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Particle production in a cosmological spacetime with extra dimensions is discussed. A five-
dimensional cosmological model with a three-dimensional space expanding isotropically like in a ra-
diative Friedmann-Robertson-Walker model and an internal space contracting to a constant small
size is considered. The parameters of the model are adjusted so that time variations in internal
space are compatible with present limits on time variations of the fundamental constants. By re-
quiring that the energy density of the particles produced be less than the critical density at the radi-
ation era we set restrictions on two more parameters: namely, the initial time of application of the
semiclassical approach and the relative sizes between the internal space and the horizon of the ordi-
nary Universe at this time. Whereas the production of massless particles allows a large range of
variation to these parameters, the production of massive particles sets severe constraints on them,
since, if they are overproduced, their energy density might very soon dominate the Universe and
make cosmological dimensional reduction by extradimensional contraction unlikely.

I. INTRODUCTION

In any realistic theory with extra dimensions the extra
. space, or internal space, is assumed to be at present a
compact manifold of very small size compared with that
of the visible space. This size is directly related to the
fundamental constants and, consequently, must be stable;
it is supposed to be of the order of the Planck length
(Ip=1.6X107* cm) although present-day accelerators
can probe matter at 107! cm only. But this may not
have been always so; for one, if we go back in time, ac-
cording to the standard cosmological model there must
have been a time when the visible Universe was of com-
parable size to that of the internal space. Besides, and
within the context of Kaluza-Klein theories and cosmolo-
gy, one would like to explain the contraction of the inter-
nal space as a consequence of cosmological evolution.

Models in which cosmological dimensional reduction
by contraction of the internal space may be achieved
have been considered in recent years.! They are solutions
of FEinstein/s equations in more than four dimensions
which differ in their higher-dimensional energy-
momentum tensor sources. If one sticks to the original
Kaluza-Klein idea that the gauge fields have geometric
origin, then there is no source, but the theories one ob-
tains are nonrealistic.2 Non-null energy-momentum ten-
sors may be-due to external fields as, for instance, those
involved in eleven-dimensional supergravity>* or those of
the Chapline-Manton action>® which is thought to be the
field-theory limit of a ten-dimensional superstring theory.
Quantum corrections computing the one-loop effective
potential lead to a Casimir energy which must be includ-
ed in the energy-momentum tensor.”® None of the
effective models so far studied is completely satisfactory;
although some evolve to solutions with a static internal
space, they are usually unstable.!

The Casimir effect which is one of the quantum conse-
quences of extra dimensions has remarkable features.
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For instance, Appelquist and Chodos’ showed that a
Casimir force will tend to contract the internal space,
thus providing a mechanism for compactification.
Another quantum consequence of extra dimensions is
particle production.

In this paper we consider production due to the rapid
contraction of the internal space. Particle production in
the context of Kaluza-Klein theories has been considered
before. Thus Koikawa and Yoshimura!'®!! considered a
model in which the extra dimensions undergo oscillations
around a static solution of Einstein’s equations in more
than four dimensions. Such oscillations will produce par-
ticles which might be seen in the visible Universe as
ultrahigh-energy cosmic rays. Also Maeda!>!3 computed
the back reaction due to production of scalar particles in
anisotropic higher-dimensional cosmologies with con-
tracting extra dimensions, following the computations in
four dimensions by Zel’dovich and Starobinsky'# and by
Hu and Parker.!® He argued that if the contraction starts
near the Planck time the created particles will produce a
very rapid isotropization of the model, thus making
cosmological dimensional reduction ineffective. Howev-
er, as he pointed out,'? he ignored the Casimir effect of
external matter fields or of gravitons, which will induce
contraction of the internal space, or that compactification
might have been induced by an antisymmetric tensor field
like in eleven-dimensional supergravity with the Freund-
Rubin ansatz.'®

Therefore, since in any realistic model the dynamics of
the spacetime will be driven initially by other factors than
just the particles produced we shall ignore here the back
reaction of the particles on the geometrical background
in this semiclassical period. Besides, the back-reaction
computation is more difficult and liable to more approxi-
mations than the computation of the number and energy
density of particles produced, which can be done in some
detail.

As a model to carry out our computations we shall

1072 ©1989 The American Physical Society



39 PARTICLE CREATION DUE TO COSMOLOGICAL . .. 1073

choose one which has some of the features relevant for
particle production that we might expect in a realistic
model: namely, a model with cosmological dimensional
reduction, consisting of a rapid internal contraction to-
ward a static size, and an isotropic expansion of the ordi-
nary Universe. Simple models with these features can be
found even as solutions of five-dimensional Einstein equa-
tions in vacuum!”"! when the Friedmann-Roberston-
Walker (FRW) ordinary universe is open. When the spa-
tial sections are flat the vacuum models are of a five-
dimensional Kasner type with the extra dimension con-
tracting towards a crack-of-doom singularity.?® Al-
though we shall briefly comment on models with nonflat
spatial sections we shall mainly deal with a model with a
flat spatial section corresponding to a five-dimensional
anisotropic fluid. The model is simple enough so that
many computations can be done analytically and the
dependence of the results on the parameters is clear.

The parameters of the model are severely restricted by
the limits on the time rate of change of the fundamental
constants, particularly of the fine-structure constant
whose value cannot have changed by more than one per-
cent since nucleosynthesis time."?""?2 This sets limits on
the time variability of the internal dimensions after the
nucleosynthesis. Further restrictions on the parameters
come from the energy density of the particles produced.
When such energy density is imposed to be less than, say,
the critical energy density of the radiative universe, the
initial time of application of the semiclassical approach
and the size of the internal space at this time are tightly
bounded.

