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Semiclassical equations for weakly inhomogeneous cosmologies
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The in-in effective action formalism is used to derive the semiclassical correction to Einstein’s equa-
tions due to a massless scalar quantum field conformally coupled to small gravitational perturbations in
spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum
field is directly derived from the renormalized in-in effective action. The usual in-out effective action is
also discussed and it is used to compute the probability of particle creation. As one application, the
stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the

gravitational field of the string is discussed.
PACS number(s): 98.80.Hw, 04.62.+v, 98.80.Cq

I. INTRODUCTION

Our picture of the evolution of the early Universe relies
in the so-called semiclassical theory of gravity which de-
scribes the interaction of quantum fields with the classical
gravitational field. Order of magnitude arguments and
Heisenberg’s uncertainty principle tell us that there must
be a period in the Universe evolution, well after the
Planck time, when the quantization of the gravitational
field may be ignored but still the scale of its time varia-
tions is short enough to create elementary particles, so
that matter quantization cannot be ignored. Since we
lack a theory of quantum gravity, it is still not known to
what extent and in what sense this theory may be con-
sidered as a true semiclassical limit of quantum gravity
interacting with matter fields. Plausibility arguments
have been advanced by Hartle and Horowitz [1] who
show that the quantum corrections to the classical action
of gravity interacting with N identical non-self-
interacting matter fields reduce in the leading-order 1/N
approximation to such semiclassical theory. Some au-
thors [2] have also used arguments based on quantum
cosmology.

The semiclassical approach provides the framework for
some realistic scenarios which may explain some of the
features of the present Universe. One of these scenarios
is inflation [3], which may explain the homogeneity and
flatness problems of the standard big-bang cosmology. In
the inflationary model the quantum fluctuations of the
inflaton field may be the source of the small gravitational
inhomogeneities which seed galaxies or gravitational
waves. This may explain the Universe large-scale struc-
ture [4] and the presence of a hypothetical background of
gravitational radiation [5]. Another scenario is the possi-
ble formation of topological defects [6] as the Universe
undergoes some phase transitions. Topological defects,
in particular cosmic strings, may seed structure [7] and
may be an alternative to inflation for the generation of
structure in the Universe.

In both scenarios the picture of the gravitational field

*Permanent address: Dep. Fisica Fonamental, Universitat de
Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain.

0556-2821/94/49(4)/1861(20)/$06.00 49

that emerges is that of a conformally flat Friedmann-
Robertson-Walker (FRW) background in which small
gravitational perturbations are present. Large anisotro-
pies and inhomogeneities might be present only if the
Universe had emerged highly inhomogeneous from the
Planck era into the classical regime [8]. But since the
quantum consequences of a highly inhomogeneous model
are difficult to estimate one assumes that by studying
small perturbations on a FRW background, a qualitative
picture of the evolution of the more extreme case may re-
sult.

Here we are interested in the quantum effects produced
by the presence of small perturbations in conformally flat
backgrounds. Quantum effects due to small anisotropies
were first considered by Zeldovich [9], Starobinsky and
Zeldovich [10], Hu and Parker [11], Hartle and Hu [12],
and Birrell and Davies [13], who computed the creation
of conformally coupled particles interacting with the an-
isotropies. Conformally coupled particles are not created
in conformally flat backgrounds (FRW) [14] but the an-
isotropies break the conformal symmetry. Different tech-
niques were used for such computations, these techniques
go from a perturbative evaluation of the Bogoliubov
transformations relating two vacua of the quantum field,
to the evaluation of the in-out effective action of this field
in the given gravitational background. These results
were extended to the presence of arbitrary perturbations,
including inhomogeneities, [15] by a technique based in
the perturbative evaluation of the scattering matrix
which had been used in flat backgrounds by Sex! and Ur-
bantke [16] and Starobinsky and Zeldovich [17].

Quantum effects on the geometry, the so-called back-
reaction effect, are more difficult to evaluate because this
requires, on the one hand, the computation of the renor-
malized stress tensor of the quantum field in order to
modify the classical Einstein equations, and on the other
hand, it requires the solution to these semiclassical equa-
tions. It was argued by Zeldovich [9] that the back reac-
tion would tend to dissipate the inhomogeneities as in a
sort of gravitational Lenz’s law effect. This is a mecha-
nism to homogenize the Universe, but it is usually not ad-
vocated because in the standard scenario one assumes
cosmological models which cannot explain the present
large scale homogeneity by any causal mechanism after
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the Planck era; the inflationary scenario, on the other
hand, seems to solve the homogeneity problem quite nat-
urally. It is nevertheless a mechanism for entropy pro-
duction. Early work on the back-reaction effect on the
geometry due to anisotropies was done by Lukash and
Starobinsky [18] and Lukash et al. [19], who assumed
very special conditions near the Planck time, and by Hu
and Parker [11] who considered a Bianchi type I aniso-
tropic model, evaluated the stress tensor in the low-
frequency approximation, and computed the resulting
modified Einstein’s equations numerically. The results of
such work indicate that the dynamical mechanism of par-
ticle production achieves a rapid damping of the anisot-
ropy if the calculations are extrapolated to the Planck
era.

The computation of the quantum stress tensor is gen-
erally difficult in practice. However, for small perturba-
tions on a conformally flat background one may use per-
turbative methods to get explicit expressions. One of the
most powerful and efficient methods and, one that is very
well adapted to a perturbative scheme, is based on the
one-loop order computation of the so-called in-in
effective action for quantum fields interacting with the
gravitational perturbations. This technique is an effective
action technique adapted to compute expectation values
of quantum operators. It was first proposed by
Schwinger [20] and Keldysh [21] and developed by Chou
et al. [22]. Jordan [23] and Calzetta and Hu [24]
developed the technique on a curved background, and it
was then applied to derive the stress tensor of a quantum
scalar field coupled to small anisotropies on a cosmologi-
cal background [24].

The use of effective action methods in the back-
reaction context was first considered by Hartle [25], and
Fischetti, Hartle, and Hu [26] and Hartle and Hu [12]
studied the effect of anisotropies. But in their formalism
the basic element is the usual effective action which is re-
lated to the generating functional of the in-out vacuum
persistence amplitude. This in-out formalism leads to
matrix elements rather than expectation values for the
quantum operators. Thus, one does not get directly from
the in-out effective action the vacuum expectation value
of the stress tensor of the quantum field, and one still
needs to compute the Bogoliubov transformation between
the in and out vacua. This method is, however, very use-
ful for the computation of the particles created, since the
probability amplitude for particle creation is directly re-
lated to the vacuum persistence amplitude.

In this paper we compute the in-in effective action to
the one-loop order for a massless scalar field conformally
coupled to small gravitational perturbations on a spatial-
ly flat FRW background. The in-in effective action is
used to derive the quantum stress tensor and the corre-
sponding semiclassical Einstein’s equations. Our results
generalize the Calzetta and Hu [24] results to the case of
arbitrary small perturbations including inhomogeneities,
and the stress tensor we derive coincides with that ob-
tained by Horowitz and Wald [27], who used an axiomat-
ic approach to derive it, and by Starobinsky [28], who
used a modified Pauli-Villars regularization method [10].
One should stress, however, that the stress tensor com-

puted does not include the energy of the particles created,
which is a second-order correction to the computed
terms. One might wonder that although the energy of
the particles created is small it might have a long-term
cumulative effect.

We should mention that the axiomatic approach to
derive the stress tensor has been quite successful in
several situations. Thus Horowitz [29] obtained the
stress tensor due to a scalar field minimally coupled to ar-
bitrary gravitational linear perturbations on a flat space-
time background applying the axiomatic arguments out-
lined by Wald [30]. This tensor was rederived by Jordan
[31] using the in-in effective action method; note that the
case of conformally coupled fields may also be obtained
from our cosmological model when the conformal factor
is taken constant. Another approach to the quantum
stress tensor based on an iteratively evaluated mode
decomposition was developed by Davies and Unruh [32].

In this paper we shall not consider the solutions to the
semiclassical equations, except in a simple example in-
volving a cosmic string. The correct approach to this
problem is still controversial. In fact, the semiclassical
equations are known to admit runaway solutions as a
consequence of the fact that they are dynamical equa-
tions with higher order derivatives. Horowitz [29] and
Jordan [31] found from these solutions that flat space is
unstable against quantum effects. Whether these solu-
tions are physical and thus signal a true instability, or un-
physical and thus spurious, has been the subject of some
discussion in recent years. Simon [33] has argued that
the semiclassical correction to Einstein’s equations must
be seen as analytic perturbations, in terms of the Planck
constant #, to the classical Einstein’s equations and that,
as such, only solutions which are also analytic in # are
physical. A consistent perturbative approach to find re-
duced equations, i.e., dynamical equations which are
second order at each order of perturbation is known [34].
When this is applied it is found that flat space is pertur-
batively stable to first order in % [33]. Reduced semiclas-
sical equations have been obtained also in some cosmolo-
gies [35]. Suen [36], on the other hand, has argued, on
the basis of how the stress tensor is renormalized, that
this tensor cannot be considered the first term of an ex-
pansion and therefore the previous reduction methods
should not be applied.

