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Reheating in inflationary cosmologies: Geometric coupling of the “inflaton” to quantum fields
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We propose a simple geometrical prescription for coupling a test quantum scalar field to an
“inflaton” (classical scalar field) in the presence of gravity. When the inflaton stems from the
compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to
a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this

coupling to “reheating” in inflationary cosmologies.

I. INTRODUCTION

The possible role of scalar fields in cosmology has been
extensively studied since the invention of the inflationary
scenario (see Ref. 1 for a review). In “o0ld”,? “new”,’ or
“chaotic”* inflation, they are identified with various
grand-unifying entities such as Higgs fields. Effective
scalar fields also appear in theories formulated in higher-
dimensional space-times (see, e.g., Ref. 5) as the “radius
of the internal space” when the theory is “‘reduced” to
four dimensions.® Finally they can describe the extra de-
grees of freedom of ‘““higher-derivative” theories of gravi-
ty (see, e.g., Ref. 7), based on f(R) Lagrangians (R is the
scalar curvature), when those are formulated as general
relativity (Lagrangian R) coupled to matter.?

Among the many issues that inflationary scenarios
have to face, one is “‘reheating,” that is, how these scalar
fields (or “inflatons”) transmute themselves into ordinary
radiation at the end of the inflationary stage, so that the
standard hot scenario can resume—or start. A number
of mechanisms have been proposed. One uses the pre-
dicted (temporal) oscillations of the scalar field at the end
of inflation to excite the vacuum modes of ordinary
matter, thus transferring energy. Present models of the
process are however very scant as they amount to intro-
ducing a phenomenological friction term in the evolution
equation of the inflaton.”!® Another, more elaborate,
mechanism exploits the fact that the inflaton is self-
coupled (its “Klein-Gordon” evolution equation.is non-
linear); its fluctuations hence satisfy a (linear) Klein-
Gordon equation with a time-dependent mass; when
quantized they can be interpreted as scalar particles
which are supposed to subsequently decay into ordinary
radiation.'>'?  Finally a third reheating mechanism is
based on the prediction that ordinary matter can be
created when coupled to a time-varying gravitational field
(see, e.g., Ref. 13). In addition to a few schematic toy
models'* a framework for treating the problem in a self-
consistent way was developed in Ref. 15 (taking into ac-
count the back reaction on to the scale factor of the
stress-energy tensor of the scalar quanta). Clearly a satis-
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factory solution of the reheating problem should
somehow combine the last two mechanisms as well as in-
troduce some kind of irreversibility in order for genuine
dissipation and entropy production to occur.'?

In this paper we shall make only one point. In the last
reheating mechanism mentioned (triggered by gravita-
tional particle production) only the coupling to gravity is
usually considered: the (scalar) quantum fields obey a co-
variant Klein-Gordon equation, optionally coupled to the
scalar curvature of space-time. Now when an inflaton is
present as a source for the gravitational field, the cou-
pling of the quantum fields to this inflaton should also be
taken into account (after all, the phenomenological treat-
ment of reheating first mentioned above relies on the ex-
istence and efficiency of such a coupling). The problem of
course is to describe in mathematical terms how the
inflaton couples to the quantum matter fields.” What we
suggest here is that simple geometrical considerations can
serve as a guide to restrict the possible couplings. Indeed
a family of classical actions for a test particle coupled to
a scalar field has long been known'®!7 and yields, via the
standard Bohr correspondence principle, to modified
Klein-Gordon equations whose mass terms depend on the
scalar field. If moreover that inflaton has itself a geome-
trical origin, as is the case in higher-dimensional theories
“compactified” on to four dimensions, a single modified
Klein-Gordon equation can be obtained from a dimen-
sional reduction of either the geodesic or the free Klein-
Gordon equations in the higher-dimensional space-time.
Taking into account this coupling of matter fields to the
inflaton should modify, at least qualitatively, the analysis
of particle production in inflationary cosmologies.

In Sec. II we examine the possible actions, geodesics
and Hamilton-Jacobi equations for a classical test particle
coupled to an “inflaton,” and deduce by the Bohr
correspondence principle the modified Klein-Gordon
equations for quantum scalar fields. In Sec. III we first
recall how a higher-dimensional pure gravity (Kaluza-
Klein) theory, when reduced to four dimensions, can be
identified to general relativity coupled to a scalar field
(and to gauge fields, but we shall ignore those). We then
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show how the geodesics or the free Klein-Gordon equa-
tions in the higher-dimensional space-time are “reduced”
and how the coupling of quantum scalar fields to the
inflaton is thus fixed. In the concluding section, Sec. IV,
we sketch the possible relevance of this coupling to the
reheating process of the Universe, using the model of
Yoon and Brill'® as an example.