The plan and a summary of the main results of the pa-
per are the following. In Sec. II we review the standard
theory of a quantum scalar field coupled to a four-
dimensional isotropic cosmological model with an extra
dimension. We set up the equations to determine the Bo-
goliubov coefficients relating the “in” and ‘“out” modes
which determine the number of particles produced.?*~%
One of the technical difficulties in computing particle
creation in cosmology is that of the ill-defined nature of
the particle concept®®? in a curved spacetime near the
singularity. This is solved in the usual way'42% by intro-
ducing a time parameter ¢, initial time, before which the
metric is matched to the Minkowski metric. This is
justified by the fact that, for a time close to the Planck
time, the semiclassical approach, i.e., fields quantized on
a classical gravitational background, must break down.
Now if we want to compute particle creation since ¢, we
want to assume that there are no “in” particles present®?
and since we have an unambiguous definition of the parti-
cle concept in Minkowski spacetime it is natural to as-
sume such “in” particles as metric. We shall, therefore,
assume that the contraction of the extra dimension and
the expansion of the ordinary Universe starts at #,. This
time must be larger than the Planck time
(z,=5.39X 10~* sec) and smaller than, say, the grand
unification time ( ~ 107 3% sec). For the “out” modes, on
the other hand, there is no ambiguity since we have an
adiabatic expansion which does not produce particles and
consequently an adiabatic vacuum can be defined.

In Sec. III we compute numerically the particle pro-

duction of scalar particles for a “realistic’ model in the
sense stated above. The parameters we can adjust in the
model are three: t,, f, and 4. The first is the initial
time, f defines the ratio between the size of the internal
space and the horizon of the ordinary Universe at ¢, and
A is related to the rate of contraction of the internal
space: it is restricted by the limits on the time variability
of the fundamental constants. We consider several mod-
els for different values of the parameters.

For the massless particles, which correspond to modes
with no momentum component in the fifth dimension,
the production is more important near ¢,, when the con-
traction of the internal space is faster. Once the internal
size settles down no massless particles are produced be-
cause the dynamics comes only from the visible isotropic
Universe which is radiative and therefore has zero curva-
ture scalar so that, independently of the coupling param-
eter, the particles become conformally coupled. As is
well known, massless conformally coupled particles are
not produced in an isotropic expansion.?’” The models
which give more production of massless particles have a
large parameter A and undergo a Kasner-type period
with three dimensions expanding isotropically and one
contracting. This corresponds to a period with no five-
dimensional source when the dynamics is driven by the
curvature. This is an interesting fact because with the
Kasner metric many results can be found analytically, as
we see in the next section.

For the massive particles, which correspond to modes
with momentum in the fifth dimension, the number of
particles produced is roughly of the same order as in the
massless case. However, these modes are highly blue-
shifted and their masses at present would be of the order
of the Planck mass; therefore, if massive modes are excit-
ed their contribution to the total energy density would be
the dominant one, unless they decay quickly into massless
modes. However, this is unlikely: if they decay by in-
teraction with themselves the interaction time is too
large, and if they decay by interaction with other parti-
cles these should also have components in the fifth di-
mension and their contribution to the energy density
would be important too. The number of massive modes
excited depends on the initial size of the internal space: if
it is large many modes are excited. Whereas for the mod-
els considered the energy density of the massless particles
produced is less than the critical energy density at the ra-
diation era, if even a single massive mode is excited, it
would very soon dominate the total energy density.

In Sec. IV we study analytically the production of par-
ticles during the Kasner period. This is interesting, as
many of the known realistic models with extra dimen-
sions undergo a Kasner period.! In our model a Kasner
period is only possible if ¢, > 10%,. The problem is seen
to be analogous to the quantum-mechanical scattering
through a potential in one dimension.? We use this fact
to analyze the “sudden approximation used as a conse-
quence of the abrupt matching of the cosmological and
Minkowski spacetimes at ¢,. Such analysis plays a cru-
cial role when considering the contribution to the energy
density of the massive particles.

For the massless particles the number of particles pro-
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duced per mode can be computed analytically and only
the integration corresponding to the total energy density,
which we compare with the critical energy density at the
radiation era, must be computed numerically. As in the
previous section we find that the energy density due to
massless particles is always several orders of magnitude
smaller than the critical energy density.

For the massive particles, on the other hand, analytic
computations can be done only when the three-momenta
of the particles is zero. When the internal and visible
sizes are comparable at ¢, the contribution to the total
energy density of the massive modes may be less than the
critical density. If the internal size is too large the mas-
sive modes would dominate the dynamics of the model,
and the back reaction at late times, i.e., at the classical
period, cannot be ignored. Then cosmological dimen-
sional reduction would be unlikely.

Thus, according to our results on particle production
in extra dimensions, somewhat realistic models with
cosmological dimensional reduction can be constructed
compatible with a very small time variation of the cou-
pling constants and with present-day cosmological energy
density. The critical energy density at the radiation era
sets limits on the initial time and the internal size at such
initial time. If we are far off these limits too many mas-
sive particles are produced, back reaction should be taken
into account at least in the classical period, and, as in
Refs. 12 and 13, this might produce a tendency to isotro-
pize the model, making any cosmological dimensional
reduction mechanism inefficient.

II. QUANTUM FIELD COUPLED TO A FRW
MODEL WITH AN EXTRA DIMENSION

In this section we set up the framework for computing
particle creation for a scalar field coupled to a cosmologi-
cal model with an extra dimension. The material in this
section is standard.!*!>232* Although in this paper we
shall mainly deal with the spatially flat («=0) FRW
cosmology, it is convenient at this stage to consider the
open (k=—1) and closed (k= +1) models too, in order
that similarities among the three cases can be brought
into display later on.