In order to make this paper reasonably self-contained
the in-in effective action formulation is summarized in
Sec. II with a view to practical applications. In Sec. III
the in-in effective action to the one-loop order is derived
for a scalar field conformally coupled to a nearly confor-
mally flat metric. Since along this computation one also
derives all the terms needed for the in-out effective ac-
tion, this action is also discussed, and it is used to derive
the probability for pair creation; the results agree with
those obtained by other methods. In Sec. IV the stress
tensor for the quantum field is derived from the in-in
effective action and the semiclassical correction to
Einstein’s equations is written down. The stress tensor is
seen to agree with that obtained by Horowitz and Wald
[27] and Starobinsky [28]. As an exercise the semiclassi-
cal equations in two-dimensional spacetime are also de-
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rived using the same formalism. In Sec. V we apply the
previous formula to compute the stress tensor of a quan-
tum field around a static cosmic string and we discuss the
back-reaction effect on the gravitational field of the
string. Note that since the gravitational field of a cosmic
string can be considered a small perturbation on a flat
background the above perturbative technique (in the
sense of metric perturbations) can be applied. The results
are in agreement with those found by other nonperturba-
tive methods [37,38] but this perturbative method opens
the possibility of computing the quantum stress tensor
even in time-dependent situations. Work along these
lines is in progress.

II. IN-IN FUNCTIONAL FORMALISM

In this section we summarize the in-in functional for-
malism for the evaluation of the in-in effective action
with a view to the applications of this paper. We follow,
essentially, the presentations by Jordan [23], Calzetta and
Hu [24], and Paz [39].

Quantum corrections to a classical field theory can be
studied with the help of the effective action. For simpli-
city, we consider the quantization of a scalar field ¢(x).
The usual in-out effective action is based in the generat-
ing functional W[J] which is related to the vacuum per-
sistence amplitude in the presence of some classical
source J (x) by

e"1=(0,0utlin,0); . (2.1)

This functional carries all the quantum information of
the connected graphs of the theory.

When one couples an external field J(x) it is con-
venient to use the interaction picture in which the states
|#) evolve in time according to the Schrédinger equation
H,;|¢y)=id,|¢), where H, is the interaction Hamiltonian
operator

H,=fd"‘1x J(x)(x) ,

¢(x) is now the field operator in the Heisenberg represen-
tation, and n the number of spacetime dimensions. The
solution of this equation may be formally written as

t
(), =T"exp [i [ "dr By |19,

where T'" is the usual time-ordering operator, and (2.1)
can be written as

(2.2)

e 1=(0,0ut| TWexp 2.3)

i arH, ]Iin,O) .

It is easy to see from the classical field equations for ¢(x)

|

iW[J, ,J_
e +

X {a,T|Texp

i [T dt [dn e, (x)p(x) ]Im,o) ,
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in the presence of J(x) that exp(iW[J]) satisfies the
integro-differential Schwinger-Dyson equation, and that
one may give a path integral representation for its solu-
tion as

W= f$[¢]ei(5[¢]+1¢) , 2.4)
where S[¢] is the classical action of the field theory and
the common shorthand notation J¢ for the integral
f d"x J(x)¢(x) has been used. The functional integral is
taken with the following boundary conditions: ¢—e ¥/,
where w >0, when the time t —* o, i.e., the scalar field
has only negative and positive frequency modes in the in
and out regions, respectively; the interaction is assumed
to be switched off at these asymptotic regions. By
differentiating with respect to the source one generates
matrix elements from W [J]:

swiJ] _ (0,0ut|¢(x)|in,0),
8J(x)  {0,outlin,0),

Il

AR (2.5)
If we assume that the above expression can be reversed,
the effective action is defined as the Legendre transforma-
tion of the generating functional:

Té1=WI[J]-J§ . (2.6)

This functional of ¢ is the generator of the one-particle-
irreducible graphs (graphs that remain connected when
any internal line is cut) and contains all the quantum
corrections to the classical action. From (2.6) one may
derive the dynamical equation for the effective mean field

¢[0], i.e., the matrix element of the field ¢ in the absence
of the source J (x), as

BF[_Q_]
8 [3=310]

which expresses the quantum corrections to the classical
equation as a variational problem of the effective action.
In order to work with expectation values rather than
matrix elements one can define a new generating func-
tional whose dynamics is determined by two different
external classical sources J, and J_, by letting the in
vacuum evolve independently under these sources:

=0, 2.7)

iWiJ, ,J_]
e +

=2<O,in|a,T)JA(a,T|in,O)J+ . (2.8)

Here we have assumed that {|a, T)} is a complete basis
of eigenstates of the field operator ¢(x) at some future
time T, i.e., ¢(T,x)|a,T)=a(x)|a,T). Then (2.8) may
be written according to (2.2) as

]Efda(O,ian(‘”exp [—if_T dtfd"_li_(x)d)(x)]\a,T)

(2.9)
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where 7' and T'® mean, respectively, time and anti-
time ordered-operators and da means da=]][.da(x)
where x are the points of the hypersurface X defined by
t =T. The generating functional has also a path integral
representation

eiW{J+,JV]=fdaf$[¢_]e—i(5[¢,]+J7¢,)

< [t S
with the boundary conditions that ¢ . =¢_=a on = and
that the fields ¢ , and ¢_ are pure negative and pure pos-
itive modes, respectively, in the in region, i.e., ¢ —e Tl
at t— — o (vacuum boundary conditions in the remote
past). In a more compact form one may write

= [DI6,1D[6_]

e SI81HT 8, —S6_1—T ) ,

(2.10)

iw(J ., J_
e +

2.11

where it is understood that the sum is over all fields ¢
and ¢_ with negative and positive frequency modes, re-
spectively, in the remote past but which coincide at time
t =T. These boundary conditions can be made explicit
by substituting m?2 by m2—ie, where m is the field mass,
in S[¢. ] and by substituting m? by m*+ie in S[¢_];
the latter is also sometimes indicated by writing S*[¢_ ]
instead of S [¢_] [24]. This integral can be thought of as
the path sum of two different fields evolving in two
different time branches [40]: one going forward in time
in the presence of J . from the in vacuum to a time t =7,
and the other backward in time in the presence of J_
from the time ¢t =T to the in vacuum, with the constraint
¢, =¢_ on =. Because of such a path-integral represen-
tation, this formalism is often called closed-time path for-
malism.

The functional W{[J,,J_] generates expectation
values of the field rather than matrix elements. For in-
stance, we have

BW[J-F’J—]

2.12
57, (2.12)

J:<o,in|¢(x)|in,0>,z$[ﬂ

Jy=

instead of Eq. (2.5). This functional generates not only
the desired expectation values of time-ordered field
operators but also the anti-time-ordered ones in the same
footing:

8e.'W[J+,J,]
i8J 4 (x) (=8 _(p,) -+ |1 =J=0
=<O,in\ T“’)[d)(yl) e ]T(t)[¢(x1) Ce ]lin,0> .

(2.13)

In analogy with the in-out formalism the in-in effective
action is defined as the Legendre transform of the new
generating functional as

[, ¢ 1=W[J ,J_1—-J, b, +I_¢_, (2.14)

where the external sources are functionals of the fields é.
and ¢ _, through the definitions

8W[J+7J— ]
5.

If

+é (T T 1, (2.15)

which we assume can be reversed.
From the definitions (2.14) and (2.15) we get the equa-
tion for the expectation values ¢..[J . ,J_];, i.e.,

6F[‘$+)$—]
8¢

and by taking J =0 in (2.15) we recover the equation for
the vacuum expectation value of the field

6[0]=¢.[0,0]=(0,in|¢(x)|in,0) ,

8F[$+’$-— ]
86, 4 =8.(0,0)=5(0]

=FJ,, (2.16)

=0. (2.17)

This equation does not follow from a simple variational
principle in terms of a single field ¢: in the in-in action
we have two fields ¢, and ¢_ that are treated indepen-
dently and, only when the sources have been eliminated,
they become the vacuum expectation value. Note also
that I'[¢,4]=0 as a consequence of (2.14) and of the fact
that W[J,J]=0, which follows from (2.8) and the usual
normalization for the states. Equation (2.17) is a dynami-
cal field equation which admits an initial value formula-
tion: the solution ¢[0]=¢,[0,0] is real and causal; i.e.,
the solution at one spacetime point depends only on data
on the past of that point [23].

