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We use wave packet mode quantization to compute the creation of massless scalar quantum particles
in a colliding plane wave spacetime. The background spacetime represents the collision of two gravita-
tional shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy hor-
izon. The use of wave packet modes simplifies the problem of mode propagation through the different
spacetime regions which was previously studied with the use of monochromatic modes. It is found that
the number of particles created in a given wave packet mode has a thermal spectrum with a temperature
which is inversely proportional to the focusing time of the plane waves and which depends on the mode

trajectory.

PACS number(s): 04.62.+v, 04.20.Jb, 04.30.—w

I. INTRODUCTION

Exact solutions representing the head on collision of
two gravitational plane waves are some of the simplest
exact dynamical spacetimes. They provide clear exam-
ples of highly nonlinear behavior in general relativity:
when two plane waves collide the focusing effects of each
exact plane wave lead to mutual focusing. This is re-
vealed by the formation of either a spacetime singularity
or a nonsingular Killing-Cauchy horizon at the focusing
points of the two waves [1-3]. They may also be useful
to provide local models for processes that may be taking
place in our Universe as a result of gravitational waves
produced in black hole collisions [4,5], the decay of
cosmological inhomogeneous singularities [6], or by trav-
eling waves in strongly gravitating cosmic strings [7,8].

Quantum effects in such dynamical spacetimes must
surely be important and one expects particle production
and vacuum polarization when a quantum field is coupled
to such a background. Yurtsever [6] was the first to
study field quantization on a colliding wave background;
he considered the Kahn-Penrose [1] solution which may
be interpreted as the collision of two impulsive plane
waves. The solution which has curvature singularities at
the focusing points of the plane waves allows for the
definition of two physically meaningful vacuum states:
an “in” vacuum state associated with the flat space before
the collision of the two plane waves and an “out” vacuum
state related to the flat spacetime regions behind the
shock fronts also before the collision. The Bogoliubov
coefficients relating the “in” and “out” creation and an-
nihilation operators could be found only approximately
in the long-wavelength limit. In this approximation the
spectrum of created particles is consistent with a thermal
distribution.

In a recent paper [9] we considered the quantization of
a massless scalar field in the background of the collision
of two plane waves which form a nonsingular Killing-
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Cauchy horizon. This solution describes the collision of
two gravitational shock waves followed by trailing gravi-
tational radiation [10]. The interaction region of the two
waves is locally isometric to a region inside the event hor-
izon of a Schwarzschild black hole with the Killing-
Cauchy horizon corresponding to the event horizon
[2,11,12]. Two unambiguous and physically meaningful
quantum vacuum states may be defined: an “in” vacuum
associated to the positive frequency mode solutions in the
flat region before the collision of the waves and an “out”
vacuum related to the positive frequency modes defined
through the two null vector fields in the Killing-Cauchy
horizon. Such a state, which is invariant under the sym-
metries associated with the horizon, corresponds to the
unique preferred vacuum state defined by Kay and Wald
[13] in spacetimes with bifurcate Killing horizons. It was
found that the “in” vacuum contains a number of “out”
particles which is proportional to the inverse of the fre-
quency. In the long-wavelength limit the spectrum is
consistent with a thermal spectrum at a temperature
which is inversely proportional to the focusing time of
the gravitational plane waves, in agreement with
Yurtsever’s result [6].

Our result however is exact: although the Klein-
Gordon equation in the interaction region cannot be
solved exactly the “in” modes become blueshifted to-
wards the trailing points of the waves and can be pro-
pagated through this region by using the geometrical op-
tics approximation. This is somewhat similar to the situ-
ation in a Schwarzschild black hole [14].

In this paper we want to reconsider this problem in the
light of wave packet mode quantization instead of the
monochromatic modes we used in Ref. [9]. There are
several reasons that, we believe, justify this. One of the
reasons is well known: the use of monochromatic plane
wave modes leads to infinite expressions for the total
number of particles created of a given frequency, whereas
the number of particles created in a given wave packet
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mode is finite [14]. The second, and more important for
us here, is that wave packet modes propagate in a simple
way in a spacetime, such as ours, formed by the matching
of different regions. Since the singular-free coordinates of
one of the regions differ from the next region, the propa-
gation of modes which are extended through all space
finds serious difficulties. In Ref. [9] this could be done be-
cause of the blueshift of the modes in certain regions and
the use there of the geometrical optics approximation
which amounts to ray propagation. Since wave packets
are localized in space and the packet maximum follows a
well defined path in the spacetime, a natural approxima-
tion may be taken by which the propagation of the pack-
ets through the different regions becomes a simpler prob-
lem.

Another reason is that the wave packet formalism lo-
calizes the phenomena of particle creation: the one parti-
cle states defined with the wave packet modes have two
labels; one gives information on the “energy” of the parti-
cle and the other on its “trajectory” (all within a certain
range of values). Finally, we know that our colliding
wave spacetime can be maximally extended through the
Killing-Cauchy horizon with the extended Schwarzschild
spacetime [10,15]. This is possible if one of the transver-
sal coordinates of the plane waves is made cyclic. The re-
sulting spacetime represents the collision of two plane
waves propagating in a cylindrical universe and the
creation of a black hole of mass proportional to the
strength (or focusing time) of the plane waves. In a forth-
coming paper we want to consider particle creation in the
extended spacetime. Using the results of the present pa-
per the calculation will become somewhat similar to that
of stimulated emission by black holes [16]; the use of
wave packet modes has proved useful also in this case
(See Ref. [17]).

The plan of the paper is the following. In Sec. Il we in-
troduce wave packet mode quantization. In Sec. III we
briefly review the geometrical properties of our colliding
wave spacetime with special emphasis on the coordinates
which are appropriate in the different regions. In Sec. IV
we quantize a massless scalar field on the colliding wave
background and propagate the “in” wave packet modes
through the different regions. The advantage of wave
packet modes is clearly seen in Sec. IV D when the modes
are propagated through the interaction region. The Bo-
goliubov coefficients relating packet creation and annihi-
lation operators are derived in Sec. IV F, and the creation
of particles is derived in Sec. IV G, where we also com-
pare our results with those of Ref. [9].

II. WAVE PACKETS

Let us consider a complete orthonormal family
{f,(x)} of complex solutions of the Klein-Gordon equa-
tion for a massless scalar field ¢ (i.e., 0¢=0), which con-
tain only positive frequencies with respect to a given
timelike Killing vector 9/d¢, 1ie., such that
Lysaf o(x)=—iwf  (x) with @ >0. Then it is possible to
define a positive definite inner product between these
solutions. The label w is continuous and stands for the
energy (or frequency) and x stands for the spacetime
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coordinates. Since these solutions have a well defined
value for the energy (or frequency) we can call them
monochromatic modes. It is true that since the energy of
the monochromatic modes is well defined their space lo-
calization is completely uncertain in concordance with
Heisenberg’s uncertainty principle.

Now we want to work with a complete and orthonor-
mal set of modes that are localized in space in some
sense. To achieve this we can make an adequate superpo-
sition, within a small energy range, of continuous w-
labeled monochromatic modes in order to introduce an
uncertainty in the energy and gain a certain information
on spatial localization. We can do this as follows
[14,17,18]: define

1
fai, n (x ) = -‘_/i
where the new labels @ and n are restricted to verify that
@/€=j and ne/2w=I are integers, € being a small and
positive parameter. We will call this superposition a
wave packet. Here n is a kind of Fourier label [the phase
term exp( —inw) has I periods in the interval (&, +¢€)],
and @ is the lower extremum of the integration interval
and gives information on the energy of the wave packet.
It can be shown easily that a set of discrete (@, n)-labeled
wave packets {f_  (x)} is complete and orthonormal if
the set of continuous w-labeled monochromatic modes
{ f,(x)}] is complete and orthonormal.