II. THE COUPLING OF A TEST PARTICLE
TO A SCALAR FIELD

The action for a classical test particle moving in a
gravitational and a scalar field can be taken to be!®'’

Du* 6_@'2(_ do
ds do dx*

85=—~fb m*g,,
a

where D is the covariant derivative and u*=dx"/ds.
The particle follows the path that extremizes the action,
and its equation of motion therefore is

€

PD V= — —
gl m +ey(o)

(g""+utu”)d,x(o) . (3)

The right-hand side (RHS) is the scalar equivalent of the
Lorentz force where m*=m +e€y plays the role of a o-
and hence x*-dependent inertial mass.!” On the dynami-
cal trajectories, that is when (3) is satisfied, we have from
(2) that u,,=9,S/m* which, from the normalization con-
dition u *u,= —1, yields the Hamilton-Jacobi equation

§"3,59,8 +[m +ex(0)?=0. @)

We refer to, e.g., Ref. 17, for a deduction from (4) of the
classical trajectories.

The standard procedure to describe now a quantum
spin-zero particle is to replace in the Hamilton-Jacobi
equation (4) 9,S by the operator —iD,, (Bohr’s correspon-
dence principle). One thus gets a modified Klein-Gordon
equation for the wave function ¢ of the quantum particle:

—Op+m*2p=0, m*=m +exlo), (5)

which when €=0 or in the absence of external field o
reduces to the standard minimally coupled Klein-Gordon
equation. We postpone a discussion of this equation until
we have chosen the function y(o). We only mention here
as a side remark that a way to arrive at a nonminimally
coupled equation would be to replace m by V'm2+£R in
the action (1); however, the equation of motion (3) would
then read (for €=0)

uv H,, Vv
ulD uvz_ég__*—_u*u_aR , (6)
g 2 m 2 + §R M
and the corresponding classical particle would not follow
a geodesic.
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S=—fabm*ds, m*=m +ex(o), (1)

where ds =\/—gm,dx“dx Y, m is the mass of the parti-
cle, € its “scalar charge,” and where x(o) is an a priori
arbitrary function of the “inflaton” o. (We exclude other
couplings, such as 3,0 dx*, which is a total divergence,
or 3,00"0ds, which would imply that the force exerted
on the particle depends on the second derivatives of o.)
The variation of this action with respect to infinitesimal
deformations of the path between a and b is

(85 +utufg,,) |ds Bx"-ﬁ-[m*glwu“éxv]’; , (2)

III. FIXING THE COUPLING
BY DIMENSIONAL REDUCTION

In the absence of experimental data it is difficult to
specify the function ) characterizing in (4) or (5) the cou-
pling of a classical or quantum particle to the scalar field
o. This however can be done when o arises from the
reduction to four dimensions of a theory of gravity in a
higher-dimensional space-time.

Let us recall then how pure gravity in a D-dimensional
space-time can be reduced by means of a conformal
transformation to general relativity coupled to a scalar
field.>!° The D-dimensional Einstein equations read

R,3—1Rg+Cgy3=0, 4,B=0,1,...,.D—1, (7)

where R ,p is the Ricci tensor, R is the scalar curvature
and C is a “bare” cosmological constant. When one is in-
terested not in the decomposition of g 45 into a gravita-
tional and gauge fields but in the scalar field such a
decomposition gives rise to, solutions of (7) of the follow-
ing type are sought for (see, e.g., Ref. 5):

Ep(x?) 0

= (8)
8 4B 0 e2a(x“)§ab(x0)

with u,v=0,1,2,3, a,b =4,...,D —1 and where g, is
the metric of a compact “‘internal” space whose volume
at each space-time point x* is measured by the field
o(x*). (For an analysis of the off-diagonal terms in terms
of gauge fields see, e.g., Refs. 5 and 19.) It was shown in
Ref. 6 (and references therein) that in terms of a metric
&> conformally related to g, by

gunw=e¢""8u > 9

where n =D —4 is the number of “internal” dimensions,
the field equations (7) split into two: first a constraint on
the geometry of the internal space,

1

Eab:—;Kgab ’ (10)
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where K is a constant [when n =1, K =0 and when n =2,
(10) is an identity]; and second the equations of general
relativity for the metric g,,, minimally coupled to the
“dilaton” o

=_n(n+2)