For a free field theory, i.e., a theory with a quadratic
action, we can compute Wy[J . ,J_] from (2.11), which
becomes now a Gaussian integration for the two indepen-
dent fields ¢, and ¢_. The corresponding propagators
will be determined by the very particular boundary con-
ditions of this problem. In fact, let us assume that the
free action for ¢ . is

Sole 1=~ [d"x 1[3,6,0"6, +(m?—ie)d? ]

and that we have an analogous action S§[¢_] for ¢ _,
then the classical field equations are

(O—m*tie)d%(x)=—J.(x) .

(2.18)
At this stage we can introduce the compact notation

S, ]=S[d]—-S*[6-],

(2.19)
b Jy
b, (x)= 6| J,(x)= —J |
where a and b take the two values + and —, to simplify

the mathematical expressions. The solutions of the clas-
sical field equations, which satisfy the boundary condi-
tions, ¢%—e*®, when t——o with ©>0, and
¢°.(T,x)=¢° (T,x) in the hypersurface 3, which we take
here at t =T — o, can be written as

#2x)=— [d"yGY,(x,9),(») , (2.20)

where G3 (x,y) is the matrix
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AF _A+

A A, (2.21)

defined with the Feynman Ag, Dyson A, and the posi-
tive AT, and negative A~ Wightman functions:

d" eip~(x—-y)
Aplx —y)=— [ LB 0
FEY (2m)" p*4+m?—ie
dnp eip-(x—y)
A —y)=— , (2.22)
plx =y f(21r)” ptm2+ie

A¥(x —y)=(2m) [ R e ep2Em 0T )
m

These propagators are solutions of the equations
9GS (x,9)=8"x —y)8,, , (2.23)
is the diagonal matrix defined by

(2.24)

where the operator 42
=diag[(O—m?2+ie), —(O—m2—ie)] .

Furthermore, the Feynman and Dyson Green’s functions
have a mode decomposition:

Ap(x —y)=0(x"—y°)A ™ (x —y)—0(y°—x")A*(x —y),
(2.25)
Ap(x —p)=0(x—y")AT(x —y)—O8(y°—x")A " (x —y),

which reflect the boundary conditions imposed over each
classical field solution ¢2(x) because the Green’s func-
tions

Aj:(x _y)~ej:ia)'(x0—'y0)

correspond to negative and positive frequency modes, re-

spectively (here o=V p?+m?). Note that it is also
satisfied that

9,4%(T,x)=09,¢°(T,x)

at =. With these propagators to guarantee the boundary
conditions the Gaussian integration of (2.11) for a free

J

field is

WolJ, ]———fd "x d"J,(x)Go(x —yW,(y),  (2.26)

where a term independent of J, has been discarded to
satisfy W,[J,J]=0, and one can use now (2.13) to gen-
erate time-ordered and anti-time-ordered expectation
values of field operators. In particular, we have that

(0,in| TW¢(x)d(p)|in,0) =iAp(x —y) ,
(0,in| T'9¢(x)¢(y)|in,0) = —iAp(x —y) ,
(0,in|¢(y)p(x)|in,0) = —iA T (y —x)

(2.27)

=iA"(x —y).
For interacting fields one can proceed as usual by writ-
ing
5
idJ,

eiW[J"]=exp 'fd"x Line Wolla] , (2.28)

where we have separated the Lagrangian into a free and
an interacting part, L=.L,+.L;,. Then one may contin-
ue in the usual perturbative fashion; however, we are not
going to consider self-interacting theories in this paper;
the only interaction will be with the gravitational field.

Let us now proceed to the main objective, namely, the
evaluation of the effective action I'[¢,] up to the one
loop order, which corresponds to the first order expan-
sion of W[J,] in powers of #i. As usual [41], if we as-
sume that the action is bounded from above then we can
go to Euclidean space and solve (2.11) by the steepest des-
cent method; we keep, however, the Minkowskian nota-
tion. Let us denote by ¢'?(x) and ¢'”(x) the solutions of
the classical field equations which may, or may not, in-
clude self-interactions,

5@9[¢(0)]

¢‘°’(x =—J,(x),

(2.29)

and let us expand the exponent in (2.11) about these back-
ground fields:

Slda 1+ [d"x J,(x)¢,(x)= S[$P1+ [d"x J,(x)$(x)
+3 f d"x d"y [$,(x) = $000 ] Aoy (2.2 $s =GP+ -+, 2.30)
[
where A, _(x,y)=A4_,(x,y)=0
8% [¢.1] Substituting this into (2.11) the integration is now Gauss-
Ay (xy)= ————-Sd: ()5, () |6, =¢® ian and we can write, to this one-loop order,
+ + + - P+
i iw'0)
825*[4_] (2.31 AL 4 “"][detA,,,,(x,y)]"/z (2.32)
A__(xyp)=—|———T— ,
(%) 8_(x)8_(p) |6_=4© where

and, of course,

WO =861+ [d"x 1,6 .
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In terms of the propagator G, which is a functional of the
background fields ¢”(x) and takes a 2X2 matrix form,
i.e., G(x,y)= A4 "x,y), we can write (2.32) as
WI(J,1=WOLJ, ]—éTr(lnG) : (2.33)
The effective action, which is a functional of $a, can
now be explicitly found to the same order. Using (2.14),
(2.15), and the fact that ¢, differs from ¢'* by a term of
order # we can show that

WL, 1~8[8, 1+ [d"x .4, ,
so that finally we have

Ié,]1=8[d, ]—-éTr(lnG) . (2.34)

Now the equations for ¢, can be deduced from (2.16)
using the explicit functional dependence on the fields
given by (2.34). However, we should note from (2.17)
that in order to get the field equations for the expectation
value of ¢(x) we only need the explicit dependence of the
effective action on one of the fields ¢, or ¢_. Therefore,
we are only interested in the dependence of (2.34) on ¢,
for example. Following Paz [39] we can write

[Tr(InG)]

8¢, (x)

5
= [dydzG,yz,y)—2—
JdydzGuylzy 58 (x)

()
=—|dydzG,,(z,p)—
f Y ++12,) 5., (x)

)
=— Tr(lnG . )],
8¢+(x)[ ++)]

Gp,'(2,y)

Gil(zy)

(2.35)

where we have used that G_,,'= A4, is diagonal, see
(2.31). Thus we have
F[$+,$_]zS[$+]—éTr(lnG++ +F | (2.36)

where F includes all the terms which do not contribute to
the variation of the field ¢, i.e., 8F/8¢+(x)|$+=$=0.

This expression is very similar to the one-loop in-out
effective action, which is given by the above equation
(2.36), where G, , is substituted by the Feynman propa-
gator A, the main difference is in the boundary condi-
tions: the propagator G, . is defined as an expectation
value and not as an in-out matrix element.

This formalism can be extended to curved spacetimes
without difficulties assuming that the spacetime is global-
ly hyperbolic [23]. The hypersurfaces of constant time

_

- - i

L4061~ S[¢+]—5TY(IHG‘1+ )+F

+éTr( vOGS  +vP6%  —v V6% VPG, +v 6L _vh6o  + ).

are now Cauchy hypersurfaces and the in and out states
are defined in the Cauchy hypersurfaces corresponding to
the far past and far future, respectively. Now the space-
time integrals must be performed with the volume ele-
ment d"xV' —g where 8uv is the spacetime metric. The
above expressions (2.20), (2.23), and (2.36) are still valid
except that now the Feyman, Dyson, and Wightman
functions have a different representation to that of (2.22).
If the spacetime is asymptotically flat in the in and out
regions the previous boundary conditions for the fields
#%(x) will also apply; if not, in order to be able to define
physically meaningful in and out vacua we must assume
that we are still able to define positive and negative fre-
quency solutions in the asymptotic regions. This is al-
ways possible, for instance, if the asymptotic regions ad-
mit approximate timelike Killing fields. But, generally,
in a curved spacetime the in and out vacua are not
equivalent. Jordan [23] has shown that for quantum sca-
lar fields in a curved spacetime the field equations are real
and causal up to the two-loop order and he has also
checked the unitarity of the formalism restricted to vacu-
um states.