It is worth noticing that a general set of wave packets,
{f5..(x)}, given by (1), satisfies the property

[ dwe="f (x) (1)

3 f o x)P= [ Tdolf (0, @)
il
which follows from the equality
2 etin(w*w’):ea(w_w:) . (3)
I=—o

Note that the sums in (2) and (3) are over the integer la-
bels (j,/) which could also be used to label the modes, i.e.,
S x(x), instead of the labels (@,n) which we will used
throughout.

We can now see in what sense the wave packets (1) are
localized. Let us consider the generic wave packet (1) in

terms of the mod}ulus and phase of f,(x), i.e,
(x

folx)= |fa,(x)|ei9“ , as

_ 1 o+e —inw+if (x)
f@n(x)—‘/—zf@ doe |f o0l @)

)

If the interval of integration in (1) is small enough so that
|f,(x)| can be taken as approximately constant [this will
be true in general provided that |f,(x)| has no singulari-
ties in the interval of integration), the |f,(x)| can be fac-
torized out and we have an integral over the phase only.
Now if the integrand’s phase, i.e., @ (x)=—nw+0,(x),
oscillates rapidly over the range of integration (at least
when no is big enough, and this is true for / >>1), then
the integral roughly vanishes except at the stationary
phase points, that is, when
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a0 ,(x)
—_— =0 (5)

b
00 =0

and we can use the stationary phase method [19,20] to
evaluate (4). Note that in the equation (5) we have set
0=, after derivation, which is accurate provided the
range of energy superposition is small enough. Equation
(5) establishes a relation between the labels (@,n) of the
wave packet and the spacetime coordinates x and so it
represents a three-dimensional hypersurface. It deter-
mines the geometric locus of the spacetime points which
give the main contribution to the integral (1); this will be
a spacetime region labeled by & and n and we will identi-
fy it as the wave packet trajectory, because outside this re-
gion the integral (1) roughly vanishes. It is worth notic-
ing that if the monochromatic modes are labeled with
some other continuous parameters, in addition to the en-
ergy, we can construct double or triple wave packets by
superposition of monochromatic modes in a small range
of these parameters. In this case we obtain surfaces or
curves as the trajectories of the double or triple wave
packet, respectively.

Finally we can make the following remark about the
uncertainty of the energy and position of a wave packet.
When we construct a wave packet we take a superposi-
tion of Klein-Gordon solutions with a well defined energy
® (the monochromatic modes) over a small interval
(w,0+€), and so the uncertainty in the energy of the
wave packet is Aw=e. To know the uncertainty in the
position of the wave packet let us assume the following
simple form for the monochromatic modes
fo(x)=e F (x/) (where x/,j =1,2,3, are space coor-
dinates) which verify Lj,,f,(x)=—iof,(x). Then
with the use of the stationary phase method we easily see
that the wave packets (4) are peaked around values of
time given by t = —2wle™ !, with width 2we™! (I is an in-
teger), and so the time uncertainty is At ~2me~ !, which
reflects Heisenberg’s uncertainty principle AwAt =~21r.

III. COLLIDING PLANE WAVES GEOMETRY

We will work in a spacetime that describes the head on
collision of two linearly polarized gravitational plane
waves propagating in the z direction. This spacetime has
four regions (see Fig. 1): a flat region (or region IV) at
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the past, before the arrival of the waves, two plane wave
regions (regions II and III), and an interaction region (re-
gion I) where the waves collide and interact nonlinearly.
The geometry of these regions is given by the following
four metrics, in coordinates which are adapted to the Kil-
ling vectors 9, and d, of the spacetime by (see Ref. [2]
and references therein):

1—sin(u +v) , ,

2=4 : 2 .
dsi=4L,L,[1+sin(u +v)]°du dv Fsin(z +0)

—[1+sin(u +v)]*cos*(u —v)dy?, (6)
2 — . 2 _ 1—sin(u) 2
dsf;=4L,L,[1+sin(u)]*du dv 1T sin(z) o
—[1+sin(u)]? cos®(u)dy? ,
2 — . 2 _ l—sin(v) 2
dsty=4LL,[1+sin(v)]°du dv 1T sin(0) o
—[1+sin(v)]?* cosX(v)dy? ,

where u and v are two dimensionless null coordinates
(v +u is a time coordinate and v —u a space coordinate)
and L,L, are two arbitrary positive length parameters,
which represent the inverse of the strength (focusing
time) of the waves. The boundaries of these four regions
are {u=0,0 <0} between regions IV and II,
{v=0,u <0} between regions IV and III, {v=0,0=u
<mw/2} between regions II and I, and {u =0,
0=<v < /2} between regions III and L.

At the surfaces ¥ =7 /2 and v =7 /2 on regions II and
III, respectively, the determinants of the respective
metrics vanish; this marks the focusing points of the
waves and a coordinate singularity. This singularity can
be avoided with the use of appropriate coordinates (har-
monic coordinates) in which the causal structure of these
spacetime regions is well posed. In these coordinates the
surfaces ¥ = /2 and v =7 /2 become spacetime lines (see
[9,10] for details).

Region I (in Fig. 1, this is the triangle bounded by the
lines {v=0,0=u <7 /2}, {u =0,05v <7w/2}, and u +v
=1/2) is locally isometric to a region of the interior of
the Schwarzschild metric. This is easily seen with the
coordinate transformation

FIG. 1. Projection of the colliding plane
wave spacetime in the (u,v) plane. One can
see four regions: region IV is the flat region
before the waves collide, regions II and III are
the plane wave regions, and region I is the in-
teraction region. The interaction starts at
u=v=0, the lines u#=0,v<0 and
v =0, u <0 are the boundaries of region IV
with regions II and III, respectively, and
v=0,05u<mw/2and u =0,0=<v <7/2 are the
boundaries of region I with regions II and III,
respectively. At u +v =m/2 a Killing-Cauchy
horizon is formed which one can see as a coor-
dinate singularity of the metric in region I.



2634

t=x, r=M[1+sin(u +v)],
p=1+y/M, 6=u/2—(u—v),

where we have defined M =4/L,L,. The metric (6) be-
comes

ds?= dt?

—1
_?-M__IJ e {3&_1
r r

—r2(d@*+sin’*0d¢?) ,

which is the interior of the Schwarzschild metric. The
surface u +v =m/2 corresponds to the black hole event
horizon. The boundary v =0 corresponds to
r=M(1+cosf) and u =0 corresponds to r=M(1
—cosf). These are the boundaries of the plane waves;
these boundaries join at r =M (spacetime point of the
collision) and also at the surface u +v =m/2 at 6=0 and
6=1. This region of the Schwarzschild interior does not
include the singularity » =0 and thus the interaction re-
gion has no curvature singularities. The above local
isometry is not global, however; the coordinates 6 and ¢
are cyclic in the black hole case but, in the plane wave
case, —o <y<oand —o <v —u < ®.