R =

Eyv_%g-,uv 2 (ayaava—%gwapagpa)

—g,, V(o) 1n

where all barred quantities are formed using g,, and
where the potential V(o) is given by

V(a)=Ce"‘"—-12£e_‘”+2)" ) (12)
As for the “Klein-Gordon” equation for o, it follows
from (11) and (12) via the Bianchi identity:
2 dV
—Oo+—"—— .
e nin+2) do —0 (13)

Let us examine now how a classical particle of ‘““mass”
i, which is free in the higher-dimensional space-time, can
be described as a particle in four-dimensional (4D) space-
time coupled to a scalar field.*! Its action is

SZ—TIL,Lf:dS:_T/.Lf:L dp , (14)

where dS =1/ —7g ,pdx “dx® and 7= 1 (as the particle
may behave as a tachyon in higher-dimensional space-
time); the Lagrangian is L =dS /dp where p parametrizes
the path. It is at this stage convenient to distinguish the
five-dimensional (5D) from the general case. Indeed
when D =5 the metric (8) does not depend on x 3: we can

then take advantage of the Routh procedure'®? and
define an equivalent action
=—wf L q-— dp , (15)
where ¢ is a constant of the motion:
oL 20 dx 3
=—=—re . (16)
4 (x> /dp) ds

Using the decomposition (8) and (9) of the metric and (16)
to eliminate dx > /dp, S’ can be rewritten as'®

=—fbd§,ue“”/2\/r+q2e_2” ) (17)
a

where dE=\/—§lwdx"dx Y. Comparing (17) with (1) we
see that the free action of the particle in the 5D space ap-
pears, when “projected” on the 4D space-time, as the ac-
tion of a particle interacting with a scalar field 0. The
form of the interaction (o) as well as the relation be-
tween (m,e€) and (u,q) are determined by

m*=m +€X(U):”e*n0/2‘/’r+q29_20 (18)

where n =1. Once this identification has been made the
modified Klein-Gordon equation (5) for a quantum scalar
field, with m* given by (18) follows straightforwardly—
see Sec.I. Now when D >5 the metric (8) depends on
x?, and an alternative route to arrive at (18) is to start
from the geodesic equation in D dimensions deduced
from the variation of (14):

DU“
==—=0,
as (19)
where U4=dx 4/dS. For A =a and the ansatz (8) for
the metric, (19) reads
U*d,U,+UD,U,=0, (20)

which implies that the quantity
q’=g *U,U, 1)

is a constant of the motion. For 4 =p and the forms (8)
and (9) for the metric, (19) first becomes
DU*

———=nU"*U"d,0 —

2loxn
das 2 dfo .

gv U UPOHo +q2 {n—=

(22)

The D-dimensional metric dS must then be expressed in
terms of the (4D) one:

dS e*na/2 ( 3)
=ds—— 2
\/q2e —204 1

with ds=1/ —8,,dx"dx" [note in passing that inserting
(23) into (14) does not yield (17)]. Using (23) the geodesic
equation (22) finally reads'®

q 22 —20

2 qze_z"-i-'r

7'D, gt= (kg "+g*+)o,o (24)

v

where 7 *=dx"/ds. The RHS of (24) shows how the
internal space acts on the 4D projection of the trajectory
of a free particle. When compared to the RHS of (3) it
can be interpreted as the force exerted by a scalar field o.
Identifying the two expressions

€ dx _n q’e %

S y— 2
m+texy do 2 qze_za—f—r 23)

and integrating yields (18) and, hence, (1) and (5).

We saw how a free classical test particle in a higher-
dimensional space-time behaves as if coupled to a scalar
field when the metric is decomposed according to (8) and
we deduced, using Bohr’s principle, the corresponding
Klein-Gordon equation, (5) and (18). Another way to ar-
rive at the result is to simply decompose the free D-
dimensional Klein-Gordon equation. Indeed consider the
D-dimensional wave equation:

(Op +7ut)®(x 4)=0, (26)

where O, =g 48D ,Dp, p is the “mass” of the field @,
7==1. When the metric g 5 is imposed to be of the
form (8) and (9) the wave function can be decomposed as

D(x )= (x*)y,(x), 27
q
where y,(x¢) are the harmonics on the n-sphere (since

R =const and we assume a compact internal space) and
the eigenvalues g are defined as

Oy, (x)=—p’q’p,(x°) . (28)



43 REHEATING IN INFLATIONARY COSMOLOGIES: ...

Substituting (27) into (26) a standard calculation—spelled
out in the Appendix—yields the expected result:

—Op+m*2¢=0 with m*=pe "7’*V'r+g2% =% .
(29)

IV. REHEATING AND THE COUPLING
TO THE DILATON
IN INFLATIONARY COSMOLOGIES

As we mentioned in the Introduction, three main
different lines of attack to the problem of reheating in
inflationary cosmologies have been proposed in the litera-
ture. The first one consists in coupling “by hand” the
inflaton o to a radiation fluid (density p,) by means of a
friction term I'. This coupling is supposed to become
effective at the end of the inflationary era when o ap-
proaches the minimum of its potential ¥V, so that
V ~1M?c% The evolution equations for o, p,, and the
scale factor S of the Universe (assumed to have a
Robertson-Walker geometry) are thus taken to be® 1

3(H*+k/SH=16?+1Mo’+p, ,
p,+4Hp,—T6*=0, (30)
3+(3H+T)6+Mo=0,

where the dot is the derivative with respect to the cosmic
time ¢, H=S/S, and k =0, £1. Noting that for =0,
p,=0 and large ¢t we have H ~2 /3t (for k =0) so that the
inflaton behaves like a pure dust perfect fluid,?! the prob-
lem is sometimes!® reduced to the conversion of dust into
radiation in a dust-dominated Friedmann model. As long
as a field theoretical derivation of the I" term is not given,
this mechanism can however hardly be said to have any
explanatory power.

In a second line of attack!"!? the inflaton o is regarded
as the sum of a classical field o, and a small quantum
correction ¢. The field equations for ¢ and S,

3(H*+k/SH=16*+V (o),

—-Do+i—V—=0~=’t‘f'+3Hd+ﬂ=O ,
do do
are then solved iteratively. The zero order [Eq. (31)
where o0 =o0_] determines the evolution of the back-

ground; the first order governs the quantum field ¢:

(31

d*V(o)

—O¢+7m 2¢=0, m ()= :
¢ " ¢ m doz cl

(32)

For a self-interacting inflaton [d?V /d o*#const—which
means V(o )#iM o?], the time dependence of 7 implies
that quanta of the field ¢ are created.!! Their back reac-
tion onto the evolution of o and S appears at the second
iteration:

3(HX+k/SH)=16 4+ V(o) +(Tx(¢)) ,
(33)
—Ddcl‘i'ﬂ

=0 ,
do

cl

dv
+ ()<
cl : ¢ d03
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where ( Too(¢)) and ($?) should be some suitably renor-
malized vacuum expectation values (see Ref. 12). The
connection between this mechansim and the previous one
is however not straightforward. Indeed the back-reaction
term in the “Klein-Gordon” equation (33) is a function of
o and turning it into a friction term of the type I'g in-
volves introducing some kind of time irreversibility.!?
The third reheating mechanism!4!% is mathematically
very similar to the previous one. The difference is that
the quantum field ¢ is not thought of as the fluctuations
of the inflaton but represents “‘ordinary” scalar particles
of constant mass 7 =m that are produced by the time-
varying gravitational field. In fact, the presence of an
inflaton is not even necessary in that scenario.!®> Indeed
the stress-energy tensor of the gravitationally created
quanta [(T,,(¢))] involves terms that are quadratic in
the scalar curvature of space-time and can react on the
scale factor to produce the required inflation.?? In that
model then the evolution equations to be solved are

—0O¢+m?¢=0,
3(H+k/SH=(Ty) , (34)
—6(H+2H*+k/S*)=(T!) .

See Ref. 15 for details.

The (at least qualitatively) new reheating mechanism
that we propose here is simply to include in the previous
scheme a coupling of ¢ to the inflaton o. According to
the geometrical prescription that we defined in the previ-
ous sections this amounts to replacing in the Klein-
Gordon equation (34) m by m*=m +ex(o) [Eq. (5)];
when moreover o arises from the compactification of a
higher-dimensional gravity theory we saw that the func-
tion Y can be determined to be m*?=p’re "
+q%u%e (" *t29 [Eq. (18)]. In that latter case however
this new coupling is very similar to the standard mecha-
nism described by (31) and (32), based on the quantization
of a field with the variable mass 7% 2=d?V /do?. Indeed
when V is given by (12), its second derivative 7 2 has the
same o dependence as m *2 and can even be identical to
m*?if n?C =7u? and K(n +2)*=—2q%u? Only in cases
when C and 7 cannot have the same sign can the two
mechanisms really differ.