Before ending this section let us rewrite (2.36) in a
more convenient form for us. In general, the propagator
G ., cannot be found exactly and has to be evaluated
perturbatively. For instance, in the next section we will
take perturbations 4,,(x) to a given background metric
and only the exact propagator corresponding to the back-

ground is known. Thus we write
Ay =A% +VEP+VP+ ), (2.37)

where A2, is the unperturbed (diagonal) operator whose

propagator GJ, is known,
A2G4=5,, , (2.38)

and the diagonal operators V)’ +V 2+ - - - contain the
perturbative terms (in the next section they will corre-
spond to perturbations of order |&,,| and |k, |, respec-
tively). We can write

Gu=GY ~GLUY+ VG + - 6y
= G4, ~GLVLYGS, ~ GL VG
+GoLVGGLV G+ -+, (2.39)
where the products are operator products. In particular,
G, =G%, —G%.Vy'G)y =G, ViyGy+

+G% VG VIGY, + -+, (2.40)

expanding the logarithmic term in (2.36) and using that
A% . G% _ =0, we finally get

(2.41)



49 SEMICLASSICAL EQUATIONS FOR WEAKLY INHOMOGENEOUS . ..

where we have defined V¥ =¥, and V! =—-v"_ fol-
lowing (2.31). Note that if it were not for the last term
which involves the propagator G _ this expression for
the in-in effective action would agree with the in-out
effective action which involves only one field ¢(x); see,
for instance, Hartle and Hu [12]. Therefore, the term
containing the propagator G% _ is the only new term that
contributes to the field equation for ¢ (x). It can be seen
[39] that the effect of the last term in (2.41) is to make the
field equation for ¢(x) causal: if one takes the derivative
of the in-in effective action with respect to ¢, (x) and
puts ¢ . =¢_ =¢, the resulting field equation is causal.
Notice that in the case of a free scalar field on a nearly
flat background the propagator GJ, which solves (2.38),
corresponding to the flat background, and which pro-
vides the boundary conditions of the in-in problem is sim-
ply given by G% , =A;,G% _=—Ap,, G =A", and
G% _=—A", as can be seen from (2.23). In fact, from
(2.31) A%is, in this case, the operator defined in (2.24).

III. IN-IN EFFECTIVE ACTION

In this section we compute the in-in effective action
(2.41) for a conformal field in a nearly conformally flat
spacetime. The cosmological background consists of a
spatially flat homogeneous FRW with small perturba-
tions as

g (x)=a’(n)[n,,+h,,(x)] . (3.1)

where a (7)=exp[w(n)] is the conformal factor, 7 is the
conformal time dp=dt /a, t is the cosmological time, and
h,,(x) is a symmetric tensor representing arbitrary small
perturbations; we take the metric signature (—+ - -+ +).
The classical action for a free (i.e., with no self-
interactions) massless conformally coupled scalar field
®(x) is given by

2, b]= —%fd"x\/—_g' [243,80,0+EmR D],

(3.2)

where £(n)=n —2/4(n —1), R is the Ricci scalar for the
metric g,,, and we take the spacetime dimensions n arbi-
trary for the moment in view of dimensional regulariza-
tion. Because of the conformal coupling one may simpli-
fy the problem by defining a new matter field ¢(x) and a
new metric g,,,(x) as

n—2
2

d(x)=exp o(n) |P(x),

(3.3)
8 (X)=my, th, (x) .

1 _ n—4
TenGy X )

Se[8u 1= [d™x[—g(x)]'"2

+_F’__.__ R" R‘yvaﬁ _R- R”v
2880172(n—4)[ uvap(¥) (x)— R, (x)R*(x)] |,
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Then the action (3.2), after integration by parts and as-
suming no contributions of the surface integrals, is
equivalent to the action for the field ¢(x) in the nearly
flat metric g,

Sulgud]=—5 [ 4"V =g (873,43, +EMR ],

(3.4)

where R is the Ricci scalar for the metric g,,(x). There-
fore, the problem has been reduced to that of a scalar
field ¢(x) in a nearly flat background. We must keep in
mind that the physical field is ®(x), but the fact that the
two fields differ by just a power of the conformal factor,
which is a function of time only, considerably simplifies
the connection between the vacua of the two fields. For
instance, a positive frequency mode in flat space will cor-
respond to a positive frequency mode in the conformally
related space. Since for a free field in flat space the in and
out vacua are equivalent (there is no particle creation) the
same is true for the vacua of the conformal field in the
conformally flat background. As a consequence nontrivi-
al quantum effects can be produced only by the breaking
of conformal flatness which in this case is due to the cou-
pling of the quantum field with the gravitational pertur-
bations. The above action can be expanded in terms of
these perturbations as

St 1=SO181+ S S, 6] , (3.5)

n=1

where the first term is simply the action for the field ¢ in
flat spacetime, and the higher perturbative terms carry all
the information on the interaction with the perturbations.

Since we are interested in deriving the semiclassical
correction to Einstein’s equations due to the quantum
effect of the scalar field but keeping the gravitational field
as classical, we have to add to the effective action I, (m
stands for matter fields), the classical action of the gravi-
tational field S,[g,,]. We should also add the action of
any other classical source but we shall ignore this for sim-
plicity; note that its effects on the semiclassical equations
may be taken into account by simply adding the corre-
sponding classical stress tensor to the quantum stress ten-
sor. Furthermore, in order to renormalize the effective
action it is sufficient to add to the usual Einstein’s action.
terms quadratic in the Riemann tensor:

(3.6)
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where y is an arbitrary mass scale which will be useful in
dimensional regularization. The quadratic terms with
poles at n =4 are those which are necessary to cancel the
divergencies of I',,,; notice that with this election one ob-
tains the correct trace anomaly.

Following the previous section we introduce now two
fields ¢ . (x) and ¢_(x) that, at some future hypersurface
3, coincide: ¢, (x)=¢ _(x). Since the scalar field is
proved by the gravitational field we must assume that the
two fields evolve in two different geometries g uv( x) and
8,.v(x), respectively, where gw,( x)= 17’“,+h (x), and
since we assume that the fields have no interaction other
than the gravitational we need not introduce the classical
external currents J.(x). Thus we shall write the total
in-in effective action for the gravitational and the matter
fields as

r(ii)[m’hpivizsg[wah+ ]_S [myh;v]
F [ 'LLV’¢+1 uv’¢ ] > (37)
where I, [h ”V,¢+, uvs® ] contains the quantum effects

of the scalar field.

Following Eq. (2.41), we write ", in a perturbative ex-
pansion in h,, as I, =T WDy p24 ... and write
only the terms Wthh contribute to the variation of A o
Wthh are also those which contribute to the variation of
¢+ Thus we can write, F‘O)—S(O +r'

(ii)
T —S“)-i-FH , and I"(,Z,),_S(2 +T'?, where

F‘,S’[$+]=S,‘,,°’[<$+]—iTr(lnGO++ )

Lok, 6, 1= “[¢+]+ TrV 'GPy, (3.8)
ﬂ”wﬂa¢+]=sxi$+y+§TﬂVQG&+>

= TGS 6 )
i
+ —2—Tr( oG _vihGo ).

To compute ¥V and V'? we use (2.31) and (2.37) and ex-
pand S,,[¢] as in (3.5):

SO ———fd "x (18,6 9,6] » (3.9)
(l)¢2] ,

(3.10)

s,‘,,“[hw,¢]=—2—fd"x[Eﬂva#¢av¢—§(n>1z

S\ hr$]= =3 [d"x[F#3,63.6

uv?
+&(n)(RP+LhR V)],
(3.11)
where h,, =h,, —Lhy,,
ﬁ,uv Ehuahav*%hh#v-*-’z‘;'h Zn#v_%haﬂh aﬁn#" ’

and R‘" and R‘? are the first- and second-order terms,
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respectively, of the scalar curvature [see Eq. (B9) from
the Appendix]. From these expressions one gets the
operators A°, V“), and V? by differentiation with
respect to the field ¢(x

A% (x)=0¢(x) , (3.12)
V(x)e(x)=—{ [3,h*(x)]3,+h*"(x)d,3,
+&nRMg(x) (3.13)
VP(x)p(x)=1{ [38,h*"(x)]13,+h*"(x)3,9,
—&m(RP+LIhRM)}(x) . (3.14)

The explicit form of the operator ¥'?) will not be needed,
however. Now we can write the propagator, from (3.12),
as

d"k eik‘(x—x’)
Qm)" ki—ie

G 4 (x,x ) =Ap(x,x")=— [ . (3.19)

recall that this is the propagator for the field ¢(x); the
propagator for the physical field ®(x) is related to this by
the conformal factor [13], but we do not need it here. All
we need to know is that the boundary conditions for the
physical field are determined by the boundary conditions
of ¢(x) in flat space.

The effective action depends on the fields ¢, and the
metric perturbatlons h*. We may obtain the equation
for the field ¢(x) (field equation) by functional derivation
with respect to ¢, i.e., Eq. (2.17), and the equations for
the metric perturbations (back-reaction equations) by
functional derivation with respect to h:v. Our primary
interest is to obtain the back-reaction equations. From
Eq. (2.17) one can see that the vacuum expectation value

$=(0,in|¢|in,0) =0 (h

(it would be zero in flat space), and thus the contribution
to the back-reaction equations coming from the matter
action term will be at least of second order in the pertur-
bations when the field equations are substituted. Formal-
ly, one can compute the effective action as a functional of
h * only, and thus, the terms involving the field
¢+ (S[$, ]) are not necessary.