As in the Schwarzschild case, it is convenient to intro-
duce a set of Kruskal-Szekeres-like coordinates to de-
scribe the interaction region, because the (u,v,x,y) coor-
dinates become singular at the horizon. These coordi-
nates will play an important role in the quantization of
the field. First we introduce dimensionless time and
space coordinates (£,7):

E=u+v, n=v—u, (10)

with the range 0<&<7w/2, —w/2<n<w/2 (we shall
later see that in these coordinates the Klein-Gordon
equation can be separated). Then we introduce a new
time coordinate £* related to the dimensionless time
coordinate £ by

1+sing

*=2M In
§ 2 cos’é

—M(sinf—1) , (1

and a new set of null coordinates
U=¢&*—x, V=E*+x . (12)

Note that the transversal coordinate x appears in the
coordinate transformation because it behaves badly at the
horizon. Finally, we define

U'=—2M exp

<0,
4M

V'=—2M exp M

<0,

and the metric in the interaction region (6) reads

2exp[(1—sing)/2]
1+sing

—(1+sing)? cos*ndy? ,

ds?= dU'dV'—M?*(1+sin&)*dn?
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with
2 : —1
U'VI::SMZ COS§ Sln§ i 14
1+sin§ 2 14
erxp Z_XM_ . (15)

The curves §=const and x =const are, respectively, hy-
perbolas and straight lines through the origin of coordi-
nates (U'=V'=0), see Fig. 2. The Schwarzschild hor-
izon (which is a Killing-Cauchy horizon for the space-
time) corresponds to the limit of the hyperbolas when
E—m/2, ie., the “roofs” V'=0 or U'=0. Notice that
the problem with the transversal coordinate x at the hor-
izon is that all the lines x =const go through the origin
of the (U’, V') coordinates, so that all the range of x col-
lapses into the point V’'= U’=0, whereas the lines U'=0
and V'=0 represent x =— o0 and x = o, respectively.
One should recall that we have not represented the coor-
dinate x in our picture of the collision (Fig. 1) in which
only the (u,v) coordinates are shown; x is a transversal
coordinate perpendicular to the propagation and adapted
to the Killing vector 9, .

To understand the global geometry of the spacetime
one needs a tridimensional picture where the boundary
surfaces between the different regions have to be written
in terms of appropriate nonsingular coordinates adapted
to each region. See [9,10] for details.

It is worth noticing that most of the plane wave col-
lisions produce true curvature singularities [2], but the
spacetime described above is an example of a collision
where the curvature singularity has been substituted by a
Killing-Cauchy horizon (i.e., the surface U'V’'=0 in the
Kruskal-Szekeres-like coordinates).

FIG. 2. The coordinates (£,x) in terms of the Kruskal-
Szekeres-like coordinates (U’, V') in the interaction region. The
lines £=const are hyperbolas and the x =const are straight
lines crossing the origin U’'=V"=0. The Cauchy horizon is
{U'=0,V'<0} U {V'=0,U'<0} which corresponds to the
limit of the hyperbolas as §£—0. The “roof”’ U’=0 corresponds
to x — — o0 and the “roof” V' =0to x — .
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IV. WAVE PACKETS IN THE COLLISION
OF TWO GRAVITATIONAL PLANE WAVES

A. Monochromatic mode quantization (summary)

In Ref. [9] the quantization of a massless scalar field ¢
was considered in the spacetime described above
representing the head on collision of two gravitational
plane waves. Let us now briefly summarize this quantiza-
tion scheme. We introduce a massless scalar field ¢ on
the colliding spacetime background, which satisfies the
Klein-Gordon equation

0¢=0, (16)
where
Op=(—g)"*[(—g)"%g""$ ], »

and g is the determinant of the metric. It has the generic
plane wave solution

1 ik x +ik,y

o= ‘/ﬁf(u,v)e ,

(17)

where the labels k, and k, are two separation constants
which are interpreted physically as the momenta in the
directions given by the Killing vectors d, and 9,, which
generate the plane symmetry of the whole spacetime. In-
troducing (17) in (16) one obtains

(VFG ) -~ (k2 K2
- | X2 r=0 (18)
, UL ‘/FG 4 F2 G2 f ’

where the coefficients F, G, and e ~" come from the adop-
tion of a generic metric for all colliding plane wave space-
time, adapted to 9, and ay, i.e.,

ds*=e Ny dv — F(u,v)dx>—G*(u,v)dy? . (19)

One defines an initial vacuum state constructed with a
complete orthonormal set of solutions of the Klein-
Gordon equations (16) which are defined in the flat IV re-
gion, before the arrival of the plane waves, to be of posi-
tive frequency with respect to the timelike Killing vector
0, +,; these are the “in” monochromatic modes. Then
one propagates these modes throughout the spacetime up
to the horizon of region I (solving the appropriate bound-
ary conditions imposed by the different classes of solu-
tions for the Klein-Gordon equation (18) in the different
regions of the spacetime). It is possible to define another
“natural” vacuum state on the horizon of region I from a
complete and orthonormal set of solutions of the Klein-
Gordon equation (16), the “out” monochromatic modes,
which are positive frequency solutions with respect to the
vectors 3/3U’ and d/dV’, which are two null Killing
fields over the horizon [21].

Comparing the propagated “in” monochromatic
modes and the “out” monochromatic modes on the hor-
izon via a Bogoliubov transformation leads us to show
that there is spontaneous creation of particles in this
spacetime with a spectrum of “out” particles given by the
formula [9]
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- arout [ oy — (2M)° 5, —m ICpl?
(0,in|N3% [0,in) = =22 et fdl?_fdkek_l .
(20)

Here N9 is the usual number operator for “out” parti-
cles, w_, I', and m' are labels of the “out” modes (w_ is
the energy label), k _, k, and m are dimensionless labels
of the “in” modes, and (2M)*/7|C;|? is a geometric fac-
tor whose coefficient |C,,| depends on [/ ',m',ig _, and k.
This spectrum is inversely proportional to the inverse of
the energy of the “out” particles which are produced and
it is consistent, in the long-wavelength limit, i.e.,
8mMw_ <<1, with a thermal spectrum with temperature
T =(87M)~!. The temperature is inversely proportional
to the focusing time of the plane waves, given by the pa-
rameter M =V/L,L,, and (4M)~! is also the surface
gravity of the horizon. Note that the spectrum contains
a logarithmic divergence; this divergence appears because
the spectrum which has units of (length)’, given by the
factor (2M)3, describes the total number of particles
created in the whole spacetime volume. As is well known
[22] this is characteristic of the use of continuous labeled
modes and can be avoided using wave packets.

The propagation of the “in” monochromatic modes
throughout the spacetime is a difficult task. This is due,
essentially, to the fact that the monochromatic modes are
defined in the whole spacetime and there is not a single
singularity-free coordinate chart for all the four space-
time regions. Basically the problem is that the matching
has to be done through all the spacetime points of the
boundaries. Because of their spatial localization wave
packet modes will be more easily matched. The match-
ing will be done approximately on a single boundary
point for each wave packet.

In what follows we introduce the wave packet formal-
ism in the colliding spacetime background. As the first
step we construct a complete set of “in” wave packets,
from a superposition of positive frequency monochromat-
ic “in” modes, in the four spacetime regions. Then we
will propagate these “in” wave packets throughout the
spacetime up to the horizon, with appropriate matching
conditions. These matching conditions will ensure that
the trajectory of the “in” wave packet will be smoothly
connected through the boundaries between the different
regions. Next we will construct a complete set of “out”
wave packets on the surface of the horizon. Finally, we
will relate the “in” and “out” wave packets via Bogo-
liubov transformation and compute the creation of parti-
cles in this formalism.