We shall consider a scalar field coupled to a metric of
the form

ds®>=—dt*+C(t)h;;(x)dx 'dx/+gss(t)(dx>) ,
(1

2
hydxidxi=—T— 12002 =dy* + fH)dQ?
—Kr
where
siny, 0<y=<2m, k=1,
fix)=r=13x, 0y<w, k=0,
sinhy, 0<y<o, k=—1,

and
dQ*=d6>+sin’0d¢$? ,

and the fifth dimension is assumed to be compact. There-
fore, the values of the fifth coordinate are restricted to a

certain range 0<x°<27Rs, so that the physical size of
the extra space is given by L, =27 R s[gss(¢)]'/2.

Changing the cosmological time variable ¢ into a con-
formal time 7 defined by

_ dt
Y fcl/z(t) ’ )

we can rewrite Eq. (1) as
ds’=C(n)[—dn*+dx*+ fAx)d Q] +gss(n)dx>)? . (3)

Now, the scalar field operator ®(x) may be expanded
in terms of creation and annihilation operators, satisfying
the usual commutation relations:

P(x)= 3 fdﬁ(x)[ak,ksuk,ks(x)
k=0

+a1’k5u{:’k5(x)] , 4)

where dJi(x ) is an appropriate measure depending on the
FRW model considered®* and the complete set of exact
modes uy  (x) satisfies the five-dimensional Klein-

Gordon equation _
(O—m?—ER Yy i, (X)=0, (5)

where k and ks are quantum numbers labeling a particu-
lar mode, R is the five-dimensional curvature scalar, £ is
an arbitrary coupling, and m is the mass of the scalar
particle in the five-dimensional world. Equation (5) can
be separated by writing

1 eik5x5
ks OV g ) (2R )77 e R K1)
(6)
Since the fifth dimension is compact we have
k5=RL5 ) (7)

with n an integer. The functions Y, (x) are the harmon-
ics of the three-dimensional Laplacian A‘®’ associated
with k;;(x). They satisfy

APY (x)=—(k2—K)Y,(x) ,
and are normalized according to
J & xVRE Y (0YE(x) =8y ,

where A =det(h;;) and 8, is the § function associated
with the measure fi. For the flat case, k=0, such har-
monics are, of course, the familiar plane-wave solutions

eik-x

Yy (x)=——r1
k(x) (277.)3/2

and the spectrum of eigenvalues is continuous, with
0=<k < 0, where kK =|k| is the coordinate wavelength of
the corresponding mode. For the k==1 cases, explicit
expressions for Y, (x) can be found in Ref. 24. For our
present purposes, it is sufficient to recall that for the open



39 PARTICLE CREATION DUE TO COSMOLOGICAL ...

(k=—1) model, the spectrum is also continuous, with
0=<k < o, whereas for the closed model it is discrete,
with k running over the set of all positive integers.

Substitution of Eq. (6) into Eq. (5) leads to the follow-
ing equation for Y,;(7), where from now on [ stands for
(k,ks):

X/ +(Qi+Q)x,=0, (8)
where
:
Q¥ n)=k2—k+C(n) +m?|,
o K gss(n)

"

H
QUN=EC(R (==,

H(n)=CY (n)gl*(n),

and a prime denotes differentiation with respect to 7.

In addition, the modes u; must be normalized in the
usual Klein-Gordon scalar product, which lead to the
Wronskian condition on x,(7):

XX — XX =i . )

We shall concentrate on massless particles m =0, in
the five-dimensional sense. Since the anisotropy intro-
duced by the fifth dimension breaks conformal invari-
ance, such particles will be created as a consequence of
cosmological evolution.

In what follows and unless it is otherwise stated, we
shall refer to the k=0 case only. In order to compute the
number of particles created we must find the Bogoliubov
transformation relating the set of “in” and “out” modes.
Since these cosmological models have a singularity at
t=0, it is difficult to find a natural candidate for the in
modes. For cosmological models having flat spatial sec-
tions, as is the case in our k=0 model, such difficulty is
usually circumvented?® by assuming that before some
time ¢, larger than the Planck time the metric is matched
to flat spacetime, thus providing the unambiguous stan-
dard Minkowski in vacuum state. An abrupt matching at
t=ty, i.e., the metric is continuous but its first derivatives
are not, implies a so-called “sudden approximation”
which gives rise to ultraviolet divergences that must be
removed using an ultraviolet cutoff parameter related to
the inverse of the transition time from the Minkowski to
the curved spacetime, here typically of order ¢, !

On the other hand, it is easy to find a natural candidate
for the out vacuum state, since for large ¢ the universe ex-
pansion is an adiabatic one and we can take the usual adi-
abatic out vacuum (no particles are created at later
times). In order to solve Eq. (7) we note that it admits
formal WKB solutions of the form!*

a;

V20,

X1= exp [_ianId'ﬂ]

+

B
\/21_9, exp [+if"ﬂzdn] ) (10)
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where we have replaced y; by two complex functions q
and B;; therefore, we can still impose a further restric-
tion:

. o .
1=—iQ); |[———ex [‘—l Q,d J
Xi ! V29, p f an
B [+if"n dn] (11)
V2, I .