We can now compute each of the (dlvergent) terms
(3.8). As it is well known the first term T'\0’ is easily re-
normalized by adding a suitable counterterm that cancels
the divergencies which lead to the conformal anomaly
[13,26], but, this term does not play any role in the stress
tensor of the field because it is independent of hy.

We can now go to the next term in (3.8), T'{l), but this
formally divergent (tadpole) term has no contribution,
since Tr(V'P’GY% | ) involves n-dimensional integrals of
the form 1/k?, k /k2 and k kﬂ/k2 (where k, is the in-
tegration momentum variable), which are 1dentically zero
in dimensional regularization [42]. Therefore, there is no
term linear in h,, in the effective action; i.e., we have
1"(1)_0

The first nontrivial quantum contributions to the stress
tensor coming from I',, are quadratic in 4, and we thus
need to compute I''?). Here again the second (tadpole)
term in (3.8), Tr(V'?)G% ), gives no contribution in di-
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mensional regularization, since the typical integrals are of
the same type that those of Tr(V''G%,). For this
re(azs)on we do not need the explicit form of the operator
| 408

The problem is thus reduced to the evaluation of the
third and fourth terms in (3.8). As we have stressed in
Sec. II the third term also appears in the evaluation of

i
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the in-out effective action and the fourth term is typical
of the in-in contribution to this order. Let us evaluate
the third term, i.e.,
i
Ty == TrVP6% V6% )

(recall that G% , =Aj, with m =0):

T1=—Zfd"x d”x'V(l)(x)AF(x,x')Vﬂl)(x')AF(x',x)
=1 n, gns [ _d'p d"q v Fuy n elqx—x")
" Jdmx d"x par—— ([8,AK(x)]8,+h"(x)3,3,+E(n)R (x);—-——qz_ie
— — ip-(x'—x)
X [ {[8,7%(x")]195+hP(x" 3,35+ EmR P (x')} £ p— ] . (3.16)
pe—i

We now introduce the projector P¥*=5*—p#p”/p?, the symbol 7***#, (F’”En““"ﬂhaﬁ), change the p integration by

p'=q —p, rename p’ as p again, and write T, as

n .
Ty=—i [d" d" h,(0h Zp) [ L giptx =y Ruvab(p)

(2m)"

Rrobp)=L 4 !
P 4'[ Q2m)" (g*—ie)[(p —q)*—ie]

(3.17)

[77™(q ~p)ya,— Emp PP\ Pq —phg, —E(n)p*P] .

The momentum integrals can be computed in the standard way (see Appendix D), and expanding around n =4 we get,

after a rather long calculation,

1.(p) _
Ruvad(p)="2 1 4;(‘: (3PH8 V"—P‘“’P"‘B)+QIE‘—Q[8(P‘“'P°’B—3P"BP"“)+5P“"P"”]+O(n -4y, (3.18)
where
. 2.
L= Ly Ly |22 o —4) (3.19)
877’2 n—4 2 'u,(z)

We now introduce the projector P¥*=n*"—pFp*/p?, the symbol 7**%# (h#¥=nra"Pp ag)> change the p integration by

p'=q —p, rename p' as p again, and write T, as

. a 1
Tv=—3|——; Jd*x[3R }ap
— [d*xd*% 3R},
where
Ki(x—y;p )E—if—L‘i4 eiotx g [R27HE
1 Y 4] 2 (217_)4 ,LL% 3
(3.21)

and a=(28807%)!. Note that the divergent terms with
a pole at n =4 are local and quadratic in the curvature.
They may be compensated by counterterms in the gravi-
tational part of the action S;* coming from (3.6). Recall

(x)R *#B(y)—R *(x)R T (») 1K (x —y;ug)+0(n —4) |,

(OR *9B(x)— R +2x) ]+ 3 [ d*x R *x)

(3.20)

r

that the curvature terms here depend on the metric g,,,
rather than the physical metric g,
Let us compute now the fourth term of I'?), i.e.,

T,= -;—Tr( vOGY _yWG ),

which depends on the propagators G%_ =—A" and
G° . =A", represented in (2.22) with m =0. We can
write
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Tzz—é'fd"xd"x'V‘+“(x)A+(x,x')V‘1)(x')A—(x',x>
—2ir?) [d"x d"x' [ -—Ln(‘; 2-5(47)6(—q°)8(p)8(p°){[8,A (x) 10, + h#(x)3,3,+E(mR P (x)}e 4"x "
X {[3,hB(x")10p+h%(x")0,0p+E(n)R D (x")je? X' —x) (3.22)

changing the integration variable from p to ¢ —p as in the previous case we can write

=—817r2fd "x d yh+(x) BW) __& ip+(x prvaB(p)

(2m)"
(3.23)
Lrveb(p)= if (‘21 L-5((p —91)8(g°—p*)8(g)6( —q°)[n*“™(q —p) 4. — Emp P ][ *P(q —p)ag, — E(n)p*P] .
f
After' performing the phase-spact? integrations. and ex- ____f d*x d*[3R ;waB(x)R “wvaB(y)— R *(x)R ~(y)]
panding around n =4 (see Appendix D), we obtain
4 XK,(x —y)+0(n—4) (3.26)
~ p'Lp) 21X Y ’
Lwe(p)=—""—[(3P*P**—P*P)+0(n —4)],
P 1440 [ ] where
(3.24) 4
Kyx —p)=—~ [ APt —romi)o—p2)o(—p°) |
where 29 (2m)
: . (3.27)
- —2\9( — 0 -
Lp)= 872 2, 0(7p0(=p)+0(n=4) |, (325 Here again the Riemann components refer to the metric
8y~ We now have '2=T,+ T, which must be renor-
which has no poles at n =4, therefore the term T, re- malized by adding the gravitational action up to the
quires no counterterms in the action to be renormalized. second order in h,,. The explicit expansion of S, in
Using the expressions of the Riemann components in (3.6), up to this order in terms of the curvature com-
terms of P, (see Appendix B 2) we get ponents of the metric g, is
J
5 1=90 1 ¢y ¢(2)
S8y 1=Sg +8, ' +8,7+
= L [a%[—g(x)]"2%[R (x)+60,0" ]+ 5 [ d*X [3R 1yep(x)R*Px) —R(x)]
167Gy i 4(n—4) uvels
+a [ d* [Ryqs(x)R*(x) =R, (x)R*(x)]In(ue®)
+a [dx[—g(x)]'[2R*0,,0,,+RO,0—40,0)0,,0" —3(0,0) 20,0 ]+0(n —4) (3.28)

where we have dropped the plus sign on the fields for simplicity. Finally adding these terms to I',, and including only
the terms which contribute to the variation of &, + we get the renormalized effective action

R (x) a5 =
4 ~+ 172 — + +
r3lwhf]= [dix[—g7(x)] oGy 12K R

+2a [d*%[—g ()]G (x)w,,0,,+0,0(0,0")+ Ho,wH)]

+a [dix[—g T (][R Lap(x)R T#Bx) =R [ (0)R T (x) Jalx)

+ o [dtxdy[—g T (0] =g TN B3R Lap(xIR T Pp) =R TR T ()IK (x —y3A)

+ 5 [dx dy [ =g " (012 ~g (1] 23R frupOR P =R TR (K (x =)+ O hL,)

(3.29)
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where i=pp, and we have substituted 1 by the volume
densities V' —g in all the integrals involving quadratic
curvature terms of the metric g, in order to facilitate the
identification of the exact variational formulas of the Ap-
pendix E needed in the computations of the next section.

If one is just interested in the production of particles,
the in-in effective action is not the most direct approach
because the probability of particle creation is related to
the transition amplitude from the in to the out vacua, and
this amplitude is directly related to the in-out effective
action [25]. Let us write the vacuum persistence ampli-
tude in the presence of an external source, i.e.,

(0,0ut|in,0) ; =exp(iW[J]) .

The probability of pair creation is proportional to the
imaginary part of W,

P=2ImW ,

but if we take J =0 and consider the quantum fields
propagating in the gravitational background, then W is
just the in-out effective action: I'(,,. The calculations
leading to such an action are similar to those for the in-in
case, although they are simpler because we do not need to
introduce two fields. The main work has already been
done: consider just a single field in (3.8) and ignore the
term T,. The renormalized action is obtained again by
adding the gravitational action (3.28), the final result can
be read directly from (3.29): ignore the plus indices and
the term involving K,(x —y). The nonlocal term now in-
cludes K,(x —y ;) only, this term is complex and it is
responsible for the particle creation effect. It turns out
that the pair creation probability is given, however, by a
local term as is well known [15,25]. In fact, the imagi-
nary part of the kernel K{(x —y ;) is

T (AP ptxrig—p2) .

