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The Einstein equations coupled with a cloud of geometric strings for a five-dimensional Bianchi
type-I cosmological model are studied. The cosmological consequences of having strings along the
fifth dimension are examined. Particular solutions with dynamical compactifications of the extra di-
mensions and compatibility with expanding three-dimensional spaces are presented.

One of the most appealing mechanisms for producing
density fluctuations that grow fast enough to produce
galaxies compatible with present observational data is the
motion of open relativistic strings and the oscillation of
closed loops.’? The relativistic strings can also be used
(a) to describe the large-scale anisotropy® of the Universe,
(b) to explain the observed two-point correlation function
for clusters of galaxies“ (Abel clusters), and (c) to describe
extended objects in general relativity.’

The Kaluza-Klein theories present an attractive way to
unify all gauge interactions with gravity.® One of the
current problems facing these theories is to explain why
the extra-dimensional space is so small, since otherwise it
would be observed. Some authors explain entropy pro-
duction’ and inflation® as a result of the contraction of
the extra space. In addition, different solutions to
Kaluza-Klein theory with different symmetries, dimen-
sions, and models of matter have been found.’

The purpose of this paper is to study the cosmological
implications of having a “cloud of ordered” strings along
an extra dimension of spacetime.

A three-dimensional analog of this model can be seen
as follows. A single straight cosmic string in ordinary
four-dimensional spacetime along the z axis, say, has the
same metric'® as a point particle in three-dimensional
spacetime,'! in which we simply add a dz? term (a similar
construction holds for N parallel strings'?). But as noted
by Gott, Simon, and Alpert13 the addition of this extra
dimension amounts to the construction of a Kaluza-Klein
theory which would unify electromagnetism and gravity
in three-dimensional spacetime. Of course the extra di-
mension has to be compactified and this may be
achieved'* by forcing the spacetime to be periodic in the z
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direction with a period 2ma,, where a, is a constant; this
we can do because the metric is independent of the z
coordinate. Thus we have a spacetime with three macro-
scopic dimensions and one compact dimension. The
strings are now loops of length 27a,, which would look
like point particles to macroscopic observers living in a
three-dimensional spacetime.

Now, in our five-dimensional model, which is just ordi-
nary Kaluza-Klein theory aimed to unify electromagne-
tism and gravity, the strings lie along the fifth dimension;
as no more extra dimensions are included, this should be
taken as a toy model. Since no dependence is assumed on
the fifth coordinate for the metric coefficients we can
achieve compactification by simply forcing the fifth coor-
dinate to be periodic as in the previous case. Thus the re-
sulting space is a four-dimensional spacetime and an ex-
tra compactified dimension.

The model of a cloud of ordered strings, i.e., a “cloud”
formed by a distribution of geometric strings lying along
the same direction, has already been used in cosmology.*
The fact that all strings lie along the fifth dimension
might be produced by the same process that brought
about the compactification of that dimension.

We shall analyze the five-dimensional Einstein equa-
tions coupled to a cloud of strings for a Bianchi type-I
universe, i.e., for the metric

4
ds’=dt’— 3 a}()dx'), ()

i=1

where a;(t) are functions of the indicated argument only.
The extra compact dimension has a circumference of
2ma,, as remarked above.
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The energy-momentum tensor for the cloud of pure
geometric strings is given by'>'®

TH =plutu®—X"X") 2)

where ¢ and v run from O to 4. p is the cloud of string
density. X* represents the direction of the string tensions
and u* the four-velocity. u* and X" are restricted by

(3a)
(3b)

utu,=—-XX,=1,
Xtu,=0.

Note that (2) differs from the usual chaotic ensemble of
strings, which is equivalent to a perfect fluid with
p=—1p equation of state.! The energy-momentum ten-
sor (2) represents a cloud of strings with tensions not ran-
domized. For this reason (2) is interpreted as a cloud of
ordered strings.!* The energy-momentum tensor (2) is
the electromagnetic analog of the energy-momentum ten-
sor for a flux of ordered radiation.'’