Then introducing Eqgs. (10) and (11) into Egs. (8) and con-
dition (9) we get

1% .0 . . Q
Q== EI——IE exp +2zfQ,d77 ]B,—zz—nla, ,
(12)
1% 0 . ] . Q
Bi= 2 |, +1QI exp 21fQ,d77 a,+1291 B >
and
|a1|2—|B,|2=1 . (13)

For times prior to t =t; the spacetime is assumed to be
flat so that
Q=K+ c_ k2=const
855

and the modes exp(iif"ﬂ,dn) occurring in Eq. (10) are
the positive- and negative-frequency modes defining the

" Minkowski in vacuum. After ¢, such modes are the

zeroth-order adiabatic positive- and negative-frequency
modes. In the large-z limit the expansion rate vanishes
and the adiabatic approximation becomes exact. There-
fore these modes define the adiabatic out vacuum. Note
that in the k5 =0 case such out vacuum may also be re-
garded from the four-dimensional point of view as a con-
formal vacuum if we assume that, as 7— oo, the physical
size of the extra dimension L, approaches a constant
value. Indeed, we have

1 eik~x 1 e—ikn

(+)
u (x) ~
k,0 ”_’lela}/nz (277)3/2 Vok C1/2(1’)

b
where u {JB) is the positive-frequency part of Eq. (6). Then
the right-hand side of this expression is nothing but a
conformal positive-frequency mode for a four-
dimensional conformally flat metric with conformal fac-
tor C(7).

In order to find the Bogoliubov transformation be-
tween the in and out modes we pick up a positive-
frequency in mode, i.e., we set initial conditions

a,(”flo)=1, B[(’f]o)=0 s (14)

in Eq. (10) and let this mode evolve in time. As ¢t becomes
large enough (¢ — o) the functions «; and 3, must settle
down to constant values which tell us what linear com-
bination of positive- and negative-frequency out modes
makes up the positive-frequency in mode. The number of
particles created in mode / is then given by
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N[= lim IBIlZ . ‘ (15)

7N— ®

Following Zel’dovich and Starobinsky,'* Egs. (12) and
(13) with initial conditions (14) can be cast in the form

ds Q]
S +-2,
d')7 201 ZQ[
dv, Q 0
—=—(142s5,)— |-=+2Q R 16
d’T] Q[( S[) [Q[ 117 (16)
&:’Q—(l+231)+ °_Q"‘+2Q1 UI y
dn Q Q,
with initial conditions
s;=r;=v,=0, (17)

at =1, where s, =8, |%,
v;=2Re [a,/i’}"exp [—Zifnﬂldn] ] ,
and

r;=2i Im [a,B}"exp

—2if”9,dn]

Thus, to determine the amount of particles produced in
mode / we must solve the first-order differential system
(16) with the initial conditions (17) and determine s; when
N—> 0.

Let us conclude this section with a few remarks on the
k==x1 models. The initial conditions (14) have been de-
rived for the k=0 case as a consequence of its matching
to Minkowski space at =7, However, in a different
spirit, they may also be seen as a choice of a zeroth-order
adiabatic vacuum state at y=m,. This later method is
often used'*!? for metrics which do not have flat spatial
sections, as is the case in our k==1 models. Therefore,
the system (16) can also be used for computing the
amount of particles produced in the k==*1 models. The
initial conditions (17) are the same, although their inter-
pretation is different.

III. NUMERICAL SOLUTION FOR A “REALISTIC”
MODEL

In this section we shall present the numerical solution
of Eq. (16) for a “realistic’ model (“realistic” in the sense
specified in the Introduction). Let us consider the space-
time metric

1 (A4+21)

2 _ 4.2 2 2 2y 1 52
ds dt“+Bt(dx“+dy*+dz )+4 PP (dx?>)* .

(18)

It corresponds to a radiative flat FRW model with an ex-
tra dimension which contracts to a constant value. The
arbitrary parameter B is physically irrelevant because it
can be rescaled or eliminated through a redefinition of
the x coordinates; we shall give it dimensions of length,
so that x has no dimensions. On the other hand, the pa-
rameter 4 (A4 20) is a meaningful one. It tells us how

large the physical size of the extra dimension is at t=t¢,
as compared to its asymptotic size for large times. If
A =0, then gss=const. We are mainly interested in the
case 4540, because we want to study the effect of cosmo-
logical contraction on particle production. For instance,
when 4 >>t, the physical size of the extra space at 1=t
is (A4 /4ty)"/? times larger that its size for large cosmo-
logical times. The metric (18) does not correspond to a
solution of the five-dimensional Einstein equations in vac-
uum, but to an anisotropic source (responsible for the an-
isotropy) of the type T,,=diag(p,p,p,p,ps). At early
times ¢ << A the metric has a Kasner behavior and there-
fore T, ~0, whereas at late times ¢ >> 4 we have p =1p,
ps=0 with p=p_.=3/(327G5t?), where G is the five-
dimensional gravitational constant; i.e., it is a radiative
isotropic universe with an extra dimension of constant
size.

The parameter 4 must be chosen in order that the
metric (18) accommodates the constraints on the time
variation of fundamental constants. These are the fine-
structure constant (o), the strong (a,) and weak (a,,)
couplings, and the gravitational constant (G). They are
related to the size of the internal space as'

Aoy U@y < 855 (1), G cgssP(t),

where D is the dimension of the internal space, D=1 in
our case. The time variations are severely constrained by
experimental observations. A typical bound based on nu-
cleosynthesis and the observed “He abundance is2)%2

gi(t,)

n
=140.01,
g5 (1))
where ¢, is the nucleosynthesis time (7, ~ 1 sec) and ¢, is
the age of the Universe (¢; ~2X10'7 sec). In order to
make Eq. (18) compatible with such a constraint, the pa-
rameter 4 must be restricted by

A4 <0.4¢, . (19)

Now, the present size L,;(¢,) of the internal space can
be estimated from the value of the electric charge to be?
Lpn(2)=~2.38X107*" cm, but L, (t,)~27Rs because
gss(ty)=~1. Therefore,

Rs~3.78X10" 2 cm , (20)

which in turn determines the spectrum of ks through Eq.
(7). In what follows we shall keep R as a parameter in
the relevant expressions.