2 Ok (3.30)

ImK | (x —y;p)=

From the expression for I';,, and (3.30), after performing
the x and y integrations which lead to the Fourier trans-
form of the curvature tensor, R ,,,5(p), we get

—aR (O)Cpavﬁ + == 3a
2

where G*¥(x) is the Einstein’s tensor, C**"8(x) Weyl’s
tensor, B#¥(x) and 4""(x) are the exact spacetime ten-
sors given by the variation of f d*x R*x) and
f d*x C ”avBC‘“’"B, respectively (see Appendix E 2 and use
that C,,,zC**P=R, zR**P—2R ,R*+1R?), with
respect to an arbitrary metric g ,W(x)

P=2ImT
a"f o )4[3RW,B (p)R™(—p)—R (p)R (—p)]
X6(—p?) . (3.31)

Finally, using that the Gauss-Bonnet topological invari-

ant is zero, the above relation can be written in terms of

the Fourier transform of the Weyl tensor of the physical

metric g, as
_ 1

9607 (3.32)

(27 )4 |CyvaB p)l o( _p o( PO) ’
in agreement with the expressions computed by other
means [15].

IV. SEMICLASSICAL EQUATIONS

In this section we obtain the quantum-mechanically
corrected Einstein’s equations due to the presence of a
massless conformal scalar quantum field. The semiclassi-
cal equations for the metric perturbation can be found by
functional differentiation of the in-in effective action
(3.29) w1th respect to h+ (x) and then restricting
hl(x)=h_, uv(X) »(x), as

uv
J“’_”_]

Sh#v( x) ht=h

,u

=0. (4.1)

nv

From Eq. (4.1) it is easy to derive the equations of
motion to first order; we use that, for an arbitrary func-
tional 4(g,, ],

84[0,8,,) o 4[]

oMY e , 4.2)
V' —g dg,, V' —g8g,,

to find the variation of the first two terms of (3.29). No-
tice that we assume that w(x) is a scalar function in-
dependent of the metric [in general, we will assume that
w(x) depends on the spacetime point only, in particular,
in the flat FRW case it will be a function of the cosmo-
logical time ¢ only].

Using the expressions listed in the Appendix E one can
show that the semiclassical equations can be written as

[ HCEP o) ot [d'y ABS(H (x —y;i) | +0(h2,)=0, (43)

B"(x)=1g"R*—2RR* +2R* —2g"O0,R ,

AM(x)= 1ghCp,, C¥PP7 —RHBPRY o +4RFR
—2RR*—20,R*+21R*+1ghO.R ,

and H"¥(x) is the spacetime tensor defined by
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H"(x)=—R“R,"+IRR"+1gh"R zRP—1giR? .

In Eq. (4.3) we are only interested in the expressions of
these tensors up to first order in the perturbations, as in-

H(x —y;p)=K,(x —y;p)tK,(x —y)

dicated by the bracketed subindices and we recall that an
over tilde on the tensors refer to the physical metric. The
nonlocal part H(x —y;f) is the sum of the integrals
(3.21) and (3.27):

__1rd% pi-p p’—ie - 2 0
= —‘Z'I—(me P Y 11n ﬁz +2mi)6(—p )6(—p~) |, (4.4)
which can be simplified to
H(x —y'ﬁ)z—lf—p—d‘t e x=¥ I1n 1p?l +i7r6(—p2)sgn(—p°)] 4.5)
’ 27 (2m)t i’ | ’
f
by using also notice that H(x —y;u) differs from that defined by
- Horowitz [29] by a factor (1/4).
In(£i )=J_ri7 Equations (4.3) are dynamical equations with higher-
order derivative terms. When the background is flat they
g reduce to the field equations studied by Horowitz [29]
an

lim In(e+ix)=In|x| +sgn(x)i= .
e—0 2

Note that this equation is real, in spite of appearances,
because the imaginary part of the integrand is an odd
term with respect to the integration variable p*. One can

and Jordan [31]. As we have noted in the previous sec-
tion one can add a classical stress matter source to these
field equations.

To compare the functional method used in this paper
with other techniques and, in particular, to compare Egs.
(3.29) and (4.3) with previous results one can give, for ex-
ample, the energy-momentum tensor of the quantum field
and the expression of the semiclassical equations in two
dimensions.

A. Stress tensor to first order

From (4.3) one can read the zero and first order vacuum expectation value of the energy-momentum tensor of the sca-

lar field:

(Tt))=alHI— LB ,

(T#))=a | (HE—2RYCHP)— LB +3e % | —4(C

The stress tensor to first order in 4, (T1})), is in agree-
ment with that obtained by Horowitz and Wald [27] and
Starobinsky [28]. On the other hand, the zeroth-order
tensor { T4)), which gives the exact stress tensor for a
conformal scalar field in a conformally flat spacetime,
agrees with that found by other techniques [13,43]. Note
also that we recover the trace anomaly result to this or-
derin
(Th)Y=(Tf), ) +{(TH),, ) +O(h},)
=a[0,R+(R*R,,—1R")]+0(h},) . 4.8

A comment on the computed stress tensor is now in or-

KB ) oot [dy ABY () H (x —y;ﬁ)” .

(4.6)

4.7)

der. As we have emphasized in the introduction the
stress tensor to first order in 4, does not include the en-
ergy of the particles created [27]. The reason is that to
the lowest order the energy would appear in the expecta-
tion value of the in vacuum ¢ T“V) in terms such as

(0,inout,2){2,0ut| T, [out,2)(2,0ut|in,0) ,

but the scattering matrix that gives the transition from
the in vacuum to the two out particle states is first order
in h,,. As a consequence, if we want to include the ener-
gy of the particles created consistently in the semiclassi-
cal correction we should compute T#v) to second order
in h,,, of course such computation would include also
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vacuum polarization effects to second order in 4 ,,.

This does not mean that the stress tensor (4.7) does not
include particle creation effects. This should be clear
from the fact that the in-in effective action, as we have
seen, includes the in-out effective action which leads
directly to the probability of pair creation. More impor-
tant, Calzetta and Hu [24,44] have argued that such
effects are in the nonlocal terms of (4.7), by showing that
the energy dissipated by such nonlocal terms is the ener-
gy carried away by the created particles.

B. Two-dimensional gravity

As an exercise we will derive here the semiclassical
corrections to the stress tensor of the scalar field in two
spacetime dimensions. At the classical level there is no
dynamics for the gravitational field in two dimensions be-
cause the Einstein tensor is identically zero, but the semi-
classical corrections due to the presence of a quantum
field lead to nontrivial effects. Since we have worked in n
dimensions in order to use dimensional regularization, we
can use most of the work done in the previous section to
analyze the two-dimensional (2D) case. From Egs. (3.17)
and Appendix D it is not difficult to show that

(12D) q
kﬁ},,?,};(q):—gr(n —2)q4P,wPaB+0((n =27,
(4.9)
2o,k 1= 1 fdzx[—g(x)]m(R —20,0)

167Gy

1
~ 567 ] *x Ay [—g ()] 1—g 1] R AP (x =R () +O (k) .

The stress tensor of the quantum field can be obtained
from the second term of the above equation by
differentiating with respect to the metric. To order zero
in the perturbation the energy-momentum tensor van-
ishes, but to first order there is a nonlocal contribution,

v —_ 1 v a 4
(THy(x))P=—— [ d’ [1#"R ;*—R*]

XAFP(x —p)+O(hL,), (4.14)

and the trace is local

(TH),(x))®P'=R /(24m)+0(h},) ,

as expected [13]. Note that in two dimensions there is no
difference between the in-out and the in-in effective ac-
tions; thus, the use of the usual in-out effective action to
derive the semiclassical equations is justified.
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where

1 1 1Y 410m-2)

I(2D)( )=
v m(q’—ie) |n—2 2

(4.10)

Then, the in-out contribution to the effective action T,
becomes

__ 1 2. 52 @2D), _
T,= 961dexdyR(x)AF (x=yR(y), @411

where A(2 )(x —y) is the Feynman propa ator in two di-
F y g
mensions:

d2q eiq-(x —y)

(2m)? q’—ie

AP (x —p)=— [ 4.12)

From Eq. (3.23) it is straightforward to see that there is
no contribution to the effective action due to the typical
in-in term T,. Quantum corrections appear to be nonlo-
cal and quadratic in the scalar curvature, but contrary to
the four-dimensional case there are no divergent terms in
the regularization process and counteraction terms are
not needed. Finally, one can express the effective action
to one loop as

(4.13)

V. BACK REACTION ON THE FIELD
OF A STATIC COSMIC STRING

In this section, as a simple example, we discuss the
back reaction due to one loop quantum effects on the
gravitational field of a static cosmic string. First, we
must compute the vacuum expectation value of the stress
tensor of a conformally coupled massless scalar quantum
field outside the core of a straight and static cosmic
string.