B. Flat region (region IV)

In the flat region the complete set of “in’> modes is
u,ﬁi‘,’c})’k_ (u,v,x,y)

1 —ik_v' =ik u'+ik x +ik,y

=
V2k_(2n)?

where the labels k., ky, and k _ are independent separa-
tion constants for the Klein-Gordon equation (16), and

, 2D
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where u',v’ are two-dimensional null coordinates related
to the dimensionless null coordinates wu,v by
v'=2L,v,u’=2L u. The label k is determined by the
relation

4k k_=k2+k?. (22)

It was shown in Ref. [9] that these modes are well nor-
J

k_+e k_+8

1 x
( —
ULk kg 0= [ die i dk

Note that, since we are only integrating over positive fre-
quency monochromatic modes, the vacuum associated
with the wave packets is the same as that defined by the
monochromatic modes (21).

The integrand’s phase is

k}+k}
4k _

’

u

®“V’=-—nkx—qk_ —k_v'—

thox +h,y (24)

where the relation (22) has been used. The trajectory of
the double wave packet, in the sense given by the station-
ary phase method, i.e.,

00" /ok, =30V 73k _ =0,

is given by
k.
xW=n+—"Lu, (25)
k_
kZ+k?
H(IV) X y
v =—q+———Lu, (26)
APy Tl

which define a null geodesic in the flat region. That is,
this double wave packet moves on a null trajectory.

J

- e

k_ V2K _(n)
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malized on the hypersurface
u =0J.

The labels k, and k _ are continuous but k, is discrete
if we take a cyclic spacetime in the y direction (this is not
necessary but it is convenient if we want to maximally ex-
tend the colliding wave spacetime later on). We identify
k, with m /M where m is an integer. Our aim now is to
discretize the continuous labels k, and k _ by construct-
ing a double wave packet as

{u=0,0=0} Y {v=0,

—igk _ —ink

vik_u’—ik+u’+ikxx+ikyy

e (23)

C. Plane wave region (region II)

The complete set of solutions of the Klein-Gordon
equation (16) in region II is easily found (see Ref. [9]) and
is given by

(1) - 1 1
U ik (u0,x,y)= —F————
T V/ 2k _(2m)} cosu
iL, ) )
X exp —-a—-[f(u)kx-i-g(u)ky]

—ik _v'+ik,x +ik,y | , 27)

where the two functions f(u) and g (u) are

N

f(u)=£12+—;1;l:—)(9—sinu)+% cosu —2u—12,
(28)

g(u)=tanu .

The labels k,, ky, and k _ have the same meaning as in
the flat region IV because this expression for the solu-
tions of the Klein-Gordon equation in region II matches
smoothly (i.e., in a continuous and differentiable way)
with the respective solutions (21) on the boundary be-
tween regions Il and IV, i.e., {u =0,v <0}.

In analogy with the previous case, we now construct a
double wave packet

L T —igk _ —ink
1 kx+e k_+8 e qK x
(II) —_ __ -
ul?x-n,kyylzqu(u’v’x’y) Ved fEX de f;¥ dk '\/ZkA(zﬂ)j’
X exp | —im—[f (Wk2+g (k2] —ik _v'+ik,x +ik,y | . 29
cosu 2k _ Y

The integrand’s phase is given by
eIh= —nk,—qk_—k_v’

L
—[f(u)kf+g(u)ky2]§1——+kxx+kyy , (30)

[

and the trajectory of the double wave packet, i.e.,

30" /3K, =30 /3k _ =0,

is
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k
xW=p +—,’;,—x—L1f(u), 31)

L,
2k%

v,(n):_q+[f(u)l?f+g(u)lzy2] (32)

which represents a null geodesic traveling throughout the
plane wave region II. Note that this trajectory matches
smoothly (i.e., in a continuous and differentiable way)
with the trajectory of the wave packet in region IV, i.e.,
(25) and (26), on the boundary {u =0,v <0}. Since
f(0)=g(0) and df /du(0)=dg /du (0)=0 the following
matching conditions are satisfied:

x My =0)=x""(u =0),

v’ Wiy =0)=v'"M(y =0),

dx V) dx (I

du u=0=T u=0 ’
dv'™v) dy'D

du u=0_ du |,

This is not surprising because the monochromatic modes
which we have used to define the double wave packets in
the two regions match smoothly on the boundary
{u=0,v=0]}.

Before going further, we can extract some information
on the meaning of the new discrete labels n and q. First,
note that at the boundary between regions II and IV,
{u =0,v 0}, we have from (25), (26) and (31), (32),

XOEJC(IV)(O):.X(H)(O)zn ,
UéEU'(IV)(O)ZU'(H)(O)=_"q ,

which means that a wave packet labeled by » and q has a
peak on the null geodesic which crosses the flat region
into the plane wave region at the spacetime coordinates
xo=n and vy = —gq. Note that for wave packets in region
III we can repeat the same discussion.

D. Interaction region (region I)

In this region mode propagation is more difficult; in-
stead of relying on the calculations given in Ref. [9], we
will start the discussion from the beginning. First, let us
consider that the Klein-Gordon equation (16) in this re-
gion can be separated by taking

ik, x +ikyy¢akx(§)4’aky(77) , (33)

and reduced to equations for 9, (§) and q)aky(n). The

coordinates £,7 are related to the usual null coordinates
u,v by (10), and the two new equations read

Lo Bx (1+sing)®

#(&,m,x,y)=e

—(tané)y .+ =0, 34)
b~ (tand)y e r (
k2
—(tan)p ,+ |a— = =0, 35)
P, M@,y 4 cos’y 14

where a is a dimensionless separation constant and k,,k,
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are the same labels as in regions IV or II. We use the no-
tation @ =2Ma; therefore 73,‘ ,I?y are dimensionless param-
eters.

These differential equations have singular points at
&=m/2, i.e., on the horizon of region I, and at n==xm/2
respectively. To avoid them we can perform the follow-
ing change of variables:

d&* =M (1+siné)%arccosé d€, dn* =Marccosndy .

With appropriate integration constants, £* reduces to
(11) and n* to

1+siny
cosn

n*=MIn (36)

We can still introduce a new function y 4 (&) instead of
Yax (§) by y =1(1+sing)y, and we arrive at the follow-
ing equations for y 4 (&) and <paky(17):

2 .
2 cos 2sing _
+ =0,
Y)gt§#+ kX+M2(1+Sin§)4 1+siné 14
(37)
2
@ et —k}+—’l°;;2 a|p=0, (38)

which have no singular points in the regions of interest.