We can now proceed to the numerical evaluation of N,.
With the metric (18) we can write in Eq. (8) the functions
2
Qf=k>+

>

4t0k5{pl

~ (21)

2
—pe_y | ¥ L 2Y 1Y
0=(2¢ 2)[¢+n¢+4[¢],

with
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(A/ty)+27°
V(A /) +n

where, for convenience, we have set B=4¢, so that
n=(t/ty)"”%2. We can now compute N, for different
values of k and ks, numerically integrating the system of
Eq. (16) with the boundary conditions (17) at t=¢; and
using Eq. (15). We shall consider the k5=0 and the
k0 sectors separately. The latter represents massive
particles in the four-dimensional universe.

We shall consider the following cases corresponding to
different values of the parameters 4 and a, where

4

aEto/tP 5 (22)

all of which are roughly compatible (we shall be more
specific later on) with the condition that the physical size
of the extra dimension at ¢y, 2R s[gs5(Zo, 4)]'/%, be of
the same order of magnitude as the horizon, ¢,:

case a;: A=0, a~2wRs/lp,

case a,: A=10ty, a~4wRs/lp ,

case b: A=(alp/mRs)*ty,, a>10wRs/lp ,

where TR 5 /Ip ~73.5 if we take the value of R given by
Eq. (20). Case b falls into the class with 4 >>¢, and cor-
responds to models that have a Kasner period.

A. Massless particles

First of all we concentrate on the k5 =0 sector, which
corresponds to massless particles in the four-dimensional
picture.

(i) Case a,: In this case Eq. (8) reduces to

Xi.ot kX, 0=0

and therefore we have Ny (=0 for all k. This is because
it is equivalent to the problem of massless particle
creation in a conformally flat four-dimensional cosmolo-
gy. We do not have to worry about the coupling & be-
cause for 4 =0 and a radiative universe we have R =0.

(ii) Case a,: On physical grounds we expect that a
significant contribution to the energy density of created
particles will come from modes such that

olk)~ty!, (23)

where w(k )=k /1/ C(t,) is the physical frequency of the
mode k at t;. With our choice of parameters, Eq. (23)
implies k ~2. On the other hand, the sudden approxima-
tion is not reliable when the frequencies involved are
greater than the inverse of the transition time (~tg');
we shall discuss this is some detail in Sec. IV. Therefore
we shall not be concerned too much about the region
k >2 because we expect that in it the particle number
will be exponentially suppressed. We shall introduce a
cutoff parameter k,, to account for this.

In Fig. 1 we have represented the numerical result for
the evolution of |B; o(n)[>. In this case the coupling is

relevant and we have used the conformal one: £= 3. We

T T T T T 717

TT T T T T T 17T

T

0.000 25
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FIG. 1. Time evolution, in conformal time 7, of the function
|B1,o(77)|2 obtained by numerical integration of Eq. (16). It stabi-
lizes at 2.3X 10™* giving the number of massless particles pro-
duced in mode k=1 according to Eq. (15). The coupling pa-
rameter is £=- and 4 =10¢,.

0.000 00

o

see from the figure that |B, o(7)|> grows very fast from
Nn=n,=1 to n=2 and then, after a mild oscillation,
quickly stabilizes to a constant value N, o of order 1074
Similarly, we compute N, , for different values of k rang-
ing from O to 8.

A physical quantity of interest to us is the total number
density, in ordinary space, of particles created in mode
ks=0. This is given by?*

— L [eyay 24)

2m%c3C3 /(1) Yo RO
where C(t)=4t4t, k,, is the appropriate cutoff, and we
have reintroduced the speed of light ¢. In order to esti-
mate the integral occurring in Eq. (24) it is useful to
represent the spectrum k2N, %0 in the relevant range for k.
This is depicted in Fig. 2(a); from it we see that the in-
tegral in Eq. (24) is of order 107> when we take k,,, ~2.
Therefore we have

nkS:O

3
—38 -3/s2 | S€C
iy =0~ 107101 lcm
—3/.2
— t .
~a 32107 | — particles /cm? .
sec

Since the spectrum of these particles is not thermal, one
may gain a better insight by comparing its contribution
to the energy density with the critical density for a FRW
radiation-dominated universe.

The energy density of the created particles in ordinary
space is given by**

- __g N ok (25)
Prs=0""75 2.3¢c2(1) Yo kO
This integral can be estimated from the spectrum k3N, k.0
depicted in Fig. 2(b) and it turns out to be also of order
10™%. Since the critical energy density of a FRW radia-
tion universe in ordinary space is given by?®
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_ 3¢?
P SmGe? 20
we have
Prs=0 1 K max 1073
= k3N, (dk ~ , 27)
Pe 377,(12 fO k,0f a2

where a2~ 10 and therefore p_—o/p. ~107".

So far, we have presented the results for §= 2. To-see
what is the effect of changing the coupling parameter we
have computed N, , for k=1, 4=0.4¢t,, and different
values of &:

E=3: N, ,=17X107°,
£=0: N ,=2.9X1077,
E=1: N, ,=13X10"°.

Therefore we see that for minimal coupling the number
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FIG. 2. (a) This shows the integrand in Eq. (24) to compute
the number density of massless particles produced by the same
model as in Fig. 1. The results for large momentum are overes-
timated since we have used the “sudden approximation” which
implies that a cutoff momentum should be taken at k,,,, ~2. (b)
This shows the integrand in Eq. (25) to compute the energy den-
sity of massless particles produced. The same model and com-
ments of (a) apply.

of particles is enhanced by 1 order of magnitude while for
&=1 it is suppressed by 3 orders of magnitude. This can
easily be understood from the functions in Eq. (21).

(iii) Case b: In this case we have 4 > 100¢,, and there-
fore the size of the extra space at t=¢, is considerably
larger than its asymptotic size for large #. Such metrics
undergo a Kasner period for times ¢ << 4, because then
we have g55 ~ A /4t.

