=87Gp . (6.3)

In current GUT’s Gu~10"% and therefore a is nearly
unity.?

The deficit angle may also be calculated far from the
axis A@(p >>). For d =1 this agrees with (6.2); however,
for d=1,

Ap(p>>)=27 . (6.4)

This may be taken as an indication that the spactime is

not asymptotically Minkowskian in such a region; it is,
in fact, the field of a massive line source.

Now, we turn our attention to the solutions with two
poles: class A2 and class B2. As emphasized in the per-
turbative analysis of Sec. V these solutions represent
small gravitational perturbations propagating on the
Levi-Civita background. The gravitational perturbations
may be interpreted as gravitational radiation as the
analysis at null infinity indicates. Such an analysis was
based on the algebraic classification of the Riemann ten-
sor (which is asymptotically Petrov type N in agreement
with the peeling-off property3?), the evaluation of the
rate of C-energy radiation which is finite, (5.7) and
(5.17), and the C-velocity which approaches unity.

The metrics have the same singularities that the Levi-
Civita background; therefore,”® the source to be located
at p=0 is that of a massive line source (for curvature
singularity, d=~1) or a cosmic string (for conical singu-
larity, d =1). Far from the axis the spacetime for these
metrics is also that of the corresponding Levi-Civita
metrics, it approaches Minkowski of d =1 only.

For d =1 the solutions are relevant for cosmic strings.
We have already said that the string is being character-
ized near the symmetry axis by its deficit angle A@(0)
which is given in (5.5) and (5.14). This angle is indepen-
dent of ¢ and the string is thus static. We may ask now
what an observer sitting far from the string would see.
Initially, t — — oo, before the incoming radiation reaches
the string he would simply measure a flat space with a
deficit angle A@(p) given by (5.9) and (5.19) which agrees
with that of the isolated string; this is simply reflecting
the fact that between the observer and the string no en-
ergy is present. At some finite time |f | <<p the ob-
server would measure a deficit angle, given as A@(p >>)
in (5.8) and (5.18), which is also that of flat space minus
a wedge but larger than before just as if the string had a
larger energy density (observationally this angle may be
measured from the deflection of light from objects at the
opposite side of the string for different impact parame-
ters). As mentioned before the string has not changed
its energy density but now, between the observer and the
string, we have a lump of gravitational C-energy and this
deficit angle is a measure for it. Finally at t— o, the
energy has been radiated and the observer will measure
the same deficit angle as at the beginning; the radiated
energy is found at null infinity. These solutions, thus,
represent the interaction of a static string with incoming
and outgoing gravitational waves localized basically
along the light cones. This may be taken as an idealiza-
tion of gravitational radiation, not necessarily with cylin-
drical symmetry, surrounding the string. For d > 1 the
wave interpretation is similar but now the waves propa-
gate on the background of massive line sources.

We may turn now to the solutions with one pole:
class Al and class Bl. As for the solutions just de-
scribed these metrics have radiation at null infinity, how-
ever this radiation may not be interpreted as localized
and propagating on a static background.

For class Al, from (4.1) we see that near the axis the
metric on ?=const hypersurfaces behaves like a Levi-
Civita metric with parameter d’'=d +h, instead of d.
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However at spacelike infinity it behaves like a Levi-
Civita metric with d. In some sense these metrics can be
seen as connecting two Levi-Civita metrics with different
parameters through the light cones which contain gravi-
tational radiation. In the cosmological context such
metrics have been considered as composite universes.'”?’

Now, from the viewpoint of cosmic strings, only the
metrics with d’=1, see (4.1), have a string on the axis
and its deficit angle is given by (4.3). At spacelike
infinity, however, the spacetime approaches that of
Levi-Civita with d =1—h (h=£0) and it is not asymptot-
ically Minkowskian. This may be seen as a consequence
of the presence of C-energy surrounding the string.
Note the remarkable fact that if we take O<h <1 the
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gravitational effect produced by the gravitational energy
far from the axis is similar to that of a massive rod with
negative energy density. Besides, we have asymptotical-
ly flat solutions (d =1) which have a massive line source
withd'=1+h.

Not all these solutions admit a physical interpretation
because some of them develop singularities at |7 | — o,
only those satisfying (4.8) are free from singularities.
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