Recall that we are looking for a solution of the scalar
field ¢ in the interaction region, restricted to satisfy cer-
tain boundary conditions imposed by the wave packets
traveling from regions II (or III) into region I on the
boundary {v=0,05u <w/2} (or {u=0,05v<w/2}).
Thus the general solution for ¢ in terms of the new func-
tions yakx(g),(paky('q) is given by

2Yakx(§)
% Camtpaky(n) , (39)

ik, x +ikyy

o(E,m,x,p)=e

where the coefficients C, depend on a and the separation
constants used to label the monochromatic modes in re-
gion I, i.e., kx,ky, and k_. Now we will try to obtain all
possible information on the coefficients C, in (39). We
know that expression (39) gives the general solution (once
k, and k, are fixed) for a massless scalar field in the in-
teraction region, and the coefficients C, have to be such
that the appropriate boundary conditions are satisfied. If
we want to match the monochromatic modes defined in
region I with those of region II (27) (or III) we have to
perform a sum over all possible values of a in (39); this
was one of the main difficulties in Ref. [9]. In the follow-
ing discussion we will show that when we match the spa-
tially localized wave packets traveling from region II (or
IID) into region I (29) with wave packets defined using the
general solution (39), there is only one coefficient C,
which carries the main contribution. That is, we will find
a single value of a for which the infinite linear combina-
tion (39) can be approximated by a single term. Further-
more, we will be able to find the value of the coefficient
C,, for that particular value of a.
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We will proceed as follows. First, we will find an ap-
proximate solution of Egs. (37) and (38) for v 4 (£) and

@ak (1), respectively, near the boundary of region I with
¥

region II, which will lead to an approximate solution of
(39) near this boundary. With this solution we will con-
struct a wave packet in analogy with (23) or (29) and then
we will find the particular value of a and the phase of the
coefficient C, which allow the matching of this wave
packet with the wave packet (29) traveling from region
II. Next, we will find an approximate expression for the
general solution (39) near the horizon of region I, i.e., the
surface £=1/2, with the particular values of a and the
phase of C, calculated before. Such a solution becomes
exact on the surface of the horizon and it will be used to
construct a wave packet there.

Let us start with the approximate solution of (39) near
the boundary between regions II and I. First note that
the solution ¢ of the Klein-Gordon equation in the plane
wave regions (regions II or III) takes an exact WKB
form; i.e., it can be written as ¢ =C exp(iS), where C and
S are two real functions of the spacetime coordinates.
This is directly related to the fact that the geometrical
optics approximation is exact in the single plane wave re-
gions; i.e., the rays of the Klein-Gordon solutions (the
lines perpendicular to the constant phase surfaces) follow
null geodesics. Thus we can expect that an approximate
solution of the massless scalar field in the interaction re-
gion close to the boundaries with the plane wave regions
can be obtained with the WKB method; this is physically
related to the fact that near the boundaries the colliding
plane waves superpose linearly. In fact, from Egs. (37)
and (38) we can see that they admit WKB solutions given
by (see, for example, [20])

C et
(E*)=———="cxp |*i | , Q(E*)dE" |, (40)
Ywkal(§ ‘/Q(g*) fgo ]
*
(0*)=————ex [ii " Q(n*d ] (41)
Pwkp\" VR (1% P f% noan
where Q (£*) and R(7*) are
2 .
UEr ) =k2+ cos“E + 2519§ @)
Q= M*(1+sing)* * 1+ siné
J
ik x +ik,y 1 M

—= exp

b b ) = Ca e —————
pEmxy)=e % V cosécosm Va
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2
RAn*)=—k}+ g (43)
M

These WKB solutions can be used provided Q(£&*) and
R(7m*) do not vanish and they become accurate solutions
when Q(£*) and R (7n*) change slowly, ie., when
|dQ(E*)/dE*| << Q*(E*) and |dR (9*)/dn*| <<R*7n*).
Note that Eq. (37) admits a WKB approximation of this
kind throughout region I. Furthermore, this approxima-
tion becomes asymptotically exact on the surface of the
horizon of region I, i.e., £=m/2, and it is a really good
approximation near the boundaries between regions I and
II (or T and III) provided the separation constant a is
large enough: in fact, we will show that to ensure the
correct matching between wave packets traveling from
region II into I (or from region III into I) with a single
term in the infinite sum (39), it is necessary that the terms
containing a in (42) and (43), which also contain factors
cos’€ or cos’n), be dominant. Recall that when we ap-
proach the horizon, i.e., the surface £=m/2, on the
boundary between regions I and II (or I and III), then
both cos’£ and cos®y go rapidly to zero. This means that
a must be big enough to compensate the decreasing
behavior of cos?£ and cos?n. Equation (38), on the other
hand, admits a WKB approximation only near the
boundary between regions I and II (or I and III) under
the assumption of large a [this is because of the minus
term in (43)]. Fortunately, we know its exact solution
when it is written in the form (35); this solution is given
in terms of the associated Legendre polynomials and that
will be the solution we will take in the regions where the
WKB approximation is not valid.

Let us now evaluate the form of y 4 (§) and q)aky(n)

near the boundary between regions I and II, i.e,
{E=—n,0<&<m/2}. Although Q(£*) and R (79*), as
given by (42) and (43), are the complete terms that appear
in the WKB formulas, if we assume that a is large only
the first two terms in powers of a~ ! are relevant. With
this expansion, performing the integrals in (40) and (41)
and choosing the minus sign in the exponent of (40) and
the plus sign in the exponent of (41), we have

iVa[(n—§)—(ng—&)]

2

*i{kf[f(é)—f(go)]+ky2[g(n)—g(no)]}_M.:+0(av3/z) ,

where the functions f and g are given by (28).

Next we construct a double wave packet as
I
E,w"’ky’];» ,q(§,77,x,y)

dk, [ ;'H}dkA

X¢(k1:kyk,(§»"l’x,y) 'y (45)

k +e

1
—T/—E_Ef;zx

—igk _ —ink
e X

2Va
(44)

f
and write the coefficient C, and phase by

c,=Ic,le" . (46)

The integrand’s phase in (45) is then
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O0V=—gk_—nk, +k,x +k,y +6,—2(u —uy)Va
Alz
— (RS E)—f (€)1 +K (g (M —g ()]} T~ VoS

+0(a™3?). 47

Now @'V provides us with a natural way of matching the
wave packets in region II and the wave packets in region
I. Let us assume that the matching is good enough if the
trajectories of the wave packets in regions II and I are
joined in a continuous and differentiable way on the point
(4 =uy,v =0) of the boundary between these regions.
This means that ®" must satisfy the three constraints

@(I)I(u=u0,u=0)=®(n)|(u=u0,v=O) ’ (48)

Py _ 3o @)
o |(u=uyv=0) ou |(u=ugv=0)

e _ 3w 50)
W |(u=uyv=0) oW |[(u=uyv=0)

Using (47) and (30), these constraints give, respectively,

L,
= —[k2f (o) +kjg (ug)] 52—

% (51)

Wa+[k2f(ug)—k2(u )]ﬂ;
X 0 y 0 2v

L
=[k2f(ug)+k2g(ug)l=—

1
VI (52)
. M?

[k2f(ug)+k g(uo)] —2L k_, (53)

where f=df /du, ¢ =dg /du are, using (28),

4
Floy=FS0xS =L (54)
cos“x cos’x

J
—i *—x
ikyy e Ikxlt8 ),
¢(I)(§’7” WY)= = Eca‘pa (ﬂ)x —i * 4 x
Vil @ T T ikl
where £*—x =U, £*+x=V, U'=—2M exp(— U /2M),

and V'=—2M exp(—V /2M), following Egs. (12) and
(13). Notice that, when k, =0, the scalar field reaches
the “roof” V'=0 of the horizon (strictly speaking, the
rays of ¢, i.e., the lines normal to the constant phase sur-
faces of ¢, reach the “roof” ¥V'=0), and when k, <0,
they reach the “roof” U’=0 of the horizon. This asymp-
totic solution has been obtained because near to the hor-
izon £=m/2 the dominant term in (42) is k,f. However, it
is not possible to obtain such an asymptotic solution for
Eq. (38), because of the minus term in (43). Fortunately,
as we have said, we can go back to the untransformed
equation (35) which is the equation for the associated
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k,
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Note that the constraint (51) gives the value of the phase
0, for the coefficient C, in (39), and the constraints (52)
and (53) define the value of a. These two constraints are
compatible; this is not surprising because we have already
noticed that the WKB approximation is the natural ap-
proximation near those boundaries. The value of a is