First of all we can start by computing |, o(n)|* for
k=1 as we did in case a,. The results for 4 =10%¢, and
A =10%, are depicted in Fig. 3, curves (a) and (b), re-
spectively. We can see that in passing from 4 =10%, to
A =10%,, the number of produced particles increases
very little. Moreover, there is no point in further increas-
ing 4. For A4 >10%,, the function |B, ¢|* looks exactly
like curve (b) in Fig. 3. In fact, the limit 4 — o can be
performed in Eq. (21), and the result of the numerical in-
tegration in this case is also the same.

This has a simple explanation. We note from Fig. 3
that the particle production occurs for times 7 < 10, i.e.,
t=n’ty<< A and therefore the Kasner approximation
A — o0 is a good one. This is a very interesting result,
because the problem of particle creation in the Kasner
model can be analytically solved for the massless ks=0
modes, as will be shown in Sec. IV. Although 4 — « is
not in agreement with the bound (19), it should be regard-
ed as a good approximation to the large 4 case. From
the results obtained for the k=1 mode we can estimate
the integral occurring in Eq. (27) to be of the order of
1073 (this estimate is confirmed in Sec. IV when we

present the analytical results); therefore, we have
Pky=0 —4
o 10 (28)
Pec a

where a > 103. The effect of the coupling £ is not relevant
in this case, because for the Kasner metric we have R =0.
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FIG. 3. Time evolution, in conformal time, of the function
[B1,0(m)]?> obtained by numerically integrating Eq. (16). As in
Fig. 1 the asymptotic values give the number of particles pro-
duced in mode k=1: they are 1.5X 1073 for curve (a), corre-
sponding to a model with 4 =10%,, and 1.7X 1073 for curve
(b), corresponding to a model with 4 =10*,. Curve (b) remains
unchanged when we increase 4. In both cases the coupling pa-
rameter is £= .
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As a conclusion to the k=0 case we may note that
Eq. 27) for a=10% and Eq. (28) for =103 both give
similar results of order 107°~107!°, In the intermediate
region 10> <a < 10°, Eq. (28) gives a larger number, while
Eq. (27) leads to a smaller estimate. Therefore we may
use Eq. (28) as an upper bound to the contribution of the
created massless particles to the total energy density, for
every reasonable value of a.

B. Massive particles

First of all we would like to be a bit more specific about
the condition relating the size of the internal space to the
horizon size at t =t by introducing a parameter f:

27R sV gss(to) = f1, (29)
Recalling Eq. (7) we have from Eq. (29) that

2mn
(n) — —
qs 5/to f

where o(ks)=ks/V gss(ty) is the physical frequency of
a wave in mode ks at ¢.

As we have stressed before, the number of particles
created in modes such that gs>1 is exponentially
suppressed. Therefore, if we assume f ~1, only a few
massive modes may become significantly excited.

The total number density of particles created in a par-
ticular mode k5 is [see Eq. (24)]

ks T 23 C 1)

(30)

) (3D

where

kmax 2
Ikszfo k*Ny . dk
and k,, is the suitable cutoff parameter. The integral
I can be roughly estimated to be of the.same order as

Ny i, (as we did in the case ks=0). Therefore we write
Ii ,=ANy i, »

where A is presumably of order one, its precise value de-
pending on the function kN, ; and the cutoff kp,,.

However, our conclusions will not depend strongly on
such details, and they would also hold even if A differed
from unity by, say, 1 order of magnitude.

We have numerically computed N ks for the cases a,,

a,, and b defined above. The computations have been
done for the first massive mode (n=1) and for different
values of f ranging from 1 to 4m. The corresponding
values for g5 are obtained from Eq. (30). In cases a@; and
a, we have definite values for the parameter 4, while in
case b our results are within the same order of magnitude
for every A, providing that it is in the allowed range
A >100t,. The results are the following.
Case a,, Nl’ks:

4x1074f=1), 6X1073(f=2m), 6X1073(f=4x),

Case az’Nl,k53

1079

1X107%(f=1), 2X 10" X f=2m), 2X 10”4 f=47) ,
Case b, Nl,k5:

1073(f=1), 1072 f=2m), 107 f=4rm) .

From these results we can see that I, k, 1s a small quanti-

ty, typically of order 1073-~1072. Note that we have in-
cluded the results for g5 =2, although these modes are
outside the region where the sudden approximation is
valid, and the number of particles is overestimated as we
shall see in detail in the next section.

As we did for the particles in the k5 =0 mode, the con-
tribution of one of these massive modes to the energy
density Pk, can be compared with the critical energy den-

sity p.. We have
#i

Pr, = 2m2c3C3 (1)
172
Kmax | k3 k2
X —_— k2N, , dk
fo gss(t)  C(1) koks
> % 9s
27%c3CYUt) to K5
so that
p 2q51, 1/2
. (32)
Pe 3ma’’? | tp

Therefore, as time evolves, the contribution of the mas-
sive modes becomes more and more important, and it
would very soon dominate over p.. For sensible values of
gs and a this would happen even before the nucleosyn-
thesis time. This is because, whereas, as a consequence of
cosmological evolution, particles in the massless sector
lose their energy through red-shift, the physical frequen-
cy in the fifth dimension is blue-shifted and particles with
ks~0 acquire energies of the order of the Planck mass.
Equation (32) raises a problem, because even if a single
massive mode is excited, then its contribution to the ener-
gy density becomes so large that back reaction should be
taken into account and the cosmological model that we
started with breaks down. One may think that a possible
solution to this problem is that the massive modes decay
into massless particles very soon after ¢y, so that they
would also become red-shifted. The scalar field that we
have considered is a free field, but realistic fields are in-
teracting, and a decay of the massive modes can be imag-
ined in principle. However, such a mechanism seems to
us very inefficient. Indeed, conservation of momentum
implies that a massive particle in the n =1 sector, for in-
stance, can only decay into massless particles through in-
teraction with another n =1 massive particle. The mean
free path of such particles in ordinary space is given by
kf,ee=(nk50 )~!, where o is the cross section correspond-

ing to the process of interaction. It will be typically of
the form o ~g2E 2, where g is a coupling constant and
E is the energy at which the interaction takes place. Tak-
ing f ~1 we have E 227 /t,, hence
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4 172 H(z)(k )
o= BT L, (33) =L ol T (36b)
I, g% | to 2m0  Hy(kmg)
Therefore, the mean free path is larger, and increases = Equation  (36a) leads to  ayo/Byo=4,/4,

with time faster, than the horizon size, thus rendering the
process of decay completely ineffective.