In order to illustrate the possible role of these cou-
plings we shall briefly examine the cosmological model of
Yoon and Brill.!® Starting from a theory of pure gravity
in a (n +4)-dimensional space-time, but allowing for the
presence of fine-tuned torsional bilinears, these authors
arrive at an effective 4D theory of the type (11)—(13)
where the potential V(o) is modified as to have a zero
minimum:

_A 2 n
Vior=s In+z2 T2

—(n+2)o

—_— —e " [, A>0.
(35)

We therefore have, in this case,
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m*2:‘u27_e——no+q2”2e—(n +2)o ,
(36)
gt A e n (2N (a2
2 2 ’

[We assume here that the geodesic equation (19), which is
linear in the torsion, is not affected by the nonvanishing
of the torsional bilinears.] In a Robertson-Walker back-
ground (with k =0) the field equations (11), (13), and (35)
read

2=l n(n+2) .2
3H 2 — 2“ — g +V(0') ’ (37)
.. . 2 dv _
U+3H0+n(n +2) do

For large negative o the potential is exponential
[V(o)xe "*29] and could in principle lead to power-
law inflation.?>?* The coefficient of o is however larger
than 2 which implies that not only is the horizon problem
left unsolved?® but also that the solution is not an attrac-
tor for k70 models.?* For large positive o on the other
hand, the potential tends exponentially fast to a constant.
The “slow-roll” approximation of (37) then gives
H=V A(n +2)/3, so that the effective masses (36) of the
quantum fields ¢ are, during that inflationary period,
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with o given by (39). We leave a detailed study of the
self-consistent system (34), with m given by (39) and (40),
to further work.
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APPENDIX

Although the calculation leading from (26) to (29) is
standard we shall spell it out for completeness. Let us
start with the D-dimensional wave equation

Op®+(ru?+ERp)P=0, (A1)

where O, =g #2D , Dy, u is the “mass” of the field @,
7=1=1, and £ allows for a nonminimal coupling to the D-
dimensional Ricci scalar R;,. When the metric g 5 is
decomposed as

R £ (x*) 0
m*r=plre "%, mi=— ner_’”’ , 84~ 0 eZU(Xu)gab(xc) , (A2)
172 (38)
010~ 3(n +2) 1 we have
2 to—t ~ _
n?A 0 Op@=00+e 200 +n*0d,® , (A3)
We see that 7 2<0 whereas m*?>0 if 7>0. The two — P —20F _ A "
processes are then qualitatively different. Consider now Rp=R+e "R —n[20o+(n +l)a“a5 ol. (a4
the oscillatory regime o0 ~0. Then ¥V (o)~1inAc*andan  If we now perform the conformal transformation,
approximate solution of the system (37) is, for large ¢, — g
5 ) 5 172 172 =¢8> (AS)
~ — ~ — 1 t . = I 1 =Pel?
H 3’ o vy sin w2 ] (39) where o =w(x*), and—lf we seid) De??, Wj: have_
, ) Ob=e?*2°[0®+p®To+2(p —1)3%wd, P
The two effective masses (36) then both sinusoidally ap- o
proach a constant: +p(p —2)P0*wd 0], (A6)
m*?=puXr+q?)—p*[nr+(n +2)q%lo , @) ﬁ=e2“[§+6(ﬁa)—6#a)5"w)] . (A7)
40
mi=nA[l—(n+2)0] It is then straightforward to obtain:
J
[—Op@+(ru2+ERp)Ple P H20=—TO P+ (ure "2+ £R)DP+e 29 (—OD+ER D)
—3,®[2(p —1)3*0+nd*o ]+ ®[(6£—p)Dw—2n¢00 ]
—®[6£+p(p —2)]0*wd,0—n®(p —4£)8"03,0—n(n +1)§P3*08,0 . (A8)

When n =0 we recover that the massless Klein-Gordon equation is conformally invariant if p =1 and £=1. In the case
considered here where w =no /2 the Klein-Gordon equations (A1) and (A8) reduce to

—O®+(u2e " +ER)DP+e " TV(—ODP+ER D)

—pnd*od, d+n(—p/2+£)® 8o —(n/4)[p*n+2£(n +2)]3%03,0=0 .

(A9)

We then see that the coupling of @ to o will not involve derivatives of ¢ only if p =£=0. Decomposing then ® as
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D(x )= (x"),(x°),
q9

(A10)

where 7, (x ) are the eigenfunctions of 01 with eigenvalues g defined as

Oy, (x)=—pu’q’p,(x°)

we arrive at the final result:

(—Op+7pd)®(x 1)=0=[—O+pu ""(r+q% 27)]p(x*)=0 .

(A11)

(A12)
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