_ . L
Vaz[kff(u0)+ky2g'(u0)]# , (55)

where we assume an expansion in even powers of cosu,
and we recall that f(uy) and g(u,) are of the order
(cosuy) ™2 Then a goes like (cosuy)™*; this justifies our
assumption that a cos?£ >>1 or a cos?s) >> 1 because both
terms go like (cosuy)™? in the matching point
(u =uqy,v =0). Note that (cosuy)™' increases rapidly
when u differs from zero, but even when u,=0 (55) with
the use of (22) gives Va~k , L, and the wave packet (45)
still matches with (29).

It is important to note that this matching fixes the
phase of the wave packet but does not ensure its normali-
zation. In fact, the normalization condition fixes the
modulus of the coefficient C,, but it is convenient to
postpone the calculation of this term until we have the
form of the wave packet close to the horizon of region I,
where the wave packet normalization condition is much
simpler.

Our next step is to identify the integrand’s phase
defining the wave packet (45) near the horizon {§=m/2.
To do this we can still use the WKB approximation (40)
of Eq. (37) near the horizon; this means that we can take,
asymptotically,

Ywks(§*)= > (56)
VK]

where we have chosen the minus sign in the phase in or-
der to be consistent with (44). From (39) the scalar field ¢
is then given by

—ilk,|g*

IV

(57)
<0

[
Legendre polynomials Paky (siny). Note that in the cyclic
case Mk,=m is an i{lteger and we can take a=1I(/ +1)
for I integer; then e nyaky(sinn) is proportional to the

spherical harmonic Y"(y /M,m/2—7). The matching of
the packets requires that a is given by (55); therefore we
can taken /=], ~Va a, where [, is the closest integer to
V'a for large a. Now using the asymptotic form (57) of ¢
near the horizon we can construct a double packet as in

(45). The integrand’s phase defining the wave packet is
given by
V= —gk_—nk,+k,y—k,(—x+£*)+6,, (58)
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where the upper sign in (58) stands for k, =0 and the
lower sign stands for k, <0, and 6, is the phase for the
coefficient C, given in (51). As we have said, the
coefficients C, are restricted to satisfy a normalization

J

<¢1,¢2)=—i4Mf cosndndy f_o (¢,0,6%)

U'=0

Since, as we have just seen,
CoL ey ky ke V=Cy e 81 — 1k, Ky k)

where I(kx,ky,k“ )=1, and 6, is given by (51), the nor-
malization condition with respect to (59) leads to
i0 172

Cil kg ky k)= ‘;M 8(1—1,). (60)

a

4k _

Finally with the asymptotic value (58) for the phase
near the horizon (§=m/2) we can use 30'/dk,
=30V /3k _ =0 to obtain the trajectory of the wave
packet near the horizon:

~ ~> L,
q =[kxf(u0)+kyg(u())] 2]—<~«2 > (61)
k,
xV=n+&+—"f(u,)L, . (62)

Notice that n +(k, /k _ )L, f (uy)=x"(0) is the value of
the coordinate x when the wave packet trajectory coming
from region II crosses the boundary v =0 into region I,
as one can see from (31); then (62) reads

x(I):x(I)(O)ig* . (63)

This is the equation for a null geodesic in a region close
to the horizon as can be seen by writing it in the form
xV=x"1(0)FIn( cos&), where xP(0) is a constant for a
fixed wave packet [(11) has been used]. It is worth notic-
ing that this is the equation for null geodesics close to the
horizon as one can see in the Appendix of [9].

Equation (63) can be written, using (12) and (13), as

U'=—2Me*""OM=y! k. >0, (64)

Vi=—2Me *O/4M=yp! <0, (65)

That is, the trajectories of the “in” wave packets, in the

region near the horizon, are straight lines of

U'=Uy=const for k,>0 and straight lines of
"=V =const for k, <0.

E. “Out” wave packets

Since at the horizon the fields 8/3U’ and 3/9V’ be-
come two null Killing vector fields we can define a new
complete set of “out” modes on region I. We define solu-
tions with positive frequency w, with respect to the vec-
tor /38U’ on the V'=0 “roof” of the horizon and posi-
tive frequency w_ with respect to the vector 3/3¥%’ on

av'+ [° (43,97
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condition, to make sure that the scalar field ¢ is well nor-
malized on the horizon. The appropriate inner product
of any two solutions ¢;,¢, of the Klein-Gordon equation
is given on the horizon by (see [9])

dau’

V'=0

(59)

[

the U'=0 “roof” of the horizon [9,13,21]. These modes,
close to the horizon, are given by

ug pm (U V’ﬂl,)’)=54‘/— TIZ—MW'"’()’/M,W/Z_"I)
Xe—iw+U"iwAV’ ’ (66)

where the labels @_, m’, and I’ are the three independent
separation constants of the Klein-Gordon equation (16)
using the asymptotic metric on the horizon of region I,
and the label o is given by

16M*0 0_=0(I'+1) . (67)

If we restrict ourselves, now, to the cyclic case the labels
I"” and m' are both discrete but w _ is continuous. We can
transform w_ into a discrete label by constructing a sin-
gle wave packet as

ul;.))u[ o m'( UI, V',”V],,V)

sn b,

o fa,je' Y™ (y/M,m/2—7)
Ve Ja 2MV 272w
Xe*in'w_*iauU’viva’ (68)
The integrand’s phase is given by
O=—n'o_—w,U—o_V—-—m'2 (69)

M ’

and the wave packet trajectory (i.e., 3® /dw_ =0), using
relation (67), is

. U=(n"+Va_ . (70)

Let us discuss these trajectories. On the “roof” U’'=0
the trajectory (70) is ¥V'= —n'=const =0, the coordinate
V' is always negative [see (13)]; thus, n' is positive and,
for a fixed wave packet, constant. This relation means
that on the “roof” U’=0 the wave packet trajectories are
straight lines with V’'=const=—n’. Similarly, on the
“roof” V'=0, the trajectories (70) are (&, /&_)U'=n’;
this means that they are straight lines with coordinate
U'=const=(®_/®,)n'; now the label n’ is negative
since the coordinate U’ is negative [see (13)]. Therefore
wave packets with n’ positive are localized on the U’'=0
“roof” of the horizon and wave packets with n’ negative
are localized on the V’'=0 “roof” of the horizon. These
“roofs” of the horizon are depicted in Fig. 3.
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FIG. 3. Three-dimensional plot of the in-
teraction region (region I) in which all its
boundaries are shown, using nonsingular
Kruskal-Szekeres-like coordinates. The sur-
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F. Bogoliubov coefficients

Using the well defined inner product on the surface of
the horizon (59), we can compute the Bogoliubov trans-
formation coefficients relating the propagated *“in” wave
packet modes from the flat region (region IV) up to the
horizon of region I and the “out” wave packet modes
defined on the horizon. The two Bogoliubov coefficients,
defined in the usual way (i.e.,

ar

i . [ 13 ’
ok _magm;o_,n'l'\m

k. te

ko k_mgm;o_,n',l'm’

where I’~V'a and 6, are given by (55) and (51), respec-
tively. The upper signs in (71), except for the label w,,
stand for the a coefficient and the lower signs for the
coefficient. The label w, is the same for both coefficients
and its double sign means k, =0 for the upper sign and
k, =0 for the lower sign.