Let us take the strings as lying along the fifth dimen-
sion; thus,

ut*=(1,0,0,0,0) , (4a)

X*=(0,0,0,0,a;") . (4b)
The Einstein equations

R,uv~';'g‘uvR=_Tpv (5

for the metric (1) and the energy-momentum tensor (2)
reduce to

a, |a, a, +d4 a, a; a4, a, a4y a,
I a— e _— _—— —_— ——=p >
al az (13 a4 (12 (13 02 a4 03 a4

(6a)
d, d, dy a4, a,a; a,a;
-+ ——+——+——=p, (6b)
a, a a3y a,a, aya; a,a;
d, dy dy a, ay a4, a, a; d,
— 44— 4 — ——+——=0, (6¢)
az a3 a4 02 03 02 04 (13 (14
a dy d4 ay a4y a4, a, a3 a,
—t -+ — -+ ———+——=0, (6d)
al a3 a4 dl (13 al 04 03 a4
a, d, dg a, a, a,a, a, a,
— -+ —F—+——— +— =0, (6e)
al az a4 al az al 04 az (14

where the overdots denote derivation with respect to t.
Note that the field equations (6a) tells us that p is a func-
tion of ¢ only. The Bianchi identity in this case gives

a, a4,

dl
a, a, a,

p+p =0. )

The system of equations (6) is an autonomous system of
differential equations of the quadratic type'® in the vari-
ables y; =4, /a;: ie.,
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Y11=y + 312y —y 1y =y 13+ 3y 2y, + 25—y, ,
(8a)

Yr=—Yi+ 23—y 11—+ 121 +205—y,)
(8b)
V3= =3+ 52—y 13—+ 5y + 20, -3)
(8c)

y4=—-yi—%(ylyz-%sz’a+J’|}’3)_%y4(yl+y2+y3) ’

(8d)
P=Y1Y2+Y1V3+Y1YatYoV3s+yya+yivs>0. (8e)
From (8) wé find
C21
- I ’ (93)
y2 yl R 304
C32
y3 y2 R 304
C31
- == s (90)
y3 yl R 304

where C,;, C;,, and Cj, are integration constants related
by C;,+C,, =C;, and R *=a,a,a;. R can be interpret-
ed as the mean radius'® of the Universe. Equations (9)
tell us that when the Universe expands the anisotropy de-
creases and that when the fifth dimension decreases the
Universe anisotropy increases.

From Eq. (7) we get

M,
p= 3 (10)
where M, is a constant. Thus, when the Universe ex-
pands the cloud of string density decreases.

From a four-dimensional viewpoint, Egs. (6a), (6c),
(6d), and (6e) can be regarded as the Einstein equations
for the usual four-dimensional Bianchi type-I universe
coupled to an anisotropic fluid of energy-momentum ten-
sor:

3
T®=p*uu’+ 3 PZ{\Z(, , an
i=1
where a and b run from 0 to 3. u?=§83 and Z{;) =67a;(1).
The density and the pressure are given by

d4 E
pr=p+—=5, (12a)
a, p
d a a a
pr=—t— |42, (12b)
a, a4 az a3
a a a a
p2=—4+_4 Bt Uit & , (12¢)
a4 (14 al a3
a a a a
pi=—t— | L4+ 2]. (12d)
a, a4 |a;, a,
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Equation (6b) in this case can be interpreted as an equa-
tion of state. Note that the four-dimensional “conserva-
tion laws” T?bzo do not give new constraints. The in-
terpretation of the extra dimensions as a fluid can be
found in Refs. 20 and 21.

Let us study the specialization a =a, =a,=a;, i.e., the
isotropic three-space case.