In the weak field approximation the metric of a cosmic
string can be seen as a small perturbation about flat
space:

guv(X)=m,,+h,(x) . (5.1)
Let T*" be the stress tensor of a cosmic string (or of any

other classical source); the semiclassical equations up to
first order in the perturbation can be written as

G (x)=8mGy[TH(x)+ (T (x))+0(h},)] . (5.2)
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There is no zero-order correction { T4y, ) to the classical
Einstein equations because the background is flat; see
(4.6). The vacuum expectation value (T#{)) is obtained
from Eq. (4.7) when the conformal function is ©=0. We
have

(Ty(x))=— By x)+3a [d'y Hx —yim AL (),

(5.3)
where
B (x)=27"G," =26,

5.4
At (x)= -—ZG‘”,a"—§Ga“"”+%n’”GaaﬁB . e
Note that the quantum correction term (7)) depends
on the Einstein tensor G*"; thus, one may use Einstein’s
equations to the classical order, which is already first or-
der in h,,, to substitute G*” by 87Gy T¢". This simplifies
considerably the problem since the explicit gravitational
field of the string (or the classical source) is not required
to compute { T/ ).
The stress tensor of a static cosmic string along the z
axis can be written in the thin line approximation as

T, (x,y)=—pd(x)d(y)diag(1,0,0,1) , (5.5)
J
-T,—T, 0 0
4 e 87Gy 0 2T, 2T,
(Dp 3 0 —2T,. 2T,
0 0 0 —T

The nonlocal term H(x —y;i) in Eq. (5.3) can be ex-
pressed as a 8§ function; following Jordan [31] we can
write

H(x—y;p)=———8T(x —p)?] .

7
. (5.7

Introducing these expressions into (5.3), we may per-
form the space integrations; this is easy due to the pres-
ence of the § functions. In fact, as an example, let us
compute the xy component of the stress tensor,
(T»)=(T,*), to first order in Gyu. The only contribu-

tion to this component comes from
A= —16mGyT ,, /3 =27Gypd'(x)8'(y)/3:
(T?)=3a [d*'H(x —x’;5) A, (x")
3a rer , /
=—?;fd4x 8[(x —x" )] A (x) . (5.8)
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where p is the mass per unit length of the string. Since
Gyu~107° for grand unified theory (GUT) strings we
can assume that Gyu <<1 and the linear approximation
(5.1) is justified. In fact, ignoring quantum effects the
stress tensor (5.5) leads in the linear approximation to the
conical metric with a deficit angle of 87Gypu [45].

Equations (5.4) can be expressed in terms of the string
stress tensor and its trace

T=T.=—2ub(x)8(y) ,

as
B 1), (x)=167Gy(8,'T ,°—T "),

(5.6)
A(])”V(x):Sﬂ'GN( _2T#V’aa_%‘T”uv+%6#vT,aa) .

In this case, B (;),"(x) in (5.3) gives no contribution out-
side the core of the string because it is proportional to
partial derivatives of a 8 function with support on the z
axis. The tensor components A;),"(x), in the Min-
kowskian coordinates (t,x,y,z) in which Eq. (5.1) is given,
are

This expression can be written as

3a M d ’ ’ ’
(Txy>=-2;llir(r)x_ Hfd“x S(x"2—A) A 1) Y (xH+xH)
(5.9)
where A4 ;) 7(x'#+x*) is now
) 327 Jd 0
Aqpx+xt)= == Ontox ay
X[8(x"+x)8(y'+y)] . (5.10)

Following straightforward steps,
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2—)8(x"+x)8(y'+y)

(5.11)

(T,”)=16aGyp a—ai Jim_ T3 Jatesix
=16aGyu aiai Rar a7y W ka x/m ‘
=tsaGugo ||, Gy
=32aGyu #

The remaining non-null components of the stress tensor
in Minkowskian coordinates to the same order Gypu are

2 2
_ y =3
(Tyy>—32aGNy, m ,
xy = x?—3y?
<Tx )—32aGN,u m (5.12)

T,)=(T,") =326y | ———5
< I> < z> aGyu (x2+y2)2

Because of the cylindrical symmetry of the problem it is
better to express this tensor components in polar coordi-
nates as

(5.13)

32aG
(1,1 =" giag(1,1,-3,1)
r

which is independent of the arbitrary renormalization
scale &z (as expected because it would contribute with 8
functions with support on the core of the string which we
do not consider). This tensor coincides with the first or-
der development in Gyu of previous exact results ob-
tained by other techniques [38]. Note that in the exact
case, i.e.,, when the classical solution is found explicitly,
the one-loop quantum stress tensor is simply (5.13) where
one changes 32G yu by

2[(1—4Gyu)~*—1].

The back-reaction equations (5.2) have been solved by
Hiscock [37] who found that the linear corrections to the
metric outside the string are such that the spacetime is no
longer flat space with a deficit angle: the two surface per-
pendicular to the string is an hyperboloid which asymp-
totically approaches the conical surface at large distances
[the one-loop quantum corrections to h,,(x) are of the
form Gyu#i/r?]. Note that the sem1c1ass1ca1 equations
here have no higher-order derivatives because we have
treated the quantum terms as a perturbative correction
(as Hiscock does) in line with Simon’s arguments [33].
Work on the back reaction on dynamic cosmic strings
[46] is in progress.
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APPENDIX A: USEFUL RELATIONS

1. Bianchi identities

The Bianchi identities are

RHavBio 4 RuaBoiv i ppacviB—() , (A1)
R#avﬁ;a=Rﬂv;B_Rﬂﬁ;v ’ (A2)
2R aﬂ;a=R;B , (A3)
R'“aVB;aB=DgRPV"'R”a;Va ’ a4
2Raﬂ;aﬁ=D3R : (43

2. Commutation of covariant derivatives

The commutation of the covariant derivatives proceeds
as follows:

a -a a;---a

4 "ap— 4 : ":Ba
n
= — 2 RakbkaﬂAal k a, , (A6)
k=1
Ry.a;vazgvaRyB;Ba_Rp,avBRaB+RuaRav
=1R*—RHt™ER ,+RMR,", (A7)
RpavB =Ryavﬂ =[] _RH#¥— RH&v
;Ba ;aB g a
=0, R*—LR*+RHPR ,—RMR,” . (A8)
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3. 2D curvature tensors R
R,uv - —z—gyv ’
The 2D curvature tensors are
R s =2 ) (A9) om0
=5 8u8ap " 8up8 > VB—p2— v
pavp 2 uvdaf uBé va RyavBR#a B—Rz—ZR‘uVR#

APPENDIX B: EXPANSIONS AROUND FLAT SPACE

1. Curvature tensors
The curvature tensors are
8u(X)=m,,th(x), (=, +,...,+),
g xX)=n =P (x)+h* ()R (x)+ O (h},)
(—g()]"?*=14+1h +1h*—1h, h*+0(h},),
R ,5=0, T s =80, + T, s — [T,
D= 41" Sxs,5— +h ™S55+ 0 (h},)
Sis,s=hispthpns —hpsa
Ropys =Sot5.6r1 = 0. 1ySi518 T 31 So1,,uSporp O ()
Rps= 31" (s 50 = hgs uy = Ruv,ps T hpyus) — (Y = Lhh s g+ LW hgs ),
+h* h g =t Phgs  thys I LR o —hEVh s, O (R,
R=h g—h S—h* h o +h" b+ 2%, ~Yhth
IR PN ol BINE Tl BRSS9 Tl SRS o JU BRI
R, sR7PO=h 5 5 hO¥PY—2h s o WPV +h o 0 hP17P+0(hY,)
Rg RP=1[21"  hg, B—a4nt  he P—4nt  he +20" 0P g
+hH Sy 2R SR R+ O (R
R*=h% cht —2h oh F+h h F+O(h),) .