In the approximation of small integration intervals ¢,
€', and 8, and following the stationary phase technique,
one can take the nonoscillating terms in the integrals as
constants. For that reason we can perform a convenient
separation in the Bogoliubov coefficients into modulus
and phase as

[

_ 1 k_+8
”$7/2_a_é'7ka dk, [, dk

face &5 and the lines M, M,, M}, and M), are
the boundaries of region I and the two plane
wave regions II and III, the points 7 and 7'
correspond to U'=0,¥V'=0,7=—x/2, and to
U'=0,V'=0,7=m/2, respectively, and they
are folding singularities [9,10,24]. The Cauchy
horizon is the “roof” {U'=0,V'<0}{V’
=0,U’' <0} and region I is enclosed between
the surface §'; and the “roof.”

out )

a,;x’~ =<u &_,n'l''m

in
k_,ngm;n_,n'l'm' k. .k_,nqm?

and

= —(yin _ out#
UL & _mamo¥ oo tm)

Br .k

_ngm;a_,n'l'\m’

are

o_+¢ —ink, —igk _tin'e_

do_e

iRM)()™
Virlklo_

e oMo, )

8 | Crle *T(1+i4M]k,|)

—i4M|k |

X ) (71

ar - Y
k. ,k_,ngm;o_,n'I'm

B :

kok_,ngm;a_,n'\l'\m

_ L i@MED"

Virlk,|
X |D(1+iaMlk, ]

+27M| Ex |
e

X Rasg> (12)

where we have made use of Stirling’s formula for the T’
function [23], i.e.,
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1+

[(z)=zZ"172 —21/7
(z2)=z e T 122 T 28857

+O(z3)l ;

it can be written as

i

C(1+iy)=|T(1+iy)| exp %1n(1+y2)—y

(73)
J

+ Jarctany

k_+e

S, £m’ —ink_+iq k-8 —igk _+i6
Rap=—mm [ ke " [ dk_|Cple e f

Viede Yk,

where
Q=4M|k, | In(4M|k, |)—4M|k | +7/4 ;

it comes from Stirling’s formula (74), where we have as-
sumed 4M|k,|> 1 for simplicity. This assumption does
not affect our results because the purpose is to relate a
single “in” wave packet with a fixed label k, to a single
“out” wave packet with a fixed label @_. Of course we
can follow the same steps for the case 4M|k, | >0 using
the more accurate version of Stirling’s formula (73). We
have kept the terms |Cp| and (o_)~!/? in the integrands
for convergence.

The terms 7, and 724 act like localizing terms in the
sense that the three integrals of which they consist have a
well localized peak. The integrand’s phases of R, and
R (©, and @y, respectively) are

@(x/B= -nkx —qk—in’a)4+ﬂ+9a—4MlkX | ln(ZMwi) ’
(76)

and the peaks of 72, and 72 are in the spacetime points
which satisfy

30,,5/3, =030, ,5/3k _ =30,,5/30_=0 .

Solving these three equations for ®, we find, respectively,

90, |k, |
n= +4M In s 77
ok, @y
%% (78)
q= 3k y
n'=—4M-—= (79)

w_

where the upper sign in (77) stands for k, >0 and the
lower sign for k, <0. Similarly, from the equations for
®;, we obtain

+4M In , (80)
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for values y >0, and can be written as

C(1+iy)=|T(1+iy)| exp(y Iny —y +m/4) , (74)

for y > 1. We have also defined 72, 5 as

o_+¢ de in'o_—i .
€ A0 cin'o_—iaMlk | in2Mo) ’ (75)
o_ Vo_
7= a 81
=5 > (81)
k,
n'=4M R (82)

where the two first equations are functionally the same as
(77) and (78) but with a bar over the “in” labels, i.e.,

k.,7n,g, since these three equations come from the f3
coefficient which relates an “out” wave packet with an
“in” anti wave packet (i.e., a wave packet constructed by
the superposition of monochromatic modes of negative
frequency). On the other hand, (77), (78), and (79) come
from an a coefficient and so relate an “out” wave packet
with an “in” wave packet. In fact, notice that Egs. (77),
(78), and (79) give a relation between the labels of the
“in” wave packets (i.e., k,,k,,k_,n, and q) and the labels
of the “out” wave packets (i.e., _,n’,I’, and m’) and
Eqgs. (80), (81), and (82) give a relation between the labels
of the “in” anti wave packets (.e., k,,k,,k_,7, and 7)
and the labels of the “out” wave packets (i.e., _,n",I’,
and m’). When the previous equations are satisfied the
terms 77, and 75 have a peak, otherwise they roughly
vanish.

Let us now extract some more information from Egs.
(77)-(82). For instance, Eq. (77) [or (80)] can be written
as

+x10)/4M

k. >0,
Ikl =s0se —w_Vy/(4M), k<0,

(ST

(83)
where we have used (51), (64), (65), and the fact that

n+(k, /k_)L,f (uy)=x0(0)

is the value of the coordinate x when the “in” wave pack-
et coming from region II crosses the boundary
{v=0,0<u < /2} into region I [see (31)]. Note that U,
or V are the coordinates on the horizon reached for the
wave packets. From (83), Egs. (77) and (80) can be seen
as redshift formulas, because they relate the energy of an
“out” wave packet (i.e., ®_) with the energies of an “in”
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wave packet and an “in” anti wave packet, respectively,
(the energy label for the “in” wave packets in the region
near the horizon is |k,|). Note also from (83) that the
redshift coefficient is given by the value of the coordinate
U or V on the horizon reached by the “in” wave or anti
wave packets and by the surface gravity of the horizon,
i.e., (4M)~2. Equations (79) and (82) are position formu-
las because they give information on the trajectories of
the “in” wave and anti wave packets which are related to
a given “out” wave packet. In fact, the label n’ appear-
ing in these formulas can be written, in analogy to (83), as
2t U, K, 20,
In’|=1 @- (84)

'_’Vo, kx SO.

Recall that the label n’ of the “out” wave packet is relat-
ed to its position on the horizon [see (70)]; when n'=0
the “out” wave packet is localized on the U’ =0 “roof” at
coordinate V'=V, =—n’'=const, and when n’ <0 it is
localized on the V'=0 “roof” at coordinate
U=U,,,=(@_/&,)n'"=const. From (79) we see that
when n'>0 then k, <0, and vice versa, and from (82)

that when n’>0 then k, >0, and vice versa. Equation
(78) [or (81)], with the use of (51), is the same as (61) and
it does not give us any additional information.

Putting all this together we can give the following in-
terpretation. An ‘“out” wave packet (@_,n’), which is lo-
calized at the coordinate V., on the “roof’ U’'=0
(U 1ax ON the “roof”’ ¥'=0) of the horizon, is related to
an “in” wave packet with momentum along the x axis
k,=&_Vi/4M (k,=—&, U, /4M) which reaches
the horizon at coordinate Vo=V, on the “roof”
U'=0 (Uy=U,,, on the “roof” ¥'=0), and to an “in”
anti wave packet with the same momentum along the x
axis, but with opposite sign, k,=—&_V.,, /4M
(k, =&, Ul /4M), which reaches the horizon at coor-
dinate U,=(®_/@®,)V,, on the “roof’ ¥V'=0
(Vo=@ /®_)U.,, on the “roof” U’'=0).