From (8) we find

X=—x%4xy, (13a)
yp=—pi—xi—dxy, (13b)
p=3x(x+y)>0, (13¢)

where x =d /a and y =y,=d,/a,. The system of equa-
tions (13) can be reduced [cf. Egs. (6)] to

a,=a, (14)
da’+4daa +a =0 . (15)

The general solution of Eq. (15) can be easily found by
noticing that (15) is equivalent to

(da’*+a%a)=0. (16)
Thus
da’+a’%a=C, . (17)

Cy, k=1,2,3 are integration constants (C, and C; are
introduced for later use). Defining z=ad we have that
(17) reduces to zz'=C,, where the prime indicates deriva-
tion with respect to a. The case C,=0 gives a ~t'/%
C,50 yields the cubic equation for a:

9C4H(t +C4)?=2C3a*-3C3C,a%+C3 . (18)

Another simple, particular solution is obtained by setting
C,=C;=0in (18); we get a ~t?/>. In summary we have,
for the two above-mentioned particular solutions,

a~t'"2 a,~t7'2 p~t7?, (19)

a~t*3, g ~t713, pet=?, (20)

Now since the extra dimension has a circumference of
2ma, we have in both cases a dynamical compactification
of that dimension. Both solutions represent three-
dimensional expanding universes: solution (19) expands
like a flat radiative universe, whereas solution (20) ex-
pands like a flat matter-dominated universe. Note that
since the circumference of the extra dimension is respon-
sible for fixing the value of the electric charge this model
leads to a value of the electric charge that changes with
time. This is typical of higher-dimensional cosmological
models.!*

The system of Egs. (8) as well as (13) have only a criti-
cal point:

(yl,}’2,)’3,y4)=(0,0,0,0)

and (x,y)=(0,0), respectively. Using standard tech-
niques for quadratic critical points we find for the solu-
tions of the system (13) near the critical point the behav-
ior shown in Fig. 1. The lines that separate the regions II
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FIG. 1. The phase-plane trajectories are shown for a variety
of possible initial values for x and y.

and III (V and VI) and III and IV (VI and I) are y = —x
and y = —0.5x, respectively. For the evolution in the re-
gions I and VI we have that the critical point is stable.
And for the trajectories in III and IV we have that (0,0) is
unstable. The constraint p > 0 limits the evolution to the
regions I, II1, IV, and V1, i.e., the condition that the ener-
gy be positive allows only evolutions with either a stable
or unstable critical point. The condition y >0 (y <0)
represents expansion (contraction) in the fifth dimension.
Thus for both physical regions (I and VI and III and IV)
we have subregions wherein compactification of the fifth
dimension occurs.

We have also studied numerically the system of Eq. (8)
in the general case, for different initial values. We have
found a behavior similar to the one found in the isotropic
case; i.e., the trajectories in phase space have the same
behavior with respect to the critical point as shown in
Fig. 1.

It is interesting to note that under the assumption of
three-dimensional isotropy the inclusion of strings in the
fifth dimension is not only compatible with the dynamical
compactification of the extra dimension but that it is also
compatible with radiative and matter-dominated
universes.

When the compactification of the fifth dimension
occurs d,/a, and p/p are negative and p* —p is positive
[cf. Eq. (12a)]. Thus from a four-dimensional viewpoint
we have that fluctuation in the fifth-dimensional metric
coefficient as well as fluctuations in the string density give
rise to fluctuations in the four-dimensional density p*.
For the particular cases (19) and (20) we have that p and
p* —p decay with the same time scale. This suggests that
the contributions coming from the fifth dimension are of
the same importance as the ones coming from the strings.

The special cases studied suggest that the inclusion of
strings in the extra dimensions can be used as a mecha-
nism to make them disappear at latter epochs of the
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Universe. In fact, their presence in the extra space is
compatible with the dynamical compactification of such
space and the three-dimensional expansion of the visible
Universe. Note, however, that such strings are not the
normal cosmic strings which are extended in one of the
macroscopic directions. They are ordinary cosmic
strings in five-dimensional spacetime, but since they are
extended along the compactified dimension they look as if
they are points in the macroscopic four-dimensional
model, in a way somewhat similar to the way ordinary
straight strings look in a three-dimensional model. Here,
however, the gravitational effects produced on four-
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dimensional spacetime are similar to those produced by a
four-dimensional anisotropic fluid.