2. Curvature tensors in terms of the projector P,
In terms of the projector P, the curvature tensors are
P,.=n,—9"¢"/q",
G= [d"x(R,,sR*"*—4R, R +R)=0+0(h},)
d"q
(2m)"

Jdmx R*x)= [d"x d"y h,,(x)hogy) [ ZeiaxVprrpabigi+0(h},)

fd"xR

g XIRFP)= [d"x d" b, () [ (—(2177q)7eiq'("'””P"BP"“q“-}-O(hfw) ,

fd"xd"y R(x)R (K, (x —y;u)

1 T
=——= [d"d"y h, (x)h,40) a:x Yy
2f Y@V Aui X Mapl) (27r)"e [.t2

Jd"™x d" R, qp(x)R*P()K (x —y;p)

L on o d"q igx- ' va
=__2.fdxdyhm(x)ha3(y)f(sznetﬂ Mn |4 | puBpragt o (k3

v 4 3
PHPqt+0(h),) ,

(A10)

(A11)
(A12)

(B9)
(B10)

(BI11)
(B12)

(B13)
(B14)

(B15)

(B16)

(B17)

(B18)
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[d"xd" R(x)R(p)K,(x —y)
=——fd"xd th(x)ha,g(y)fﬁ e 2mi)8(—g>8(—g° )PP +0(h},), (B19)
[ d"x d" R ,,qp(x)R¥*F(p)K,(x —y)

=—%fd"xd”yh,w(x)ha3(y) E};L x=2mi)0(—q?)0(—q°)P*PP?q*+0(h},) .  (B20)

APPENDIX C: CURVATURE TENSORS IN CONFORMALLY TRANSFORMED »-DIMENSIONAL SPACES

The curvature tensors are

g, (x)=e*g,.(x), (c1n
Rvap =€ (R yyap+28 518y (0,0p = 0,00.,) = 28 o8, (@, 5, — ,p0,,) — 28 41,8 5 0,, 0" ] , (€2)
R, =R,,—(n—2)0,,,—8,,0,0+(n —2)o,,0,—(n —2)g,,0,0"° , (C3)
R=e"%[R —2(n —1)0,0—(n —1)(n —2)o,,0*], (C4)
R'#mﬂf('“"af’:e—““[R sR*P—8R"(w,,,~ o, u@;y) 4R 0, 0" +4(n —2)o,, 0"

—8(n —2)o’*w,,0,,+40, (o)2+8(n —2)o,,0*0,0+2(n —1)(n —2)w,,0* )], (C5)
R,,R*™=e %[ R, R¥—2(n —2)R*(0,,~0,0.,)—2R0,0—2(n —2)R,o*+(n —2)0,,w""

+(3n —4)(0,0)*—2(n —2Y 0", ,0.,+2n —2)(2n —3)o,,0*0,0+(n —D(n —2),,0*)*], (C6)
R?=e *[R?—4(n —1)RO,0—2(n —1)(n —2)Ro,,0*+4(n —1)*(0,0)

+4(n —1)(n —2)o,,0*0,0+(n —1)(n —2) e, ,0*")?], (C7)
~ ~ o~ 2 ~
CrvapCr* P =R, g R""F— R, RW+-——=— _R?
uvap n—2"m (n—1)n—2)
=€ %C,,5Cr" . (C8)

APPENDIX D: MOMENTUM INTEGRALS AND DIMENSIONAL REGULARIZATION

The momentum integrals are

I(q)—f——Lf(p, (D1)
_I(g) D2
f(z )n 2 ql-l ’ ( )
) 2
f—Lf(p, Qpup,= —q— q#qv—(nq_l)PW ) (D3)
dng

I (1= k4 ) v a

v f(zv),,f QP PP
=19 — L (P gt Pudy P, D4
8 pivia 1 yvqa paqv avqp > ( )

dn
Lag=[ E%ﬂp,q)p,,pvpapﬁ

2

I(q)
qy,qvqaqﬁ_;g__l(P,uvqan+PvaquB+Pquyqa+Puaqqu+Pquvqa+Paﬁqpqv)

16

4

q
+ 21 (PuyPogtPugP,+PgP,) |, (DS5)
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d"q 1
I,(p)=
e f Qm)" (g*—ie)(p —q)*—i€]
— — 2
=i(p2_i6)n/2_2 (2 n/2)/[2r(n/2) 1)] , (D6)
(4m)"“T'(n —2)
—i 1 1 , 1
I\ (p)= pocal il e +51n(p2—ze)+ E(y—2—1n47r)+0(n —4) |, (D7)
1) (p)=—1 L v lvom-2], (D)
m(p?—ie) |n—2 2
— d’q 2\g( — 0 R 0_,0
Lip=[ 8(g1)0(—g*8[(p —¢)*10(q°—p°)
(2m)"
_ 0 N2 2\n—3
= —p }f )(p}) 0 : S0 "3 | (D9
(n—=32""'2m3pl | (p°+Ipl)" (p°—1IpD)
0 I
1490 (p)= O(—p )9(3 p’) (D10)
4(27)
0 a2
I<22D>(p)=_ 0(—p )6(—p~) ] (D11)
(2m)(pi—ie)
[
APPENDIX E: VARIATIONAL CALCULUS 8T s =18 885,588 1.5 — 8 s:2) » (E4)
L . 8R %g,5= 18 (8815, + 88 pr:y — D8 poiny
1. Variational equations
—08y:8 ~88pn;y5 T88py08) > (E5)
The variational equations are R g5 =18 “(88 15: pa +88p1.50 —08p5: 00 —O82aips) »  (E6)
8 (X) 8, (X)+8g,,(x) (El)  8R =—R™8gp +gPg 8g,5. 5. — 58 ps:na) » (E7)
Sga}\:.-gayngSgyv ’ (Ez) 8( Dgw): —w;PVSgyv_%w;)\g#v(Sg}.v;‘u+6gyk;1'_6g;lv;}_) .
8V —g =1V —ggh'bg,, , (E3) (E8)
2. Functional differentiation
Through functional differentiation we get
8 [dixV—gR*= [d*xV'—g (1g""R?*—2RR*+2R "'~ 20, R)3g,,, , (E9)
8 [dxV—gR¥R = [d*xV' =g (1g""RR ;p—2R"R "+ 2R"*",—0,R*—1g"' O, R)8g,, , (E10)
8 [d*xV=gRR 5, = [d*xV =g (1g""R™R 5, —2R*R" 5 —4T RM
+2R ' —4R*PR ,+4RMR *)dg,, , (E11)
8fd4x\/——gR B0, 4. 5= fd"'x\/_:E { 8"'RPw. 0.5~ 2R "0 0., +(0,0)0* — Lg"[(0,0) + 0 P, 4]
o —g" 0, (') 0.4} 88 1y » (E12)
§ [d*xV=gR(O,0)= [d*xV =g [~R"™O,0)+R "0~ 1g""R %0+ (O,0)* —g"' 0y (0,0) 188, » (E13)
6fd4x\/—:—ER (0. ,0°%)= fd4xVT§{ 18"R (0,,0'") —R"(0.,0'*)—R (w;“a);v)+2R““"Bw;aa);B
+2(a);“"a);va——g“”a);a5a);“ﬁ)+2[(;);’”‘1—g“"l:]g(a);“)]w:a}ﬁgw , (E14)
8fd“x\/—-—EI:lga)(co;a,(o;“‘)=fd“x\/———g[(2a);‘"(“a);")—g“V(o;"‘Bw;,;)(u;m—(Elg(u)a);“(u;"]ﬁg#v s (E15)
afd“xv?gu:ygm)zzfd“xx/——g [ —g"[HO,0)+(0,0),0%]+20"0,0)"'}8g,, , (E16)
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Sfd‘*x\/——g(w;aw;")z——'fd“xv —g [%g“"(co;ma);‘")2—2co;"c«);V(a);ma);"‘)]Sg‘w , (E17)
8 [ d*xV—gR¥R,,o(x)
= [d*V =g [ (1g"R¥R ,5—2R**R .5 — R*'—O R* — g T, R)a(x)+ RV o™
+(2R @Y —QRHE—ghVR %)y,  +2R e, — R*(Oy0) —g" R %w,,5188 ., » (E18)
8fd4x1/—gR"Bp"Raﬁpaw(x)=fd“x\/Tg-[ (%gy.vRaﬁpoRaﬁpa_‘ZRuﬁpaRvﬂpa
—4RH*BR s +4R**R Y —40,R* +2R* )0 (x)
—8§(RMe—RV ) —4R*Py, 188, (E19)
Sfd“x dyyV —gtx)V —g @R (x)RT(»)K (x —y;@)
=fd"'xV —gt(x) Zf dyV —g TR T () — G T (x)+ VE VY, —g TH(x)0 ) K (x —y;B) |85, (x) ,  (E20)
8 [dx d*yV —g T (x)V =g T()R T (x)R J5,, (9K (x —y30)
= [d*xV =g ¥ | [d%V =g T8 T (x)R Jg,, (x)R TP(y)
—4R TreB(p)VIVEIK, (x —y;E) |88, (X) (E21)
8 [d*x d*yV —gT(x)V =g~ ()R F ()R (1K, (x —y)
= [d*%V =g (x) [f d%V =g (MR ~(p)[ — G H(x)+ VA, VT, —g T 00 IK (x —p) |8g 5 (x) (E22)
8 [d*x d*yV =g T(0)V =g ~(9)R Jg,0 (X)R " (p)K,(x —y)
= [a*xV =g T | [d%V =g~ ([ 18 " (x)R Jg,, (X)R ~7(p)
—2R ~*B(y)VIVEIK, (x —y) |8g,5,(x) . (E23)
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