G. Particle creation

Following the formalism of quantum field theory on
curved spacetime, spontaneous particle creation is direct-
ly related to the 8 Bogoliubov coefficient. In fact, the
number of “out” particles in a given wave packet mode
with labels (&_,n’,I’,m’) [i.e., the number of quanta in
the wave packet mode (@_,n’,I’,m’')] in the “in” vacu-
um is given by the sum over the “in” labels of the
squared modulus of the S coefficient [22], (72), that is,

. t .
0,in|Ng" .. ..10,in)
= o 2
_ ~2 'ka,k_,m,n,q;w_,n’,l',m" * (85)
k,k_,m,nq
Here N3 .. . is the number operator of “out” parti-
cles defined in the standard way as
Nout =a i'out aot

&_,n'lI'ym’ o_,n'I'm"&_,n",lI''m' ?
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tout
where az’" .,

out
@_,n'\I'm'
packet creation and annihilation operators, respectively.
With these operators we can write the field operator ¢ as
a combination of “‘out” wave and anti wave packets, i.e.,

, and a are the “out” wave

= out out
#(x) 2 ay e (%)
@_,n"lI'm'
tout *out
tay e o (%)

To evaluate the sum in (85) it is worth noticing that the
Ry coefficient in (72), given by (75), satisfies the two
equalities

1

Rgl*= , (86)
a_,n}.,:,,,m,l o= Samy
1
Rl*= . (87)
E,E_;m_n,q' g 42M)?

X

These equalities follow from the general property (2) of
wave packets and from the form of C, given by (60).
Note also, in order to make sense of the square of C; ac-
cording to (60), we consider the product of a Dirac’s §
with a Kronecker’s 8.

These two equalities and the fact that the 25 term has
a peak when the relations (80)-(82), between the “in” la-
bels (i.e., k,,k,,k_,n,q) and the “out” labels (i.e.,
w_,n',l';m') are satisfied, allow us to write approximate-

ly

B 2(aM)32 Kona— M) En i@, lm)
xsk_,E_(&)_,n’,l’,m’)aq,q(a_,n',l',m’)am.‘m' ’ (88)
where n=a(o_,n',l'’’m') is given by (80),

qg=q(@_,n',lI'’’m') by (81), and 8k_,,;_(a_’n,’,,,m,) is

given by &, 1, which appears from the squared modulus

of (60). Then the number of “out” particles created in
the “out” packet mode (@_,n’,l',m’), Eq. (85), is simply

(0,in|N% ., loin) =N

' lhm
1

= 8TMa_(|n’'| /4M) ’ (89)
e —1

which can be interpreted as a thermal spectrum for each
fixed value of the label n’, with a temperature
-

8TM (|n’| /4M) °

T (90)

This spectrum depends on the dimensionless label
n'/4M, i.e., on the trajectory of the wave packet, but it is
thermal for all wave packet modes with the same trajec-
tory. This is quite different from the black hole case [14]
where the temperature is independent of the packet tra-
jectory [17] and depends only on the surface gravity,
k=(4M)~'. In Ref. [9] we discuss how the black hole
case can be seen in some sense as the time reversal of the
colliding wave case. The physical interpretation of this
n’-dependent temperature follows from the fact that we
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are computing the particles produced on the wave packet
mode (@_,n’,I',m"), which is localized on the horizon by
n', given by (70), so that these particles may be “local-
ized” in the same position on the horizon. Note that
when n' =0, i.e., near the bifurcation point U'=¥"'=0 of
the horizon, the temperature is higher.

This spectrum is in agreement with the spectrum of
particles created on the monochromatic modes (20), i.e.,
particles with a well defined momentum but not localized
in space, because the one particle Fock space can be
decomposed on a basis given in terms of the mono-
chromatic labels |w ), or, alternatively, on a basis given in
terms of the wave packet labels |&,n’). The space is the
same but, of course, the particle interpretation is
different.

For the monochromatic modes, discussed in Ref. [9], the
spectrum of particles created (20) is inversely proportion-
al to the energy of the “out” modes (i.e., @_), with a pro-
portionality factor (87M)~!. The relation between the
number operators N3 and N g""n, is given in terms of

the Bogoliubov coefficients relating the monochromatic
modes and the wave packet modes. Such a transforma-
tion has no 8 Bogoliubov coefficient because the positive
frequency wave packets are constructed with positive fre-
quency monochromatic modes only. The a Bogoliubov
coefficient is

Ay o == 0o_—&_)—0o_—{o_+€))],

where, here, 6(x) is the usual Heaviside step function;
thus the relation between the monochromatic and wave
packet annihilation operators is given by
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—in'w

out out e 1 - out
2 aw _so_,n'@ _,n' Ve 2 Ay _,n
6 n'

Then the monochromatic number operator can be writ-
ten as

—in'=mo_ toutout
a, ,'l'aw A

€ . - -
n', A

a

o_“Yo_

out — , Tout out__l_
Nw‘—_a T 28

and we can approximate

.10,in)

(t),'l

<01n|Nout|0 m)~—1~ <0 1nlaTout qout
€
:___ Nout .
¢ § o_,n

as the phase term exp[ —i(n'—#")w_] is fast oscillating
(except when n'=m"), because n' —a'=(l —I)27 /€ with
I and I’ integers and €’ a small positive parameter. Then

1 w dk
8TMw_ fo ek—1"’ O

(0,in|N g™ [0, 1n)~—
T

where we have assumed 8mMw _ << 1 in order to approxi-
mate kK =(87Mw_)n'/4M as a continuous dimensionless
variable. The inverse proportionality in w_ and the loga-
rithmic divergence, in (20), have been recovered. The ex-
tra factor (2M)? in (20) is due to the fact that two mono-
chromatic labels in Ref. [9] were, in fact, discrete and this
factor guarantees the correct normalizations.
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FIG. 1. Projection of the colliding plane
wave spacetime in the (u,v) plane. One can
see four regions: region IV is the flat region
before the waves collide, regions II and III are
the plane wave regions, and region I is the in-
teraction region. The interaction starts at
u=v=0, the lines u«=0,v<0 and
v =0, u <0 are the boundaries of region IV
with regions II and III, respectively, and
v=0,02u<nw/2and u =0,0<5v <7/2 are the
boundaries of region I with regions II and III,
respectively. At u +v =m/2 a Killing-Cauchy
horizon is formed which one can see as a coor-
dinate singularity of the metric in region I.



FIG. 3. Three-dimensional plot of the in-
teraction region (region I) in which all its
boundaries are shown, using nonsingular
Kruskal-Szekeres-like coordinates. The sur-
face &, and the lines J,, JM,, M}, and M, are
the boundaries of region I and the two plane
wave regions II and III, the points ? and 7
correspond to U'=0,V'=0,1=—m/2, and to
U'=0,V'=0,9=m/2, respectively, and they
are folding singularities [9,10,24]. The Cauchy
horizon is the “‘roof” {U'=0,V' <0} [V’
=0,U"'<0} and region I is enclosed between
the surface §; and the “roof.”
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