We want to thank Carles Perell6 and Regina Martinez
for helping us with the analysis of the systems of Egs. (6)
and (13). We want to thank the following institutions for
financial support: Comision Asesora para la Investiga-
cion Cientifica y Técnica de Espafia (E.V.), Ministerio de
Educacion y Ciencia de Espatia (P.S.L.), Departament de
Fisica Teorica de la Universitat Autonoma de Barcelona
(P.S.L.), and Conselho Nacional de Pesquisas do Brasil
(P.S.L.).

ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 192, 663 (1980).

2A. Vilenkin, Phys. Rep. 121, 263 (1985), and references therein.

3N. Kaiser and A. Stebbins, Nature (London) 310, 391 (1984); J.
Traschen, N. Turok, and R. Brandenberger, Phys. Rev. D 34,
919 (1986); R. Brandenberger and N. Turok, ibid. 33, 2182
(1986).

4N. Turok, Phys. Rev. Lett. 55, 1801 (1985).

SP. S. Letelier, Phys. Rev. D 20, 1294 (1979); Q. Tian, ibid. 33,
3549 (1986); D. Garfinkle, ibid. 32, 1323 (1985); J. Garriga
and E. Verdaguer, ibid. 36, 2250 (1987).

SM. J. Duff, B. E. W. Nilsson, and C. N. Pope, Phys. Rep. 130, 1
(1986), and references therein.

7E. Alvarez and M. B. Gavela, Phys. Rev. Lett. 51, 931 (1983);
S. M. Barr and L. S. Brown, Phys. Rev. D 29, 2779 (1984).

8R. B. Abbott, S. M. Barr, and S. D. Ellis, Phys. Rev. D 30, 720
(1984); Q. Shafi and C. Wetterich, Phys. Lett. 129B, 387
(1983).

9J. Demaret and J. L. Hanquin, Phys. Rev. D 31, 258 (1985); D.
Lorentz-Petzold, Phys. Lett. 167B, 157 (1986), and references
therein; D. E. Liebscher and U. Bleyer, Gen. Relativ. Gravit.
17, 989 (1985); G. Clément, ibid. 18, 137 (1986).

10J. R. Gott, Astrophys. J. 288, 422 (1985); W. A. Hiscock,
Phys. Rev. D 31, 3288 (1985).

113, R. Gott and M. Alpert, Gen. Relativ. Gravit. 16, 243 (1984).

12p_ S, Letelier, Class. Quantum Gravit. 4, L75 (1987).

13y, R. Gott, J. Z. Simon, and M. Alpert, Gen. Relativ. Gravit.
18, 1019 (1986).

14A. Chodos and S. Detweiler, Phys. Rev. D 21, 2167 (1980).

I5p_ S. Letelier, Phys. Rev. D 28, 2414 (1984).

16See, also, Ref. 5 and J. Stachel, in Relativity and Gravitation,
Proceedings of the Third Latin-American Symposium, edited
by S. Hofman et al. (Universidad Nacional Auténoma de
México, Mexico, 1982).

17See, for instance, R. C. Tolman, Relativity, Thermodynamics,
and Cosmology (Oxford University Press, Oxford, 1966), pp.
271-273.

185ee, for instance, R. Reissig et al., Nonlinear Differential
Equations of Higher Order (Nordhoff, Leyden, 1974), p. 236.

19K. C. Jacobs, Astrophys. J. 155, 379 (1969).

20A. Davidson, J. Sonnenschein, and A. H. Vozmediano, Phys.
Rev. D 32, 1330 (1985).

213, Ibafiez and E. Verdaguer, Phys. Rev. D 34, 1202 (1986).