Nevertheless there is still a way out to the problem
raised by Eq. (32) which will be presented in Sec. IV (after
the sudden approximation has been discussed in some de-
tail) because it falls beyond the reach of the numerical
analysis presented in this section.

IV. ANALYTICAL RESULTS

In this section we shall work in the approximation
A— »; i.e., a Kasner metric. As we have seen in Sec.
I1I, this is a good approximation to our model (18) when-
ever 4 > 100¢,.

A. Massless particles

In this approximation, the problem of particle creation
for the massless (k5=0) modes can be solved analytical-
ly. In fact, we have Q7 ;=k? and Q =(479*)"! and Eq. (8)
becomes

Xiot Xk0=0, (34)

k24—
47

whose general solution can be expanded in terms of
Bessel functions as

Xk,O:‘/?][CIJO(k"])_‘—CZ Yolkn)] .

A particular combination of the coefficients C; and C,
can be used to construct modes normalized according to
Eq. (9) which approach positive-frequency adiabatic
modes in the large time limit p— oo:
172

HP (kn) ~

N— ©

m e—i(kn~rr/2)
vk

out —
Xolm) 4

»

where H\?(kn)=[J,(kn)—iY,(kn)] is the Hankel func-
tion of the second kind and order n. At time =1, these
out modes are matched to a combination of positive- and
negative-frequency Minkowski modes:

(35a)
(35b)

Vi /4HP (km), 1>,
Xkolm)= ik(n—14)

—ik(n—m5)
Aje T4 4 , <N, -

It is now clear that the coefficients 4, and A4, in Eq.

(35b) are proportional to the Bogoliubov coefficients ¢, o

and B, o which give us the number of created particles.
From Eq. (35b) we have

rout

Xio (M)

out

Xiol10) a

A= ’
A,+ A4,

(36a)

while from Eq. (35a) we get

=(1—A/ik)/(1+A/ik); then substituting A from Eq.
(36b) and using Eq. (13), i.e., | ol*— By ol*=1, we find
|By.0l* and thus

N o=1Byol*

=T (Yo =T+ U+ Y,

— Ly vy |, 6

q 49
where g =k, is the argument of the Bessel functions ap-
pearing in Eq. (37). Such a variable g is similar to g5 in-
troduced in Sec. III, since it can be written as
q =2w(k)t,, where w(k) is the physical frequency of a
mode k at t =¢,.

The number density of created particles and the energy
density per unit proper volume are given by Egs. (24) and
(25), which can now be cast in the form

1

—'—t;')T/?fqu .0dq (38)
0

n — =
ks=0 16m2e¥(

and
Pk. = —““———ﬁ—fq3N dq . (39)
5=0 32772c3t2t(2) 0

Note that if we decrease ¢, then the energy density in-
creases like 75 2. This can also be derived on dimensional
grounds. In fact, setting #=c =1, we know that the ener-
gy density has dimensions of ¢ "%, and this must be made
out of the only time parameters at hand, ¢ and ¢,. Now,
the dependence on the cosmological time ¢ is through the
well-known relation pk5=0~C_2(t) (expansion plus red-
shift) which means pks:ooct_z; therefore we are bound
to write py__o~t 25

However, we want to stress that this simple power-law
dependence is only valid for ¢, > 10° ¢, (case b of Sec. III),
where the Kasner approximation is a good one, and it
cannot be extrapolated back to arbitrary small values of
to. This is because in case a,, the quantity N, , depends
on (A /ty) in a complicated way. Now, such dependence
does not appear in Eq. (37), because we have sent 4 to
infinity.

As we did in case a, of the previous section, we plot
the spectra g°N,, and ¢°N,, as a function of g in Figs.
4(a) and 4(b), in order to estimate the integrals in Egs.
(38) and (39). However, the integral in Eq. (39) has an ul-
traviolet logarithmic divergence. In fact, the large-q ex-
pansion of Eq. (37) reads

1 9

= —_——2 . 40
07 (49)*  10244° (40)

In order to clarify the origin of such divergence, the
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following discussion may prove useful. As stressed by
Hu,?® there is a close analogy between the problem of
particle creation in an expanding homogeneous cosmolo-
gy and the problem of scattering over a potential barrier
in quantum mechanics: compare Eq. (8), or Eq. (34), with

2
%+(E—V)¢=O. @1

In the particle creation problem we have positive-energy
in modes which can be expanded in terms of out modes of
positive and negative frequency with some coefficients q;
and B;. The relevant coefficient for particle creation is
that of the negative-frequency wave. The equivalent
scattering problem in quantum mechanics is that of a
left-traveling incoming wave, playing the role of a
positive-frequency out mode, which is partially transmit-
ted through the barrier and partially reflected back as a
right-traveling outgoing wave, playing the role of a
negative-frequency out mode. The reflection coefficient is
then relevant for particle production.
In the case at hand, we are dealing with the potential
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FIG. 4. (a) This shows the integrand in Eq. (38) to compute
the number density of massless particles in the model with a
Kasner period. As in Fig. 2(a) the results for large ¢ are overes-
timated due to the “sudden approximation” used and we need
to introduce a cutoff parameter ¢ ~2. (b) This shows the in-
tegrand in Eq. (39) to compute the energy density of massless
particles. Same model and comments as in (a).
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0, n<mny (Minkowski space),
Vin)=— = -
M==C=1_42)1 s, . 42)

It is known?* that if an expansion is bounded by

adaibatic in and out regions, then the number of quanta
produced as a consequence of such expansion falls off fas-
ter than any inverse power of k in the ultraviolet limit.
Therefore, the power-law behavior that we get in Eq. (40)
must be because of the discontinuity in the potential (42)
at 17=1,, which is in fact the so-called “sudden approxi-
mation.” To illustrate how the divergence is due to such
gap, let us consider the potential

Vo

=__0 o
Vin) > 1+tanh an |’ (43)

which is schematically depicted in Fig. 5, where A7 is a
parameter that can be understood as the transition time
between V(7)=0 and V(n)= —V¥,. This example can be
analytically solved as a scattering problem in quantum
mechanics and the result is given by?*

sinhX(rAnw_)

= , 4
Ni sinh(7rAnk )sinh(rAnw,,,) “d

where
O =k2+ V)2,
o_= (g, —k)/2 .
When kAn > 1 we can approximate N, by
Ny ~e " 2mank (45)

i.e., we have an exponential suppression in agreement
with the preceeding remarks. However, if we previously
perform the limit Anp—O0, then the potential (43) turns
into a step function (also represented in Fig. 5), which
corresponds to the “‘sudden approximation.” In this case
the scattering problem leads to
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FIG. 5. The potential of Eq. (43) is represented with a transi-
tion time parameter An=1. It is compared with the step poten-
tial, i.e., the limit An—0, which corresponds to the “sudden ap-
proximation.”
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2

N, =—= (46)
ke kwout ’
which in the ultraviolet limit gives
2
1 Vo
Ne=—c77 47
=16 & 47)

Note that using in Eq. (47) the value V,= — 1/473, which
corresponds to the gap in the potential (42), we arrive
precisely at the result given in Eq. (40), in agreement with
the claim that the divergences in the energy density are
entirely because of the sudden approximation. If our
model incorporated a smooth matching, with a transition
time At between flat space and the cosmological model,
then one would expect a falloff behavior like the one in
Eq. (45). Taking Eq. (2) into account and recalling the
meaning of g, this could be rewritten as

Nk,oge—Zmu(k)At:e~rrq , (48)

where we have used Ar=t,. In practice one uses the
“sudden approximation” and a cutoff at a frequency such
that w(k,,)~(At)"!, for instance, g ~2, as we did in
the previous section. This is justified because, according
to Eq. (48), increasing g by 1 means decreasing N , by
more than one order of magnitude.

B. Massive particles

We can now turn to the massive modes (ks40). In-
cidentally, we note that in the 4 — oo limit, the number
of particles in a massive mode can also be found analyti-
cally in the infrared k =0 limit. As usual, the in vacuum
is defined by the Minkowski modes and the out vacuum is
the adiabatic one. The result is given by

T
Nok

= 2 _ 2 2
ks 192 {16g5[(Yo—J)"+(Jo+Y,)7]

—8q5(JoJ + Y, Y, )+J3+Y3), (49)

where the Bessel functions are evaluated at 2g5 and g5 is
given in Eq. (30). One may note that for the massive par-
ticles there is no infrared divergence, contrary to what
happens in the massless case, i.e., the limit kK —0 in Eq.
(37). Equation (49), however, is not sufficient to estimate
the total number density of particles even approximately,
since for this we should know N,(’k5 for k ~1 from where

the dominant contribution comes. Therefore we shall
refer to the numerical results presented in Sec. III.

According to such results, if we are in the region where
the “sudden approximation” is reliable, say g5~ 1, then
Eq. (32) predicts that the massive particles would very
soon dominate the Universe and back reaction would
spoil our model. On the other hand, if g5 > 1 we expect a
falloff behavior of the form (48); i.e.,

—2melk, k)AL _

Ny i ~e exp{ —2m[q?+(q*/4)]'?At /t,} .

In particular, setting f ~1, and recalling that g5=27/f
(for the first massive mode n =1) we have

—42/f —17/f
< T __ 1
Nk,ks"e ~10
and
—2mg.A 2 —17
I, <qle T8 3”—2 10”7 (50)
> f

where f| = ft,/At.

Now, for ¢ >¢t, when the size of the extra space is con-
stant, the energy of a particle in the first massive mode
can be approximated by #ic /R 5, hence

I
p"ﬁ(»t”):%""S:Ris 277202253/2(1‘)
and
prU>0) 4 (8wl | [ | o
p(t) 3af? | Rs Lo
(51)
From Eq. (51) we can see that if we take f; =1, then

Pry <<p. even for times as large as t = 10" sec, which is

the end of the radiation era, and the contribution of the
massive modes is completely irrelevant. However, if we
take f, 2 1 then they could dominate the Universe by nu-
cleosynthesis time.

As a conclusion to this section we can say that if we
are careful in the choice of our parameters so that a rela-
tion of the form

1A

f= 2 7% (52)
is satisfied, then we can expect that the effect of the parti-
cles produced as a consequence of cosmological evolution
will be small compared to the driving forces that deter-
mine such evolution, and therefore the back reaction can
be neglected. On the contrary, if Eq. (52) is violated,
which will be the case when the size of the extra dimen-
sion is much larger than the horizon at ¢, then the dy-
namics of the model we started with may be substantially
altered and cosmological dimensional reduction spoiled.
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